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Abstract
Let u be any positive integer. We construct infinite sequences of almost symmetric
non-Weierstrass numerical semigroups whose conductors are the genera double minus
2u − 1. Moreover, let v be any non-negative integer. We give an infinite number of
non-Weierstrass numerical semigroups whose conductors are the genera double minus
2v.

Keywords Conductors of numerical semigroups · Almost symmetric numerical
semigroups · Non-Weierstrass numerical semigroups · Pseudo-Frobenius numbers

1 Introduction

Let N0 be the additive monoid of non-negative integers. A submonoid H of N0 is
called a numerical semigroup if the complement N0\H is a finite set. The cardinality
of N0\H is called the genus of H , denoted by g(H). Let (C, P) be a pointed curve
of genus g where a curve means a complete non-singular irreducible algebraic curve
over an algebraically closed field k of characteristic 0 in this article. We set

H(P) = {n ∈ N0 | there exists f ∈ k(C) such that ( f )∞ = nP}

where k(C) denotes the field of rational functions on C . Then H(P) becomes a
numerical semigroup of genus g. A numerical semigroup H is said to beWeierstrass
if there exists a pointed curve (C, P)with H(P) = H . Hurwitz [2] posed the following
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936 J. Komeda

problem in 1893: Is every numerical semigroup Weierstrass? This is a long-standing
problem. In 1980Buchweitz [1] gave a computable necessary condition for a numerical
semigroup to be Weierstrass. Using this criterion he finally found an example of a
non-Weierstrass numerical semigroup. About ten years later after Buchweitz gave the
non-Weierstrass numerical semigroup, Torres [13] showed that the criterion given by
Buchweitz is not a sufficient condition for a numerical semigroup to be Weierstrass.
So the following problem is still unsolved:

Give a computable necessary and sufficient condition on a numerical semigroup to
be Weierstrass.

Let H be a numerical semigroup. We set c(H) = min{c ∈ N0 | c + N0 � H},
which is called the conductor of H . The integer c(H) − 1 is called the Frobenius
number of H . We have c(H) � 2g(H). A numerical semigroup H is said to be
symmetric if the equality c(H) = 2g(H) holds. A numerical semigroup H is said to
be quasi-symmetric if the equality c(H) = 2g(H) − 1 holds. We denote by PF(H)

the set

{ f ∈ N0\H | f + h ∈ H for all h ∈ H with h > 0}.

Since c(H) − 1 belongs to PF(H), the set PF(H) is non-empty. An element of
PF(H) is called a pseudo-Frobenius number of H . The cardinality of the set PF(H)

is called the type of H , which is denoted by t(H). We have c(H)+ t(H) � 2g(H)+1
(see Proposition 2.2 in [10]). A numerical semigroup H is said to be almost symmetric
if c(H) + t(H) = 2g(H) + 1. Hence, any symmetric numerical semigroup is almost
symmetric. Let l be an integer with l � 2. For any numerical semigroup H , we set

dl(H) = {h′ ∈ N0 | lh′ ∈ H},

which is also a numerical semigroup. In Sect. 2, using the result in Torres [13], we
give infinite sequences

H0,0 = H0
d2←− H1

d2←− H2
d2←− · · · d2←− Hi−1

d2←− Hi
d2←− · · ·

of symmetric non-Weierstrass numerical semigroups. In Sect. 3, for any positive inte-
ger t and any almost symmetric numerical semigroup H0 of type t , we construct
infinite sequences

H0
d3←− H1

d3←− H2
d3←− · · · d3←− Hi−1

d3←− Hi
d3←− · · ·

of almost symmetric numerical semigroups of type t , hence c(Hi ) = 2g(Hi )−(t−1).
Oliveira and Stöhr [11] constructed quasi-symmetric non-Weierstrass numerical semi-
groups H0,1. In Sect. 4 for any integer u with u � 2, we show that there are
almost symmetric non-Weierstrass numerical semigroups H0,2u−1 of type 2u, hence
c(H0,2u−1) = 2g(H0,2u−1)− (2u−1). Thereafter for any u � 1, we construct infinite
sequences of almost symmetric non-Weierstrass numerical semigroups whose starting
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Infinite sequences of almost symmetric non-Weierstrass… 937

points are the above numerical semigroups H0,2u−1 as follows:

H0,2u−1 = H0
d3←− H1

d3←− H2
d3←− · · · d3←− Hi−1

d3←− Hi
d3←− · · ·

with c(Hi ) = 2g(Hi )−(2u−1). In Sect. 5we study numerical semigroupswhose con-
ductors are even. Specifically, we give an infinite number of non-Weierstrass numerical
semigroups H with c(H) = 2g(H) − 2v for any v � 1.

