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Abstract
In this paper we present and study the ideal duplication, a new construction within the
class of the relative ideals of a numerical semigroup S, that, under specific assump-
tions, produces a relative ideal of the numerical duplication S��

bE . We prove that
every relative ideal of the numerical duplication can be uniquely written as the ideal
duplication of two relative ideals of S; this allows us to better understand how the
basic operations of the class of the relative ideals of S��

bE work. In particular, we
characterize the ideals E such that S��

bE is nearly Gorenstein.

Keywords Nearly Gorenstein semigroups · Numerical duplication · Relative ideal ·
Canonical ideal

1 Introduction

The numerical duplication is a construction introduced in [7] that, starting with a
numerical semigroup S and a semigroup ideal E ⊂ S, produces a new numerical
semigroup, denoted by S��

bE (where b is any odd integer belonging to S). The origin
of this construction is connected to ring theory; more precisely, in [2] it is studied
a family of quadratic quotients of the Rees algebra of a ring R with respect to an
ideal I , with the aim of giving a unified approach for Nagata’s idealization (see e.g.
Nagata’s book [13, p. 2] and [8]) and amalgamated duplication (see e.g. [5,6]); when
the original ring R is a numerical semigroup ring or an algebroid branch, so it has
a value semigroup S = v(R), particular members of the family are again numerical
semigroup rings (or, respectively, algebroid branches) whose value semigroup is a
numerical duplication of S.

Moreover, if R is local, some relevant properties, such as Gorensteinness, almost
Gorensteinness andCohen-Macaulay type, coincide for anymember of the family cited
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above, depending only on R and I (see [3]); in [7] it is shown that the same happens
for numerical duplication. In particular, it is given a characterization of those ideals
that produce a symmetric or an almost symmetric semigroup; this characterization, as
expected, does not depend on the integer b used to define the numerical duplication.

In this paperwewant to provide a systematical study of relative ideals of a numerical
duplication; to this aim we introduce a similar construction for relative ideals, that we
call ideal duplication: given a numerical semigroup S, an odd number b ∈ S and
an ideal E , the ideal duplication starting from two relative ideals E1, E2 of S, under
specific assumptions, produces a relative ideal E1��

bE2 of the numerical duplication
S��

bE . The first main result of this paper (see Theorem 3.4) is that every relative ideal
of the numerical duplication can be written, in a unique way, as the ideal duplication
of two relative ideals of the semigroup.

The knowledge of the relative ideals of a numerical duplication allows to better
understand its properties; for example, we will be able to describe the trace of the
numerical duplication (see Theorem 4.2) and its pseudo-Frobenius numbers (see The-
orem 4.12). The trace of a numerical semigroup is connected to the nearly Gorenstein
property, that is the numerical analogue of a ring property, originally introduced by
Herzog, Hibi and Stamate [11], using the trace of the canonical module. Nearly Goren-
stein rings generalize Gorenstein rings, and this class is, in general, independent of
the class of almost Gorenstein rings. However, in the one-dimensional case, almost
Gorenstein rings are nearly Gorenstein. Hence, the class of nearly Gorenstein semi-
groups generalizes the class of almost symmetric semigroups; so, as it was done for
the almost symmetric case, it is natural to look for a characterization of those ideals
E , such that S��

bE is nearly Gorenstein. Using Theorem 4.2, we are able to find this
characterization (see Corollary 4.3).

The structure of the paper is the following: in Sect. 2 we recall all the basic notions
on numerical semigroups, that we will use in the rest of the paper, and we prove some
preliminary lemmas about relative ideals.

In Sect. 3, we define the ideal duplication, we show that every relative ideal of the
numerical duplication is the ideal duplication of two relative ideals of the semigroup
(see Theorem 3.4) and we apply this fact to better understand relative ideals of the
numerical duplication and the basic operations between them (e.g. sum, difference,
shift, etc.); moreover, we describe, in terms of ideal duplication, the canonical ideal
of the numerical duplication (see Proposition 3.5).

In Sect. 4, using the ideal duplication, we are able to describe the trace of the
numerical duplication (see Theorem 4.2) and, from this, it follows a characterization of
the nearly Gorenstein property (see Corollary 4.3); furthermore, we apply this result to
study the nearlyGorensteinness for numerical duplications obtainedby someparticular
classes of ideals, like e.g. integrally closed ideals (see Theorem 4.11). Finally, we
give a description of the pseudo-Frobenius numbers of the numerical duplication
(see Theorem 4.12) which produces a new characterization for S��

bE to be almost
symmetric (see Corollary 4.13).
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The ideal duplication 643

2 Preliminaries

Most of the definitions and results that we recall in this section can be found in [10] or
in [1]; if not, we will give specific references. A numerical semigroup S is an additive
submonoid of N, such that |N \ S| < ∞. The elements of N \ S are called gaps of S
and their cardinality is called the genus of the semigroup, denoted by g(S). The largest
gap is called Frobenius number of S and it is denoted by f (S).

It is clear that, if s ∈ S, then f (S) − s /∈ S. Using this remark, the gaps of S are
usually classified as gaps of the first type, i.e. non-negative integers x /∈ S of the form
x = f (S) − s with s ∈ S, and gaps of the second type, i.e. non-negative integers
y /∈ S, such that f (S) − y /∈ S. Moreover, if a gap g satisfies g + s ∈ S for every
non-zero s ∈ S, then g is called pseudo-Frobenius. We denote with PF(S) the set of all
pseudo-Frobenius numbers; the type of S, denoted by t(S), is the cardinality of PF(S)
and, since f (S) ∈ PF(S), t(S) ≥ 1. A numerical semigroup S is said to be symmetric
if there are not gaps of the second type, i.e. s ∈ S if and only if f (S) − s /∈ S. It is
well known that S is symmetric if and only if 2g(S) = f (S) + 1; another equivalent
condition for S to be symmetric is t(S) = 1.

