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Abstract
An intriguing feature of positiveC0-semigroups on function spaces (or more generally
on Banach lattices) is that their long-time behaviour is much easier to describe than
it is for general semigroups. In particular, the convergence of semigroup operators
(strongly or in the operator norm) as time tends to infinity can be characterized by a
set of simple spectral and compactness conditions. In the present paper, we show that
similar theorems remain true for the larger class of (uniformly) eventually positive
semigroups—which recently arose in the study of various concrete differential equa-
tions. A major step in one of our characterizations is to show a version of the famous
Niiro–Sawashima theorem for eventually positive operators. Several proofs for pos-
itive operators and semigroups do not work in our setting any longer, necessitating
different arguments and giving our approach a distinct flavour.

Keywords Eventual positivity · Convergence · Long-term behaviour · Stability ·
Balancing semigroup · Asynchronous exponential growth

1 Introduction

Eventual positivity

While positive C0-semigroups are, today, a well-established tool for the analysis of
linear evolution equations that respect an order structure on the underlying space,
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it was only recently that a more subtle behaviour was observed for a number of
infinite-dimensional differential equations. For instance, consider the bi-harmonic
heat equation on R

d [17,18], or the parabolic equation associated with the Dirichlet-
to-Neumann operator on the unit circle [9]; for positive initial values, the solutions to
these equations first switch sign but eventually become, and stay, positive.

After these observations, this kind of eventually positive behaviour became the
subject of a general theory of eventually positive semigroups that started with the
papers [13,14]. Based on the theory developed so far, numerous further examples of
concrete evolution equations have been shown to exhibit eventually positive solutions.
This range of examples includes

(i) biharmonic equations with various types of zero boundary conditions on bounded
domains ([14, Section 6.4], [13, Theorem 6.1 and Proposition 6.6], and [11, The-
orem 4.4]),

(ii) heat equations with non-local boundary conditions ([13, Theorems 6.10, 6.11
and 6.13], and [11, Theorems 4.2 and 4.3]) as well as their self-adjoint bounded
perturbations ([12, Example 4.10]),

(iii) various delay differential equations ([14, Section 6.5], [19, Section 11.6], and [11,
Theorem 4.6]),

(iv) bi-Laplacians on graphs ([23, Section 6]), and
(v) the bi-Laplace operator with Wentzell boundary conditions ([15, Section 7]).

Likewise, the closely related properties asymptotic positivity, local eventual posi-
tivity, and eventual domination have been shown to occur in many concrete evolution
equations; for examples of those we refer the reader to [19, Chapter 8], [3, Section 5],
[1, Section 3], and [22, Section 4]. On finite-dimensional spaces, a similar theory of
eventual positivity had already emerged several years earlier, as can, for instance, be
seen in the paper [37].

Despite this wealth of concrete examples, our current understanding of the the-
oretical features of eventually positive semigroups lags considerably behind that of
the classical positive case. This makes a thorough investigation of various theoreti-
cal properties of eventually positive semigroups a worthwhile endeavour. The present
paper is part of this investigation, and it focuses on convergence to equilibrium for
such semigroups—a topic which has been intensively studied for positive semigroups,
but which currently lacks similar thorough coverage for the eventually positive case.

Spectrum and long-time behaviour

One of the fundamental properties of positive (or, as they are often called within
matrix analysis, non-negative) matrices andmatrix semigroups is their special spectral
behaviour. This behaviour is studied and described—in the finite-dimensional case as
well as for operators and operator semigroups in infinite dimensions—in what is today
known as Perron–Frobenius theory or Kreı̆n–Rutman theory. A striking consequence
of the results of this theory is that the long-time behaviour of positive C0-semigroups
is subject to certain restrictions—an observation that greatly facilitates the proof of
convergence to equilibrium (as t → ∞) of many positive semigroups. For details,
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Spectrum and convergence... 793

we refer, for instance, to the book chapters [33, Chapters B-IV and C-IV] and [6,
Chapter 14] and, specifically to the results in [40].

Contributions of this article

The purpose of this article is to show that similar convergence results as for positive
semigroups remain true in the case of eventual positivity.While some of our techniques
will be familiar to the experts in the field of positive semigroups, we have to differ from
classical arguments on several occasions since our semigroups are positive only for
large times, which renders some of the known methods unsuitable. This particularly
concerns the point that it is unknownwhether the generator of a (uniformly) eventually
positive semigroup has cyclic peripheral spectrum under the same general conditions
as in the positive case; we do not solve this question here, and thus have to circumvent
this problem by using different arguments than usual to obtain convergence as t → ∞.

Specifically, we prove three types of main results:

(i) InSects. 2 and3wegive criteria for the strong convergenceof an eventually positive
C0-semigroup as t → ∞ (Corollary 2.2, Theorem 3.1, and Corollary 3.2).

(ii) Section 4 is an intermezzowherewe study single operatorswith eventually positive
powers rather than eventually positive semigroups. For such operators, we prove
a Niiro–Sawashima type result which allows us to transfer information about the
spectral radius of an eventually positive operator to other peripheral spectral values
(Theorem 4.1). This is another instance where our proof has to differ considerably
from the standard proofs for the positive case.
Besides being interesting in its own right, our Niiro–Sawashima type theorem is
also a very crucial component for the study of our third topic:

(iii) In Sect. 5 we characterize operator norm convergence of eventually positive C0-
semigroups as t → ∞ (Theorems 5.1 and 5.2).

It is important to point out that our objectives in this paper are theoretical in nature.
Under much more restrictive and technical assumptions than presented here, the con-
vergence of eventually positive semigroups is known and is even an essential ingredient
in the characterization of eventual positivity; see, for instance, [13, Theorem 5.2] for
strong convergence, and combine it with [10, Corollary 2.5] for operator norm con-
vergence. In particular, for most concrete semigroups that are today known to be
eventually positive, convergence as t → ∞ is well-understood.