2 Symmetric non-Weierstrass numerical semigroups

For a numerical semigroup H we use the following notation: We set

m = m(H) = min{h ∈ H | h > 0},

which is called the multiplicity of H . Let

si = min{h ∈ H | h ≡ i mod m}

for any i with 1 � i � m − 1. The numerical semigroup H is generated by
s1, . . . , sm−1. The set {m, s1, . . . , sm−1} is called the standard basis for H , which
is denoted by S(H). We set

smax = max{si | i = 1, 2, . . . ,m − 1}.

We note that c(H) = smax − m + 1. To construct infinite sequences of symmetric
non-Weierstrass numerical semigroups we need the following lemma:

Lemma 1 Let H be a symmetric numerical semigroup with multiplicity m and n be
an odd number with n � c(H) + m − 1. We set

H̃ = 2H + nN0 := {2h + nl | h ∈ H , l ∈ N0}.

Then H̃ is a symmetric numerical semigroup whose genus is 2g(H) + n − 1

2
.

Proof Using Proposition 2.1 in [8] we get the description of g(H̃). We note that the
proof of Proposition 2.1 in [8] works well even if n � c(H) + m − 1. Then we have

c(H̃) = n + 2smax − 2m + 1 = n − 1 + 2(smax − m + 1) = n − 1 + 2c(H).

Since H is symmetric, we obtain

c(H̃) = n − 1 + 4g(H) = 2g(H̃),

which implies that H̃ is symmetric. ��

123



938 J. Komeda

Remark 1 The semigroup H̃ in Lemma 1 is obtained by “gluing” and the Frobenius
numbers are easily computed (see Theorem 9.2 and Proposition 9.11 in [12]). Using
the above we can also prove that H̃ is symmetric.

The following is useful for constructing infinite sequence of non-Weierstrass numer-
ical semigroups from a non-Weierstrass numerical semigroup:

Remark 2 Let H be a non-Weierstrass numerical semigroup and H̃ be a numerical
semigroup with d2(H̃) = H . If g(H̃) � 6g(H) + 1, then H̃ is non-Weierstrass.

Proof Assume that H̃ is Weierstrass, i.e., there exists a pointed curve (C, P) such
that H(P) = H̃ . If g(H̃) � 6g(H) + 4, g(H̃) = 6g(H) + 3 or 6g(H) + 2, and
g(H̃) = 6g(H) + 1, by Corollary 2.10 in [13], Theorem B in [3] and Main Theorem
in [9] respectively, C is a double cover of some curveC ′ such that P is its ramification
point. Let π : C −→ C ′ be the double covering. Then we have H = H(π(P)) by
Lemma 2 in [5], which implies that H is Weierstrass. This is a contradiction. ��
Theorem 1 Let H0 be a symmetric non-Weierstrass numerical semigroup. Then we
have infinite sequences

H0
d2←− H1

d2←− H2
d2←− · · · d2←− Hi−1

d2←− Hi
d2←− · · ·

of symmetric non-Weierstrass numerical semigroups.

Proof Let H be a symmetric non-Weierstrass numerical semigroup with multiplicity
m. For any odd n � c(H) + m − 1 the numerical semigroup H̃ = 2H + nN0 is

symmetric fromLemma 1. If n � 8g(H)+3, thenwe have g(H̃) = 2g(H)+ n − 1

2
�

6g(H) + 1. Hence by Remark 2 the numerical semigroup H̃ is non-Weierstrass.
Repeating this process we get the desired infinite sequences. ��

3 Infinite sequences of almost symmetric numerical semigroups

Proposition 1 Let H be a numerical semigroup with multiplicity m and n be an integer
not divisible by 3 with

n � max{c(H) + m − 1, 3m + 1}.

Then we have g(3H + nN0) = 3g(H) + n − 1.

Proof Since n � 3m, 3H + nN0 is a 3m−semigroup. Moreover, the standard basis
S(3H + nN0) is

{3m, 3s1, . . . , 3sm−1} ∪ {n, n + 3s1, . . . , n + 3sm−1} ∪ {2n, 2n + 3s1,

. . . , 2n + 3sm−1} ,

because n � c(H) + m − 1 = smax .
We put H1 = 3H + nN0. We will count �(N\H1).
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(a) For a non-negative integer y we have x = 3y /∈ H1 if and only if y /∈ H . We have
�{y ∈ N0 | y /∈ H} = g(H).

(b) For an integer y we have x = n + 3y ∈ N0\H1 if and only if y ∈ N0\H or
0 < n + 3y < n. We have

�{y ∈ Z | y ∈ N0\H or 0 < n + 3y < n} = g(H) +
[n
3

]
.

(c) For an integer y we have x = 2n + 3y ∈ N0\H1 if and only if y ∈ N0\H or
0 < 2n + 3y < 2n. We have

�{y ∈ Z | y ∈ N0\H or 0 < 2n + 3y < 2n} = g(H) +
[
2n

3

]
.

Thus, we obtain

g(H1) = �(N0\H1) = 3g(H) +
[n
3

]
+

[
2n

3

]
= 3g(H) + n − 1.

