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Abstract
We show how strongly continuous semigroups can be associated with evolutionary
equations. For doing so, we need to define the space of admissible history functions
and initial states. Moreover, the initial value problem has to be formulated within the
framework of evolutionary equations, which is done by using the theory of extrap-
olation spaces. The results are applied to two examples. First, differential-algebraic
equations in infinite dimensions are treated and it is shown, how aC0-semigroup can be
associated with such problems. In the second example we treat a concrete hyperbolic
delay equation.

Keywords Evolutionary equations · C0-semigroups · Admissible history and initial
value

1 Introduction

In this article we bring together two theories for dealing with partial differential equa-
tions: the theory of C0-semigroups on the one hand and the theory of evolutionary
equations on the other hand. In particular, we show how C0-semigroups can be asso-
ciated with a given evolutionary equation.

The framework of evolutionary equations was introduced in the seminal paper [13].
Evolutionary equations are equations of the form

(∂t M(∂t ) + A)U = F, (1.1)
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662 S. Trostorff

where ∂t denotes the temporal derivative, M(∂t ) is a bounded operator in space-time
defined via a functional calculus for ∂t and A is an, in general, unbounded spatial
operator. The function F defined on R and taking values in some Hilbert space is
a given source term and one seeks for a solution U of the above equation. Here, the
notion of solution is quite weak, since one just requires that the solution should belong
to some exponentially weighted L2-space. Thus, all operators have to be introduced
in these spaces. Especially, the time derivative is introduced as an unbounded normal
operator on such a space and so, in order to solve (1.1), one has to deal with the sum
of two unbounded operators (∂t and A). Problems of the form (1.1) cover a broad
spectrum of different types of differential equations, such as hyperbolic, parabolic,
elliptic and mixed-type problems, integro-differential equations [23], delay equations
[9] and fractional differential equations [15]. Also, generalisations to some nonlinear
[19,20] and non-autonomous problems [16,25,29,30] are possible. The solution theory
is quite easy and just relies on pure Hilbert space theory. Moreover, in applications
the conditions for the well-posedness of the corresponding evolutionary equations can
often easily be verified, since they usually break down to positivity constraints on the
coefficients (see Example 2.12).

On the other hand, there is the well-established theory of C0-semigroups dealing
with so-called Cauchy problems (see e.g. [6,8,12]). These are abstract equations of
the form

(∂t + A)U = F,

U (0) = U0, (1.2)

where A is a suitable operator acting on some Banach space. Although, (1.2) just
seems to be a special case of (1.1) for M(∂t ) = 1, the theories are quite different.
While we focus on solutions lying in L2 in the theory of evolutionary equations, one
seeks for continuous solutions in the framework of C0-semigroups. Moreover, while
(1.1) holds onR as time horizon, (1.2) just holds onR≥0 and is completed by an initial
condition. The existence of aC0-semigroup associated with (1.2) can be characterised
by the celebrated Theorem of Hille-Yosida. In fact, one needs suitable a-priori bounds
for all powers of the resolvents (λ + A)−1. However, for the well-posedness of (1.2)
as an evolutionary equation (i.e. without an initial condition and F to be given on
the whole real line) the boundedness of the resolvents (λ + A)−1 suffices and other
powers of these operators do not have to be considered. So, the extra regularity with
respect to time, which is required in the theory of C0-semigroups, restricts the choice
of possible operators A. For example, the operator

A:=
(
i m im
0 im

)

considered as an operator on L2(R>0) × L2(R>0), where m is given as the multi-
plication with the argument, i.e. m f = (t �→ t f (t)) with maximal domain, is not
a Hille-Yosida operator and thus, does not generate a C0-semigroup. However, the
evolutionary equation (∂t − A)u = f is well-posed in the sense of Theorem 2.10.
So, roughly speaking, the theory of C0-semigroups can be seen as a regularity theory
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within the framework of evolutionary equations, which requires stronger assumptions
on the operators involved. It is the main goal of the present article, to work out these
additional assumptions and to provide away to associate aC0-semigroup to an abstract
evolutionary equation (1.1).

As we have indicated above, equations of the form (1.1) also cover delay equations,
where it is more natural to prescribe histories instead of an initial state at time 0.
Moreover, (1.1) also covers so-called differential algebraic equations (see [10] for
the finite-dimensional case and [26–28] for infinite dimensions), where not every
element of the underlying state space can be used as an initial state. Thus, one is
confronted with the problem of defining the ‘right’ initial values and histories for (1.1)
depending on the operators involved. Moreover, one has to incorporate these initial
conditions within the framework of evolutionary equations, that is, initial conditions
should enter the equation as a suitable source term on the right-hand side. This can be
done by using extrapolation spaces and by extending the solution theory to those. This
idea was already used to formulate initial value problems for certain evolutionary
equations in [14, Section 4.2]. Then it will turn out that initial conditions can be
formulated by distributional right hand sides, which belong to a suitable extrapolation
space associated with the time derivative operator ∂t . Having the right formulation
of initial value problems at hand, one can associate a C0-semigroup on a product
space consisting of the current state in the first and the past of the unknown in the
second component. This idea was already used to deal with delay equations within
the theory of C0-semigroups, see [3]. As it turns out, this product space is not closed
(as a subspace of a suitable Hilbert space) and in order to extend the associated C0-
semigroup to its closure one needs to impose similar conditions as in the Hille-Yosida
Theorem. The key result, which will be used to extend the semigroup is the Theorem
of Widder-Arendt (see [1] or Theorem 6.6 below).

The paper is structured as follows:We begin by recalling the basic notions andwell-
posedness results for evolutionary problems (Sect. 2) and for extrapolation spaces
(Sect. 3). Then, in order to formulate initial value problems within the framework
of evolutionary equations, we introduce a cut-off operator as an unbounded operator
on the extrapolation space associated with the time derivative and discus some of
its properties (Sect. 4). Section 5 is then devoted to determine the ‘right’ space of
admissible histories and initial values for a given evolutionary problem. We note here
that we restrict ourselves to homogeneous problems in the sense that we do not involve
an additional source term besides the given history. The main reason for that is that
such source terms would restrict and change the set of admissible histories, a fact
which is well-known in the theory of differential-algebraic equations. In Sect. 6 we
associate a C0-semigroup on the before introduced product space of admissible initial
values and histories and prove the main result of this article (Theorem 6.9). In the last
section we discuss two examples. First, we apply the results to abstract differential
algebraic equations and thereby obtain the Theorem of Hille-Yosida as a special case.
In the second example, we discuss a concrete hyperbolic delay equation and prove
that we can associate a C0-semigroup with this problem.

Throughout, every Hilbert space is assumed to be complex and the inner product
〈·, ·〉 is conjugate-linear in the first and linear in the second argument.
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664 S. Trostorff

2 Evolutionary problems

We recall the basic notions and results for evolutionary problems, as they were intro-
duced in [13] (see also [14,Chapter 6]).Webegin by the definition of the timederivative
operator on an exponentially weighted L2-space (see also [17]).

Definition 2.1 Let ρ ∈ R and H a Hilbert space. We set

L2,ρ(R; H):={ f : R → H ; f measurable,
∫
R

‖ f (t)‖2e−2ρt dt}

with the common identification of functions coinciding almost everywhere. Then
L2,ρ(R; H) is a Hilbert space with respect to the inner product

〈 f , g〉ρ :=
∫
R

〈 f (t), g(t)〉e−2ρt dt ( f , g ∈ L2,ρ(R; H)).

Moreover, we define the operator

∂t,ρ : H1
ρ (R; H) ⊆ L2,ρ(R; H) → L2,ρ(R; H), f �→ f ′,

where

H1
ρ (R; H):={ f ∈ L2,ρ(R; H) ; f ′ ∈ L2,ρ(R; H)}

with f ′ denoting the usual distributional derivative.

We recall some facts on the operator ∂t,ρ and refer to [9] for the respective proofs.

Proposition 2.2 Let ρ ∈ R and H a Hilbert space.

(a) The operator ∂t,ρ is densely defined, closed and linear and C∞
c (R; H) is a core

for ∂t,ρ .
(b) The spectrum of ∂t,ρ is given by

σ(∂t,ρ) = {it + ρ ; t ∈ R}.

(c) For ρ �= 0 the operator ∂t,ρ is boundedly invertible with ‖∂−1
t,ρ ‖ = 1

|ρ| and the
inverse is given by

(
∂−1
t,ρ f

)
(t) =

{∫ t
−∞ f (s) ds if ρ > 0,

− ∫ ∞
t f (s) ds if ρ < 0

for f ∈ L2,ρ(R; H) and t ∈ R.
(d) The operator ∂t,ρ is normal with ∂∗

t,ρ = −∂t,ρ + 2ρ.
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(e) The following variant of Sobolev’s embedding theorem holds:

H1
ρ (R; H) ↪→ Cρ(R; H)

continuously, where

Cρ(R; H):={ f : R → H ; f continuous, sup
t∈R

‖ f (t)‖e−ρt < ∞}.

As a normal operator, ∂t,ρ possesses a natural functional calculus, which can be
described via the so-called Fourier-Laplace transform.

Definition 2.3 Letρ ∈ R and H aHilbert space.Wedenote byLρ the unitary extension
of the mapping

Cc(R; H) ⊆ L2,ρ(R; H) → L2(R; H), f �→
(
t �→ 1√

2π

∫
R

e−(it+ρ)s f (s) ds

)
.

Remark 2.4 Note that for ρ = 0, the operator L0 is nothing but the classical Fourier
transform, which is unitary due to Plancherel’s Theorem (see e.g. [18, Theorem 9.13]).
Since Lρ = L0 exp(−ρ·) with

exp(−ρ·) : L2,ρ(R; H) → L2(R; H), f �→ (
t �→ f (t)e−ρt) ,

it follows that Lρ is unitary as a composition of unitary operators.

Proposition 2.5 ([9, Corollary 2.5]) Let ρ ∈ R and H a Hilbert space. We define the
operator m by

m : dom(m) ⊆ L2(R; H) → L2(R; H), f �→ (t �→ t f (t))

with maximal domain

dom(m):={ f ∈ L2(R; H) ; (t �→ t f (t)) ∈ L2(R; H)}.

Then

∂t,ρ = L∗
ρ(i m+ρ)Lρ.

Using the latter proposition, we can define an operator-valued functional calculus
for ∂t,ρ as follows.

Definition 2.6 Let ρ ∈ R and H a Hilbert space. Let F : {it + ρ ; t ∈ R} → L(H)

be strongly measurable and bounded. Then we define

F(∂t,ρ):=L∗
ρF(i m+ρ)Lρ ∈ L(L2,ρ(R; H)),
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where

F(i m+ρ) f := (t �→ F(it + ρ) f (t)) ( f ∈ L2(R; H)).

An important class of operator-valued function of ∂t,ρ are those functions yielding
causal operators.