So the purpose of our present paper is not to better understand those concrete exam-
ples, but: (i) to prove convergence results underweaker and less technical assumptions,
thus exploring the current limits of the theory; (ii) to bring the state of the art in eventual
positivity closer towhat is already known for positive semigroups, thereby highlighting
the methodological differences between both situations; and (iii) to provide necessary
conditions for semigroups to be eventually positive, which narrows down the future
path towards examples of eventually positive semigroups that do not fall within the
framework studied in [13].
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A bit of terminology

Throughout the paper, we assume the reader to be familiar with the theory of real and
complex Banach lattices; standard references for this topic include the monographs
[32,38] as well as the double volume [42,44]. As a standard example of a complex
Banach lattice, it is often helpful to keep a complex-valued L p-space (over anymeasure
space) in mind. So, let E be a complex Banach lattice.We denote the space of bounded
linear operators on E by L(E). The range of an operator T ∈ L(E) will be denoted
by Rg T .

A C0-semigroup on E with generator A—for which we use the convenient notation
(et A)t∈[0,∞)—is called individually eventually positive if, for each 0 ≤ f ∈ E , there
exists a time t0 ∈ [0,∞) such that et A f ≥ 0 for all t ≥ t0; the semigroup is called
uniformly eventually positive if t0 can be chosen to be independent of f . For two
examples which demonstrate that uniform eventual positivity is indeed stronger than
individual eventual positivity, we refer to [14, Examples 5.7 and 5.8].

Clearly, a C0-semigroup (et A)t∈[0,∞) is uniformly eventually positive if and only if
there exists a time t0 ∈ [0,∞) such that et A is a positive operator for each time t ≥ t0;
here, an operator T : E → E is called positive if T f ≥ 0 for each 0 ≤ f ∈ E . There
are various other types of eventual positivity, which are for instance discussed in [14,
Definition 5.1] and [13, Definitions 5.1 and 8.1]—but our main focus is on uniformly
eventually positive semigroups.

Throughout the paper, it is useful to keep in mind that the spectral bound s(A) of
the generator A—which is defined as

s(A) := sup{Re λ : λ ∈ s(A)} ∈ [−∞,∞]

– of an individually eventually positive semigroup is either −∞ or an element of the
spectrum of σ(A); this was proved in [14, Theorem 7.6].

A C0-semigroup (et A)t≥0 on E is called real if each operator et A is real, by which
we mean that it leaves the real part of the complex Banach lattice E invariant. Further
notation and terminology are introduced as they are needed.

2 Strong convergence of eventually positive semigroups I

In this section, we give a first criterion for an eventually positive semigroup to converge
strongly as t → ∞. In general, it is known that a C0-semigroup (et A)t∈[0,∞) on a (say,
complex) Banach space E converges strongly as t → ∞ if and only if all orbits are
relatively compact in E and the point spectrum σpnt(A) of A intersects the imaginary
axis at most in 0. This follows, for instance, from the Jacobs–de Leeuw–Glicksberg
decomposition of operator semigroups; see e.g. [16, Theorem V.2.14].

If E is a Banach lattice and our semigroup is eventually positive, the aforementioned
spectral condition can be formally weakened: it suffices to assume that the intersection
of the point spectrumσpnt(A)with the imaginary axis is bounded.This is a consequence
of the following theorem which, in the language of Perron–Frobenius theory, can be
called a cyclicity result.
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Spectrum and convergence... 795

Theorem 2.1 (Cyclicity of the peripheral point spectrum) Let (et A)t∈[0,∞) be an indi-
vidually eventually positive C0-semigroup on a complex Banach lattice E. Assume
that, for each f ∈ E, the orbit {et A f : t ∈ [0,∞)} is relatively compact with respect
to the weak topology on E.

If iβ ∈ iR is an eigenvalue of A, then inβ is also an eigenvalue of A for each
n ∈ Z.

This was proved, even under slightly weaker assumptions, in the second named
author’s PhD thesis [19, Theorem 6.3.2]. For the convenience of the reader, we include
the main arguments of the proof here. An analogous result for the single operator case
was proved by similar techniques in [20, Theorem 8.1].

Proof of Theorem 2.1 We employ the so-called Jacobs–de Leeuw–Glicksberg (JdLG)
decomposition on operator semigroups as it is, for instance, presented in [16, Sec-
tions V.2(a) and (b)]:

Let S denote the closure of the set {es A : s ∈ [0,∞)} with respect to the weak
operator topology; then S is, with respect to operator multiplication and the weak
operator topology, a compact semi-topological semigroup. The set

K :=
⋂

T ∈S
T · S

is the unique minimal ideal in the semigroup S and it is, at the same time, a compact
topological group ([16, Theorem V.2.3]).

Next, we note that each operator in K is positive. To see this, we denote the weak
operator closure of each set R ⊆ L(E) byRw

. Then we obtain the inclusion

K =
⋂

T ∈S
{T es A : s ∈ [0,∞)}w ⊆

⋂

t∈[0,∞)

{e(t+s)A : s ∈ [0,∞)}w,

where the first equality follows from the compactness of S and from the separate weak
continuity of operator multiplication. The set on the right is precisely the set of all
accumulation points of the net (et A)t∈[0,∞) with respect to the weak operator topology,
so each operator inK is such an accumulation point. The individual eventual positivity
of our semigroup thus implies that each operator in K is positive.

We now proceed to apply the standard JdLG technique: let Q denote the neutral
element in the group K. Then Q is a projection that commutes with our semigroup,
and the range Rg Q of Q is precisely the closed linear span of the eigenvectors of
A corresponding to the eigenvalues on the imaginary axis ([16, Theorem V.2.8(ii)]);

moreover, the restricted semigroup
(

et A|Rg Q

)

t∈[0,∞)
extends to a bounded C0-group

on Rg Q, whose operators at negative times are also restrictions of operator from K
to the invariant subspace Rg Q [16, p. 315].

Finally, we note that Rg Q is itself a Banach lattice (with respect to the cone induced
by E and an equivalent norm) since the projection Q is positive; this is explained in
[38, Proposition III.11.5]. As all operators in K are positive, the bounded C0-group(

et A|Rg Q

)

t∈[0,∞)
is positive. It now follows from [33, Theorem C-III-4.2] that the

123



796 S. Arora, J. Glück

point spectrum of this group’s generator satisfies the property that we claim in the
theorem. Since the eigenvalues of this generator coincide with the eigenvalues of A
that are located on iR, our theorem follows. �	

We remark that a semigroup whose orbits are relatively compact with respect to the
weak topology is sometimes called weakly almost periodic.