��
We will show from now on that there is an infinite sequence of almost symmetric
numerical semigroups whose starting point is any almost symmetric numerical semi-
group. For that purpose we need to check whether a given numerical semigroup is
almost symmetric. To show that a numerical semigroup H is almost symmetric we
investigate the set PF(H) of pseudo-Frobenius numbers. The following lemma is
useful for describing the set PF(H):

Lemma 2 Let H be a numerical semigroup with multiplicity m. Then we have

PF(H) = {s − m | s ∈ SPF+(H)}

where we set

SPF+(H) = {s ∈ S(H) | s + s′ /∈ S(H) for all s′ ∈ S(H)}

Proof Let s ∈ SPF+(H). Take h ∈ H with h > 0. Then h = s′ + lm for some
s′ ∈ S(H) with l ∈ N0. We have

s − m + h = s + s′ + (l − 1)m = s′′ + l ′m + (l − 1)m = s′′ + (l ′ + l − 1)m

for some s′′ ∈ S(H) with a positive integer l ′. Hence we get s − m + h ∈ H . Thus,
we have s − m ∈ PF(H).

Let f ∈ PF(H). Then we have f = s − m with s ∈ S(H), because f /∈ H and
f +m ∈ H . Moreover, we obtain H � f + s′ = s −m + s′ for any s′ ∈ S(H), which
implies that s + s′ = h + m with h ∈ H . Hence, we get s + s′ /∈ S(H). ��
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940 J. Komeda

We will show how to construct an almost symmetric numerical semigroup H̃ from
any almost symmetric numerical semigroup H satisfying d3(H̃) = H . We denote
by 〈a1, . . . , al〉 the additive monoid generated by positive integers a1, . . . , al . This
notation is useful for describing a numerical semigroup.

Theorem 2 Let t be a positive integer. Let H be an almost symmetric numerical semi-
group with multiplicity m and c(H) = 2g(H) − (t − 1). Let n be an integer with
n � max{c(H) + m − 1, 3m + 1} which is not divisible by 3. We set

H̃ = 3H + 〈n, 2n + 3 f1, . . . , 2n + 3 ft−1〉

where PF∗(H) = PF(H)\{c(H) − 1} = { f1, . . . , ft−1}, because H is almost
symmetric. Then we have

g(H̃) = 3g(H) + n − 1 − (t − 1) and c(H̃) = 2g(H̃) − (t − 1).

Moreover, we obtain t(H̃) = t , which implies that the numerical semigroup H̃ is
almost symmetric.

Proof It follows from Lemma 2 that

S(H̃) = {3m, 3s1, . . . , 3sm−1, n, n + 3s1, . . . , n + 3sm−1}
∪{2n + 3 f1, . . . , 2n + 3 ft−1} ∪ {2n + 3s | s ∈ S(H) with s − m /∈ PF(H)}.

Using Proposition 1 and fi ∈ PF(H) for any i with 1 � i � t − 1, we get

g(H̃) = 3g(H) + n − 1 − (t − 1)

Since 2n + 3smax is the maximum element in S(H̃), we have 2n + 3smax − 3m ∈
PF(H̃). Moreover, we have

c(H̃) = 2n + 3smax − 3m + 1 = 3(smax − m + 1) + 2(n − 1)

= 3c(H) + 2(n − 1)

= 3(2g(H) − (t − 1)) + 2(n − 1)

= 2(3g(H) + n − t) − t + 1 = 2g(H̃) − (t − 1).

We set s(i) = fi + m for all i . Then

(n + 3s(i)) + n = (2n + 3 fi ) + 3m /∈ S(H̃).

Moreover, for any s ∈ S(H) we have

(n + 3s(i)) + 3s = n + 3(s(i) + s) = n + 3(s′ + νm)

with a positive integer ν from Lemma 2, because fi ∈ PF(H). Using Lemma 2 again
we obtain n + 3 fi ∈ PF(H̃) for all i = 1, . . . , t − 1. Thus, we have t(H̃) � t .
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Infinite sequences of almost symmetric non-Weierstrass… 941

Moreover, the equality c(H̃) = 2g(H̃) − (t − 1) implies that t(H̃) � t . Hence, we
get t(H̃) = t . Thus, H̃ is almost symmetric. ��
Here, we give an example of an almost symmetric numerical semigroup H with
c(H) = 2g(H) − (t − 1) for any positive integer t .

Example 1 Let t be a positive integer. We setm = t +1. Let H = 〈m,m+1, . . . ,m+
m − 1〉. By Lemma 2 we have t(H) = m − 1 = t . Moreover, we obtain

c(H) = m = 2(m − 1) − (m − 2) = 2g(H) − (t − 1).

Hence, the numerical semigroup H is almost symmetric.

Using Theorem 2 repeatedly we get infinite sequences of almost symmetric numerical
semigroups.

Corollary 1 Let t be a positive integer. Let H be any almost symmetric numerical
semigroup with c(H) = 2g(H) − (t − 1). Then there exists an infinite sequences

H0 = H
d3←− H1

d3←− H2
d3←− · · · d3←− Hi−1

d3←− Hi
d3←− · · ·

of almost symmetric numerical semigroups whose conductors are equal to the genera
double minus t − 1.