Every numerical semigroup can be written as {0, a1, . . . , an = f (S)+1,→}, with
0 < ai < ai+1; the arrow means that in the set there are all the numbers greater than
f (S) + 1. Moreover, f (S) + 1 is called the conductor number of S.
It is well known that every numerical semigroup is minimally generated by a finite

number of elements of S, so we will write S = (s1, . . . , sd), with si < si+1; s1 is
called the multiplicity of S and we call d the embedding dimension of S. It is easy to
prove that d ≤ s1.

If S is a numerical semigroup, the semigroup ring associated to S is the ring of
the form k[[S]] = k[[Xs | s ∈ S]] ⊆ k[[X ]], where k is a field. Many invariants are
shared between these two structures (e.g embedding dimension, multiplicity, etc.).

A subset I of Z is a relative ideal of S, if, for every x ∈ I and s ∈ S, we have
x + s ∈ I , and there exists an element y ∈ S such that I + y ⊆ S. If I ⊆ S, then we
call I an ideal of S. M(S) := S \ {0} and C(S) := { f (S)+ 1,→} are ideals of S and
they are respectively the maximal ideal and the conductor ideal of S. We can operate
with relative ideals obtaining again relative ideals: if I and J are relative ideals of S,
then I + J = {i + j | i ∈ I , j ∈ J } and I − J = {z ∈ Z | z + j ∈ I ,∀ j ∈ J } are
relative ideals. Moreover, the union and intersection of relative ideals still give relative
ideals. We list some properties which will be useful later in the paper.

Lemma 2.1 Let I , J , and H be relative ideals of S and z ∈ Z. The following statements
are true:

1. If I ⊆ J , then I − H ⊆ J − H and H − J ⊆ H − I ;
2. (I − J ) + (J − H) ⊆ I − H;
3. (I − J ) + H ⊆ (I + H) − J ;
4. I − (J + H) = (I − J ) − H;
5. I − (J ∪ H) = (I − J ) ∩ (I − H);
6. I + (J ∪ H) = (I + J ) ∪ (I + H);
7. (I \ J ) + z = (I + z) \ (J + z);
8. (I ∩ J ) + z = (I + z) ∩ (J + z).
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Proof All the listed properties are easy to prove, so we include only some of them:

2. Let x ∈ I − J and y ∈ J − H , then (x + y) + h = x + (y + h) ∈ I , ∀h ∈ H .
3. Let x ∈ I − J and h ∈ H , then (x + h) + j = (x + j) + h ∈ I + H , ∀ j ∈ J .
4. Let x ∈ I − (J + H) and j ∈ J and h ∈ H , then (x + h)+ j = x + ( j + h) ∈ I .

Conversely, let x ∈ (I − J ) − H . Then x + ( j + h) = (x + h) + j ∈ I . �

It is worth noticing that all the properties listed above still hold if I , J , and H are

subsets of Z not necessarily ideals.
If I is a relative ideal of S, we define m(I ) = min I , f (I ) = max(Z \ I ) (it is well

defined since m(I ) + C(S) ⊆ I ), C(I ) = { f (I ) + 1,→} the conductor ideal of I
and

g(I ) = |(Z \ I ) ∩ {m(I ),m(I ) + 1, . . . , f (I )}|

(note that, if I ⊆ N, then |N \ I | = g(I ) + m(I )). One can always shift a relative
ideal I by adding to it an integer z: z + I = {z + i | i ∈ I }. It is obvious that the
relation I ∼ I ′ ⇔ I ′ = z + I for some z ∈ Z, is an equivalence relation. In every
equivalence class there is exactly one representative Ĩ such that f ( Ĩ ) = f (S). This
representative Ĩ is obtained by adding f (S)− f (I ) to I . For all ideals I we have that
C(S) ⊆ Ĩ ⊆ N.

The set {z ∈ Z | f (S) − z /∈ S}, denoted by K (S), is a relative ideal of S. The
following well-known result is usually referred as Jäger’s Lemma (see [12, Hilfssatz
5] ).

Lemma 2.2 For every relative ideal I of S,

K (S) − I = {x ∈ Z | f (S) − x /∈ I }.

Proof Let x ∈ K (S)− I and assume f (S)− x ∈ I . Then f (S) = ( f (S)− x)+ x ∈
K (S) yields a contradiction.

Conversely, let x ∈ Z such that f (S)− x /∈ I . Hence, for every i ∈ I , f (S)− (x +
i) /∈ S, then x + i ∈ K (S), i.e., x ∈ K (S) − I . �


Some consequences of Jäger’s Lemma are the following:

Corollary 2.3 The following properties hold for every numerical semigroup:

1. For every relative ideal I of S, K (S) − (K (S) − I ) = I ;
2. K (S) − K (S) = S;
3. K (S) − S = K (S);
4. If I and J are relative ideals such that I ⊆ J , then K (S) − J ⊆ K (S) − I ;
5. If I and J are relative ideals such that I ⊆ J , then |J \ I | = |(K (S) − I ) \

(K (S) − J )|.
Proof Applying two times Lemma 2.2, we easily prove 1. Properties 2, 3 and 4 are a
trivial consequence of Lemma 2.2 and the definition of K (S). Finally, using the map
x �→ f (S) − x defined in Z and Lemma 2.2, we can easily prove 5. �
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Definition 2.4 A relative ideal I of S is said to be canonical if there exists x ∈ Z such
that I = x + K (S).

The relative ideal K (S) is called the standard canonical ideal of S, and it is in fact
the representative ideal of the canonical class [K (S)] such that f (K (S)) = f (S). It
is straightforward to prove that S ⊆ K (S) ⊆ N and that S is symmetric if and only if
K (S) = S. It can be proven (see [1, Theorem 3]) that a relative ideal I is canonical if
and only if I − (I − J ) = J , for every relative ideal J of S.