Theorem 2.1 is a typical example of a so-called cyclicity result: If the spectral
bound s(A) equals 0 (note that the spectral bound cannot be strictly positive since
the semigroup is bounded, and in the case s(A) < 0, the assertion of the theorem is
trivial), the set σpnt(A) ∩ iR is the so-called peripheral point spectrum of A, and the
conclusion of the theorem can be phrased by saying that this peripheral point spectrum
is cyclic. For positive semigroups, cyclicity results for the peripheral point spectrum
have been known for a long time; see for instance [33, Corollary C-III-4.3].

With the aid of Theorem 2.1, it can be shown that the semigroup generated by
a third order operator with periodic boundary conditions is not individually eventu-
ally positive. In fact, the same can be said about higher odd order operators; see [2,
Proposition 6.10].

As a consequence of the previous cyclicity theorem, we obtain the following char-
acterization of strong convergence that we mentioned at the beginning of this section.

Corollary 2.2 (Strong convergence I) Let (et A)t∈[0,∞) be an individually eventually
positive C0-semigroup on a complex Banach lattice E. Then the following assertions
are equivalent:

(i) The limit limt→∞ et A f exists for every f ∈ E.
(ii) The orbit {et A f : t ∈ [0,∞)} is relatively compact in E for every f ∈ E.

Moreover, the intersection of the point spectrum σpnt(A) with the imaginary axis
iR is bounded.

Proof For semigroups with relatively compact orbits, it follows from Theorem 2.1
that the intersection of σpnt(A) with the imaginary axis is bounded if and only if it is
contained in {0}. The assertions thus follow from the Jacobs–de Leeuw–Glicksberg
decomposition of semigroupswith respect to the strong operator topology as described
in [16, Theorem V.2.14]. �	

We point out that the boundedness of the intersection σpnt(A) ∩ iR in Corol-
lary 2.2(ii) is automatically satisfied if, for example, the semigroup is analytic or,
more generally, eventually norm continuous—because in these cases, even the inter-
section of the entire spectrum with iR is bounded. On the other hand, even more can
be said for semigroups that satisfy such an additional regularity assumption. This is
the content of the next section.

3 Strong convergence of eventually positive semigroups II

An interesting point about Corollary 2.2 is that we only need information about the
eigenvalues of A rather than about all spectral values to obtain strong convergence.

123



Spectrum and convergence... 797

On the downside, though, we need a priori information that all orbits are relatively
norm compact, which is a rather strong requirement.

In this section, we show that we can dispense with the compactness condition in
many cases. Indeed, a typical situation where we know that the intersection of σpnt(A)

with the imaginary axis is bounded is in the case where the semigroup is eventu-
ally norm continuous. But in this situation, we even know that the spectrum σ(A) is
bounded on the imaginary axis; for positive semigroups, this is extremely helpful since
for such semigroups, under mild technical assumptions, a cyclicity result such as in
Theorem 2.1 holds for the entire peripheral spectrum [33, Theorem C-III-2.10]. Con-
sequently, eventual normcontinuity togetherwith positivity (plus appropriate technical
assumptions such as, say, boundedness) implies that σ(A) ∩ iR contains at most the
number 0. With this knowledge, one can then apply Tauberian theorems (for instance
the ABLV theorem as in [16, Theorem V.2.21]) to derive strong convergence.

The problem with this approach is that a cyclicity result for the entire peripheral
spectrum as in [33, Theorem C-III-2.10] is currently not known for eventually positive
semigroups, and the techniques used in the positive case do not seem to be easily
adaptable to the eventual positive case. On the other hand, at least for single operators,
a cyclicity result has been proved in [20, Theorem 7.1]. Thus, our approach here is to
use a spectral mapping theorem in order to study the spectrum of the single semigroup
operators et A rather than the spectrum of the generator A and to apply the known
cyclicity result to et A (for an appropriate choice of t). Doing so enables us to show
the following Theorem 3.1.

As mentioned before, the theorem is mainly concerned with the case of eventually
norm continuous semigroups. Since it does not pose any additional difficulties, we
state and prove the theorem for a slightlymore general class of semigroups, namely for
semigroups that are norm continuous at infinity. This notation, which was introduced
by Martínez and Mazón in [31, Definition 1.1], is a bit more general than eventual
norm continuity, but it is sufficiently strong to guarantee similar spectral results and
hence similar convergence properties as in the eventually norm continuous case; in
[31, Theorem 3.3 and Corollary 3.4], this is demonstrated for strong convergence of
positive semigroups. We show that these results remain true for eventually positive
semigroups as well; however, the proofs cannot be directly adapted and we need to
follow a different approach. Recall that a C0-semigroup (et A)t∈[0,∞) with growth
bound 0 on a Banach space E is called norm continuous at infinity if

lim sup
s→0

∥∥∥et A − e(t+s)A
∥∥∥ → 0 as t → ∞;

if the growth bound ω(A) is not 0 but different from −∞, then the semigroup is
called norm continuous at infinity if the same is true for the rescaled semigroup
(et(A−ω(A)I ))t∈[0,∞). From now on, whenever we say that a semigroup is norm con-
tinuous at infinity, we tacitly include the assumption ω(A) > −∞ in this wording.
Note that this implies that we also have s(A) > −∞ since the growth bound ω(A)

coincides with the spectral bound s(A) according to [31, Corollary 1.4(i)].
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Theorem 3.1 (Strong convergence II) Let (et A)t∈[0,∞) be a uniformly eventually posi-
tive C0-semigroup on a complex Banach lattice E. If the semigroup is norm continuous
at infinity and bounded, then the following are equivalent:

(i) The limit limt→∞ et A f exists for every f ∈ E.
(ii) The semigroup is mean ergodic.

Here, mean ergodic means that, for each f ∈ E , the Cesàro means 1
t

∫ t
0 es A f ds

converge strongly as t → ∞. Since every bounded C0-semigroup on a reflexive
Banach space is automatically mean ergodic, the theorem yields the following corol-
lary:

Corollary 3.2 Let (et A)t∈[0,∞) be a uniformly eventually positive C0-semigroup on a
complex and reflexive Banach lattice E. If the semigroup is norm continuous at infinity
and bounded, then the limit limt→∞ et A f exists for every f ∈ E.

As explained at the beginning of the section, we are nowgoing to prove Theorem3.1
by using spectral properties of the operators et A. We outsource the essence of the
argument to the following lemma. For positive semigroups, this was proved in [31,
Proposition 3.2]. If (et A)t∈[0,∞) is a C0-semigroup and the spectral bound of A is not
−∞, then we call the set

σper(A) := σ(A) ∩ (s(A) + iR),

the peripheral spectrum of A.