4 Almost symmetric non-Weierstrass numerical semigroups with odd
conductor

To find almost symmetric non-Weierstrass numerical semigroups with odd conductor
we use the construction in the following lemma whose origin is Scholium 3.5 in [13]
and Theorem 5.1 in [11].

Lemma 3 Let u be a positive integer and H be a numerical semigroupwithmultiplicity
m � 2. Let g be an integer with g �≡ u mod 3 and

g > max{4u − 3, 2u + 2c(H) + m − 4}.

We set

H̃ = 3H ∪ (g + 2u + 3N0) ∪ {2g − 2u − 3r | r ∈ Z\H}.

Then the following hold:

(i) H̃ is a numerical semigroup of genus g.
(ii) We have c(H̃) = 2g − (2u − 1), hence the maximum element in S(H̃) is 2g −

2u + 3m.
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(iii) We obtain

PF(H̃) � {g + 2u + 3l − 3m | l = 0, 1, . . . ,m − 1} ∪ {2g − 2u + 3m − 3m},

which implies that t(H̃) � m + 1.

Proof (i) First, we will prove that H̃ becomes a submonoid of the additive monoid
N0. We set

A = 3H , B = g + 2u + 3N0 and C = {2g − 2u − 3r | r ∈ Z\H}.

We note that the minimum element of C is 2g − 2u − 3(c(H) − 1), which is
non-negative, because we have

2g − 2u − 3(c(H) − 1) � 2(2u + 2c(H) + m − 3) − 2u − 3(c(H) − 1)

= 2u + c(H) + 2m − 3 � 2u + c(H) + 1 > 0.

It is trivial that

A + A � A, A + B � B and A + C � C .

Let l ∈ N0 and l ′ ∈ N0. We have

(g + 2u + 3l) + (g + 2u + 3l ′) = 2g − 2u + 6u + 3(l + l ′)
= 2g − 2u − 3(−2u − l − l ′),

which implies that B + B � C , because −2u − l − l ′ < 0.
Let l ∈ N0 and r ∈ Z\H . We have

(g + 2u + 3l) + (2g − 2u − 3r) = 3(g + l − r).

Since g � 2u + 2c(H) + m − 3 > 2u + 2c(H) − 2, we get

g + l − r � g − r > 2u + 2c(H) − 2 − r � 2 + 2c(H) − 2 − r

= 2c(H) − r � 2c(H) − (c(H) − 1) = c(H) + 1,

because r � c(H) − 1. Hence, we get g + l − r ∈ H , which implies that
B + C � A.
Let r ∈ Z\H and r ′ ∈ Z\H . Then we have

(2g − 2u − 3r) + (2g − 2u − 3r ′) = g + 2u + 3(g − 2u − r − r ′).

It follows from g > max{4u − 3, 2u + 2c(H) + m − 4} that

g − 2u − r − r ′ � g − 2u + 2 − 2c(H)

� 2u + 2c(H) + m − 3 − 2u + 2 − 2c(H) = m − 1 > 0,
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which implies that C + C � B. Thus, H̃ becomes a submonoid of N0. By the
definition of H̃ it is a numerical semigroup.
Secondly, we will show that the genus of the numerical semigroiup H̃ is equal
to g. We have

N0\H̃ = 3N0\3H ∪ (3N0 + a)\{g + 2u + 3N0}
∪(3N0 + b)\{2g − 2u − 3r | r ∈ Z\H}

where g + 2u ≡ a mod 3 and 2g − 2u ≡ b mod 3 with {a, b} = {1, 2}, because
g �≡ u mod 3. We obtain that

�(3N0\3H) = g(H) and �((3N0 + a)\{g + 2u + 3N0}) = g + 2u − a

3
.

Moreover, the maximum element in (3N0 + s)\{2g − 2u − 3r | r ∈ Z\H} is
2g − 2u, which implies that

�((3N0 + b)\{2g − 2u − 3r | r ∈ Z\H}) = 2g − 2u + 3 − b

3
− g(H).

Combining the above results about the cardinalities of the three sets we get

g(H̃) = �(N0\H̃) = 3g − a − b + 3

3
= g.

(ii) We have 3(c(H)−1) /∈ 3H and 3l ∈ 3H for any l � c(H). Moreover, it is clear
that g + 2u − 3 /∈ g + 2u + 3N0 and g + 2u + 3l ∈ g + 2u + 3N0 for all l � 0.
It follows that 2g − 2u /∈ C and 2g − 2u + 3l ′ ∈ C for all l ′ > 0. Since we have
the inequalities

2g − 2u − (g + 2u − 3) = g − (4u − 3) > 0 and

2g − 2u − (3c(H) − 3) = 2

(
g −

(
u + 3

2
(c(H) − 1)

)

� 2

(
2u + 2c(H) + m − 3 − u − 3

2
(c(H) − 1)

)

= 2

(
u + 1

2
c(H) + m − 3

2

)
> 0,

we obtain c(H̃) = 2g− (2u − 1). Hence, the maximal element in S(H̃) is equal
to

c(H̃) − 1 + 3m = 2g − (2u − 1) − 1 + 3m = 2g − 2u + 3m.
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(iii) We obtain

S(H̃) = {3m, 3s1, . . . , 3sm−1} ∪ {g + 2u + 3l | l = 0, 1, . . . ,m − 1}
∪{2g − 2u − 3(si − m) | i = 1, . . . ,m − 1} ∪ {2g − 2u + 3m}.