Proposition 2.7 ([14, Theorem 6.1.1, Theorem 6.1.4]) Let ρ0 ∈ R and H a Hilbert
space. If M : CRe>ρ0 → L(H) is analytic and bounded, then M(∂t,ρ) is causal for
each ρ > ρ0; i.e., for f ∈ L2,ρ(R; H) with spt f ⊆ R≥a for some a ∈ R it follows
that

spt M(∂t,ρ) f ⊆ R≥a .

Moreover, M(∂t,ρ) is independent of the choice of ρ > ρ0 in the sense that

M(∂t,ρ) f = M(∂t,μ) f ( f ∈ L2,ρ(R; H) ∩ L2,μ(R; H))

for each ρ,μ > ρ0.

Remark 2.8 (a) The proof of causality is based on a theorem by Paley and Wiener,
which characterises the functions in L2(R≥0; H) in terms of their Laplace transform
(see [11] or [18, 19.2 Theorem]). The independence of ρ is a simple application of
Cauchy’s Theorem for analytic functions.
(b) It is noteworthy that causal, translation-invariant and bounded operators are always
of the form M(∂t,ρ) for some analytic and bounded mapping defined on a right half
plane (see [7,32]).

Finally, we are in the position to define well-posed evolutionary problems.

Definition 2.9 (a) Let ρ0 ∈ R and H a Hilbert space. Moreover, let M : CRe>ρ0 →
L(H) be analytic and bounded and A : dom(A) ⊆ H → H densely defined, closed
and linear. Then we call an equation of the form

(∂t,ρM(∂t,ρ) + A)u = f

the evolutionary equation associated with (M, A). The problem is called well-posed
if there is ρ1 > ρ0 such that zM(z) + A is boundedly invertible for each z ∈ CRe≥ρ1

and

CRe≥ρ1 � z �→ (zM(z) + A)−1

is bounded. Moreover we set s0(M, A) as the infimum over all such ρ1 > ρ0.

Theorem 2.10 Let ρ0 ∈ R and H aHilbert space.Moreover, let M : CRe>ρ0 → L(H)

be analytic and bounded and A : dom(A) ⊆ H → H densely defined closed and
linear.We assume that the evolutionary equation associatedwith (M, A) is well-posed.
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Semigroups and evolutionary equations 667

Then ∂t,ρM(∂t,ρ) + A is boundedly invertible as an operator on L2,ρ(R; H) for each
ρ > s0(M, A). Moreover, the inverse

Sρ :=
(
∂t,ρM(∂t,ρ) + A

)−1

is causal and independent of the choice of ρ > s0(M, A) in the sense of Proposition
2.7.

Proof We note that the operator ∂t,ρM(∂t,ρ) + A for ρ > s0(M, A) is unitarily equiv-
alent to the multiplication operator on L2(R; H) associated with the operator-valued
function

F(t):= (it + ρ) M(it + ρ) + A,

see [22, Lemma 2.2], which is boundedly invertible by assumption. The causality
and independence of ρ are an immediate consequence of Proposition 2.7, since
Sρ = N (∂t,ρ) for the analytic and bounded function N (z):=(zM(z) + A)−1 for
z ∈ CRe>s0(M,A). ��
Remark 2.11 (a) The latter theorem shows the well-posedness of the evolutionary
equation

(
∂t,ρM(∂t,ρ) + A

)
U = F

in the sense ofHadamard; i.e., uniqueness, existence and continuous dependence of the

solutionU on the given right-hand side F . Indeed, the injectivity of
(
∂t,ρM(∂t,ρ) + A

)
yields uniqueness, its surjectivity the existence and the continuity of the inverse the
continuous dependence of a solution, which is then simply given by

U =
(
∂t,ρM(∂t,ρ) + A

)−1
F = SρF ∈ L2,ρ(R; H).

Moreover, the causality of the operator Sρ implies, that as long as F is zero, U also
vanishes. This is a crucial and desirable property for physical processes depending
on time. Moreover, it will allow us to formulate initial value problems within the
framework of evolutionary equations.
(b) If M(z) = 1 for each z ∈ C; that is, if we deal with the problem

(∂t,ρ + A)U = F

then well-posedness in the sense of Definition 2.9 is a weaker assumption than
well-posedness in the sense of C0-semigroups (meaning that −A generates a C0-
semigroup). Indeed, Definition 2.9 just requires the invertibility of (z + A) for z in a
certain half-plane such that the resolvents are uniformly bounded, while for −A gen-
erating a C0-semigroup one has to require a suitable boundedness of all powers of the
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668 S. Trostorff

resolvents (z+ A)−1. This is also reflected in the regularity of solutions. While we just
have L2-solutions in the case of Definition 2.9 (as in Theorem 2.10), the assumption
of −A being a generator of a C0-semigroup implies the continuity of the solutions.

In order to illustrate the versatility of the framework of evolutionary equations, we
present two elementary examples.

Example 2.12 Let Ω ⊆ R
n be open.

(a) The heat equation in its simplest form is given by a balance equation between the
heat density θ and the heat flux q given by

∂tμθ + div q = f ,

whereμ : Ω → R describes the density of the underlyingmaterial and f is an external
force. The equation is completed by a consitutive relation, which for instance can be
given by Fourier’s law; that is,

q = k grad θ,

where k : Ω → R describes the heat-conductivity of the underlying medium. Assum-
ing that k is strictly positive, we can rewrite the latter two equations as a system of the
form

(
∂t

(
μ 0
0 0

)
+

(
0 0
0 k−1

)
+

(
0 div

grad 0

)) (
θ

q

)
=

(
f
0

)
.

Indeed, this equation has the form of an evolutionary equation with

A:=
(

0 div
grad 0

)
and M(z) =

(
μ 0
0 z−1k−1

)
(z ∈ CRe≥1).

Assuming now suitable boundary conditions, the operator A turns out to be skew-
selfadjoint (for example, if we impose homogeneous Dirichlet conditions for θ or
homogeneousNeumann conditions for q) or,more generally,m-accretive (for example
for certain kinds of Robin-type boundary conditions). Moreover, assuming that μ

and k are strictly positive, we easily verify that (note that Re〈Au, u〉 ≥ 0 for each
u ∈ dom(A) due to the accretivity of A)

Re〈(zM(z) + A)u, u〉 ≥ Re z〈M(z)u, u〉 ≥ c‖u‖2 (z ∈ CRe≥1)

for each u ∈ dom(A), where c > 0 depends on μ and k. The same applies for the
adjoint (zM(z)+ A)∗ = (zM(z))∗ + A∗, since A∗ is accretive due to them-accretivity
of A, see e.g. [4, Proposition 2.2]. Since A is closed (as an m-accretive opertor)
and zM(z) is bounded, we infer that (zM(z) + A)−1 ∈ L(L2(Ω) × L2(Ω)n) with
‖(zM(z) + A)−1‖ ≤ 1

c for each z ∈ CRe≥1 and thus, the corresponding evolutionary
equation is well-posed.
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(b) The wave equation (or more generally the equations of linear elasticity) is given
by a balance equation between the displacement u and the stress T of the form

∂2t μu − div T = f ,

where again μ : Ω → R describes the density of the medium and f is an external
force. The equation is completed by Hooke’s law, linking stress and strain by

T = d grad u,

where d : Ω → R describes the elastic behaviour of the medium. Introducing v:=∂t u
as a new unknown, we end up with a system of the form

(
∂t

(
μ 0
0 d−1

)
+

(
0 − div

− grad 0

))(
v

T

)
=

(
f
0

)
.

Again, suitable boundary conditions and positivity constraints on the coefficients μ

and d yield the well-posedness of the evolutionary problem.

Remark 2.13 The previous simple examples illustrate how to formulate equations from
mathematical physicswithin the framework of evolutionary equations. It is remarkable
that the difference between the (parabolic) heat equation and the (hyperbolic) wave
equation just lies in the different choice of the material law operator M . This is one of
the key features of evolutionary equations, which shifts the complexity of the problem
under consideration to the bounded material law operator and leaves the unbounded
operator A rather simple. Indeed, by more complicated material laws we can easily
modify the above heat or wave equation to incorporate for instance certain delay
effects, without changing the operator A and thus, the domain of the operators stays
rather simple (see also Sect. 7.2). This is one advantage of the theory of evolutionary
equations in contrast to the theory of C0-semigroups, where the whole complexity is
hidden in the generator A coming along with a highly non-trivial domain.

3 Extrapolation spaces

In this section we recall the notion of extrapolation spaces associated with a boundedly
invertible operator on someHilbert space H . We refer to [14, Section 2.1] for the proof
of the results presented here.

Definition 3.1 Let C : dom(C) ⊆ H → H be a densely defined, closed, linear and
boundedly invertible operator on some Hilbert space H . We define the Hilbert space

H1(C):= dom(C)

equipped with the inner product

〈x, y〉H1(C):=〈Cx,Cy〉 (x, y ∈ dom(C)).
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Moreover, we set

H−1(C):=H1(C∗)′,

the dual space of H1(C∗).

Remark 3.2 Another way to introduce the space H−1(C) is taking the completion of
H with respect to the norm

x �→ ‖C−1x‖.

Proposition 3.3 ([14, Theorem 2.1.6]) Let C : dom(C) ⊆ H → H be a densely
defined, closed, linear and boundedly invertible operator on some Hilbert space H.
Then H1(C) ↪→ H ↪→ H−1(C) with dense and continuous embeddings. Here, the
second embedding is given by

H → H−1(C), x �→ (
dom(C∗) � y �→ 〈x, y〉) .

Moreover, the operator

C : H1(C) → H

is unitary and

C : dom(C) ⊆ H → H−1(C)

possesses a unitary extension, which will again be denoted by C.

Example 3.4 Let ρ �= 0 and H a Hilbert space. Then we set

H1
ρ (R; H):=H1(∂t,ρ),

H−1
ρ (R; H):=H−1(∂t,ρ).

Then the Dirac distribution δt at a point t ∈ R belongs to H−1
ρ (R;C) and

∂−1
t,ρ δt =

{
e2ρtχR≥t if ρ > 0,

−e2ρtχR≤t if ρ < 0.

Indeed, for ρ > 0 we have that
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Semigroups and evolutionary equations 671

〈∂t,ρχR≥t , ϕ〉H−1
ρ (R;C)×H1

ρ (R;C)
=

∫ ∞

t

(
∂∗
t,ρϕ

)
(s)e−2ρs ds

= −
∫ ∞

t

(
ϕe−2ρ·)′

(s) ds

= ϕ(t)e−2ρt

for each ϕ ∈ C∞
c (R;C), which shows the asserted formula. The statement for ρ < 0

follows by the same rationale.

