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Abstract
For any commutative semigroup S and positive integer m the power function
f : S → S defined by f (x) = xm is an endomorphism of S. We partly solve
the Lesokhin–Oman problem of characterizing the commutative semigroups whose
all endomorphisms are power functions. Namely, we prove that every endomorphism
of a commutative monoid S is a power function if and only if S is a finite cyclic group,
and that every endomorphism of a commutative ACCP-semigroup S with an idempo-
tent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we
prove that every endomorphism of a nontrivial commutative atomic monoid S with
0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic
group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also
prove that every endomorphism of a 2-generated commutative semigroup S without
idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic
semigroup.

Keywords Commutative semigroup · ACCP-semigroup · Atomic monoid · Finitely
generated commutative semigroup · Power function · Endomorphism

1 Introduction

Fuchs [4, Problem 45] posed the problem of characterizing the rings R that are iso-
morphic to the ring End(R+) of all endomorphisms of the additive group R+ of R.
Schultz [13, Lemma 6] partly solved the problem by proving that a ring R with identity
is commutative and isomorphic to End(R+) if and only if every endomorphism of R+
is a left multiplication in R; he coined the name E-rings for such rings R. Note that for
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738 R. Mazurek

any ring R and r ∈ R the left multiplication f (x) = r x is an endomorphism of R+.
Hence one may view an E-ring as a ring in which the “canonical” endomorphisms of
R+ (i.e., the left multiplications) are the only additive endomorphisms of R.

Starting from the aforementioned seminal paper by Schultz, a great deal of research
on E-rings and their generalizations has been done. Interestingly, already at the begin-
ning of the nineteenth century A.-L. Cauchy knew that the rings of integers Z and
rationals Q are E-rings, the fact applied by him in studying real functions f that
satisfy the equation f (x + y) = f (x) + f (y), nowadays called Cauchy’s functional
equation (see e.g., [9]). We refer the interested reader to [6,9,15] for more information
on E-rings and related structures.

In 2013 in [12], keeping the spirit of Fuchs’ original question, G. Oman changed
the focus from ring addition to multiplication. Note that for any commutative ring R
and positive integerm the power function f (x) = xm is an endomorphism of the mul-
tiplicative semigroup (R, ·). Thus, informally, the power functions are the canonical
endomorphisms of (R, ·). In [12], Oman studied the following question: For which
commutative rings R with identity is every endomorphism of (R, ·) canonical, i.e.,
equal to a power function? He proved in [12, Theorem 1] that the rings in question
are exactly finite fields.

Since the problem studied by Oman concerns endomorphisms of the multiplicative
semigroup of a commutative ring, in the same paper [12] he posed an analogous
problem for commutative semigroups (see Problem 1 below). It occurs that a very
similar problem was posed much earlier by M. M. Lesokhin (see Problem 2 below).
Before presenting those problems, we first establish some terminology and notation
that will be used in the rest of the paper.

Let S be a semigroup (in this paper semigroups arewrittenmultiplicatively).We say
that a map f : S → S preserves an element s ∈ S if f (s) = s. By an endomorphism
of S we understand a map f : S → S such that f (xy) = f (x) f (y) for any x, y ∈ S;
we would like to stress that if S has identity 1 (resp. zero 0), we do not assume that the
endomorphism f preserves 1 (resp. 0), unless otherwise stated. A function f : S → S
is called a power function if there exists a positive integer m such that f (x) = xm for
all x ∈ S. It is easily seen that if S is commutative, then every power function of S is
an endomorphism of S.

If A is a subset of a semigroup S, then 〈A〉 denotes the subsemigroup of S generated
by A. In particular, if a ∈ S, then 〈a〉 is the subsemigroup of S generated by a, i.e.,
〈a〉 = {an : n ∈ N}, where N is the set of positive integers. A semigroup S is called
a cyclic semigroup if S is generated by a single element, that is, S = 〈a〉 for some
a ∈ S (let us note that a group S is a cyclic semigroup if and only if S is a finite cyclic
group). An element s of a semigroup S with 0 is said to be nilpotent if sn = 0 for some
n ∈ N, and S is called a nilsemigroup if all its elements are nilpotent. A semigroup
S is called a cyclic group with zero adjoined if S is obtained from a cyclic group by
adjoining a zero, i.e., S is a semigroup with zero 0 and S\{0} is a cyclic group. A
semigroup S is called a cyclic nilsemigroup with identity adjoined if S is the result of
adjoining an identity to a cyclic nilsemigroup, i.e., S has an identity 1 and S\{1} is a
cyclic nilsemigroup.