Moreover, we have

3si + 2g − 2u − 3(si − m) = 2g − 2u + 3m

for all i = 1, . . . ,m − 1. By Lemma 2 we get the inclusion in (iii).
��

Proposition 2 Let u, H, g and H̃ be as in Lemma 3.Moreover, assume thatm � 2u−1.
Then we get t(H̃) = m + 1. If m = 2u − 1, then H̃ is an almost symmetric numerical
semigroup with c(H̃) = 2g(H̃) − (2u − 1).

Proof For l � 0 we have

(g + 2u + 3l) + 3si � g + 2u + 3si � g + 2u + 3(m + 1) > g + 2u + 3(m − 1).

Moreover, we obtain

((g + 2u + 3l) + (2g − 2u − 3(si − m))) − 3smax � 3g − 3si + 3m − 3smax

� 3(2u + 2c(H) + m − 3) − 3si + 3m − 3smax

� 3(2u + 2c(H) − 1) − 3si + 3m − 3smax

= 3(2u + c(H) − smax + m − 1 + c(H) − si ) = 3(2u + c(H) − si )

= 3(2u + smax − m + 1 − si )

� 3(2u − m + 1) � 3(2u − (2u − 1) + 1) = 6 > 0,

because m � 2u − 1.
Lastly, for l � 0 and l ′ � 0 we get

(g + 2u + 3l) + (g + 2u + 3l ′) − (2g − 2u + 3m)

� 2g + 4u − (2g − 2u + 3m) = 3(2u − m) � 3 > 0

by the assumption m � 2u − 1. By Lemmas 2 and 3(iii) we obtain

PF(H̃) = {g + 2u + 3l − 3m | l = 0, 1, . . . ,m − 1} ∪ {2g − 2u + 3m − 3m}.

Thus, we get t(H̃) = m + 1.
If m = 2u − 1, then it follows from Lemma 3(ii) that

c(H̃) + t(H̃) = 2g(H̃) − (2u − 1) + m + 1

= 2g(H̃) − (2u − 1) + (2u − 1) + 1 = 2g(H̃) + 1,

which implies that H̃ is almost symmetric. ��

123



Infinite sequences of almost symmetric non-Weierstrass… 945

The following result is useful for getting non-Weierstrass numerical semigroups:

Remark 3 Let H be a numerical semigroup with g(H) � 15g(d3(H)) + 11. If H is
Weierstrass, then so is d3(H).

Proof By Corollaries 2.6 and 2.7 in [14] we can apply to H the proof of Theorem 5.1
in [11]. Hence we can see that d3(H) is Weierstrass. ��
We find almost symmetric non-Weierstrass numerical semigroups H̃ with an odd
conductor c(H̃) = 2g(H̃) − (2u − 1) for any positive integer u using Proposition 2.

Theorem 3 Let u � 7. Then there exists an almost symmetric non-Weierstrass numer-
ical semigroup H̃ with c(H̃) = 2g(H̃) − (2u − 1).

Proof Let m be an odd number � 13. We set m = 2u − 1, which implies that u =
m + 1

2
� 7. Then there exists a non-Weierstrass m-semigroup H (for example, see

[6]). Let g be an integer as in Lemma 3. Moreover, we assume that g � 15g(H)+11.
We set

H̃ = 3H ∪ (g + 2u + 3N0) ∪ {2g − 2u − 3r | r ∈ Z\H}.

By Remark 3 the numerical semigroup H̃ is non-Weierstrass, because so is H =
d3(H̃). Moreover, it follows from Proposition 2 that H̃ is an almost symmetric numer-
ical semigroup with c(H̃) = 2g(H̃) − (2u − 1). ��
Theorem 4 Let u = 3, 5 or 6. Then there exists an almost symmetric non-Weierstrass
numerical semigroup H̃ with c(H̃) = 2g(H̃) − (2u − 1).

Proof We set m = 2u + 2. Let H , g and H̃ be as in Lemma 3. By Lemma 3(iii) we
have

PF(H̃) � {g + 2u + 3l − 3m | l = 0, 1, . . . ,m − 1} ∪ {2g − 2u + 3m − 3m}.