Proposition 3.5 Let ρ0 ≥ 0 and H a Hilbert space. Moreover, let M : CRe>ρ0 → H
be analytic and bounded and A : dom(A) ⊆ H → H densely defined, linear and
closed such that the evolutionary problem associated with (M, A) is well-posed. Then
for each ρ > s0(M, A) we obtain

Sρ[H1
ρ (R; H)] ⊆ H1

ρ (R; H)

and

Sρ : L2,ρ(R; H) ⊆ H−1
ρ (R; H) → H−1

ρ (R; H)

is bounded and thus has a unique bounded extension to the whole H−1
ρ (R; H).

Proof The assertion follows immediately by realising that

(
∂t,ρM(∂t,ρ) + A

)
∂t,ρ ⊆ ∂t,ρ

(
∂t,ρM(∂t,ρ) + A

)
. ��

We recall that for a densely defined, closed, linear operator A : dom(A) ⊆ H0 → H1
between two Hilbert spaces H0 and H1, the operators A∗A and AA∗ are selfadjoint
and positive. Then the moduli of A and A∗ are defined by

|A|:=√
A∗A, |A∗|:=√

AA∗

and are selfadjoint positive operators, too (see e.g. [31, Theorem 7.20]).

Proposition 3.6 ([14, Lemma 2.1.16]) Let H0, H1 be Hilbert spaces and A :
dom(A) ⊆ H0 → H1 densely defined, closed and linear. Then

A : dom(A) ⊆ H0 → H−1(|A∗| + 1)

is bounded and hence, possesses a bounded extension to H0.

4 Cut-off operators

The main goal of the present section is to extend the cut-off operators χR≥t and χR≤t

for some t ∈ R defined on L2,ρ(R; H) to the extrapolation space H−1
ρ (R; H). For

doing so, we start with the following observation.
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672 S. Trostorff

Lemma 4.1 Let ρ > 0, t ∈ R and H be a Hilbert space. We define the operators

χR≥t (m) : L2,ρ(R; H) → L2,ρ(R; H), f �→ (
s �→ χR≥t (s) f (s)

)
,

χR≤t (m) : L2,ρ(R; H) → L2,ρ(R; H), f �→ (
s �→ χR≤t (s) f (s)

)
.

Then for f ∈ L2,ρ(R; H) we have1

χR≥t (m) f = ∂t,ρχR≥t (m)∂−1
t,ρ f − e−2ρt

(
∂−1
t,ρ f

)
(t+)δt ,

χR≤t (m) f = ∂t,ρχR≤t (m)∂−1
t,ρ f + e−2ρt

(
∂−1
t,ρ f

)
(t−)δt .

Proof We just prove the formula for χR≥t (m). So, let f ∈ L2,ρ(R; H) and set
F :=∂−1

t,ρ f . We recall from Proposition 2.2 (c) that

F(t) =
∫ t

−∞
f (s) ds (t ∈ R).

For g ∈ C∞
c (R; H) we compute

〈∂t,ρχR≥t (m)∂−1
t,ρ f , g〉H−1(∂t,ρ )×H1(∂∗

t,ρ )

= 〈χR≥t (m)∂−1
t,ρ f , ∂∗

t,ρg〉L2,ρ (R;H)

=
∫ ∞

t
〈F(s),−g′(s) + 2ρg(s)〉e−2ρs ds

=
∫ ∞

t
〈 f (s), g(s)〉e−2ρs ds + F(t+)g(t)e−2ρt

= 〈χR≥t (m) f , g〉L2,ρ (R;H) + 〈e−2ρt F(t+)δt , g〉H−1(∂t,ρ )×H1(∂∗
t,ρ ).

Since C∞
c (R; H) is dense in H1(∂∗

t,ρ) by Proposition 2.2 (a), we derive the asserted
formula. ��

The latter representation of the cut-off operators on L2,ρ(R; H) leads to the following
definition on H−1

ρ (R; H).

1 Note that ∂−1
t,ρ f has a continuous representative by Proposition 2.2 (e).
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Definition 4.2 Let ρ > 0 and H a Hilbert space. For t ∈ R we define the operators

Pt : dom(Pt ) ⊆ H−1
ρ (R; H) → H−1

ρ (R; H),

Qt : dom(Qt ) ⊆ H−1
ρ (R; H) → H−1

ρ (R; H),

with the domains

dom(Pt ):={ f ∈ H−1
ρ (R; H) ; (∂−1

t,ρ f )(t+) exists},
dom(Qt ):={ f ∈ H−1

ρ (R; H) ; (∂−1
t,ρ f )(t−) exists}

by

Pt f :=∂t,ρχR≥t (m)∂−1
t,ρ f − e−2ρt

(
∂−1
t,ρ f

)
(t+)δt ( f ∈ dom(Pt ))

and

Qt f :=∂t,ρχR≤t (m)∂−1
t,ρ f + e−2ρt

(
∂−1
t,ρ f

)
(t−)δt ( f ∈ dom(Qt )).

Remark 4.3 For a function f ∈ L1,loc(R; H) we say that a:= f (t+) for some t ∈ R

if

∀ε > 0 ∃δ > 0 : λ ({s ∈ [t, t + δ[ ; | f (s) − a| > ε) = 0,

where λ denotes the Lebesgue measure on R. The expression f (t−) is defined anal-
ogously.

We conclude this section by some properties of the so introduced cut-off operators.

Proposition 4.4 Let H be a Hilbert space, ρ > 0, y ∈ H and s, t ∈ R. Then the
following statements hold.

(a) δs y ∈ dom(Pt ) and

Ptδs y =
{

δs y if s > t,

0 if s ≤ t .

(b) For f ∈ dom(Pt ) ∩ dom(Qt ) we obtain

f = Pt f + Qt f + e−2ρt
((

∂−1
t,ρ f

)
(t+) −

(
∂−1
t,ρ f

)
(t−)

)
δt .

(c) For f ∈ H−1
ρ (R; H) we have spt f ⊆ R≤t if and only if f ∈ ker(Pt ). Here, the

support spt f is meant in the sense of distributions.
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Proof (a) We note that ∂−1
t,ρ δs y = e2ρsχR≥s y and hence, δs ∈ dom(Pt ). Moreover,

Ptδs y = ∂t,ρχR≥t (m)χR≥s ye
2ρs − e−2ρt

(
e2ρsχR≥s y

)
(t+)δt =

{
δs y if s > t,

0 if s ≤ t .

(b) If f ∈ dom(Pt ) ∩ dom(Qt ) we compute

Pt f + Qt f = ∂t,ρχR≥t (m)∂−1
t,ρ f − e−2ρt

(
∂−1
t,ρ f

)
(t+)δt

+ ∂t,ρχR≤t (m)∂−1
t,ρ f + e−2ρt

(
∂−1
t,ρ f

)
(t−)δt

= ∂t,ρ∂−1
t,ρ f − e−2ρt

((
∂−1
t,ρ f

)
(t+) −

(
∂−1
t,ρ f

)
(t−)

)
δt

= f − e−2ρt
((

∂−1
t,ρ f

)
(t+) −

(
∂−1
t,ρ f

)
(t−)

)
δt .

(c) Let f ∈ H−1
ρ (R; H) and assume first that spt f ⊆ R≤t . We first prove that ∂−1

t,ρ f
is constant on R≥t . For doing so, we define

V :={χR≥t x ; x ∈ H} ⊆ L2,ρ(R; H).

Then V is a closed subspace and for g ∈ L2,ρ(R; H) we have that

g ∈ V⊥ ⇔
∫ ∞

t
g(s)e−2ρs ds = 0.

For g ∈ L2,ρ(R; H) we obtain

〈χR≥t (m)∂−1
t,ρ f , g〉L2,ρ (R;H) = 〈 f , (∂∗

t,ρ

)−1
χR≥t (m)g〉H−1

ρ (R;H)×H1
ρ (R;H)

and an elementary computation shows

((
∂∗
t,ρ

)−1
χR≥t (m)g

)
(s) =

∫ ∞

s
χR≥t (r)g(r)e

2ρ(s−r) dr (s ∈ R).

Consequently, for g ∈ V⊥ we infer that
(
∂∗
t,ρ

)−1
χR≥t (m)g = 0 on R≤t . Hence,

〈χR≥t (m)∂−1
t,ρ f , g〉L2,ρ (R;H) = 0 for each g ∈ V⊥ and thus, χR≥t (m)∂−1

t,ρ f ∈ V ,

which proves that ∂−1
t,ρ f is constant on R≥t . In particular, this shows f ∈ dom(Pt )

and

Pt f = ∂t,ρχR≥t (m)∂−1
t,ρ f − e−2ρt

(
∂−1
t,ρ f

)
(t+)δt

= ∂t,ρχR≥t

(
∂−1
t,ρ f

)
(t+) − e−2ρt

(
∂−1
t,ρ f

)
(t+)δt

= 0.
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Assume on the other hand that f ∈ ker(Pt ) and let ϕ ∈ C∞
c (R>t ; H). We then

compute, using that spt ∂∗
t,ρϕ ⊆ R>t

〈 f , ϕ〉H−1
ρ (R;H)×H1

ρ (R;H)
= 〈∂−1

t,ρ f , ∂∗
t,ρϕ〉L2,ρ (R;H)

= 〈P f , ϕ〉H−1
ρ ×H1

ρ
+ e−2ρt

(
∂−1
t,ρ f

)
(t+)ϕ(t)

= 0,

which gives spt f ⊆ R≤t . ��

5 Admissible histories for evolutionary equations

In this section we study evolutionary problems of the following form

(
∂t,ρM(∂t,ρ) + A

)
u = 0 on R>0,

u = g on R<0, (5.1)

where M and A are as in Theorem 2.10 and g is a given function on R<0. The first
goal is to rewrite this ‘Initial value problem’ into a proper evolutionary equations as
it is introduced in Sect. 2. For doing so, we start with some heuristics to motivate the
definition which will be made below. In particular, for the moment we will not care
about domains of operators.

We will now write (5.1) as an evolutionary equation for the unknown v:=u|R≥0 ,
which is the part of u to be determined. For doing so, we first assume that u ∈
H1

ρ (R; H) for some ρ > 0, which means that v + g ∈ H1
ρ (R; H). We interpret the

first line of (5.1) as

P0
(
∂t,ρM(∂t,ρ) + A

)
u = 0,

where P0 is the cut-off operator introduced in Sect. 4. The latter gives

0 = P0
(
∂t,ρM(∂t,ρ) + A

)
u

= P0
(
∂t,ρM(∂t,ρ) + A

)
v + P0

(
∂t,ρM(∂t,ρ) + A

)
g

= ∂t,ρ P0M(∂t,ρ)v + AP0v − (
M(∂t,ρ)v

)
(0+)δ0 + P0∂t,ρM(∂t,ρ)g + AP0g

= ∂t,ρ P0M(∂t,ρ)v + Av + P0∂t,ρM(∂t,ρ)g − (
M(∂t,ρ)v

)
(0+)δ0.

Since v is supported on R≥0 by assumption and M(∂t,ρ) is causal by Proposition 2.7,
we infer that M(∂t,ρ)v is also supported on R≥0 and so, P0M(∂t,ρ)v = M(∂t,ρ)v.