The following result will be useful later in the paper, for its easy proof we refer to
[1, p. 34].

Proposition 2.5 Let K be the standard canonical ideal of S, then, the following is
true:

K − M(S) = K ∪ { f (S)}.

In the paper we will need to use the following facts that we did not find in the
literature:

Lemma 2.6 Let I and J be two relative ideals of S. Then:

1. m(I + J ) = m(I ) + m(J );
2. f (I − J ) = f (I ) − m(J ).

Moreover, if K is the standard canonical ideal of S, we have:

m(K − I ) = f (S) − f (I )

Proof Property 1 is trivial. As for Property 2, notice that f (I ) − m(J ) /∈ I − J , but
at the same time if x > 0, then f (I ) − m(J ) + x ∈ I − J . For the last part, using
Lemma 2.2, we have f (S)− f (I ) ∈ K − I , also, if z ∈ K − I , then f (S)− z ≤ f (I ),
so f (S) − f (I ) ≤ z. �

Proposition 2.7 Let I and J be two relative ideals of S and let K be its standard
canonical ideal. The following equality holds:

I − J = (K − J ) − (K − I ).

Proof By Property 1 of Corollary 2.3 and by Property 4 of Lemma 2.1, we have:

I − J = (K − (K − I )) − J = K − ((K − I ) + J ) = (K − J ) − (K − I ).

�

Corollary 2.8 Let I be a relative ideal of a numerical semigroup S and let K be its
standard canonical ideal. The following equality holds:

S − (K − I ) = I − K .
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Proof Using Proposition 2.7 and both Property 1 and 3 of Corollary 2.3, it follows
that

S − (K − I ) = ((K − (K − I )) − (K − S)) = I − K . �

Corollary 2.9 Let I be a relative ideal of a numerical semigroup S and let K be
its standard canonical ideal. Then, K − Ĩ is a numerical semigroup if and only if
K − Ĩ = I − I .

Proof If K − Ĩ is a numerical semigroup, using Proposition 2.7, we get:

K − Ĩ = (K − Ĩ ) − (K − Ĩ ) = Ĩ − Ĩ = I − I .

The converse statement is trivial. �

Notation 2.10 We fix now the notation for the rest of the paper: S is a numerical
semigroup, f its Frobenius number, s1 its multiplicity, b ∈ S is an odd number, E is a
proper ideal of S (i.e. an ideal such that E �= S or equivalently 0 /∈ E), e = f (E)− f ,
Ẽ = E − e, K is the standard canonical ideal of S, while M and C are respectively
the maximal ideal and the conductor ideal of S. For any subset A ⊆ Z, we also define
2 · A = {2a | a ∈ A} (note that 2 · S �= 2S = S + S and 2 · E �= 2E = E + E).

3 Ideal duplication

In [7, p. 153] is defined the numerical duplication, S��
bE , of S with respect to E and

b as the following subset of N:

S��
bE = 2 · S ∪ (2 · E + b).

It is straightforward to prove that S��
bE is a numerical semigroup and f (S��

bE) =
2 f (E)+ b. It is also true that S��

bE is symmetric if and only if E is a canonical ideal
of S (see [7, Proposition 3.1.3]).

In this section we define the ideal duplication, an operation between two relative
ideals of S which gives, under specific assumptions, a relative ideal of the numerical
duplication S��

bE . We will prove that every relative ideal of S��
bE can be written, in

a unique way, as the ideal duplication of two ideals of S. Thanks to this representation,
we will be able to better understand how the basic operations among relative ideals of
S��

bE work.

Definition 3.1 Let E1 and E2 be two relative ideals of S satisfying the following:

1. E1 + E ⊆ E2;
2. E2 + b + E ⊆ E1.

We define the ideal duplication of E1 and E2 with respect to b the following set:

E1��
bE2 := 2 · E1 ∪ (2 · E2 + b).
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In the following, when we write E1��
bE2, we will always assume that E1 and E2

(the order is important) satisfy the conditions in Definition 3.1.

Proposition 3.2 The ideal duplication E1��
bE2 is a relative ideal of S��

bE. Moreover,
if E1 and E2 are proper ideals of S with E2 ⊆ E, then E1��

bE2 is a proper ideal of
S��

bE.

Proof Let x ∈ E1��
bE2 and y ∈ S��

bE . There are four possibilities:

(i) Let x = 2e1, with e1 ∈ E1 and y = 2s, with s ∈ S. We have:

2e1 + 2s = 2(e1 + s) ⇒ 2e1 + 2s ∈ 2 · E1 ⊆ E1��
bE2.

(ii) Let x = 2e2 + b, with e2 ∈ E2 and y = 2s, with s ∈ S. We have:

2e2 + b + 2s = 2(e2 + s) + b ⇒ 2e2 + b + 2s ∈ 2 · E2 + b ⊆ E1��
bE2.

(iii) Let x = 2e1, with e1 ∈ E1, and y = 2e + b, with e ∈ E .

2e1 + 2e + b = 2(e1 + e) + b ⇒ 2e1 + 2e + b ∈ 2 · E2 + b ⊆ E1��
bE2;

the fact that e1 + e ∈ E2 follows from Property 1 of Definition 3.1.
(iv) Let x = 2e2 + b, with e1 ∈ E1, and y = 2e + b, with e ∈ E . We have:

2e2 + b + 2e + b = 2(e2 + e + b) ⇒ 2e2 + b + 2e + b ∈ 2 · E1 ⊆ E1��
bE2;

the fact that e2 + e + b ∈ E1 follows from Property 2 of Definition 3.1.