Let S be a commutative semigroup. For an element a ∈ S, the ideal generated by
a is denoted by (a), i.e., (a) = {a} ∪ aS; such an ideal is called a principal ideal
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of S. The semigroup S is said to satisfy the ascending chain condition on principal
ideals (ACCP for short) if there does not exist an infinite strictly ascending chain of
principal ideals of S (cf. [5, Definition 1.1.3]). Semigroups that satisfy the ACCP are
called ACCP-semigroups.

Let S be a commutative monoid with 0 (i.e., S is a commutative semigroup with 1
and 0). Let U (S) denote the group of units of S, and T (S) = S\U (S) the set of
nonunits of S. We say that an element a ∈ S is an atom of S if a ∈ T (S)\T (S)2, i.e.,
a ∈ T (S) and a cannot be written in the form a = bc with b, c ∈ T (S). The monoid
S is atomic if every element a ∈ T (S)\{0} can be written in the form a = a1a2 · · · an ,
where n ∈ N and all the elements a1, a2, . . . , an are atoms of S (cf. [2,5]).

As we mentioned above, in [12] Oman proved that if R is a commutative ring
with identity 1 �= 0, then every endomorphism of the multiplicative semigroup (R, ·)
preserving 0 and 1 is a power function if and only if R is a finite field. Since the result
concerns endomorphisms of the multiplicative semigroup of a commutative ring, he
posed the following more general problem.

Problem 1 (Oman [12, Problem 1])Characterize the commutative semigroups S (with
or without 0 or 1) such that every endomorphism of S is a power function.

It occurs that the Oman problem is not quite new, which was pointed out to the
author by M. Volkov. Namely, the following very similar problem was posed more
than forty years earlier by Lesokhin in the Sverdlovsk Tetrad [14], which is a collection
of unsolved problems of the semigroup theory.

Problem 2 (Lesokhin [14, Problem T34]) Describe commutative semigroups having
no endomorphisms different from ϕn (n = 1, 2, . . .) which to each element associates
its n-th power.

Borisov [1] solved the Lesokhin problem for finite commutative semigroups by
proving the following result (also this result was pointed out to the author by M.
Volkov).

Theorem 1.1 [1] For a finite commutative semigroup S the following conditions are
equivalent:

(i) Every endomorphism of S is a power function.
(ii) S is a cyclic semigroup.
(iii) The semigroup of endomorphisms of S under pointwise multiplication is cyclic.

Independently, in 2014 for finite commutative semigroups the equivalence of the
above conditions (i) and (ii) was proved in [11, Theorem 2.2]. In the same paper the
Oman problem for finite commutative monoids with 0 was solved in the following
theorem.

Theorem 1.2 ([11, Theorem 3.1]) Let S be a finite commutative monoid with 0 �= 1.
Then every endomorphism of S preserving 0 and 1 is a power function if and only if
S is either a cyclic group with zero adjoined or a cyclic nilsemigroup with identity
adjoined.

Since Problem 1 posed by Oman is very similar to Problem 2 posed earlier by
Lesokhin, in what follows Problem 1 is called the Lesokhin–Oman problem.
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Having the Lesokhin–Oman problem solved for finite commutative semigroups, it
is natural, as a next step, to consider it for finitely generated commutative semigroups.
In this paper, for commutative semigroups with idempotents we gomuch further, solv-
ing Lesokhin–Oman’s problem completely for commutative monoids, commutative
atomicmonoids with 0, and commutative ACCP-semigroups. Namely, in Theorem 2.1
we prove that every endomorphism of a commutative monoid S is a power function if
and only if S is a finite cyclic group, and in Theorem 2.3 we show that every endomor-
phism of a commutative ACCP-semigroup S with an idempotent is a power function
if and only if S is a finite cyclic semigroup. Furthermore, in Theorem 3.1 we prove
that every endomorphism of a nontrivial commutative atomic monoid S with 0, pre-
serving 0 and 1, is a power function if and only if either S is a finite cyclic group
with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. Regarding
commutative semigroups without idempotent, we solve the Lesokhin–Oman problem
for 2-generated commutative semigroups in Theorem 4.2, where we prove that every
endomorphism of a 2-generated commutative semigroup S without idempotent is a
power function if and only if S is a subsemigroup of an infinite cyclic semigroup. In this
paper we also prove some necessary conditions (e.g., Proposition 2.1 and Lemma 2.3)
as well as some sufficient conditions (e.g., Theorem 4.1) for a commutative semigroup
to have power functions as the only endomorphisms.