Lemma 3.3 On a Banach lattice E, let (et A)t∈[0,∞) be a uniformly eventually positive
semigroup that is norm continuous at infinity. If (et A)t∈[0,∞) is bounded and s(A) = 0,
then σper(A) = {0}.

We will show a second result that is close in spirit to Lemma 3.3, but has different
technical assumptions, in Lemma 5.3.

Proof of Lemma 3.3 As the semigroup is bounded and the spectral bound is 0, it follows
that the growth bound is 0, too. Moreover, the norm continuity at infinity implies that
σper(A) is bounded; this was proved in [31, Theorem 1.9]. We can thus find a number
α > 0 such that σper(A) ⊆ [−iα, iα].

Again, due to the norm continuity at infinity, a spectral mapping theorem holds for
the peripheral spectrum [31, Theorem 1.2], so we have

σ(et A) ∩ T ⊆ {eitγ : γ ∈ [−α, α]}

for all t ≥ 0; here T denotes the complex unit circle. For all sufficiently small t , say
t ≤ t0, we conclude that the spectrum of et A does not intersect the left half of the unit
circle T. Fix such a time t ∈ (0, t0].

Now we use a cyclicity result for single operators: By assumption, et A is power
bounded and all its powers with sufficiently large exponent are positive. This implies
that, whenever λ is a spectral value of et A of modulus |λ| = 1, then all powers λn (for
n ∈ Z) are spectral values of et A, too; see [20, Theorem 7.1] for a proof.
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Given that the spectrum of et A does not intersect the left half of T, this implies that

σ(et A) ∩ T = {1}.

Since this is true for all times t ∈ (0, t0] it follows (for instance, by choosing a time
t < π/α) from the spectral inclusion theorem forC0-semigroups [16, Theorem IV.3.6]
that σper(A) ⊆ {0}.

On the other hand, it was proved in [14, Theorem 7.6] that individual eventual
positivity of the semigroup implies s(A) ∈ σ(A); so we actually have σper(A) = {0}.
�	

Given this lemma, it is now easy to derive Theorem 3.1 from a Tauberian theorem:

Proof of Theorem 3.1 “(i) ⇒ (ii)”: This implication is obvious.
“(ii) ⇒ (i)”: According to Lemma 3.3, the spectrum of A intersects iR at most

in 0. If P ∈ L(E) denotes the mean ergodic projection of the semigroup, then the
restriction of (et A)t∈[0,∞) to ker P is a bounded and mean ergodic C0-semigroup on
ker P whose generator B—which is simply the part of A in ker P—has the following
properties: the spectrum σ(B) intersects iR at most in 0 and 0 is not an eigenvalue of
B; but since the semigroup is mean ergodic, this implies that 0 is not an eigenvalue of
the adjoint operator B ′, either. Hence, the ABLV theorem [16, TheoremV.2.21] yields
that et B = et A|ker P

converges strongly to 0 as t → ∞.

On the other hand, et A acts as the identity on the range of P , so we conclude that
et A → P strongly as t → ∞. �	

We close this section with a remark on the types of eventual positivity that we
assumed in this and in the previous section to deduce strong convergence.

Remarks 3.4 In Corollary 2.2, we only needed individual eventual positivity of the
semigroup. This is because the cyclicity of the peripheral point spectrum—which
is the essential ingredient for the strong convergence in Corollary 2.2—is proved
by utilizing the Jacobs–de Leeuw–Glicksberg decomposition in Theorem 2.1; this
decomposition allows us, in a sense, to consider only the behaviour of the orbits “at
infinity”—hence, it does not matter when precisely each orbit becomes positive.

Theorem 3.1, on the other hand, requires uniform eventual positivity. This is due to
the cyclicity result for single operators that we employ in the proof; this cyclicity result
is only shown under a uniform eventual positivity assumption in [20, Theorem 7.1].

We do not know whether Theorem 3.1 remains true for individually eventually
positive semigroups. As explained in [20, Remark 7.3(b)], it is also unknown whether
the cyclicity result in [20, Theorem 7.1] remains true for operators that are individually
eventually positive.

4 A Niiro–Sawashima theorem for eventually positive operators

While strong convergence of eventually positive semigroupswas the content of Sects. 2
and 3 , we are going to study uniform convergence—i.e., convergence with respect to
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the operator norm—in Sect. 5. Whenever we speak about operator norm convergence
of semigroups or powers of operators, a particular spectral condition naturally arises
– namely that the peripheral spectrum consists of poles of the resolvent only.

In this context, there exists a useful theorem which is, in its original form, due to
Niiro and Sawashima (see [35] and [36, Main Theorem and Theorem 9.2]); for the
version that we are interested in, it is due to Lotz and Schaefer ([28, Theorem 2]; see
also [38, Theorem V.5.5]) and says that, if T is a positive operator and the spectral
radius r(T ) is a pole of the resolvent of T with finite-dimensional spectral space, then
all spectral values of T with modulus r(T ) are also poles.

We are going to show that the same result remains true for operators that are
uniformly eventually positive, at least if the pole order of the spectral radius is 1. We
call a bounded linear operator T on a complex Banach lattice E uniformly eventually
positive if there exists an integer n0 ∈ N0 such that T n is a positive operator for each
n ≥ n0. In [20, Theorem 4.1], it was proved that the spectral radius r(T ) of such an
operator is always a spectral value of T .

The following is the main result of this section:

Theorem 4.1 (Niiro–Sawashima for uniformly eventually positive operators) Let E be
a complex Banach lattice and let T ∈ L(E) be uniformly eventually positive. Assume
that the spectral value r(T ) is a pole of the resolvent of T of pole order 1 and that the
corresponding spectral space F ⊆ E is finite-dimensional.

Then every spectral value λ of T with modulus |λ| = r(T ) is also a first order pole
of the resolvent R( · , T ) and the dimension of its spectral space is not larger than
dim F.