Since E1 and E2 are relative ideals, they both have a minimum, hence 2 · E1 ∪ (2 ·
E2 + b) has a minimum too. Since S��

bE has a conductor, it follows trivially that
(E1��

bE2) + s ⊆ S��
bE , for some s ∈ S��

bE . �

Example 3.3 Let S = {0, 3, 6,→}, E = {7, 8, 10,→}, b = 7. We have

S��
7E = {0, 6, 12, 14, 16, 18, 20, 21, 22, 23, 24, 26,→}.

The sets E1 = {3, 6, 9,→} and E2 = {−2, 1, 4,→} are relative ideals of S.
• E1��

7E2 = {3, 6, 9, 12, 15, 17,→},
• E2��

7E1 = {−4, 2, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 24,→}.
E1��

7E2 is a relative ideal of S��
7E , but E2��

7E1 is not (e.g. −4 + 21 = 17 /∈
E2��

7E1). We deduce that, in general, in the ideal duplication the order is important.

If P ⊂ Z is a subset of even numbers, we call P
2 the set of the halves of the numbers

in P . More precisely

P

2
= {z ∈ Z | 2z ∈ P}.
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Theorem 3.4 Let H be a relative ideal of S��
bE, then there exist and are unique E1

and E2 relative ideals of S such that:

H = E1��
bE2.

Moreover, if H is a proper ideal of S��
bE, then E1 and E2 are proper ideals of S with

E2 ⊆ E.

Proof Let P be the set of even numbers of H and let D be the set of odd numbers of
H . It is trivial to prove:

H = 2 · P
2

∪
(
2 · D − b

2
+ b

)
.

We want to prove the thesis for E1 = P
2 and E2 = D−b

2 .
We need to show that P

2 is a relative ideal of S. Let e1 ∈ P
2 and s ∈ S; we have:

e1 + s ∈ P

2
⇔ 2(e1 + s) ∈ P ⇔ 2e1 + 2s ∈ P,

and the last relation is true since P ⊂ H , H is an ideal of S��
bE and 2e1 + 2s is even.

Since E1 is a relative ideal of S, it has a minimum, and therefore P
2 has a minimum

too. Since S��
bE has a conductor, it follows that P

2 + s ⊆ S��
bE for some s ∈ S��

bE .
We show now that D−b

2 is a relative ideal of S. Let e2 ∈ D−b
2 and s ∈ S, we have:

e2 + s ∈ D − b

2
⇔ 2e2 + 2s + b ∈ D,

and the last relation is true since 2e2 + b ∈ D. Arguing similarly as we did for P
2 , we

get that D−b
2 + s ⊆ S��

bE , for some s ∈ S��
bE .

We prove now that P
2 and D−b

2 satisfy Properties 1 and 2 of Definition 3.1. If e1 ∈ P
2

and e ∈ E , then 2e1 + (2e+b) is an odd element of H , hence 2e1 +2e+b ∈ D and it
follows that e1+e ∈ D−b

2 , so Property 1 is proven. If e2 ∈ E2, then 2e2+b+2e+b is
an even element of H . Hence, 2e2+b+2e+b ∈ P and it follows that e2+b+e ∈ P

2 ,
so Property 2 is proven.

Finally, we prove the unicity of E1 and E2. Let E ′
1 and E ′

2 be relative ideals of S
such that H = E ′

1��
bE ′

2. If e
′
1 ∈ E ′

1, then 2e′
1 is an even element of H , so e′

1 ∈ P
2 .

If instead e1 ∈ P
2 , then 2e1 is an even element of H , so e1 ∈ E ′

1. Similarly, we prove
that E ′

2 = D−b
2 . �


In the following, if H is a relative ideal of S��
bE , then we will denote by E1(H)

and E2(H), the unique relative ideals of S such that H = E1(H)��bE2(H), and we
will call them the even and the odd component respectively. If there is no risk of
misunderstanding, we will not write H within the brackets.

123
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If we want to compute the even component of a relative ideal of S��
bE , we have to

take the even numbers of the ideal and divide them by 2. Similarly, to compute the odd
component, we have to take the odd numbers, subtract b and then divide them by 2;
by Theorem 3.4, they are indeed relative ideals of S. With this mindset, it is trivial to
compute M(S��

bE) = M��
bE and C(S��

bE) = (C(E) + b−1
2 )��bC(E). It is fairly

more interesting though to compute the components of the standard canonical ideal of
S��

bE . The following result was originally proven in [9, Lemma 2.2] without using
the ideal duplication.

Proposition 3.5 The following equality holds:

K (S��
bE) = (K − Ẽ)��b(K + e).

Proof Let x be even. We have:

x ∈ K (S��
bE) ⇔ 2 f (E) + b − x /∈ 2 · E + b ⇔ 2 f − x /∈ 2 · Ẽ ⇔ f − x

2
/∈ Ẽ .

Since K − Ẽ = {x ∈ Z | f − x /∈ Ẽ}, we get x
2 ∈ K − Ẽ .

Let x be odd. We have:

x ∈ K (S��
bE) ⇔ 2 f (E) + b − x /∈ 2 · S ⇔ 2 f − (x − b − 2e) /∈ 2 · S ⇔ x − b

2
∈ K + e,

that is the thesis. �

We see now how the components behave under the basic operations between ideals.

Proposition 3.6 Let I and J be two relative ideals of S��
bE. The following facts are

true:

a. If I ⊆ J , then Ei (I ) ⊆ Ei (J ), i = 1, 2;
b. Ei (I ∪ J ) = Ei (I ) ∪ Ei (J ), i = 1, 2;
c. Ei (I ∩ J ) = Ei (I ) ∩ Ei (J ), i = 1, 2.