Hence, we arrive at an evolutionary problem for v of the form

(
∂t,ρM(∂t,ρ) + A

)
v = (

M(∂t,ρ)v
)
(0+)δ0 − P0∂t,ρM(∂t,ρ)g.
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Since u = v + g ∈ H1
ρ (R; H) by assumption, we infer that u is continuous by

Proposition 2.2 (e) and hence, the limits v(0+) and g(0−) exist and coincide. Hence,
v − χR≥0g(0−) ∈ H1

ρ (R; H) and vanishes on R<0. The latter gives

(
M(∂t,ρ)v

)
(0+) = (

M(∂t,ρ)(v − χR≥0g(0−))
)
(0+) + (

M(∂t,ρ)χR≥0g(0−)
)
(0+)

= (
M(∂t,ρ)χR≥0g(0−)

)
(0+),

where in the last equality we have used that M(∂t,ρ)(v − χR≥0g(0−)) ∈ H1
ρ (R; H),

hence it is continuous, and vanishes on R≤0 due to causality. Summarising, we end
up with the following problem for v

(
∂t,ρM(∂t,ρ) + A

)
v = (

M(∂t,ρ)χR≥0g(0−)
)
(0+)δ0 − P0∂t,ρM(∂t,ρ)g. (5.2)

Now, to make sense of (5.2) we need to ensure that the right hand side is well-
defined. In particular,weneed that

(
M(∂t,ρ)χR≥0g(0−)

)
(0+) exists. In order to ensure

that, we introduce the following notion.

Definition 5.1 Let H be a Hilbert space, ρ0 ≥ 0 and M : CRe>ρ0 → L(H) be analytic
and bounded. We call M regularising if for all x ∈ H , ρ > ρ0 the limit

(
M(∂t,ρ)χR≥0x

)
(0+)

exists. Moreover, for ρ > 0 we define the space

H1
ρ (R≤0; H):=

{
f |R≤0 ; f ∈ H1

ρ (R; H)
}

.

As it turns out, this assumption suffices to obtain a well-defined expression on the
right hand side of (5.2).

Proposition 5.2 Let H be a Hilbert space, ρ0 ≥ 0 and M : CRe>ρ0 → L(H) be ana-
lytic and bounded and assume that M is regularising. Then for each g ∈ H1

ρ (R≤0; H)

with ρ > ρ0 we have that

∂t,ρM(∂t,ρ)g ∈ dom(P0).

Proof By assumption g = f |R≤0 for some f ∈ H1
ρ (R; H). Hence, g(0−) = f (0)

exists and hence, an easy computation shows that g−χR≤0g(0−) ∈ H1
ρ (R; H). Hence,

also M(∂t,ρ)
(
g − χR≥0g(0−)

) ∈ H1
ρ (R; H) and thus,

(
M(∂t,ρ)g

)
(0+) = (

M(∂t,ρ)
(
g − χR≥0g(0−)

))
(0+) + (

M(∂t,ρ)χR≥0g(0−)
)
(0+)

exists and so, ∂t,ρM(∂t,ρ)g ∈ dom(P0). ��
We are now in the position to define the space of admissible history functions g.
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Definition 5.3 Let H be aHilbert space,ρ0 ≥ 0 andM : CRe>ρ0 → L(H) be analytic,
bounded and regularising. Moreover, let A : dom(A) ⊆ H → H be densely defined,
closed and linear. For notational convenience, we set

Γρ : H1
ρ (R≤0; H) → H , g �→ (

M(∂t,ρ)χR≥0g(0−)
)
(0+)

and

Kρ : H1
ρ (R≤0; H) → H−1

ρ (R; H), g �→ P0∂t,ρM(∂t,ρ)g

for ρ > ρ0. Furthermore, we assume that the evolutionary problem associated with
(M, A) is well-posed and define

Hisρ :={g ∈ H1
ρ (R≤0; H) ; Sρ

(
Γρgδ0 − Kρg

) + g ∈ H1
ρ (R; H)}

for each ρ > s0(M, A), the space of admissible histories. Here Sρ denotes the exten-
sion of the solution operator (∂t,ρM(∂t,ρ)+ A)−1 to H−1

ρ (R; H) (cp. Proposition 3.5).
Moreover, we set

IVρ := {
g(0−) ; g ∈ Hisρ

}

the space of admissible initial values.

Remark 5.4 We have

Γρg = (M(∂t,ρ)g)(0−) − (
M(∂t,ρ)g

)
(0+)

for g ∈ H1
ρ (R≤0; H). Indeed, since M(∂t,ρ) is causal we infer

(M(∂t,ρ)g)(0−) = (M(∂t,ρ)(g + χR≥0g(0−)))(0−)

= (M(∂t,ρ)(g + χR≥0g(0−)))(0+),

since g + χR≥0g(0−) ∈ H1
ρ (R; H). Thus,

(M(∂t,ρ)g)(0−) − (
M(∂t,ρ)g

)
(0+) = (

M(∂t,ρ)χR≥0g(0−)
)
(0+) = Γρg.

We come back to the heuristic computation at the beginning of this section and
show, that for g ∈ Hisρ the computation can be made rigorously.

Proposition 5.5 Let H be a Hilbert space, ρ0 ≥ 0 and M : CRe>ρ0 → L(H) be
analytic, bounded and regularising. Moreover, let A : dom(A) ⊆ H → H be densely
defined, closed and linear and assume that the evolutionary problem associated with
(M, A) is well-posed. Let ρ > s0(M, A) and g ∈ Hisρ . We set

v:=Sρ

(
Γρgδ0 − Kρg

)

and u:=v + g. Then spt v ⊆ R≥0, u ∈ H1
ρ (R; H) and satisfies (5.1).
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Proof Note that by assumption u = v + g ∈ H1
ρ (R; H) and thus, v = u − g ∈

L2,ρ(R; H). We prove that spt v ⊆ R≥0. For doing so, we compute

∂−1
t,ρ v = ∂−1

t,ρ Sρ

(
Γρgδ0 − Kρg

)
= Sρ

(
∂−1
t,ρ Γρgδ0 − ∂−1

t,ρ Kρg
)

= Sρ

(
ΓρgχR≥0 − χR≥0(m)M(∂t,ρ)g + (

M(∂t,ρ)g
)
(0+)χR≥0

)

and hence, spt ∂−1
t,ρ v ⊆ R≥0 by causality of Sρ. The latter implies spt v ⊆ R≥0. Thus,

we have u = g on R<0 and we are left to show

(
∂t,ρM(∂t,ρ) + A

)
u = 0 on R>0.

For doing so, let ϕ ∈ C∞
c (R>0; dom(A∗)). We compute

〈(∂t,ρM(∂t,ρ) + A
)
u, ϕ〉L2,ρ (R;H−1(|A∗|+1))×L2,ρ (R;H1(|A∗|+1))

= 〈u,
(
∂t,ρM(∂t,ρ) + A

)∗
ϕ〉L2,ρ (R;H)

= 〈v,
(
∂t,ρM(∂t,ρ) + A

)∗
ϕ〉L2,ρ (R;H) + 〈g, (∂t,ρM(∂t,ρ) + A

)∗
ϕ〉L2,ρ (R;H)

= 〈Γρgδ0 − Kρg, ϕ〉H−1
ρ (R;H)×H1

ρ (R;H)
+ 〈g, (∂t,ρM(∂t,ρ)

)∗
ϕ〉L2,ρ (R;H),

where in the last line we have used 〈g, A∗ϕ〉 = 0, since spt g ⊆ R≤0. Moreover, we
compute

〈Γρgδ0 − Kρg, ϕ〉H−1
ρ (R;H)×H1

ρ (R;H)

= −〈Kρg, ϕ〉H−1
ρ (R;H)×H1

ρ (R;H)

= −〈∂t,ρχR≥0(m)M(∂t,ρ)g − (
M(∂t,ρ)g

)
(0+)δ0, ϕ〉H−1

ρ (R;H)×H1
ρ (R;H)

= −〈M(∂t,ρ)g, ∂∗
t,ρϕ〉L2,ρ (R;H),

where we have used two times that ϕ(0) = 0. Plugging this formula in the above
computation, we infer that

〈(∂t,ρM(∂t,ρ) + A
)
u, ϕ〉L2,ρ (R;H−1(|A∗|+1))×L2,ρ (R;H1(|A∗|+1)) = 0,

which shows the claim. ��

6 C0-semigroups associated with evolutionary problems

Throughout this section, let H be a Hilbert space, ρ0 ≥ 0 and M : CRe>ρ0 → L(H)

analytic, bounded and regularising. Moreover, let A : dom(A) ⊆ H → H be densely
defined, closed and linear such that the evolutionary problem associated with (M, A)

is well-posed.
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In this section we aim for aC0-semigroup associated with the evolutionary problem
for (M, A) acting on a suitable subspace of IVρ ×Hisρ for ρ > s0(M, A). For doing
so, we first need to prove that Hisρ is left invariant by the time evolution. The precise
statement is as follows.

Theorem 6.1 Let ρ > s0(M, A) and g ∈ Hisρ . Moreover, let v:=Sρ

(
Γρgδ0 − Kρg

)
and u:=v + g. For t > 0 we set h:=χR≤0(m)u(t + ·) and w:=χR≥0(m)u(t + ·). Then
h ∈ Hisρ and

w = Sρ

(
Γρhδ0 − Kρh

)
.

In particular, w(0+) = h(0−) ∈ IVρ .

Proof We first note that

(
∂t,ρM(∂t,ρ) + A

)
τt = τt

(
∂t,ρM(∂t,ρ) + A

)
,

where τt u:=u(t + ·) for u ∈ L2,ρ(R; H), and hence,

spt
(
∂t,ρM(∂t,ρ) + A

)
τt u ⊆ R≤0.

The latter gives, employing the causality of M(∂t,ρ),

(
∂t,ρM(∂t,ρ) + A

)
τt u = χR≤0(m)

(
∂t,ρM(∂t,ρ) + A

)
τt u

= ∂t,ρχR≤0(m)M(∂t,ρ)τt u + (
M(∂t,ρ)τt u

)
(0−)δ0 + Ah

= ∂t,ρχR≤0(m)M(∂t,ρ)h + (
M(∂t,ρ)h

)
(0−)δ0 + Ah

= Q0∂t,ρM(∂t,ρ)h + Ah.

The latter yields

(
∂t,ρM(∂t,ρ) + A

)
w = (

∂t,ρM(∂t,ρ) + A
)
(τt u − h)

= Q0∂t,ρM(∂t,ρ)h − ∂t,ρM(∂t,ρ)h.