We close this section with a remark on the organization of the paper. Let us note
that in fact the Lesokhin–Oman problem splits into few problems, as we can see
from its formulation. Indeed, the problem requires to consider the following cases:
(i) no assumption on the existence 0 or 1 in S; (ii) S with 0; (iii) S with 1 (i.e., S
is a monoid); (iv) S with 1 �= 0 (i.e., S is a nontrivial monoid with 0). Furthermore,
in case (ii) it is necessary to consider two subcases: (A) where all endomorphisms
of S are assumed to preserve 0, and (B) where are not. Fortunately, by Corollary 2.1,
for the Lesokhin–Oman problem the subcases (A) and (B) are equivalent (the same
holds for the appropriate two subcases of (iii)). In case (iv) it is necessary to con-
sider the subcases: (C) where all endomorphisms are assumed to preserve 0 and 1,
and (D) where are not. From Proposition 2.1(c) and Corollary 2.1 it follows that in
subcase (D) there exists no nontrivial monoid S with 0 whose all endomorphisms
are power functions. Hence in case (iv) the Lesokhin–Oman problem reduces to sub-
case (C). These observations caused that the rest of the paper is organized as follows:
Sect. 2 is devoted to commutative semigroups with idempotents (which includes the
cases (ii), (iii) and a “half” of case (i)), Sect. 3 focuses on nontrivial monoids with 0
whose endomorphisms preserve 0 and 1 (case (iv)), and in Sect. 4 we consider commu-
tative semigroups without idempotent (the remaining “half” of case (i)). Some results
of Sects. 2 and 3 develop ideas from the author’s paper [11].

The author would like to thank Professor M. Volkov for drawing attention to
Lesokhin’s problem and Borisov’s results on the problem, both unknown to the author
earlier.
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2 Commutative semigroups with idempotents whose
endomorphisms are power functions

In this section we study Lesokhin–Oman’s problem for commutative semigroups with
idempotents. A special case of such semigroups are abelian groups. Abelian groups
whose endomorphisms are power functions are characterized in the following result.

Lemma 2.1 ([12, Lemma 1]) Let G be an abelian group. Then every endomorphism
of G is a power function if and only if G is a finite cyclic group.

As we show in the lemma below, the “if” part of Lemma 2.1 is valid for any cyclic
semigroup. The result follows by the argument presented in the first part of the proof
of [12, Lemma 1]. We include a proof for sake of completeness.

Lemma 2.2 If S is a cyclic semigroup, then every endomorphism of S is a power
function.

Proof Assume S is a cyclic semigroup. Let f : S → S be an arbitrary endomorphism
of S and let a be a generator of S. Then f (a) = am for some m ∈ N. Hence for any
x ∈ S, since x = ak for some k ∈ N, we obtain

f (x) = f (ak) = f (a)k = (am)k = (ak)m = xm .

Thus f is a power function. �	
As we have already said, in this section we study the Lesokhin–Oman problem for

commutative semigroups with idempotents. The following easy observation will be
useful.

Proposition 2.1 Let S be a commutative semigroup with an idempotent e = e2 ∈ S.
Assume that every endomorphism of S preserving e is a power function. Then

(a) There exists m ∈ N such that for any a ∈ S we have am = e, and consequently
〈a〉 = {a, a2, . . . a2m−1}.

(b) For any a ∈ S and k, n ∈ N, if ak /∈ eS, then ak = an if and only if k = n.
(c) e is the only idempotent of S.
(d) Every endomorphism of S preserves e.
(e) eS is a finite cyclic group.