Proof a is trivial.
The proofs of b and c are similar, we prove b as an example:

E1(I ∪ J ) = P(I ) ∪ P(J )

2
= P(I )

2
∪ P(J )

2
= E1(I ) ∪ E1(J ),

where P(I ) and P(J ) are the even elements of I and J respectively. The proof for
the odd component is similar. �

Proposition 3.7 Let x ∈ Z be and let H be a relative ideal of S��

bE. If x is even, then

E1(H + x) = E1(H) + x

2
and E2(H + x) = E2(H) + x

2
.

123



650 D. Troia

If x is odd, then

E1(H + x) = E2(H) + x + b

2
and E2(H + x) = E1(H) + x − b

2
.

Proof Let x be an even number and let y ∈ E1(H + x); this means that there exists
h ∈ H even such that 2y = h + x , therefore y = h

2 + x
2 . Let y ∈ E2(H + x); this

means that there exists h ∈ H odd such that 2y + b = h + x , therefore y = h−b
2 + x

2 .
Let x be an odd number and let y ∈ E1(H + x); this means that there exists h ∈ H

odd such that 2y = h + x , hence y = h−b
2 + x+b

2 . Let y ∈ E2(H + x); this means
that there exists h ∈ H even such that 2y + b = h + x , therefore y = h

2 + x−b
2 . �


Proposition 3.8 Let I and J be two ideals of S��
bE, then the following equalities

hold:

E1(I − J ) = (
(E1(I ) − E1(J )

) ∩ (
E2(I ) − E2(J )

)
,

E2(I − J ) = (
E2(I ) − E1(J )

) ∩ (
E1(I ) − (E2(J ) + b)

)
.

Proof Let x ∈ E1(I−J ); we first show that x ∈ E1(I )−E1(J ). For every e1 ∈ E1(J ),
we have:

x + e1 ∈ E1(I ) ⇔ 2x + 2e1 ∈ I .

The last relation is true since 2x ∈ I − J and 2e1 ∈ J . Similarly, we prove that
x ∈ E2(I ) − E2(J ).

Conversely, let x ∈ (
E1(I ) − E1(J )

) ∩ (
E2(I ) − E2(J )

)
and j ∈ J .

(i) If j = 2e1, with e1 ∈ E1(J ), we have:

2x + j = 2x + 2e1 = 2(x + e1) ∈ I ⇔ 2x ∈ I − J ⇔ x ∈ E1(I − J );

(ii) If j = 2e2 + b, with e2 ∈ E2(J ), we have:

2x + j = 2x + 2e2 + b = 2(x + e2) + b ∈ I ⇔ 2x ∈ I − J ⇔ x ∈ E1(I − J ).

The proof for the odd component is similar. �


Proposition 3.9 Let I and J be two relative ideals of S��
bE, the following equalities

hold:

E1(I + J ) = (
E1(I ) + E1(J )

) ∪ (
E2(I ) + E2(J ) + b

)
,

E2(I + J ) = (
E1(I ) + E2(J )

) ∪ (
E2(I ) + E1(J )

)
.
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Proof Using Property 6 of Lemma 2.1, we get:

I + J = [
2 · E1(I ) ∪ (2 · E2(I ) + b)

] + [
2 · E1(J ) ∪ (2 · E2(J ) + b)

] =
= [

2 · (E1(I ) + E1(J ))
] ∪ [

2 · (E2(I ) + E2(J ) + b)
]∪

∪ [
2 · (E1(I ) + E2(J )) + b

] ∪ [
2 · (E2(I ) + E1(J )) + b

]
.

Since all the even numbers of the sum are within the first and the second set of the
union and the odd numbers are within the last two sets of the union, we obtain the
thesis. �

Proposition 3.10 Let I and J be two relative ideals of S��

bE, the following equality
holds:

I \ J = 2 · (
E1(I ) \ E1(J )

) ∪ (
2 · (E2(I ) \ E2(J )) + b

)
.

In particular, the cardinality of I \ J is:

|E1(I ) \ E1(J )| + |E2(I ) \ E2(J )|.

Proof Let x ∈ I \ J . If x is even, then x
2 ∈ E1(I ), and at the same time, since x /∈ J ,

it follows that x
2 /∈ E1(J ). If x is odd, the proof is similar.

For the last part of the thesis, it suffices to notice that the functions z �→ 2z and
z �→ 2z + b, defined in Z, are injective. �

The following result was originally proven in [7, Proposition 3.1.2] without using the
ideal duplication.

Corollary 3.11 The following equality holds:

g(S��
bE) = g(S) + g(E) + m(E) + b − 1

2

Proof Since N = C(S��
bE) − (2 f (E) + b + 1), by Proposition 3.7, we get N =

N��
b(N − b−1

2 ). We have that N − b−1
2 = B ∪ N, where B = {− b−1

2 , . . . ,−1};
moreover, 2 · B+b is equal to the set of odd numbers between 1 and b. By Proposition
3.10, we have:

N \ (S��
bE) = 2 · (N \ S) ∪ {1, 3, . . . , 2h + 1, . . . , b, 2g1 + b, . . . , 2gn + b},

where N \ E = {g1, . . . , gn} and n = g(E) + m(E). �


4 Nearly Gorenstein duplication and applications of the ideal
duplication

In the first part of this section, we recall the definition of nearly Gorenstein semigroup
and we present a characterization for S��

bE to be nearly Gorenstein; furthermore,
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we apply this result to study the nearly Gorensteinness for numerical duplications
obtained by some particular classes of ideals.

In the last part, after introducing the definition of almost symmetric semigroup, we
describe the pseudo-Frobenius numbers of the numerical duplication. This allows to
produce a new characterization for S��

bE to be almost symmetric. For the rest of the
paper, we exclude the trivial case S = N.

Let I be a relative ideal of S. We define the trace of I the following ideal:

TrS(I ) = I + (S − I ).

This definition has its origin in ring theory (see [11, p. 4]) and it is the anologue for the
numerical semigroup case. It is straightforward to prove that the trace is independent
of shifts and also that TrS(I ) ⊆ S.