Now, since ∂t,ρM(∂t,ρ)h ∈ dom(P0) by causality of M(∂t,ρ), we use Proposition 4.4
(b) and Remark 5.4 to derive

(
∂t,ρM(∂t,ρ) + A

)
w = −P0∂t,ρM(∂t,ρ)h − ((

M(∂t,ρ)h
)
(0+) − (

M(∂t,ρ)h
)
(0−)

)
δ0

= Γρhδ0 − Kρh,

which yields the desired formula for w. Now h ∈ Hisρ follows, since by definition

Sρ

(
Γρhδ0 − Kρh

) + h = w + h = τt u ∈ H1
ρ (R; H). ��

The latter theorem allows for defining a semigroup associated with (M, A).
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Definition 6.2 Let ρ > s0(M, A) and set

Dρ :={(g(0−), g) ; g ∈ Hisρ}.

For g ∈ Hisρ we set

v:=Sρ

(
Γρgδ0 − Kρg

)

and u:=v + g. For t ≥ 0 we define

T ρ
1 (t) :Dρ ⊆ IVρ ×Hisρ → IVρ, (g(0−), g) �→ u(t),

T ρ
2 (t) :Dρ ⊆ IVρ ×Hisρ → Hisρ, (g(0−), g) �→ χR≤0(m)τt u

and

T ρ(t):=(T ρ
1 (t), T ρ

2 (t)) : Dρ ⊆ IVρ ×Hisρ → IVρ ×Hisρ .

We call (T ρ(t))t≥0 the semigroup associated with (M, A).

Remark 6.3 The so defined semigroup T ρ consists of two components, the actual
state u(t) and the whole past of the actual state; that is, χR≤0(m)τt u = u(t + ·) as
a function on R≤0. This construction naturally appears, when dealing with problems
with memory, since the computation of the present state at some time t ≥ 0 needs the
information of thewhole trajectory up to this time t (we also refer to [3] for semigroups
associatedwith delay equations).Moreover, the present state and thewhole past should
fit together, which is reflected in the definition of the space Dρ (in [3] this condition
is incorporated within the domain of the semigroup generator).

First we show that T ρ defined above is indeed a strongly continuous semigroup.

Proposition 6.4 Let ρ > s0(M, A) and T ρ be the semigroup associated with (M, A).

Then T ρ is a strongly continuous semigroup. More precisely,

T ρ(t + s) = T ρ(t)T ρ(s) (t, s ≥ 0)

and

T ρ(t)(g(0−), g) → (g(0−), g) (t → 0+)

in H × L2,ρ(R; H) for each g ∈ Hisρ .

Proof Let g ∈ Hisρ and t, s ≥ 0. We set v:=Sρ

(
Γρgδ0 − Kρg

)
and u:=v + g. By

Theorem 6.1 we have that

χR≥0(m)τsu = Sρ

(
Γρ

(
χR≤0(m)τsu

)
δ0 − Kρ

(
χR≤0(m)τsu

))
.
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and thus,

T ρ(t)T ρ(s)(g(0−), g) = T ρ(t)
(
u(s), χR≤0(m)τsu

)
= (u(t + s), χR≤0(m)τtτsu)

= T ρ(t + s)(g(0−), g).

Moreover,

‖T ρ(t)(g(0−), g) − (g(0−), g)‖2H×L2,ρ (R;H)

= ‖u(t) − g(0−)‖2H + ‖χR≤0(m)τt u − g‖L2,ρ (R;H)

= ‖u(t) − u(0)‖2H + ‖χR≤0(m)(τt u − u)‖L2,ρ (R;H)

≤ ‖u(t) − u(0)‖2H + ‖τt u − u‖L2,ρ (R;H) → 0 (t → 0+),

by the continuity of u and the strong continuity of translation in L2,ρ . ��
In the rest of this section we show a characterisation result, when T ρ can be extended
to a C0-semigroup on the space

Xμ
ρ :=Dρ

H×L2,μ(R;H) ⊆ H × L2,μ(R; H)

for some μ ≤ ρ. We first prove a result that it suffices to consider the family T ρ
1 .

Proposition 6.5 Let ρ > s0(M, A) and μ ≤ ρ. Assume that

T ρ
1 : Dρ ⊆ Xμ

ρ → Cω(R≥0; H)

is bounded for some ω ∈ R. Then

T ρ
2 : Dρ ⊆ Xμ

ρ → Cmax{μ,ω}+ε(R≥0; L2,μ(R; H))

is bounded for each ε > 0.

Proof Let ε > 0 and g ∈ Hisρ . We note that

(
T ρ
2 (t)(g(0−), g)

)
(s) =

{
g(t + s) if s < −t,

T ρ
1 (t + s)(g(0−), g) if − t ≤ s ≤ 0

(t ≥ 0, s ≤ 0).

Hence, we may estimate for ε > 0

‖T ρ
2 (t)(g(0−), g)‖2L2,μ(R;H) =

∫ −t

−∞
‖g(t + s)‖2e−2μs ds +

∫ 0

−t
‖T ρ

1 (t + s)(g(0−), g)‖2e−2μs ds

≤
∫ 0

−∞
‖g(s)‖2e−2μs ds e2μt + M‖(g(0−), g)‖2

Xμ
ρ

∫ 0

−t
e2ω(t+s)e−2μs ds

= ‖g‖2L2,μ(R;H)e
2μt + M‖(g(0−), g)‖2

Xμ
ρ
e2ωt

1

2(ω − μ)
(1 − e−2(ω−μ)t )
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≤ ‖g‖2L2,μ(R;H)e
2μt + M‖(g(0−), g)‖2

Xμ
ρ
te2max{μ,ω}t

≤ Ce2(max{μ,ω)+ε)t‖(g(0−), g)‖2
Xμ

ρ

for each g ∈ Hisρ, where M denotes the norm of T ρ
1 and C :=maxt≥0(1+ Mt)e−2εt .

��
In order to extend T ρ

1 to Xμ
ρ we make use of the Widder-Arendt-Theorem.

Theorem 6.6 ( Widder-Arendt, [1], [2, Theorem 2.2.3]) Let H be a Hilbert space and
r ∈ C∞(R>0; H) such that

M := sup
λ>0,k∈N

λk+1

k! ‖r (k)(λ)‖ < ∞.

Then there is f ∈ L∞(R≥0; H) such that ‖ f ‖∞ = M and

r(λ) =
∫ ∞

0
e−λt f (t) dt (λ > 0).

Remark 6.7 The latter Theorem was first proved by Widder in the scalar-valued case
[33] and then generalised by Arendt to the vector-valued case in [1]. It is noteworthy
that the latter Theorem is also true in Banach spaces satisfying the Radon-Nikodym
property (see [5, Chapter III]) and, in fact, this property of X is equivalent to the
validity of Theorem 6.6, see [1, Theorem 1.4].

We now identify the function r mentioned in Theorem 6.6 within the presented
framework.

Proposition 6.8 Let ρ > s0(M, A) and g ∈ Hisρ . We set v:=Sρ

(
Γρgδ0 − Kρg

) ∈
L2,ρ(R; H) and

rg(λ):=√
2π(Lλv)(0) (λ > ρ).

Then rg ∈ C∞(R>ρ; H). Moreover,

rg(λ) = (λM(λ) + A)−1
((

M(∂t,ρ )g
)
(0−) − λ

√
2πLλ(χR≥0 (m)M(∂t,ρ )g)(0)

)
(λ > ρ).

Proof We note that

(Lλv)(0) = 1√
2π

∫ ∞

0
e−λtv(t) dt (λ > ρ)

and hence, the regularity of rg follows. Moreover,

∂−1
λ,t v = ∂−1

t,ρ v

= Sρ

(
∂−1
t,ρ Γρgδ0 − ∂−1

t,ρ Kρg
)
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= Sρ

(
ΓρgχR≥0 − χR≥0(m)M(∂t,ρ)g + (M(∂t,ρ)g)(0+)χR≥0

)
= Sλ

(
ΓρgχR≥0 − χR≥0(m)M(∂t,ρ)g + (M(∂t,ρ)g)(0+)χR≥0

)
,

where we have used the independence of ρ stated in Theorem 2.10. Hence,

rg(λ) = √
2π(Lλv)(0)

= λ
√
2π(Lλ∂−1

t,λ v)(0)

= λ
√
2π (λM(λ)+A)−1

(
1

λ
√
2π

Γρg−Lλ

(
χR≥0 (m)M(∂t,ρ )g

)
(0)+ 1

λ
√
2π

(
M(∂t,ρ )g

)
(0+)

)

= (λM(λ) + A)−1
(
Γρg + (

M(∂t,ρ )g
)
(0+) − λ

√
2πLλ

(
χR≥0 (m)M(∂t,ρ )g

)
(0)

)

= (λM(λ) + A)−1
((

M(∂t,ρ )g
)
(0−) − λ

√
2πLλ

(
χR≥0 (m)M(∂t,ρ )g

)
(0)

)

for each λ > ρ, where we have used the formula for Γρ stated in Remark 5.4. ��
With these preparations at hand, we can now state and prove the main result of this
article.

Theorem 6.9 Let ρ > s0(M, A) and T ρ be the semigroup on Dρ associated with
(M, A). Moreover, for g ∈ Hisρ we set

rg(λ):= (λM(λ) + A)−1
((

M(∂t,ρ )g
)
(0−) − λ

√
2πLλ

(
χR≥0 (m)M(∂t,ρ )g

)
(0)

)
(λ > ρ).

For μ ≤ ρ the following statements are equivalent:

(i) T ρ can be extended to a C0-semigroup on Xμ
ρ = Dρ

H×L2,μ(R;H) ⊆ H ×
L2,μ(R; H).

(ii) There exists M ≥ 1 and ω ≥ ρ such that

(λ − ω)k+1

k! ‖r (k)
g (λ)‖ ≤ M

(‖g(0−)‖H + ‖g‖L2,μ(R;H)

)

for each λ > ω, k ∈ N and g ∈ Hisρ .

In this case

T ρ
1 : Xμ

ρ → Cω(R≥0; H),

T ρ
2 : Xμ

ρ → Cω+ε(R≥0; L2,μ(R; H))

are bounded for each ε > 0.

Proof (i) ⇒(ii): Since T ρ : Xμ
ρ → Xμ

ρ is a C0-semigroup, we find M ≥ 1 and ω ≥ ρ

such that

‖T ρ(t)‖ ≤ Meωt (t ≥ 0).
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In particular, we infer that

‖T ρ
1 (t)(g(0−), g)‖ ≤ Meωt‖(g(0−), g)‖Xμ

ρ
(t ≥ 0, g ∈ Hisρ).

Since rg(λ) = √
2πLλ

(
T ρ
1 (·)(g(0−), g)

)
(0) for λ > ω by Proposition 6.8, we infer

that

‖r (k)
g (λ)‖ =

∥∥∥∥
∫ ∞

0
e−λt (−t)kT ρ

1 (t)(g(0−), g) dt

∥∥∥∥
≤

∫ ∞

0
e−λt t kMeωt dt‖(g(0−), g)‖Xμ

ρ

= M
k!