We obtain

(g + 2u) + (g + 2u + 3 · 2) = (g + 2u + 3 · 1) + (g + 2u + 3 · 1)
= 2g − 2u + 3(2u + 2) = 2g − 2u + 3m

from m = 2u + 2. Hence, by Lemma 2 we get

PF(H̃) � {g + 2u + 3l − 3m | l = 3, . . . ,m − 1} ∪ {2g − 2u + 3m − 3m}.

We have

(g + 2u + 3l) + 3si > g + 2u + 3(m − 1)
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for l � 0. Moreover, for l � 3 we obtain

((g + 2u + 3l) + (2g − 2u − 3(si − m))) − 3smax � 3g + 9 + 3m − 3(si + smax )

� 3(2u + 2c(H) + m − 3) + 9 + 3m − 3(si + smax )

= 3(2u − m + 1) + 9 − 9 − 3 + 6c(H) + 9m − 3(si + smax )

= 3(2u − m + 1) + 9 + 6(c(H) − 1 + m) − 3(si + smax ) − 3 + 3m − 3

� 3(2u − m + 1) + 9 + 3(m − 2) � 3(m − 2 − m + 1) + 9 = 6 > 0

from m = 2u + 2. Lastly, for l � 3 and l ′ � 0 we get

(g + 2u + 3l) + (g + 2u + 3l ′) − (2g − 2u + 3m)

� 2g + 4u − (2g − 2u + 3m) + 9 = 3(2u − m) + 9

= 3(m − 2 − m) + 9 = 3 > 0

from m = 2u + 2. Thus, we obtain

PF(H̃) = {g + 2u + 3l − 3m | l = 3, . . . ,m − 1} ∪ {2g − 2u + 3m − 3m},

which implies that t(H̃) = m − 2 = 2u. Since we have c(H̃) = 2g(H̃) − (2u − 1)
from Lemma 3(ii), the numerical semigroup H̃ is almost symmetric.

For m = 8, 12, 14, i.e., u = 3, 5, 6, respectively there exists a non-Weierstrass
m-semigroup from [6,7]. Assume that g � 15g(H)+ 11. By Remark 3 the numerical
semigroup H̃ is non-Weierstrass. ��
Theorem 5 There exists an almost symmetric non-Weierstrass numerical semigroup
H̃ with c(H̃) = 2g(H̃) − 7.

Proof Let u = 4 and m = 2u = 8. Let H = 2〈4, 6, 9, 11〉 + 〈n, n + 4〉 where n is an
odd integer with n � 45. Let g and H̃ be as in Lemma 3. By Lemma 3(iii) we have

PH(H̃) � {g + 8 + 3l − 24 | l = 0, 1, . . . , 7} ∪ {2g − 8 + 24 − 24}.

It follows from m = 2u = 8 that g + 8 + g + 8 = 2g − 8 + 24. Hence, we get

PH(H̃) � {g + 8 + 3l − 24 | l = 1, . . . , 7} ∪ {2g − 8 + 24 − 24}.

We obtain

(g + 2u) + (2g − 2u − 3(si − m)) − 3smax

� 3(2u + 2c(H) + 5) − 3si + 3m − 3smax > 6u + 6c(H) + 3m − 6smax

= 6u + 6c(H) + 3m − 6(c(H) + m − 1) = 6u − 3m + 6 = 24 − 24 + 6 > 0

and

(g + 2u + 3l) + 3si > g + 2u + 3(m − 1).
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Moreover, for any l � 1 and l ′ � 0 we have

(g + 2u + 3l) + (g + 2u + 3l ′) − (2g − 2u + 3m)

� 2g + 4u − (2g − 2u + 3m) + 3 = 3(2u − m) + 3 = 3 > 0

from m = 2u.
Thus, we obtain

PH(H̃) = {g + 8 + 3l − 24 | l = 1, . . . , 7} ∪ {2g − 8 + 24 − 24},

which implies that t(H̃) = 8. By Lemma 3 we have c(H̃) = 2g(H̃) − 7. Hence,
H̃ is almost symmetric. By [7,9,13] the numerical semigroup H is non-Weierstrass.
Assum that g � 15g(H) + 11. Since d3(H̃) = H , it follows from Remark 3 that the
numerical semigroup H̃ is non-Weierstrass. ��
Theorem 6 There exists an almost symmetric non-Weierstrass numerical semigroup
H̃ with c(H̃) = 2g(H̃) − 3.

Proof Let u = 2 and m = 2u + 4 = 8. Let H = 2〈4, 6, 9, 11〉 + 〈n, n + 4〉 where n
is an odd integer with n � 45. Let g and H̃ be as in Lemma 3. By Lemma 3 we have

PH(H̃) � {g + 4 + 3l − 24 | l = 0, 1, . . . , 7} ∪ {2g − 4 + 24 − 24}.

We get

(g + 2u) + (g + 2u + 3 · 4) = (g + 2u + 3 · 1) + (g + 2u + 3 · 3)
= (g + 2u + 3 · 2) + (g + 2u + 3 · 2)
= 2g + 4u + 12 = 2g + 8 + 12 = 2g − 4 + 24,

which implies that

PH(H̃) � {g + 4 + 3l − 24 | l = 5, 6, 7} ∪ {2g − 4 + 24 − 24}.