Wecall a spectral valueλ of a bounded linear operator T on a complexBanach space
a Riesz point of T if it is a pole of the resolvent R( · , T ) and if the corresponding
spectral space is finite-dimensional; see the appendix for further details. Thus, the
essence of Theorem 4.1 is: if the spectral radius of T is a Riesz point and its pole
order equals 1, then the same is true for every other spectral value of modulus r(T ).
If r(T ) = 1, this means that T is quasi-compact, i.e., the essential spectral radius of
T is strictly less that 1. This, together with the fact that all poles are of first order, also
implies that T is power bounded—an observation which will be of significant use in
Sect. 5.

Before we come to the proof of Theorem 4.1, let us make a few remarks on the
relation between the theorem and its version for positive operators:

Remarks 4.2 (a) The version of the Niiro–Sawashima theorem for positive operators
that can be found in [28, Theorem 2] or [38, Theorem V.5.5] only states that all
spectral values ofmodulus r(T ) are poles of the resolvent; the fact that their spectral
space is also finite-dimensional is not stated explicitly there, but an inspection of
the proof shows that this is indeed true.

(b) For positive operators, the assertion of Theorem 4.1 is also true if the pole order of
r(T ) is not assumed to be 1; see the aforementioned references [28, Theorem 2]
or [38, Theorem V.5.5]. We do not know whether the same holds for uniformly
eventually positive operators as well.
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The proof of the Niiro–Sawashima theorem for positive operators given in [28, The-
orem 2] and [38, Theorem V.5.5] relies heavily on the theory of irreducible operators,
in conjunction with an ultrapower argument. For our situation, a reduction to the case
of irreducible operators seems to be out of the question. Instead, we are going to use
a different argument which is inspired by the following approach:

In [24, Theorem 3.3], Groh proved a version of the Niiro–Sawashima theorem
for a class of positive operators on a C∗-algebra; in the process, he also faced the
problem that the classical arguments for positive operators on Banach lattices do not
work in this setting. To solve the problem, Groh derived a description of poles of
the resolvent with finite-dimensional spectral space by considering the dimension of
certain eigenspaces of an ultrapower [24, Proposition 3.2]. This technique was later
refined in [8, Proposition 3.3] and [21, Corollary 3.2], and it often turned out to be
useful in the spectral analysis of linear operators (for instance, in [27] and [30], as well
as in both aforementioned articles). We are going to use the same technique for our
proof of Theorem 4.1. For the convenience of the reader, we include a brief reminder
of ultrapowers as well as a concrete statement of the relevant spectral results in the
appendix.

Our strategy to prove Theorem 4.1 now is as follows: We first show a dimension
estimate for the range of linear operators that are dominated by a positive projec-
tion (Lemma 4.3). We then use this lemma to derive a dimension estimate for certain
eigenspaces of eventually positive operators (Theorem 4.4). Finally, we derive Theo-
rem 4.1 by an application of the ultrapower characterization of Riesz points given in
Proposition A.2.

Let us begin with our lemma on operators that are dominated by a positive projec-
tion.

Lemma 4.3 Let E be a complex Banach lattice and let Q, P ∈ L(E) be such that

|Q f | ≤ P | f | for all f ∈ E . (4.1)

If P is a projection, then the fixed space Fix Q := ker(I − Q) and the range Rg P
satisfy dim Fix Q ≤ dim Rg P.

Proof Note that (4.1) implies that P is positive. We begin by proving the result for the
particular case when P is strictly positive, i.e., when the kernel ker P does not contain
any positive non-zero elements. In this case, the modulus of each vector f ∈ Fix Q
belongs to the range Rg P . Indeed, fixing such a f we have

P | f | − | f | = P | f | − |Q f | ≥ 0;

moreover, the vector P | f |−| f | is in ker P andmust therefore be 0 by strict positivity.
Hence | f | = P | f | ∈ Rg P . We have thus shown that the modulus of every vector of
Fix Q is in Rg P , which implies dim Fix Q ≤ dim Rg P by [33, Lemma C-III-3.11].
This verifies the assertion in the particular case when P is strictly positive.

We now consider the general case. Let

I := { f ∈ E : P | f | = 0}
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denote the so-called absolute kernel of P . Clearly, I is a closed P-invariant ideal and
the inequality (4.1) implies that it is also Q-invariant. Let π denote the quotient map
from the Banach lattice E to the quotient Banach lattice E/I . Since I is both P- and
Q-invariant, therefore P and Q induce operators P/, Q/ on E/I respectively.

The operator P/ is also a positive projection and since π is a lattice homomorphism,
we observe by using the assumption (4.1) that

∣∣Q/(π f )
∣∣ = |π Q f | = π |Q f | ≤ π P | f | = P/(π | f |) = P/ |π f |

for all f ∈ E . Hence, Q/ and P/ also satisfy the analogous estimate of (4.1) in the
quotient space E/I . In addition, P/ is strictly positive. To see this, let f̂ be a positive
vector in ker P/ and f be a positive element of E such that f̂ = π f . Then

π P f = P/(π f ) = P/ f̂ = 0,

which means P f must be in I . However as f and P f are positive, then, in fact, f
must belong to I . Hence, f̂ is the zero vector of E/I . Therefore ker P/ has no positive
non-zero elements which shows that P/ is strictly positive, as claimed. Whence by
what we proved in the special case at the beginning of the proof, we can conclude that

dim Fix Q/ ≤ dim Rg P/.

The assertion will now follow if we are able to prove the following two properties
of the quotient map π :

(i) The restriction of π to Rg P maps surjectively onto Rg P/.
(ii) The restriction of π to Fix Q maps injectively into Fix Q/.

Assertion (i) follows from the fact that π P = P/π and from the surjectivity of π . To
prove (ii), let f be a non-zero vector belonging to Fix Q. Then we have Q/(π f ) =
π(Q f ) = π f . In other words, π maps f to Fix Q/. Moreover, using (4.1), we have

0 �= f = |Q f | ≤ P | f | ,

and so π f is non-zero; hence the claimed injection follows. �	
We note in passing that, in the situation of the above proof, it can even be shown

that both mappings

π |Rg P
: Rg P → Rg P/ and π |Fix Q

: Fix Q → Fix Q/

are bijections. Next, we use the previous lemma to derive the following dimension
estimate for eigenspaces of eventually positive operators.

Theorem 4.4 Let E be a complex Banach lattice and T ∈ L(E) be uniformly
eventually positive. Assume the spectral radius r(T ) is a Riesz point of T and the
corresponding pole order of the resolvent is 1. Then we have

dim ker(λI − T ) ≤ dim ker(r(T )I − T )
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for every complex number λ with modulus |λ| = r(T ).