(λ − ω)k+1 ‖(g(0−), g)‖Xμ
ρ
,

which shows (ii).
(ii)⇒(i): Let g ∈ Hisρ and define r̃ : R>0 → H by r̃(λ) = rg(λ+ω) for λ > 0. Then
r̃ satisfies the assumptions of Theorem 6.6 and hence, there is f ∈ L∞(R≥0; H) with
‖ f ‖∞ ≤ M

(‖g(0−)‖H + ‖g‖L2,μ(R;H)

)
such that

rg(λ + ω) =
∫ ∞

0
e−λt f (t) dt =

∫ ∞

0
e−(λ+ω)teωt f (t) dt

for each λ > 0. In particular, setting v:=T ρ
1 (·)(g(0−), g) we obtain

∫ ∞

0
e−λtv(t) dt = rg(λ) =

∫ ∞

0
e−λteωt f (t) dt (λ > ω)

and by analytic extension it follows that

Lλv = Lλ(e
ω· f ) (λ > ω).

Thus, v = eω· f and hence,

‖v(t)‖ = eωt‖ f (t)‖ ≤ Meωt (‖g(0−)‖H + ‖g‖L2,μ(R;H)

)
.

Thus, since v is continuous on R≥0, we derive that

T 1
ρ : Dρ ⊆ Xμ

ρ → Cω(R≥0; H)

is bounded and can therefore be extended to a C0-semigroup on Xμ
ρ . Then, by Propo-

sition 6.5 we obtain that

T 2
ρ : Dρ ⊆ Xμ

ρ → Cω+ε(R≥0; L2,μ(R; H))

is also bounded for each ε > 0 and hence, (i) follows. ��
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Remark 6.10 The latter theorem characterises, when the semigroup T ρ can actually
be extended to the closure of Dρ (hence, to a Hilbert space) in terms of the Laplace
transformof the corresponding solution. It is obvious that the so extendedoperators still
form a C0-semigroup since the extension still takes values in the space of continuous
functions. This is where the Theorem of Widder-Arendt comes into play, since this
theorem provides an L∞ estimate for the solutions and hence, allows for an extension
of the operators in the right spaces.

7 Applications

7.1 Differential-algebraic equations and classical Cauchy problems

In this section we consider initial value problems of the form

(
∂t,ρE + A

)
u = 0 on R>0,

u = g on R≤0,

for a bounded operator E ∈ L(H), H a Hilbert space, and a densely defined linear
and closed operator A : dom(A) ⊆ H → H . We note that this corresponds to the
abstract initial value problem (5.1) with

M(z):=E (z ∈ C).

We assume that the evolutionary problem is well-posed, that is we assume that there
is ρ1 ∈ R≥0 such that zE + A is boundedly invertible for each z ∈ CRe≥ρ1 and

sup
z∈CRe≥ρ1

‖(zE + A)−1‖ < ∞.

We again denote the infimum over all such ρ1 ∈ R≥0 by s0(E, A).

Lemma 7.1 The function M given by M(z):=E for z ∈ C is regularising. Moreover,
Γρg = Eg(0−) and Kρg = 0 for each g ∈ H1

ρ (R≤0; H) and ρ ∈ R>0. In particular,
for ρ > s0(E, A) we have that

IVρ = {x ∈ H ; Sρ(δEx) − χR≥0x ∈ H1
ρ (R; H)}

and

Hisρ = {g ∈ H1
ρ (R≤0; H) ; g(0−) ∈ IVρ}.

Moreover, Xμ
ρ = IVρ × L2,μ(R≤0; H) for each μ ≤ ρ.

Proof For x ∈ H , ρ > 0 we have

M(∂t,ρ)χR≥0x = χR≥0Ex
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and thus,M is regularisingwithΓρg = Eg(0−) for each g ∈ H1
ρ (R≤0; H).Moreover,

we have

Kρg = P0∂t,ρEg

= ∂t,ρχR≥0(m)Eg − δ0(Eg)(0+)

= 0.

Hence, for g ∈ H1
ρ (R≤0; H), ρ > s0(E, A), we have

g ∈ Hisρ ⇔ Sρ(δ0Eg(0−)) + g ∈ H1
ρ (R; H)

⇔ Sρ(δ0Eg(0−)) − χR≥0g(0−) + g + χR≥0g(0−) ∈ H1
ρ (R; H)

⇔ Sρ(δ0Eg(0−)) − χR≥0g(0−) ∈ H1
ρ (R; H)

which proves the asserted equalities for Hisρ and IVρ .
Finally, let x ∈ IVρ and g ∈ L2,μ(R≤0; H) for some μ ≤ ρ with ρ > s0(E, A).

Then we find a sequence (xn)n∈N in IVρ and a sequence (ϕn)n∈N in C∞
c (R<0; H)

such that xn → x and ϕn → g in H and L2,μ(R≤0; H), respectively. Moreover, we
set

ψn(t):=
{

(nt + 1) xn if − 1
n ≤ t ≤ 0,

0 else
(t ∈ R≤0, n ∈ N)

and obtain a sequence (ψn)n∈N in H1
ρ (R≤0; H) with ψn(0−) = xn for n ∈ N

and ψn → 0 as n → ∞ in L2,μ(R≤0; H). Consequently, setting gn :=ψn + ϕn ∈
H1

ρ (R≤0; H) for n ∈ N we obtain a sequence (xn, gn)n∈N in Dρ with (xn, gn) →
(x, g) in H × L2,μ(R; H) and thus, (x, g) ∈ Xμ

ρ . Since the other inclusion holds
obviously, this proves the assertion.

��
We now inspect the space IVρ a bit closer. In particular, we are able to determine

its closure IVρ and a suitable dense subset of IVρ .

Proposition 7.2 We set

U :={x ∈ dom(A) ; ∃y ∈ dom(A) : Ax = Ey}.

Then U ⊆ IVρ and U = IVρ for each ρ > s0(E, A). In particular, IVρ does not
depend on the particular choice of ρ > s0(E, A).

Proof Let ρ > s0(E, A), x ∈ U and y ∈ dom(A) with Ax = Ey. Then we compute

Sρ (δEx) − χR≥0x = (
∂t,ρE + A

)−1
(δEx − δEx − χR≥0 Ax)

= −(∂t,ρE + A)−1(χR≥0Ey)

= −(∂t,ρE + A)−1(∂t,ρE∂−1
t,ρ χR≥0 y)

= −∂−1
t,ρ χR≥0 y + (∂t,ρE + A)−1(∂−1

t,ρ χR≥0 Ay) ∈ H1
ρ (R; H),
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which shows hat x ∈ IVρ by Lemma 7.1. For showing the remaining assertion, we
prove that IVρ ⊆ U . For doing so, let x ∈ IVρ and set v:=Sρ(δEx). Then

∂t,ρE(v − χR≥0x) = (∂t,ρE + A)v − δEx − Av

= −Av,

and since the left-hand side belongs to L2,ρ(R; H)we infer that v ∈ L2,ρ(R; dom(A)).

Hence, ∂−1
t,ρ v ∈ H1

ρ (R; dom(A)) ↪→ Cρ(R; dom(A)) and so
∫ t
0 v(s) ds =(

∂−1
t,ρ v

)
(t) ∈ dom(A) for each t ≥ 0 and

A
∫ t

0
v(s) ds = Ev(t) − Ex (t ≥ 0).

Consequently,

∫ t

0
v(s) ds ∈ A−1[ran(E)] (t ≥ 0)

and since v is continuous on R≥0 and hence, 1
t

∫ t
0 v(s) ds → v(0+) = x as t → 0,

it suffices to prove A−1[ran(E)] ⊆ U . For doing so, let y ∈ A−1[ran(E)]; i.e.,
y ∈ dom(A) and Ay = Ez for some z ∈ H . We choose a sequence (zn)n∈N in
dom(A) with zn → z as n → ∞ and define

yn := (λE + A)−1 (λEy + Ezn) (n ∈ N),

where λ > s0(E, A) is fixed. Then yn ∈ U , since

Ayn = A (λE + A)−1 (λEy + Ezn) = E (λE + A)−1 (λAy + Azn) ∈ E[dom(A)]

and since Ezn → Ez = Ay, we infer that yn → y and hence, y ∈ U . ��
Theorem 7.3 Let M(z):=E for z ∈ C, ρ > s0(E, A) and let T ρ : Dρ ⊆
IVρ ×Hisρ → IVρ ×Hisρ denote the semigroup associated with (M, A). Moreover,
for x ∈ H we define

fx (t):=
{

(t + 1)x if t ∈ [−1, 0],
0 else

(t ∈ R≤0).

Then the following statements are equivalent:

(i) T ρ extends to a C0-semigroup in IVρ × L2,μ(R≤0; H) for some μ ≤ ρ.

(ii) There exists M ≥ 1 and ω ≥ ρ such that

‖
(
(λE + A)−1E

)n ‖ ≤ M

(λ − ω)n
(λ > ω, n ∈ N). (7.1)
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(iii) T ρ extends to a C0-semigroup in IVρ × L2,μ(R≤0; H) for each μ ≤ ρ.

(iv) The family of functions

Sρ(t) : IVρ ⊆ IVρ → IVρ, x �→ T ρ
1 (t)(x, fx )

for t ≥ 0 extends to a C0-semigroup on IVρ.

In the latter case, Sρ(t)x = T ρ(t)(x, 0) for each x ∈ IVρ and t ≥ 0.

Proof We first compute the function rg for g ∈ Hisρ as it was defined in Theorem 6.9.
We have that

(
M(∂t,ρ)g

)
(0−) − λ

√
2πLλ

(
χR≥0(m)M(∂t,ρ)g

)
(0) = Eg(0−) (λ > ρ)

and hence,

rg(λ) = (λE + A)−1Eg(0−) (λ > ρ).

Consequently,

r (k)
g (λ) = (−1)kk!

(
(λE + A)−1 E

)k+1
g(0−) (k ∈ N0, λ > ρ).

(i) ⇒ (ii): By Theorem 6.9 (note that Xμ
ρ = IVρ × L2,μ(R≤0; H) by Lemma 7.1)

we know that there exists M ≥ 1 and ω ≥ ρ such that

(λ − ω)k+1

k! ‖r (k)
g (λ)‖ ≤ M

(‖g(0−)‖H + ‖g‖L2,μ(R;H)

)

for each λ > ω, k ∈ N and g ∈ Hisρ . Choosing now x ∈ IVρ we infer that

‖
(
(λE + A)−1E

)n
x‖ = 1

(n − 1)! ‖r
(n−1)
fx (k·) (λ)‖

≤ M

(λ − ω)n

(‖x‖H + ‖ fx (k·)‖L2,μ(R;H)

)

for each λ > ω, n, k ∈ N. Since fx (k·) → 0 as k → ∞, we infer that

‖
(
(λE + A)−1E

)n ‖ ≤ M

(λ − ω)n
(λ > ω, n ∈ N).