We obtain

(g + 2u) + (2g − 2u − 3(si − m)) − 3smax

� 3(2u + 2c(H) + 5) − 3si + 3m − 3smax

= 3(2u + 2smax − 2m + 2 + 5) − 3si + 3m − 3smax

> 6u − 3m + 21 = 12 − 24 + 21 = 9 > 0

and

(g + 2u + 3l) + 3si > g + 2u + 3(m − 1).
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Moreover, for any l � 5 and l ′ � 0 we have

(g + 2u + 3l) + (g + 2u + 3l ′) − (2g − 2u + 3m)

� 2g + 4u − (2g − 2u + 3m) + 15

= 3(2u − m) + 15 = 3(2u − 2u − 4) + 15 = 3 > 0

from m = 2u + 4. Hence, we obtain

PH(H̃) = {g + 4 + 3l − 24 | l = 5, 6, 7} ∪ {2g − 4 + 24 − 24},

which implies that t(H̃) = 4. By Lemma 3 we have c(H̃) = 2g(H̃) − 3. Hence, H̃
is almost symmetric. Assume that g � 15g(H) + 11. By the same way as the proof
of Theorem 5 the numerical semigroup H̃ is non-Weierstrass. ��
By Theorem 5.1 in [11] we obtain the following:

Remark 4 There exists a quasi-symmetric non-Weierstrass numerical semigroup H̃ ,
i.e., c(H̃) = 2g(H̃) − 1.

By Theorems 3, 4, 5, 6 and Remark 4 we obtain the following:

Theorem 7 For any positive integer u there exists an almost symmetric non-
Weierstrass numerical semigroup H̃ with c(H̃) = 2g(H̃) − (2u − 1).

By Theorems 2, 7 and [11] we obtain the following:

Corollary 2 For any u � 1 we have infinite sequences

H̃ = H0
d3←− H1

d3←− H2
d3←− · · · d3←− Hi−1

d3←− Hi
d3←− · · ·

of almost symmetric non-Weierstrass numerical semigroups whose conductors are
genera double minus 2u − 1.

5 Non-Weierstrass numerical semigroups with even conductor

First, we give non-Weierstrass numerical semigroups H̃ with c(H̃) = 2g(H̃) − 2v
where v is an odd number in the following Proposition:

Proposition 3 Let m and l be integers larger than 1. We set

H = 〈2m, 2m + 2 · 1, . . . , 2m + 2 · (m − 1), 2lm + 2 · 0 + 1,

. . . , 2lm + 2 · (m − 1) + 1〉.

For any odd integer n with n � 2c(H) + 2m − 1 we set H̃ = 2H + 〈n, n + 4〉.
(i) We have g(H) = m(l +1)−1, c(H) = 2g(H)−2(m−1) and t(H) = 2m−1,

hence H is almost symmetric.
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(ii) We have g(H̃) = 2g(H) + n − 1

2
− 1, c(H̃) = 2g(H̃) − 2(2m − 3) and

t(H̃) = 2m − 1.
(iii) If n � 8g(H) + 11, then H̃ is non-Weierstrass.

Proof (i) We have

g(H) = m − 1 + lm = m(l + 1) − 1

and

c(H) = 2lm + 2 · (m − 1) + 1 − 2m + 1 = 2lm = 2g(H) − 2(m − 1).

Moreover, it follows from Lemma 2 that t(H) = 2m − 1.

(ii) Since 2 = 2m + 2 · 1− 2m, the genus g(H̃) of H̃ equals to 2g(H)+ n − 1

2
− 1.

We have

c(H̃) = n + 2(2lm + 2 · (m − 1) + 1) − 4m + 1 = n + 4lm − 1

= 2

(
2(m(l + 1) − 1) + n − 1

2
− 1

)
− 2(2m − 3) = 2g(H̃) − 2(2m − 3).

Moreover, we have t(H̃) = 2m − 1. As a matter of fact, we obtain that

(n + 4) + 2(2lm + 1) = n + 2(2lm + 2 · 1 + 1) ∈ S(H̃),

which implies that n + 4 − 4m /∈ PF(H̃). Hence, the set PF(H̃) is equal to

{2(2m + 2) − 4m, n + 2s1 − 4m, n + 2s3 − 4m, n + 2s4 − 4m,

. . . , n + 2s2m−1 − 4m}

where S(H) = {2m, s1, s2, s3, . . . , s2m−1} is the standard basis for H , i.e., s2i =
2m+2i for i = 1, . . . ,m−1 and s2i+1 = 2lm+2i +1 for i = 0, 1, . . . ,m−1.