Proof Consider the function g : S → S defined by g(x) = e for any x ∈ S. Since
g is an endomorphism of S preserving e, by hypothesis g is a power function and
thus there exists m ∈ N such that for any a ∈ S we have am = g(a) = e. Hence
a2m = e2 = e = am and thus 〈a〉 = {a, a2, . . . a2m−1}, which proves (a). To prove
(b), assume a ∈ S and ak = an with k �= n, say k < n. Then for y = an−k andm as in
(a) we have ak = ak y = ak y2 = . . . = ak ym = ake ∈ eS and (b) follows. Part (c) is
an immediate consequence of (a). To prove (d), let f : S → S be any endomorphism
of S and letm be as in (a). Then f (e) = f (em) = f (e)m = e, so f preserves e. We are
left with (e). Since (a) implies that eS is an abelian group, it follows from Lemma 2.1
that to prove (e), it suffices to show that if f : eS → eS is an endomorphism of eS,
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then f is a power function. It is easy to verify that since f is an endomorphism of
the group eS, the function h : S → S defined by h(x) = f (ex) (for all x ∈ S) is
an endomorphism of S preserving e. Hence by hypothesis, h is a power function and
thus so is f . �	

As a consequence of Proposition 2.1 we obtain the following corollary.

Corollary 2.1 Let S be a commutative semigroup with an idempotent e = e2 ∈ S.
Then the following conditions are equivalent.

(i) Every endomorphism of S is a power function.
(ii) Every endomorphism of S preserving e is a power function.

Proof The implication (i) ⇒ (ii) is obvious. The opposite implication follows imme-
diately from Proposition 2.1(d). �	

The following theoremsolvesLesokhin–Oman’s problem for all commutative semi-
groups with 1.

Theorem 2.1 Let S be a commutativemonoid. Then the following conditions are equiv-
alent.

(i) Every endomorphism of S is a power function.
(ii) Every endomorphism of S preserving 1 is a power function.
(iii) S is a finite cyclic group.

Proof By Corollary 2.1, conditions (i) and (ii) are equivalent. To prove (ii) ⇒ (iii),
it suffices to apply Proposition 2.1(e) with e = 1. The implication (iii) ⇒ (i) is an
immediate consequence of Lemma 2.1. �	

Recall that a semigroup S is said to be regular if for any s ∈ S there exists t ∈ S
such that s = sts. As a consequence of Theorem 2.1 we obtain the following result
of A. I. Kuptsov [10].

Corollary 2.2 ([10]) Let S be a commutative regular semigroup. Then all endomor-
phisms of S are power functions if and only if S is a finite cyclic group.

Proof To prove the “only if” part of the result, assume that all endomorphisms of S
are power functions and let s be an element of S. Since the semigroup S is regular, for
some idempotent e = e2 ∈ S we have s = es (indeed, since s = sts for some t ∈ S,
it suffices to put e = st). By Proposition 2.1(c), e is the only idempotent of S and
thus s = es for any s ∈ S, i.e., e is an identity of S. Hence S is finite cyclic group by
Theorem 2.1, which completes the proof of the “only if” part. The “if” part follows
immediately from Lemma 2.1. �	

In the following two lemmasweprove somenecessary conditions for a commutative
semigroup S with an idempotent to have the power functions as the only endomor-
phisms.

Lemma 2.3 Let S be a commutative semigroup with an idempotent e = e2 ∈ S. If all
endomorphisms of S are power functions, then the set S\S2 contains no more than
one element.
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Proof If S = S2, then there is nothing to prove. Hence we assume S2 � S. It follows
from Proposition 2.1(a) that there exists a smallest positive integer k such that ak /∈ eS
and a2k ∈ eS for some a ∈ S\S2. We will show that a is the only element of S\S2.
We first show that the following function g : S → S is an endomorphism of S:

g(x) =
{
ak if x = a
exk if x �= a.

(2.1)

Note that since a /∈ S2, for any x, y ∈ S we have xy �= a and thus g(xy) = e(xy)k .
Hence to show that g is an endomorphism of S, it suffices to show that g(x)g(y) =
e(xy)k for any x, y ∈ S. If x = y = a, then since a2k ∈ eS, we obtain g(x)g(y) =
g(a)g(a) = a2k = ea2k = e(aa)k = g(xy). The remaining cases (where x �= a or
y �= a) are easy to verify.

Since g is an endomorphism of S, g is a power function and thus there exists
m ∈ N such that g(x) = xm for any x ∈ S. Since ak /∈ eS and ak = g(a) = am ,
Proposition 2.1(b) yields k = m and thus xk = g(x) for any x ∈ S. Now we infer
from the definition of g that xk ∈ eS for every x ∈ S\{a}, and consequently it follows
from our choice of k that S\{a} ⊆ S2. Hence S\S2 = {a}. �	

Lemma 2.4 Let S be a commutative semigroup with an idempotent e = e2 ∈ S such
that eS �= S. If all endomorphisms of S are power functions, then for any j ∈ N the
following conditions are equivalent.