The trace of S is defined as the trace of its standard canonical ideal, Tr(S) =
TrS(K ) = K + (S − K ); S − K is usually referred as the anti-canonical ideal of S.

Definition 4.1 S is said to be a nearly Gorenstein semigroup if

M ⊆ Tr(S) = K + (S − K ).

This definition was originally introduced in [11, Definition 2.2]. The numerical
semigroup ring associated to S is nearly Gorenstein if and only if the semigroup is
nearly Gorenstein. It is straightforward to prove that, if S is symmetric, then it is
nearly Gorenstein; in fact, the symmetric semigroups are exactly those for which the
trace blows up to S. Hence, S is nearly Gorenstein but not Gorenstein if and only
if M = K + (S − K ); using Lemma 2.1, it is easy to prove that this condition is
equivalent to K − M = S − (S − K ).

Theorem 4.2 The following equalities hold:

E1
(
Tr(S��

bE)
) = (K − E) + (E − K ),

E2
(
Tr(S��

bE)
) = (

(K − E) + (E − (K − E))
) ∪ (

K + (E − K )
)
.

Proof First of all we prove that E − (K − E) ⊆ S − (K + b). We have:

(
E − (K − E)

) + (
K + b

) ⊆ (E − K ) + (K + b) ⊆ E + b ⊆ S.

Using this fact, Propositions 2.7 and 3.8, we have:

S��
bE − K (S��

bE) = (Ẽ − K )��b(E − (K − Ẽ)).

It is straightforward to prove that (K + b)+ (E − (K − E)) ⊆ (K − E)+ (E − K ).
Using this fact, Property 8 of Lemma 2.1, and Proposition 3.9, we get:

E1
(
Tr(S��

bE)
) = (K − E) + (E − K ).
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With a similar argument, we can prove the equality for the odd component. �

As direct consequence of Theorem 4.2, we get the following characterization.

Corollary 4.3 S��
bE is nearly Gorenstein if and only if: M ⊆ (K − E) + (E − K )

and

E = (
(K − E) + (E − (K − E))

) ∪ (
K + (E − K )

)
.

In particular, the nearly Gorensteinness of S��
bE does not depend on b or on shifts

of E.

Example 4.4 1) Let S = {0, 3, 5, 6, 8 →}, E = {10, 13,→}. We have:

(K − E) + (E − K ) = {5, 6, 8,→} ⊂ M,

but

((K − E) + (E − (K − E))) ∪ (K + (E − K )) = {10, 13 →} = E .

Hence, the first condition of Corollary 4.3 is independent of the second one.
2) Let S = {0, 4, 7, 8, 10,→}, E = {4, 8, 11, 12, 14,→}. We have:

(K − E) + (E − K ) = {4, 7, 8, 10,→} = M;

but

((K − E) + (E − (K − E))) ∪ (K + (E − K )) = {8, 11, 12, 14,→} ⊂ E,

Hence, the second condition of Corollary 4.3 is independent of the first one.

Proposition 4.5 If M ⊆ (K − E) + (E − K ), then:

1. M − M ⊇ (E − K ) − (E − K );
2. K − M ⊇ E − (E − K ).

In particular, E − E ⊆ M − M .

Proof Both statements 1 and 2 are consequence of Property 4 of Lemma 2.1, Property
1 of Corollary 2.3 and Proposition 2.7. The last part is true since:

E − E ⊆ E − (K + (E − K )) = (E − K ) − (E − K ) ⊆ M − M . �

It is worth noticing that if M = (K − E) + (E − K ), then both 1 and 2 of the

previous proposition become equalities.
We recall that s1 denotes the multiplicity of S, i.e. the minimum of M .

Lemma 4.6 If S��
bE is nearly Gorenstein and not symmetric, then s1 = m(Ẽ − K ),

i.e. s1 + K ⊂ Ẽ ⊂ K.
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Proof Clearly s1 = m(K − Ẽ)+m(Ẽ − K ). Using Lemma 2.6, we get m(K − Ẽ) =
f (K ) − f (Ẽ) = f − f = 0. �

Note that, if Ẽ �= K , then s1 ∈ Ẽ − K if and only if s1 = m(Ẽ − K ).

We now apply the above results to some particular cases.

Corollary 4.7 If S is symmetric, then:

Tr(S��
bE) = [(S − E) + E]��bE .

In particular, if S is symmetric, then S��
bE is nearlyGorenstein if and only ifTrS(E) ⊇

M.

Proof By Theorem 4.2, we see that E − K ⊆ E2(Tr(S��
bE)) ⊆ E . Since S is

symmetric, then E − K = E − S = E , that is the thesis. �

Corollary 4.8 If K − Ẽ is a numerical semigroup, then:

Tr(S��
bE) = TrS(E − E)��bE .

Proof Using Theorem 4.2, by Corollary 2.8 and Corollary 2.9, if follows easily that

E1(Tr(S��
bE)) = (E − E) + (S − (E − E)).

Using Theorem 4.2 to compute the odd component of Tr(S��
bE), it suffices to show

that Corollary 2.9 implies that:

(K − Ẽ) + (E − (K − Ẽ)) = (E − E) + (E − (E − E)) = E . �

Proposition 4.9 The following equality holds:

Tr(S��
bM) = (Tr(S) ∩ M)��b(Tr(S) ∩ M).

In particular, S��
bM is nearly Gorenstein if and only if S is nearly Gorenstein.

Proof If S is symmetric, then, by Corollary 4.7, we get:

Tr(S��
bM) = ((S − M) + M)��bM = M��

bM = (Tr(S) ∩ M)��b(Tr(S) ∩ M).