Proof Since the result trivially holds when r(T ) = 0, we may assume without loss of
generality that r(T ) = 1. Let λ be a complex number of modulus |λ| = 1. Since 1
is a first order pole of the resolvent R( · , T ), the range of the corresponding spectral
projection P is ker(I − T ). Let U be a free ultrafilter on N and (rn) be a sequence of
real numbers decreasing to 1. We consider the operator sequences

(Qn) :=
(
(rnλ − λ)R(rnλ, T )

)
and (Pn) :=

(
(rn − 1)R(rn, T )

)
.

The sequence (Pn) is bounded since 1 is a first order pole of R( · , T ); in fact, (Pn)

even converges, with respect to the operator norm, to the spectral projection P of T
associated to the spectral value 1.

Next we observe that the sequence (Qn) is asymptotically dominated by (Pn) in
the following sense: There exist two sequences of operators (Rn) and (Sn) in L(E)

such that ‖Rn‖ , ‖Sn‖ → 0 and such that

|Qn f | ≤ |Sn f | + Rn | f | + Pn | f | (4.2)

for each index n and each vector f ∈ E . To see this, just use that there exists an
exponent k0 ∈ N0 such that T k is positive for all k ≥ k0, and then define

Rn := −(rn − 1)
k0−1∑

k=0

1

(rnλ)k+1 T k

and

Sn := (rnλ − λ)

k0−1∑

k=0

1

(rnλ)k+1 T k

for each n. Clearly, both sequences converge to 0, and the claimed inequality (4.2)
follows readily from the Neumann series expansion of R(rnλ, T ) and R(rn, T ) and
from the fact that

∣∣T k f
∣∣ ≤ T k | f | for each k ≥ k0 due to the positivity of T k .

As a consequence of (4.2), the sequence (Qn) is bounded as well. Hence, the
sequences (Qn) and (Pn) induce bounded operators Q̂ and P̂ on the ultrapower EU ,
respectively. Moreover since Pn → P with respect to the operator norm, we know
that P̂ is actually the projection PU .

Now we employ the inequality (4.2) a second time: it yields that we have

∣∣Q̂g
∣∣ ≤ P̂ |g|

for all g ∈ EU . Thus, Lemma 4.3 is applicable and yields

dim Fix Q̂ ≤ dim Rg P̂ = dim Rg PU = dim Rg P = dim ker(I − T ),
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where the penultimate equality holds because P is a finite rank projection.
Finally, we show that dim ker(λI − T ) ≤ dim Fix Q̂ to conclude the proof. To this

end, let i : E → EU denote the canonical embedding and f be a vector in ker(λI −T ).
Then R(μ, T ) f = (μ − λ)−1 f for all μ in the resolvent set of T and hence

(rnλ − λ)R(rnλ, T ) f = (rnλ − λ)(rnλ − λ)−1 f = f

for all n ∈ N, which implies Q̂ i( f ) = i( f ). We have thus shown that i maps
ker(λI − T ) to Fix Q̂ and it does so injectively, as i is an injection. This verifies our
claim. �	

The dimension estimate from the theorem above together with another ultrapower
argument now allows us to easily derive our Niiro–Sawashima theorem:

Proof of Theorem 4.1 Fix a free ultrafilter U on N. Since r(T ) is also a Riesz point of
TU (Proposition A.2), the corresponding spectral space is finite-dimensional. If λ is
any spectral value of T with modulus |λ| = r(T ), then by Theorem 4.4,

dim ker
(
λI − TU)

≤ dim ker
(

r(T )I − TU)
< ∞. (4.3)

Therefore λ is a Riesz point of T , again by Proposition A.2.
The fact that the pole order of R( · , T ) at λ is 1 follows from the inequality (4.2)

that we derived in the proof of Theorem 4.4 which holds for each uniformly eventually
positive operator.

Finally, for first order poles the spectral space coincides with the eigenspace. In
addition, the spectral projection of TU associated to λ is actually the lifting of the
spectral projection of T associated to λ, and the same is true for the spectral projections
associated to r(T ) (Proposition A.2). These together with (4.3) imply the dimension
estimate claimed at the end of Theorem 4.1. �	

We close this section with a brief remark concerning our usage of ultrapowers in
the proof of Theorem 4.1:

Remarks 4.5 In order to prove Theorem 4.1, we first lifted the operator T to an ultra-
power and then we applied the dimension estimate from Theorem 4.4 to the lifted
operator TU . It is interesting to note that the proof of Theorem 4.4 itself also employs
an ultrapower argument. Hence, our proof of the Niiro–Sawashima type result in The-

orem 4.1 actually relies on an iterated ultrapower argument, i.e., the operator
(
TU )U

(implicitly) occurs in the proof.

5 Uniform convergence for eventually positive semigroups

As mentioned in the previous section, we are now going to characterize uniform
convergence of eventually positive semigroups. In general, the rescaled version
(et(A−s(A)I ))t∈[0,∞) of a C0-semigroup on a (complex) Banach space E converges
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uniformly as t → ∞ if and only if it is norm continuous at infinity, the spectral bound
s(A) is a first order pole of the resolvent and the only spectral value of A with the
largest real part. This was proven by Thieme in [40, Theorem 2.7]. Furthermore, he
showed [40, Theorem 3.4] that if E is a Banach lattice and the semigroup is positive
then the last condition—that s(A) is the only spectral value with the largest real part—
can be dropped. This is because when the spectral bound is a first order pole and the
semigroup is positive, then the peripheral spectrum is cyclic ([33, PropositionC-III-2.9
and Theorem C-III-2.10]).

Unfortunately, we do not yet know if the same can be said of eventually positive
semigroups. Nevertheless, we will show in Theorem 5.1 that this roadblock can be
bypassed if (after appropriate rescaling) the semigroup is bounded.