(iii) We will show that the numerical semigroup H̃ is non-Weierstrass. Assume that
H̃ is Weierstrass. Since we have

g(H̃) = 2g(H) + n − 1

2
− 1 � 2g(H) + 8g(H) + 11 − 1

2
− 1 = 6g(H) + 4,

it follows from [13] that there is a double covering π : C̃ −→ C with a ramifi-
cation point P̃ over P such that H(P̃) = H̃ and H(P) = H . Moreover, there

is a divisor D = n + 1

2
P − Q with a point Q of C distinct form P such that

h0(2P + Q) = 2. Thus, C is a trigonal curve with the point P with

H(P) = 〈2m, 2m + 2 · 1, . . . , 2m + 2 · (m − 1), 2lm

+2 · 0 + 1, . . . , 2lm + 2 · (m − 1) + 1〉.
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By Theorem on the page 172 in [4] we must have

N0\H = {1, 2, . . . , 2m − 1, 2m + 1, 2(m + 1) + 1, . . . , 2(ml − 1) + 1}
= {1, 2, . . . , 2n + 1, 2(n + 1) + 1, . . . , 2(g − n − 1) + 1}

with
g − 1

3
� n � g

2
where we set m = n + 1. Here, we note that g = g(H) =

m(l + 1) − 1 and g − n − 1 = ml − 1. We must have

m − 1 = n � g − 1

3
= m(l + 1) − 1 − 1

3
,

which implies that l � 2 − 1

m
< 2. This contradicts l � 2. Thus, H̃ should be

non-Weierstrass.
��

We prove the following lemma which is used at the construction of non-Weierstrass
numerical semigroups H̃ with c(H̃) = 2g(H̃) − 2v where v is an even number:

Lemma 4 Let v be a positive integer. Let H be a numerical semigroup of type t with
multiplicity m and c(H) = 2g(H)−2v. We take a subset { f1, . . . , fq} of PF∗(H) =
PF(H)\{c(H)−1}with 0 � q � t−1. For an odd integer n with n � 2c(H)+2m−1
we set

H̃ = 2H + 〈n, n + 2 f1, . . . , n + 2 fq〉.

Then we have c(H̃) = 2g(H̃) − 2(v + v − q) and t(H̃) � t − q.

Proof Since we have PF∗(H) ⊇ { f1, . . . , fq}, we get

g(H̃) = 2g(H) + n − 1

2
− q

and

c(H̃) = n + 2smax − 2m + 1 = 2(smax − m + 1) + n − 1 = 2c(H) + n − 1

= 2(2g(H) − 2v) + n − 1 = 2

(
2g(H) + n − 1

2
− q

)

−4v + 2q = 2g(H̃) − 2(v + v − q).

We set

S(H) = {m, s(1), . . . , s(q), . . . , s(t−1), s(t), . . . , s(m−1) = smax }

such that fi = s(i) − m for any i with 1 � i � q and

PF∗(H) = { f1, . . . , fq , s
(q+1) − m, . . . , s(t−1) − m}.
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We have

S(H̃) ={2m, 2s(1), . . . , 2s(q), . . . , 2s(m−1)} ∪ {n, n + 2 f1, . . . , n + 2 fq}
∪ {n + 2s(q+1), . . . , n + 2s(t−1), n + 2s(t), . . . , n

+ 2s(m−2), n + 2s(m−1) = n + 2smax }.

It follows from the assumption n � 2c(H) + 2m − 1 that

n + (n + 2s( j)) > 2c(H) + 2m − 2 + n + 2s( j) = 2smax + n + 2s( j) > n + 2smax .

Hence, we obtain

PF(H̃) � {n + 2s(q+1), . . . , n + 2s(t−1), n + 2smax }.

Thus, we get t(H̃) � t − q. ��

Combining Proposition 3 with Lemma 4 we can find non-Weierstrass numerical semi-
groups H̃ with an even conductor c(H̃) = 2g(H̃) − 2u for any positive integer u.

Theorem 8 Let v be a positive integer. Then there exists an infinite number of non-
Weierstrass numerical semigroups H with c(H) = 2g(H) − 2v.

Proof By Proposition 3 for any odd number v � 1 we get an infinite number of non-
Weierstrass numerical semigroups H with c(H) = 2g(H) − 2v and t(H) = v + 2
because l in Proposition 3 is any integer larger than 1. We set q = v − 1 in Lemma 4.
Let H̃ be the numerical semigroup as in Lemma 4. Then it follows from Lemma 4
that

c(H̃) = 2g(H̃) − 2(v + v − (v − 1)) = 2g(H̃) − 2(v + 1).

If n � 8g(H0) + 2v + 1, then we have

g(H̃) = 2g(H0) + n − 1

2
− q � 2g(H0) + 8g(H0) + 2v + 1 − 1

2
− q

= 6g(H0) + v − q = 6g(H0) + 1,

which implies that H̃ is a non-Weierstrass numerical semigroupwith c(H̃ ) = 2g(H̃)−
2(v+1) byRemark 2, because H = d2(H̃) is a non-Weierstrass numerical semigroup.
Since v is any odd number larger than or equal to 1, any positive even numbers can be
obtained by v + 1. ��
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