Assume S to be not symmetric, hence S − K = M − K . In fact, let x ∈ S − K and
y ∈ K . If x + y = 0, then x < 0 which is a contradiction because S − K ⊂ S. By
Theorem 4.2, using Property 6 of Lemma 2.1 and Proposition 2.5, we get:

E1(Tr(S��
bM)) = (K − M) + (M − K ) = (K ∪ { f }) + (M − K ) =

(K + (M − K )) ∪ ((M − K ) + f ).
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Since (M − K ) + f ⊆ C ⊆ K + (M − K ) and M − K = S − K , we get:

E1(Tr(S��
bM)) = K + (M − K ) = K + (S − K ) = Tr(S) = Tr(S) ∩ M .

With a similar argument done at the beginning of the proof, we can prove that
M−(K −M) = S−(K −M) (this equality holds also in the case that S is symmetric).
Using this fact, Corollary 2.8 and using Theorem 4.2 to compute the odd component
of the trace of S��

bM , we get:

E2(Tr(S��
bM)) = ((K − M) + (M − K )) ∪ (K + (M − K )) =

(K − M) + (M − K ) = E1(Tr(S��
bM)). �


The following definition is a specialization of the notion of integrally closed ideal
for numerical semigroup rings.

Definition 4.10 An ideal I is said to be integrally closed if there exists a ∈ S such
that

I = {s ∈ M | s ≥ a}.

The maximal ideal M is clearly integrally closed.

Theorem 4.11 If E is integrally closed and not maximal, then S��
bE is nearly Goren-

stein if and only if s1 = f + 1.

Proof Assume s1 �= f + 1. If E = {s ∈ M | s ≥ a}, we have two possibilities:
1. If a ≤ f + 1, then Ẽ = E . Since s1 /∈ E , by Lemma 4.6, S��

bE is not nearly
Gorenstein.

2. If a > f + 1, then Ẽ = E − e. We show now that s1 + e /∈ E . If a = f + 1+ x ,
with x > 0, then e = f + x − f = x . If we suppose that s1 + x ∈ E , then
s1 + x ≥ f + 1 + x , and hence s1 ≥ f + 1; it follows that s1 = f + 1, a
contradiction. Since s1 + e /∈ E , we get s1 /∈ E − e, and once again, by Lemma
4.6, S��

bE is not nearly Gorenstein.

Conversely, if s1 = f + 1, we can write S = {0, s1,→} and, since E is integrally
closed, E is a shift of the maximal ideal. It is straightforward to prove that S is nearly
Gorenstein, so by Proposition 4.9 and using the fact that the nearly Gorensteinness is
independent of shifts of E , we have that S��

bE is nearly Gorenstein. �

By the definition of pseudo-Frobenius numbers, it is obvious that

PF(S) = (S − M) \ S.

If S �= N, then S − M = M − M , hence the pseudo-Frobenius numbers are exactly
the numbers in (M − M) \ S.
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Theorem 4.12 The following equality holds:

PF(S��
bE) = 2 · [

((M − M) ∩ (E − E)) \ S
] ∪ [

2 · ((E − M) \ E) + b
]
.

In particular, t(S��
bE) = |(M − M) ∩ (E − E)| + |(E − M) \ E |.

Proof Since E − M ⊆ (S − E) − b, by Proposition 3.8, it follows

(S��
bE) − (M��

bE) = (
(M − M) ∩ (E − E)

)
��

b(E − M).

By Proposition 3.10, it follows

((S��
bE) − (M��

bE)) \ (S��
bE)

= 2 · [
((M − M) ∩ (E − E)) \ S

] ∪ [
2 · ((E − M) \ E) + b

]
. �


The formula for the type of S��
bE was originally proven in [7, Proposition 3.5]

without using the ideal duplication.
S is said to be almost symmetric if and only if PF(S) = (K − M) \ S (i.e. K − M

is a numerical semigroup). This definition was originally introduced in [4] with the
aim to generalize the notion of symmetric semigroups and consequently, with the
introduction of almost Gorenstein rings, the notion of Gorenstein rings. In fact, every
symmetric semigroup is almost symmetric. Moreover, in [11, Proposition 6.1] the
authors show that any one-dimensional almost Gorenstein ring is nearly Gorenstein,
and therefore any almost symmetric semigroup is nearly Gorenstein.

Corollary 4.13 S��
bE is almost symmetric if and only if: K − Ẽ = (M−M)∩(E−E)

and K − M = Ẽ − M . In particular, the almost symmetry of S does not depend on b
or shifts of S.

Proof Since

(K (S��
bE) − M(S��

bE)) \ (S��
bE) = 2 · (

(K − Ẽ) \ S
) ∪ (

2 · ((K + e) − M) + b
)
,

by Theorem 4.12 and the definition of almost symmetric semigroup, the statement
follows. �


The following result was originally proven in [7, Theorem 4.3]. We present an
alternative proof using Corollary 4.13.

Theorem 4.14 S��
bE is almost symmetric if and only if

K − (M − M) ⊆ Ẽ ⊆ K

and K − Ẽ is a numerical semigroup. In particular, the almost symmetry of S��
bE

does not depend on b or shifts of E.
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Proof If S��
bE is almost symmetric, then, by the first equality of Corollary 4.13,

K − Ẽ is a numerical semigroup; furthermore, by Corollary 2.9, it is also true that
K − Ẽ = E − E . Hence, K − Ẽ ⊆ M − M , and therefore K − (M − M) ⊆ Ẽ ⊆ K .

Conversely, we want to prove that S��
bE is almost symmetric using Corollary 4.13.

Since K − Ẽ is a numerical semigroup and K − (M − M) ⊆ Ẽ , by Corollary 2.9,
it follows that E − E ⊆ M − M , therefore K − Ẽ = (M − M) ∩ (E − E). Since
Ẽ − M ⊆ K − M is easily proven, we only need to show the converse inclusion. By
Property 5 of Lemma 2.1, we get:

K − M ⊆ K − ((M − M) + M) ⊆ (K − (M − M)) − M ⊆ Ẽ − M . �

Using Theorem 4.14, it is trivial to prove the following:

Corollary 4.15 S��
bM is almost symmetric if and only if S is almost symmetric.