(ii) ⇒ (iii): Let μ ≤ ρ. By assumption, there exist M ≥ 1, ω ≥ ρ such that

(λ − ω)k+1

k! ‖r (k)
g (λ)‖ = (λ − ω)k+1‖

(
(λE + A)−1E

)k+1
g(0−)‖

≤ M‖g(0−)‖H
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≤ M
(‖g(0−)‖ + ‖g‖L2,μ(R;H)

)

for each λ > ω, k ∈ N0 and g ∈ Hisρ and hence, the assertion follows from Theorem
6.9 and Lemma 7.1.

(iii) ⇒ (iv): Since T ρ extends to a C0-semigroup on IVρ × L2(R≤0; H) and since

‖ fx‖L2(R;H) ≤ ‖x‖H (x ∈ H),

we infer that there is M ≥ 1 and ω ∈ R such that

‖Sρ(t)x‖ ≤ 2Meωt‖x‖ (x ∈ IVρ)

and thus, (Sρ(t))t≥0 extends to a C0-semigroup on IVρ . Moreover, since

Sρ(t)x = T ρ
1 (t)(x, fx )

=
(
(∂t,ρE + A)−1(δ0Ex)

)
(t)

= T ρ
1 (t)(x, 0)

for each t ≥ 0, x ∈ IVρ , we obtain the asserted formula at the end of the theorem.
(iv) ⇒ (i): By assumption, there is M ≥ 1, ω ∈ R such that

‖T ρ
1 (t)(x, fx )‖ ≤ Meωt‖x‖ (x ∈ IVρ, t ≥ 0).

Moreover, since

T ρ
1 (t)(x, g) = T ρ

1 (t)(x, fx )
(
(x, g) ∈ Dρ

)
,

we infer that

T ρ
1 : Dρ ⊆ IVρ × L2,μ(R≤0; H) → Cω(R≥0; H)

is continuous and hence, the assertion follows by Proposition 6.5. ��

Remark 7.4 We remark that in the case of classical Cauchy problems, i.e. E = 1,
condition (7.1) is nothing but the classical Hille-Yosida condition for generators of
C0-semigroups (see e.g. [6, Chapter II, Theorem 3.8]). Note that in this case, U =
dom(A2) in Proposition 7.2 and hence, IVρ = U = H .

7.2 A hyperbolic delay equation

As a slight generalisation of [3, Example 3.17] we consider a concrete delay equation
of the form
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690 S. Trostorff

∂2t,ρu − div k grad u −
n∑

i=1

ciτ−hi ∂i u − c0τ−h0∂t,ρu = 0 on R>0,

u = g on R<0. (7.2)

Here, u attains values in L2(Ω) for some open set Ω ⊆ R
n as underlying domain,

h0, . . . , hn > 0 are given real numbers and k, c0, . . . , cn are bounded operators on
L2(Ω)n and L2(Ω), respectively. The operators grad and div denote the usual gradient
and divergence with respect to the spatial variables and will be introduced rigorously
later. It is our first goal to rewrite this equation as a suitable evolutionary problem. For
doing so, we need the following definition.

Definition 7.5 Let c0, . . . , cn ∈ L(L2(Ω)) and k ∈ L(L2(Ω)n) selfadjoint such
that k ≥ d for some d ∈ R>0. We define the function M1 : C → L(L2(Ω) ×
L2(Ω)n; L2(Ω)) by

M1(z)(v, q):= − c0e
−h0zv +

n∑
i=1

ci e
−hi z(k−1q)i (z ∈ C, v ∈ L2(Ω), q ∈ L2(Ω)n).

Furthermore, we define M : C \ {0} → L(L2(Ω) × L2(Ω)n) by

M(z)

(
v

q

)
:=

(
v + z−1M1(z)(v, q)

k−1q

)
.

Remark 7.6 Since
(Lρτhu

)
(t) = e(it+ρ)h

(Lρu
)
(t) for each u ∈ L2,ρ(R; H) and

t, h ∈ R, we have that

M1(∂t,ρ)(v, q) = −c0τ−h0v +
n∑

i=1

ci k
−1τ−hi (k

−1q)i

for each M1(∂t,ρ)(v, q) = −c0τ−h0v + ∑n
i=1 ci k

−1τ−hi (k
−1q)i

Obviously, the so defined function M is analytic and if we restrict it to some open
half plane CRe>ρ0 with ρ0 > 0, it is bounded. Thus, we may consider the operator
M(∂t,ρ) for some ρ > 0.

Lemma 7.7 The function M is regularising.

Proof Weneed to prove that
(
M(∂t,ρ)χR≥0x

)
(0+) exists for all x = (x̌, x̂) ∈ L2(Ω)×

L2(Ω)n and ρ > 0. We have that

M(∂t,ρ)χR≥0x =
(

χR≥0 x̌ + ∂−1
t,ρ M1(∂t,ρ)χR≥0x
k−1 x̂

)

and since M1(∂t,ρ) is causal, we infer that ∂−1
t,ρ M1(∂t,ρ)χR≥0x ∈ H1

ρ (R; L2(Ω)) is

supported on R>0 and hence,
(
∂−1
t,ρ M1(∂t,ρ)χR≥0x

)
(0+) = 0. Thus, M is regularis-

ing. ��
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We now rewrite (7.2) as an evolutionary equation. We introduce v:=∂t,ρu and
q:=k grad u as new unknowns, and rewrite (7.2) as

(
∂t,ρM(∂t,ρ) +

(
0 div

grad 0

))(
v

q

)
= 0 on R>0. (7.3)

Of course (7.2) has to be completed by suitable boundary conditions. This will be
done by introducing the differential operators div and grad in a suitable way.

Definition 7.8 We define grad0 : dom(grad0) ⊆ L2(Ω) → L2(Ω)n as the closure of
the operator

C∞
c (Ω) ⊆ L2(Ω) → L2(Ω)n, ϕ �→ (

∂ jϕ
)
j∈{1,...,n}

and similarly div0 : dom(div0) ⊆ L2(Ω)n → L2(Ω) as the closure of

C∞
c (Ω)n ⊆ L2(Ω)n → L2(Ω), (ϕ j ) j∈{1,...,n} �→

n∑
j=1

∂ jϕ j .

Moreover, we set

grad:= − (div0)
∗

div:= − (grad0)
∗.

Remark 7.9 We note that dom(grad0) coincides with the classical Sobolev space
H1
0 (Ω) of weakly differentiable L2-functions with vanishing Dirichlet trace. More-

over, dom(grad) is nothing but the Sobolev space H1(Ω). Likewise, dom(div) are the
L2-vector-field, whose distributional divergence can be represented by an L2-function
and the elemets in dom(div0) additionally satisfy a homogeneous Neumann boundary
condition in a suitable sense.

Thus, by replacing div by div0 or grad by grad0 in (7.3), we canmodel homogeneous
Neumann- or Dirichlet conditions, respectively. Using these operators, we immediatly
obtain the following result.

Lemma 7.10 We set

AN :=
(

0 div0
grad 0

)
: dom(grad) × dom(div0) ⊆ L2(Ω) × L2(Ω)n → L2(Ω) × L2(Ω)n

and

AD :=
(

0 div
grad0 0

)
: dom(grad0) × dom(div) ⊆ L2(Ω) × L2(Ω)n → L2(Ω) × L2(Ω)n .

Then both operators are skew-selfadjoint, i.e. A∗
N = −AN and A∗

D = −AD.
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We now prove that the evolutionary problems associated with (M, AD/N ) are well-
posed.

Proposition 7.11 Let c0, . . . , cn ∈ L(L2(Ω)) and k ∈ L(L2(Ω)n) selfadjoint such
that k ≥ d for some d ∈ R>0. Then the evolutionary problems associated with
(M, AD/N ) are well-posed.

Proof We first note that k−1 is selfadjoint and satisfies k−1 ≥ 1
‖k‖ . Moreover, since

AD/N is skew-selfadjoint, we infer that

Re〈AD/N x, x〉 = 0 (x ∈ dom(AD/N )).

Hence, we may estimate for x = (x1, x2) ∈ dom(AD/N )

Re〈(zM(z) + AD/N )x, x〉 = Re〈zM(z)x, x〉
= Re〈zx1, x1〉 + Re〈zk−1x2, x2〉 + Re〈M1(z)x, x1〉
≥ Re zmin{1, 1

‖k‖}‖x‖2 − ‖M1(z)‖‖x‖2.

Moreover, we estimate

‖M1(z)‖ ≤ ‖c0‖e−h0 Re z +
n∑

i=1

‖ci‖‖k−1‖e−hi Re z

and hence, we infer that ‖M1(z)‖ → 0 as Re z → ∞. Thus, we find c > 0 and ρ0 > 0
such that

Re〈(zM(z) + AD/N )x, x〉 ≥ c‖x‖2 (z ∈ CRe≥ρ0),

which yields the well-posedness for the evolutionary problem associated with
(M, AD/N ). ��
Remark 7.12 We note that the above proof also works for m-accretive operators A
instead of AD/N . This allows for the treatment of more general boundary conditions
and we refer to [21] for a characterisation result about those boundary conditions
(including also nonlinear ones).

Having these results at hand, we are now in the position to consider the history
space for (7.3). From now on, to avoid cluttered notation, we will simply write A and
note that A can be replaced by AN and AD , respectively.

Proposition 7.13 Let ρ > s0(M, A). Then

Γρg =
(
1 0
0 k−1

)
g(0−), Kρg = χR≥0(m)

(
M1(∂t,ρ)

0

)
g
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for each g ∈ H1
ρ (R≤0; L2(Ω) × L2(Ω)n). Moreover,

{
g ∈ H1

ρ (R≤0; dom(A)) ; ∀ j ∈ {0, . . . , n} : g(−t j ) = 0,

(
1 0
0 k

)
Ag(0−) ∈ dom(A)

}
⊆ Hisρ

(7.4)

and consequently,

Xμ
ρ = (

L2(Ω) × L2(Ω)n
) × L2,μ(R≤0; L2(Ω) × L2(Ω)n)

for each μ ≤ ρ.