(i) s j = e for any s ∈ S\eS.
(ii) s j = e for any s ∈ S.

Proof We assume (i) and prove (ii). For that, we show that the following function
h : S → S is an endomorphism of S:

h(x) =
{
x j+1 if x ∈ eS
x if x /∈ eS.

Since S is commutative, to verify that h is an endomorphism of S, it suffices to consider
the following three cases for x, y ∈ S.

Case 1: x, y ∈ eS. Then xy ∈ eS, so h(xy) = (xy) j+1 = x j+1y j+1 = h(x)h(y).
Case 2: x ∈ eS, y /∈ eS. Then xy ∈ eS and y j = e and thus h(xy) = (xy) j+1 =

x j+1y j y = ex j+1y = x j+1y = h(x)h(y).
Case 3: x /∈ eS, y /∈ eS. Then x j = y j = e. If xy ∈ eS, then h(xy) = (xy) j+1 =

x j xy j j y = exy = xy = h(x)h(y). If xy /∈ eS, then h(xy) = xy = h(x)h(y).
We have shown that h is an endomorphism of S. Hence h is a power function, and

thus there exists m ∈ N such that h(x) = xm for any x ∈ S. By assumption, there
exists an element a ∈ S\eS. Since a = h(a) = am , Proposition 2.1(b) implies m = 1
and thus for any x ∈ eS we obtain

x j+1 = h(x) = x . (2.2)
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By Proposition 2.1(e), eS is a group with identity e. Hence it follows from (2.2) that
x j = e for any x ∈ eS, which proves (ii). Since the implication (ii) ⇒ (i) is obvious,
the proof is complete. �	

To state the main result of this section, we adapt for semigroups with idempotents
the definition of an atom and an atomic monoid with 0, given in the Introduction.
Let S be a commutative semigroup with an idempotent e = e2 ∈ S. We say that an
element a ∈ S if an atom of S if a ∈ S\S2, i.e., a cannot be written in the form
a = bc with b, c ∈ S. We say that the semigroup S is e-atomic if every element
a ∈ S\eS can be written in the form a = a1a2 · · · an where n ∈ N and all the elements
a1, a2, . . . , an are atoms of S. By comparing the definitions in this paragraph with
those in the Introduction, we can see that a commutative monoid S with 0 is atomic if
and only if the semigroup T (S) = S\U (S) is 0-atomic.

Theorem 2.2 Let S be a commutative semigroup with an idempotent e = e2 ∈ S such
that S is e-atomic. Then the following conditions are equivalent.

(i) Every endomorphism of S is a power function.
(ii) Every endomorphism of S preserving e is a power function.
(iii) S is a finite cyclic semigroup.

Proof (i) and (ii) are equivalent by Corollary 2.1, and (iii) ⇒ (i) follows from
Lemma 2.2. To complete the proof, it suffices to show that (ii) implies (iii).

Assume (ii). If S = eS, then it follows from Proposition 2.1(e) that S is a finite
cyclic group, so S is a finite cyclic semigroup as well. We are left with the case where
eS � S. Then, since S is e-atomic, S contains at least one atom a, and Lemma 2.3
implies that a is the only atom of S. Hence, again since S is e-atomic, it follows that

S\eS ⊆ 〈a〉, (2.3)

where furthermore 〈a〉 is finite by Proposition 2.1(a). To complete the proof, it suffices
to show that eS ⊆ 〈a〉; then S = 〈a〉 will follow from (2.3), proving that S is a finite
cyclic semigroup.