Besides, uniform convergence ofC0-semigroups to a finite rank operator onBanach
spaces has also been studied (usually called asynchronous exponential growth). For
instance, Webb proved a characterization [41, Proposition 2.3] in terms of the α-
growth bound of the semigroup and gave some sufficient conditions in case of positive
semigroups on Banach lattices [41, Remark 2.2]. Using Webb’s result, Thieme pro-
vided an alternate characterization [40, Theorem 3.3] employing the concept of norm
continuity at infinity; see also [29, Sections 4.6 and 4.7]. As a consequence of [40,
Theorems 3.3 and 3.4], one obtains that the rescaling (et(A−s(A)I ))t∈[0,∞) of a positive
C0-semigroup on a Banach lattice converges uniformly to a finite rank operator if and
only if (et A)t∈[0,∞) is norm continuous at infinity and s(A) is a first order pole of the
resolvent with finite-dimensional spectral space. We will show in Theorem 5.2 that
this characterization remains true for uniformly eventually positive semigroups. Here
again, the setting of eventual positivity requires different methods than its positive
counterpart.

Beforewe state themain theorems of this section, we note that Thieme actually used
the concept of essentially norm continuous semigroups in order to characterize uniform
convergence. However, it was shown by Blake in his PhD thesis [7, Corollary 3.3.7]
as well as by Nagel and Poland [34, Corollary 4.7] that this is equivalent to norm
continuity at infinity of the semigroup.

The following theorem gives a characterization for a uniformly eventually posi-
tive semigroup (et A)t∈[0,∞) to be uniformly exponentially balancing; here, we call a
C0-semigroup (et A)t∈[0,∞) uniformly exponentially balancing if s(A) > −∞ and the
rescaled semigroup (et(A−s(A)I ))t∈[0,∞) converges in the operator norm (cf. [40, Defi-
nition 2.1 and Proposition 2.3]); note that the limit operator is automatically non-zero
in this case.

Theorem 5.1 Let (et A)t∈[0,∞) be a uniformly eventually positive C0-semigroup on a
complex Banach lattice E and assume that s(A) > −∞. The semigroup (et A)t∈[0,∞)

is uniformly exponentially balancing if and only if the following three conditions are
satisfied:

(i) The semigroup (et A)t∈[0,∞) is norm continuous at infinity.
(ii) The rescaled semigroup (et(A−s(A)I ))t∈[0,∞) is bounded.

(iii) The spectral bound s(A) is a pole of the resolvent of A.

Proof The necessity of (i)-(iii) is proved in [40, Theorems 2.4 and 2.7]. For the con-
verse, assume that (i)-(iii) hold and that without loss of generality s(A) = 0. Then
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by Lemma 3.3, the spectrum of A intersects iR at the point 0. Moreover, since the
semigroup is bounded, 0 is in fact a first order pole of the resolvent of A. Therefore
(et A)t∈[0,∞) satisfies all the conditions sufficient for uniform convergence as t → ∞
( [40, Theorem 2.7]). �	

As mentioned before, the characterization given in [40, Theorem 3.3] for a semi-
group to be uniformly exponentially balancing to a finite rank operator can be
improved for uniformly eventually positive semigroups. This is the content of the
following theorem:

Theorem 5.2 Let (et A)t∈[0,∞) be a uniformly eventually positive C0-semigroup on a
complex Banach lattice E and assume that s(A) > −∞. The semigroup (et A)t∈[0,∞)

is uniformly exponentially balancing and limt→∞ et(A−s(A)I ) has finite rank if and
only if the following two conditions hold:

(i) The semigroup (et A)t∈[0,∞) is norm continuous at infinity.
(ii) The spectral bound s(A) is a first order pole of the resolvent of A and the corre-

sponding spectral space is finite-dimensional.

We remark that the notion Riesz point, which we recalled after Theorem 4.1, can
also be defined—in the same way—for closed rather than bounded operators. Hence,
condition (ii) in Theorem 5.2 can be rephrased as follows: s(A) is a Riesz point of A
and its order as a pole of the resolvent is 1.

Whereas the proof of Theorem 5.1 made use of Lemma 3.3, for the proof of The-
orem 5.2, we give crux of the argument in the following lemma. It provides a second
criterion for the peripheral spectrum of A to consist solely of the spectral bound of A,
when A is the generator of an eventually positive semigroup that is norm continuous
at infinity. A proof for the particular case when the semigroup is positive can be found
in [31, Proposition 3.2]. In fact, in case the semigroup is positive, not only is the
pole order of s(A) irrelevant but there is no requirement for the spectral space to be
finite-dimensional either. Since the cyclicity result that underlies [31, Proposition 3.2]
is (currently) not available in the eventual positivity case, so we base our argument on
the Niiro–Sawashima type result from Theorem 4.1 instead.

Lemma 5.3 On a complex Banach lattice E, let (et A)t∈[0,∞) be a uniformly eventually
positive semigroup that is norm continuous at infinity. If s(A) is a first order pole of the
resolvent R( · , A) and the corresponding spectral space is finite-dimensional, then
σper(A) = {s(A)}.
Proof Without loss of generality, we assume that the spectral bound of A is 0. Due to
norm continuity at infinity, the growth bound is equal to the spectral bound, as shown
in [31, Corollary 1.4], and so the growth bound of A is also 0. As in the proof of
Lemma 3.3, there exists a number α > 0 such that σper(A) ⊆ [−iα, iα], and

σ(et A) ∩ T ⊆ {eitγ : γ ∈ [−α, α]}

for all t ≥ 0. In fact, even a spectral mapping theorem for the intersection of the
peripheral spectrum and the essential spectrum holds ([31, Theorem 1.3]), and hence
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1 is a Riesz point of et A for all sufficiently small times t – namely for all t ∈ (0, t0),
where t0 := π

α
. From now on, let t ∈ (0, t0).

We show next that the order of the number 1 as a pole of the resolvent R( · , et A)

is 1. Let P denote the spectral projection associated to the pole 0 of the resolvent
R( · , A). Then 0 is not a spectral value of A|ker P

. Now there are two possibilities for

the behaviour of the restricted semigroup (et A|ker P
)t∈[0,∞): Either its growth bound

is negative—in which case 1 is not a spectral value of et A|ker P
—or its growth bound

equals 0. In the latter case, since the restricted semigroup is also norm-continuous
at infinity, we can apply the spectral mapping theorem for the peripheral spectrum
[31, Theorem 1.2] and conclude, again, that 1 is not a spectral value of et A|ker P
(since t ∈ (0, t0)). Hence, we only have to consider the pole order of the resolvent of
et A|Rg P

at 1. But since R( · , A) has a first order pole at 0, the operator A acts as the
zero operator on Rg P , and so the operator

et A|Rg P
= e

t
(

A|Rg P

)

acts as the identity on Rg P . Therefore 1 is indeed a first order pole the resolvent of
R( · , et A|Rg P

), and thus also of R( · , et A).
We can now apply our Niiro–Sawashima type theorem (Theorem 4.1), which yields

that every spectral value of et A on the unit circle is a Riesz point and a first order pole
of the resolvent. Consequently, et A is power bounded and thus we may proceed as in
the proof of Lemma 3.3 to conclude σper(A) = {0}. �	

Proof of Theorem 5.2 Suppose the conditions (i) and (ii) hold. Then by Lemma 5.3,
the peripheral spectrum of A consists of s(A) only. Thus (et A)t∈[0,∞) fulfils all the
conditions adequate for a semigroup to converge in the operator norm topology to a
finite rank operator as t → ∞; see [40, Theorem 3.3].