Proof Let g ∈ H1
ρ (R≤0; L2(Ω) × L2(Ω)n). Then

Γρg =
(((

1 0
0 k−1

)
+ ∂−1

t,ρ

(
M1(∂t,ρ)

0

))
χR≥0g(0−)

)
(0+)

=
((

1 0
0 k−1

)
χR≥0g(0−)

)
(0+)

=
(
1 0
0 k−1

)
g(0−),

where we have used

∂−1
t,ρ

(
M1(∂t,ρ)

0

)
χR≥0g(0−) ∈ H1

ρ (R; H)

and hence

(
∂−1
t,ρ

(
M1(∂t,ρ)

0

)
χR≥0g(0−)

)
(0+) =

(
∂−1
t,ρ

(
M1(∂t,ρ)

0

)
χR≥0g(0−)

)
(0−) = 0

by causality. Moreover,

Kρg = P0∂t,ρM(∂t,ρ)g

= P0∂t,ρ

(
1 0
0 k−1

)
g + χR≥0(m)

(
M1(∂t,ρ)

0

)
g

= χR≥0(m)

(
M1(∂t,ρ)

0

)
g,

since

spt ∂t,ρ

(
1 0
0 k−1

)
g ⊆ R≤0
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and thus, P0∂t,ρ

(
1 0
0 k−1

)
g = 0 by Proposition 4.4 (c). Let now g be an element of

the set on the left hand side of (7.4). Then, we compute

Sρ

(
δ0

(
1 0
0 k−1

)
g(0−) − χR≥0(m)

(
M1(∂t,ρ)

0

)
g

)
− χR≥0g(0−)

= Sρ

(
δ0

(
1 0
0 k−1

)
g(0−) − χR≥0(m)

(
M1(∂t,ρ)

0

)
g−

−∂t,ρ

(
1 0
0 k−1

)
χR≥0g(0−) −

(
M1(∂t,ρ)

0

)
χR≥0g(0−) − χR≥0 Ag(0−)

)

= −Sρ

(
χR≥0(m)

(
M1(∂t,ρ)

0

)
(g + χR≥0g(0−))

)
− Sρ

(
χR≥0 Ag(0−)

)
.

We now treat both terms separately. We note that

(
χR≥0(m)c jτ−h j f j

)
(t) =

{
c j f j (t − h j ) if t ≥ 0,

0 otherwise

for f j ∈ H1
ρ (R; L2(Ω)) and thus, χR≥0(m)c jτ−h j f j ∈ H1

ρ (R; L2(Ω)) if f j (−h j ) =
0. Thus, by the constraints on g, we infer that

χR≥0(m)

(
M1(∂t,ρ)

0

)
(g + χR≥0g(0−)) ∈ H1

ρ (R; L2(Ω) × L2(Ω)n).

Thus, we are left to consider the last term. By assumption, we find x ∈ dom(A) with

Ag(0−) =
(
1 0
0 k−1

)
x and hence,

Sρ

(
χR≥0 Ag(0−)

) = ∂−1
t,ρ Sρ

(
∂t,ρ

(
1 0
0 k−1

)
χR≥0x

)

= ∂−1
t,ρ

(
χR≥0x − Sρ

(((
M1(∂t,ρ)

0

)
+ A

)
χR≥0x

))

∈ H1
ρ (R; L2(Ω) × L2(Ω)n),

which proves the claim. ��
We conclude this section by proving that the associated semigroup can be extended to
Xμ

ρ for each μ ≤ ρ.

Theorem 7.14 Let ρ > s0(M, A) and let T ρ denote the associated semigroup
with (M, A) on Dρ. Then for large enough ρ, T ρ extends to a C0-semigroup on
(L2(Ω) × L2(Ω)n) × L2,μ(R≤0; L2(Ω) × L2(Ω)n) for each μ ≤ ρ.
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Proof The proof will be done by a perturbation argument. For doing so, we consider
the evolutionary problem associated with (E, A), where

E :=
(
1 0
0 k−1

)
.

We note that this problem is well-posed with s0 (E, A) = 0 (compare the proof of
Proposition 7.11). We denote the associated semigroup by T̃ ρ . By Proposition 7.2 we
know that the closure of the initial value space for T̃ ρ is given by

{x ∈ dom(A) ; E−1Ax ∈ dom(A)} = L2(Ω) × L2(Ω)n .

Moreover, by Theorem 7.3 T̃ ρ extends to a C0-semigroup on (L2(Ω) × L2(Ω)n) ×
L2,μ(R≤0; L2(Ω) × L2(Ω)n) if and only if

‖
(
(λE + A)−1E

)n ‖ ≤ M

(λ − ω)n
(λ > ω, n ∈ N)

for some M ≥ 1, ω ≥ ρ. We note that E is selfadjoint and strictly positive definite
and thus,

(λE + A)−1 =
√
E−1

(
λ +

√
E−1A

√
E−1

)−1 √
E−1.

The latter gives

(
(λE + A)−1E

)n =
√
E−1

(
λ +

√
E−1A

√
E−1

)−n √
E

for each n ∈ N. Since A is skew-selfadjoint, so is
√
E−1A

√
E−1 and thus,

‖
(
(λE + A)−1E

)n ‖ ≤ ‖√E‖‖√E−1‖
λn

(λ > 0, n ∈ N)

and hence, T̃ ρ extends to a bounded C0-semigroup on (L2(Ω) × L2(Ω)n) ×
L2,μ(R≤0; L2(Ω) × L2(Ω)n). Now we come to the semigroup T ρ. We will
prove that T ρ

1 : Dρ ⊆ (L2(Ω) × L2(Ω)n) × L2,μ(R≤0; L2(Ω) × L2(Ω)n) →
Cω(R≥0; L2(Ω) × L2(Ω)n) is bounded for some ω ∈ R, which would imply the
claim by Proposition 6.5. Let (g(0−), g) ∈ Dρ. We then have, using the formulas in
Proposition 7.13,

T ρ
1 (g(0−), g) = (

∂t,ρM(∂t,ρ) + A
)−1

(
δ0Eg(0−) − χR≥0(m)

(
M1(∂t,ρ)

0

)
g

)

=
(

∂t,ρE + A +
(
M1(∂t,ρ)

0

))−1

(δ0Eg(0−))
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− (
∂t,ρM(∂t,ρ) + A

)−1
(

χR≥0(m)

(
M1(∂t,ρ)

0

)
g

)
.

The first term in the latter expression can be rewritten as

(
∂t,ρE + A +

(
M1(∂t,ρ )

0

))−1

(δ0Eg(0−)) =
(
1 + (

∂t,ρE + A
)−1

(
M1(∂t,ρ )

0

))−1

T̃ ρ
1 (Eg(0−)) .

Now, since T̃ ρ
1 (Eg(0−)) ∈ L2,ρ(R; L2(Ω) × L2(Ω)n) and ‖M1(∂t,ρ)‖ → 0 as

ρ → ∞, we infer that

(
∂t,ρE + A +

(
M1(∂t,ρ)

0

))−1

(δ0Eg(0−)) ∈ L2,ρ(R; L2(Ω) × L2(Ω)n)

for ρ large enough by the Neumann series. Since clearly

L2(Ω) × L2(Ω)n � x �→
(

∂t,ρE + A +
(
M1(∂t,ρ )

0

))−1
(δ0Ex) ∈ H−1

ρ (R; L2(Ω) × L2(Ω)n)

is bounded, we obtain

∥∥∥∥∥
(

∂t,ρE + A +
(
M1(∂t,ρ )

0

))−1
(δ0Eg(0−))

∥∥∥∥∥
L2,ρ (R;L2(Ω)×L2(Ω)n )

≤ C‖g(0−)‖L2(Ω)×L2(Ω)n

for some C ≥ 0 by the closed graph theorem. Hence,

‖T ρ
1 (g(0−), g)‖L2,ρ (R;L2(Ω)×L2(Ω)n )

≤ C‖g(0−)‖L2(Ω)×L2(Ω)n +
∥∥∥∥(

∂t,ρM(∂t,ρ ) + A
)−1

(
χR≥0 (m)

(
M1(∂t,ρ )

0

)
g

)∥∥∥∥
L2,ρ (R;L2(Ω)×L2(Ω)n )

≤ C‖g(0−)‖L2(Ω)×L2(Ω)n + C1‖g‖L2,ρ (R;L2(Ω)×L2(Ω)n )

≤ C̃‖(g(0−), g)‖Xμ
ρ

for suitable C1, C̃ ≥ 0. Thus,

T ρ
1 : Dρ ⊆ Xμ

ρ → L2,ρ(R≥0; L2(Ω) × L2(Ω)n)

is bounded and hence extends to a bounded operator on Xμ
ρ . Moreover, for f ∈

C∞
c (R≥0; L2(Ω) × L2(Ω)n) we may estimate
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∥∥∥(
(∂t,ρE + A)−1 f

)
(t)

∥∥∥ =
∥∥∥∥
∫ t

0
T̃ (1)

ρ (t − s)E−1 f (s) ds

∥∥∥∥
≤ M‖E−1‖

∫ t

0
‖ f (s)‖ ds

≤ M‖E−1‖√
2ρ

‖ f ‖L2,ρ (R;L2(Ω)×L2(Ω)n)e
ρt

for each t ≥ 0, which proves that

(∂t,ρE + A)−1 : L2,ρ(R≥0; L2(Ω) × L2(Ω)n) → Cρ(R≥0; L2(Ω) × L2(Ω)n)

is bounded. Now, let (x, g) ∈ Xμ
ρ and set u:=T ρ

1 (x, g) ∈ L2,ρ(R≥0; L2(Ω) ×
L2(Ω)n). Then

(∂t,ρE + A)u = δ0Ex − χR≥0(m)

(
M1(∂t,ρ)

0

)
g −

(
M1(∂t,ρ)

0

)
u

and hence, we derive that

u = (∂t,ρE + A)−1
(

δ0Ex − χR≥0(m)

(
M1(∂t,ρ)

0

)
g −

(
M1(∂t,ρ)

0

)
u

)

= T̃ ρ
1 (x, g) − (∂t,ρE + A)−1

(
χR≥0(m)

(
M1(∂t,ρ)

0

)
g +

(
M1(∂t,ρ)

0

)
u

)

∈ Cρ(R≥0; L2(Ω) × L2(Ω)n)

and hence, again by the closed graph theorem

T ρ
1 : Xμ

ρ → Cρ(R≥0; L2(Ω) × L2(Ω)n)

is bounded. ��

Remark 7.15 If c0, . . . , cn = 0 and k = 1; that is, if we just deal with the classical
wave equation without any delay effects, then we end up with an equation of the form

(
∂t,ρ + A

) (
v

q

)
= 0 on R>0.

which is already covered by the results obtained in Sect. 7.1. In this situation we end
up with a C0-semigroup, which actually just depends on the present state and not
on the whole history and thus, gives rise to a C0-semigroup on IV = dom(A2) =
L2(Ω) × L2(Ω)n (cp. Theorem 7.3). In this way we recover the the result of [2,
Example 8.4.9].
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We remark here that within the theory ofC0-semigroups, the wave equation is often
written as

∂t

(
u
v

)
=

(
0 1
Δ 0

) (
u
v

)

with state space H1(Ω)×L2(Ω) or H1
0 (Ω)×L2(Ω) in case ofNeumann- orDirichlet-

boundary conditions, respectively. Thus, in this setting initial conditions are prescribed
for u and v = u′, while in our setting above, the state space is L2(Ω) × L2(Ω)n and
the initial conditions are prescribed for v = u′ and q = grad u. Note however, that the
initial value for u in the second case is an element of H1

(0)(Ω) and thus automatically
implies an initial value for q = grad u. Thus, the initial value problem formulated in
the second case is also covered by the initial value problem in the first case.
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