In the case of almost symmetric numerical duplication, we are able to describe the
pseudo-Frobenius numbers of S��

bE with a greater degree of precision.

Theorem 4.16 Suppose S��
bE to be almost symmetric. Then, the following is true:

PF(S��
bE) = 2 · [

(E − E) \ S
] ∪ [

2 · ((K + e) \ E) + b
] ∪ {2 f (E) + b}.

Moreover, if Ẽ �= K, then S��
bE always has at least one even pseudo-Frobenius

number, and the even pseudo-Frobenius numbers do not depend on b or shifts of E.

Proof Using Property 7 of Lemma 2.1, by Corollary 4.13 and Proposition 2.5, we get:

(E − M) \ E = ((K − M) \ Ẽ) + e = ((K + e) ∪ { f (E)}) \ E

= ((K + e) \ E) ∪ { f (E)}.

Using Theorem 4.12 and Proposition 4.5, we get the thesis.
For the last part, the only non-trivial thing to prove is that, if Ẽ �= K , then E − E �=

S. In fact, if E − E = S, by Theorem 4.14 and Corollary 2.9, we would get that
K = K − (E − E) = K − (K − Ẽ) = Ẽ .

The following result was originally proven in [7, Proposition 4.8]; we present an
alternative proof using Theorem 4.16.

Corollary 4.17 Suppose S��
bE to be almost symmetric. Then we have:

t(S��
bE) = 2|(E − E) \ S| + 1 = 2|K \ Ẽ | + 1.

In particular, the type of S��
bE is always odd and 1 ≤ t(S) ≤ 2t(S) + 1.

Proof By Property 7 of Corollary 2.1, we get that |2 · ((K + e) \ E) + b| = |K \ Ẽ |.
Moreover, by Property 5 of Corollary 2.3 and Corollary 2.9, it follows that |(E − E) \
S| = |K \ Ẽ |. Using Theorem 4.16, we get

t(S��
bE) = |(E − E) \ S| + |K \ Ẽ | + 1 = 2|K \ Ẽ | + 1.
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The last part follows from the fact that, byProposition4.5, if S��
bE is almost symmetric

(or also if it is nearly Gorenstein), then E − E ⊆ M − M . �

In [7, p.159], the authors prove that it is possible to obtain anyodd integer x = 2m+1

in the range described in the previous corollary.

Example 4.18 The previous corollary states that, in almost symmetric numerical dupli-
cations, the type is always odd; hence, it is natural to ask if this fact is true in
the nearly Gorenstein case. In general this is not the case; in fact, take for exam-
ple S = {0, 4, 7, 8, 10,→} and E = {3, 6, 7, 10, 11, 13,→}. Then S��

bE is nearly
Gorenstein, but t(S��

bE) = 2. Furthermore, since E − E = S, the pseudo-Frobenius
numbers are all odd.

Proposition 4.19 Let E be a principal ideal (i.e. E = s+S, with s ∈ S). The following
facts are equivalent:

1. S is symmetric;
2. S��

bE is symmetric;
3. S��

bE is almost symmetric;
4. S��

bE is nearly Gorenstein.

Proof The implications 1⇒ 2, 2 ⇒ 3 and 3 ⇒ 4 are trivial; we only need to prove
that 4 ⇒ 1.

If S��
bE is nearly Gorenstein, using Theorem 4.2 to compute the trace, we get:

Tr(S��
bE) = Tr(S)��b(s + Tr(S)) ⊇ M��

b(s + S).

Therefore, Tr(S) = S, and hence S is symmetric.

Example 4.20 Since we proved that, if E is principal, then S��
bE is almost symmetric

if and only if it is nearly Gorenstein, it is natural to ask if for any 2-generated ideal E ,
the equivalence still holds. The answer, in general, is no.

Let S = {0, 6, 7, 9, 12, 13, 14, 15, 16, 18,→} and E = {6, 12, 13, 15, 18,→} =
(6, 23)+S. Since S is symmetric, using Corollary 4.7 to compute the trace, we get that
S��

bE is nearly Gorenstein. On the other hand, since Ẽ = E ⊂ M = K − (M − M),
by Theorem 4.14, S is not almost symmetric.

Example 4.21 Let S = {0, 4, 7, 8, 10,→}. We have K = {0, 3, 4, 6, 7, 8, 10,→} and
K − (M − M) = M . All the ideals between M and K are listed below:

• Ẽ0 = M,

• Ẽ1 = {0, 4, 7, 8, 10,→} = S,
• Ẽ2 = {3, 4, 7, 8, 10,→},
• Ẽ3 = {4, 6, 7, 8, 10,→},
• Ẽ4 = {0, 3, 4, 7, 8, 10,→},
• Ẽ5 = {0, 4, 6, 7, 8, 10,→},
• Ẽ6 = {3, 4, 6, 7, 8, 10,→},
• Ẽ7 = K .
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Among these ideals, only Ẽ1 and Ẽ2 do not give rise to nearly Gorenstein numerical
duplications. While Ẽ4 is the only one that gives rise to nearly Gorenstein numerical
duplication but not almost symmetric (because K − Ẽ4 is not a numerical semigroup).

Unfortunately, it is much harder to determinate the family of class of shifts for the
nearly Gorensteinness of the numerical duplication. Thanks to Lemma 4.6, we can
say that Ẽ must be between s1 +K ⊂ Ẽ ⊆ K (do note that s1 +K ⊂ K − (M −M)).
In the example, since s1 + K = M \ {13}, we can say that we already found all the
possible classes of shifts for which S��

bE is nearly Gorenstein.
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