In the same reference, it is also shown that conditions (i) and (ii) are necessary for
operator norm convergence of the semigroup. �	
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Appendix A: Ultrapowers and Riesz points of linear operators

In this appendix, we recall a few facts about ultrapowers of Banach spaces and Riesz
points. For further details about ultrapowers, we refer the reader to [25], [32, p. 251–
253], and [38, Section V.1]. By a Riesz point of a bounded linear operator, we mean a
spectral value that is a pole of the resolvent and has finite-dimensional spectral space.
Details about such points can, for instance, be found in [4] or [5]; for related results,
we also refer to the classical references [26, Section III.6.5], [39, pp. 330–332] , and
[43, Section VIII.8].

A reminder of ultrapowers

Let E be a (real or complex) Banach space and denote by l∞(E), the space of
all E-valued bounded sequences endowed with the canonical supremum norm, i.e.,
‖x‖∞ = supn∈N ‖xn‖ for x = (xn)n∈N ∈ l∞(E).

Fix a free ultrafilter U on N and define

cU (E) := {(xn) ∈ l∞(E) : lim
U

‖xn‖ = 0}.

Then cU (E) is a closed subspace of l∞(E) and the U-product EU denotes the quotient
space

EU := l∞(E)/cU (E),

and is called the ultrapower of E with respect to the ultrafilter U or briefly the U-
ultrapower of E . For every element x of l∞(E), the equivalence class of x in cU (E)

will be denoted by xU . It turns out that for every x = (xn) ∈ l∞(E), the norm of xU
in EU is given by

∥∥∥xU
∥∥∥ = lim

U
‖xn‖ .

A proof of this can be found, for instance in [38, Proposition V.1.2] for complex
Banach spaces; the proof for real Banach spaces, however, remains the same.

Note that the above ultrapower construction is only interesting for infinite-
dimensional Banach spaces: If E is finite-dimensional, then its unit ball is compact,
so it follows that EU is isomorphic to E .

If E and F are Banach spaces, then every bounded linear operator T ∈ L(E, F) can
be extended to a bounded linear operator TU ∈ L (

EU , FU )
in a canonical way, i.e.,

TU xU = (T xn)U for every x = (xn) ∈ l∞(E). If E = F , then the mapping T �→ TU
is an isometric homomorphism from the Banach algebra L(E) to the Banach algebra
L (

EU )
which preserves the identity element [38, Proposition V.1.2].

Ultrapowers play a significant role in operator theory. A part of this is because not
only does the lifting T �→ TU preserve several spectral properties of T but it also
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improves some. As an example, we have the following proposition, which we quote
from [38, Theorem V.1.4 and its Corollary].

Proposition A.1 Let E be a complex Banach space and U be a free ultrafilter on N. If
T is a bounded operator on E, then the lifting TU has the following properties:

(i) The spectrum of TU is exactly the spectrum of T .
(ii) Both T and TU have the same approximate point spectrum σapp which is the same

as the point spectrum of TU , i.e.,

σpnt

(
TU)

= σapp

(
TU)

= σapp(T ).

(iii) The lifting of the resolvent of T is equivalent to resolvent of the lifting TU . In other
words, R( · , T )U = R( · , TU ).

In particular, a spectral value of T is a k-th order pole of the resolvent R( · , T ) if and
only if it is a k-th order pole of the resolvent R( · , TU ).

We remark in passing that both operators T and TU have the same operator norm
and if E is Banach lattice, then T is positive if and only if TU is positive.

A characterization of Riesz points

Let E be a complex Banach space and T be a bounded linear operator on E . If T is a
contraction, then it was shown by Groh in [24, Proposition 3.2] that a spectral value
λ of T with modulus |λ| = 1 is a pole of the resolvent R( · , T ), if the corresponding
eigenspace of a lifted operator TU is finite-dimensional. Then Caselles showed in [8,
Proposition 3.3] that the same result is true under more general assumptions. Even
more generally, we have the following result:

Proposition A.2 Let T be a bounded linear operator on a complex Banach space E
and letU be a free ultrafilter onN. For any complex number λ, the following assertions
are equivalent:

(i) λ is a Riesz point of T .
(ii) λ is a Riesz point of TU .

(iii) λ is an element of the topological boundary of σ(T ) and the eigenspace
ker

(
λI − TU )

is finite-dimensional.

If the equivalent assertions (i)–(iii) are satisfied and P denotes the spectral projection
of T associated with λ, then PU is the spectral projection of TU associated with λ.

Proof The implication (ii)⇒ (iii) is obvious and the implication (iii)⇒ (i) was shown
in [21, Corollary 3.2].

Let us now prove the implication (i) ⇒ (ii) and the assertion at the end of the
proposition. If λ is a Riesz point of T , then by Proposition A.1, λ is a pole of the resol-
vent R ( · , TU )

. To see that the corresponding spectral space is finite-dimensional,
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we argue as in the proof of [8, Proposition 3.3]: If P is the spectral projection of T
associated to λ, then

P =
∫

C
R(μ, T ) dμ

(where C is a circle with centre λ such that it encloses no other point of the spectrum
of T ). Using continuity of the map T �→ TU and R( · , T )U = R( · , TU ), we obtain
that PU is the spectral projection of TU corresponding to the spectral value λ. As
Rg P is finite-dimensional, it follows that Rg PU = (Rg P)U is finite-dimensional,
as well. �	

We note here that, in order to check by means of Proposition A.2 that λ is a
Riesz point of T , it suffices to check the corresponding eigenspace of TU is finite-
dimensional for some, rather than each, free ultrafilter U on N.
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