By Proposition 2.1(e), eS is a finite cyclic group. Let b be a generator of eS. Since
〈a〉 is finite, there exist r , p ∈ N with r < p such that ar = a p. Let p be chosen as
small as possible and let k = p − r . By [3, Theorem 1.9], the set

G = {ar , ar+1, . . . , ar+k−1}

is a group of order k, whereas by Proposition 2.1(c), e is the unique idempotent of S.
Hence it follows that e is the identity element of G and thus G is a subgroup of the
group eS. Since e ∈ G, we have au = e for some u ∈ {r , r+1, . . . , r+k−1}, and since
ar = a p, we obtain that also au+k = a p+(u−r) = ar+(u−r) = au = e. Hence (2.3) and
Lemma 2.4 imply that bu = e and bu+k = e, and thus bk = ebk = bubk = bu+k = e.
Since b is a generator of the group eS, and bk = e, and k is the order of the group G,
it follows that for the orders of the groups eS and G we have that |eS| ≤ k = |G|.
Since furthermore G is a subgroup of eS, we deduce that eS = G. Clearly G ⊆ 〈a〉,
so we obtain eS ⊆ 〈a〉, as desired. �	
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To apply Theorem 2.2 to ACCP-semigroups, we need the following observation.

Proposition 2.2 Let S be a commutative semigroup with an idempotent e = e2 ∈ S
such that for any s ∈ S there exists m ∈ Nwith sm ∈ eS. If S is an ACCP-semigroup,
then S is e-atomic.

Proof If S = eS, then S is trivially e-atomic. In the remaining case where S �= eS we
proceed similarly to the proof of [5, Proposition 1.1.4]. Suppose, for contradiction,
that S �= eS and S is not e-atomic. Let A be the set of all a ∈ S\eS which are not a
product of atoms. Hence A �= ∅ and if a ∈ A, then a = bc for some b, c ∈ S\eS,
and necessarily b ∈ A or c ∈ A. We can assume that b ∈ A. Obviously we have
(a) ⊆ (b). If (a) = (b), then b = a or b = ad for some d ∈ S, so a = bc = as for
some s ∈ S. Hence a = asm for any m ∈ N. Since by hypothesis sm ∈ eS for some
m ∈ N, it follows that a ∈ eS, and this contradiction proves that (a) � (b). We have
shown that for any a ∈ A there exists a′ ∈ A such that (a) � (a′). Hence starting
with some a1 ∈ A and defining an+1 = a′

n for any N, we obtain a strictly ascending
chain of principal ideals (a1) � (a2) � . . .. Thus S is not an ACCP-semigroup, a
contradiction. �	

Now we are in a position to solve the Lesokhin–Oman problem for commutative
ACCP-semigroups with idempotents.

Theorem 2.3 Let S be a commutative ACCP-semigroup with an idempotent e = e2 ∈
S. Then the following conditions are equivalent.

(i) Every endomorphism of S is a power function.
(ii) Every endomorphism of S preserving e is a power function.
(iii) S is a finite cyclic semigroup.

Proof The implications (iii)⇒ (i)⇔ (ii) follow fromLemma 2.2 andCorollary 2.1. To
prove (i) ⇒ (iii) it suffices to combine Propositions 2.1(a) and 2.2, and Theorem 2.2.

�	
The following result solves Lesokhin–Oman’s problem in the class of finitely gen-

erated commutative semigroups with idempotents.

Corollary 2.3 Let S be a finitely generated commutative semigroup with an idempotent
e = e2 ∈ S. Then the following conditions are equivalent.

(i) Every endomorphism of S is a power function.
(ii) Every endomorphism of S preserving e is a power function.
(iii) S is a finite cyclic semigroup.

Proof It is well known that every finitely generated commutative semigroup is an
ACCP-semigroup (see, e.g., [7, Corollary 1.4]). Hence the result follows from Theo-
rem 2.3. �	

Obviously, any finite semigroup contains an idempotent. Thus the equivalence of
conditions (i) and (ii) in Theorem 1.1 is an immediate consequence of Corollary 2.3
(this equivalence is one of the main results of [11]).

We close this section with another consequence of Theorem 2.3.
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Corollary 2.4 Let S be a commutative ACCP-semigroup with 0. Then the following
conditions are equivalent.

(i) Every endomorphism of S is a power function.
(ii) Every endomorphism of S preserving 0 is a power function.
(iii) S is a finite cyclic nilsemigroup.

Proof The implications (iii) ⇒ (i) ⇒ (ii) follow from Theorem 2.3. Furthermore by
Theorem 2.3, (ii) implies that S is a finite cyclic semigroup, and Proposition 2.1(a)
shows that S is a nilsemigroup. Hence (ii) implies (iii). �	

3 Commutativemonoids with 0 whose endomorphisms preserving
0 and 1 are power functions

We start this section with a result which provides examples of semigroups specified
in the title of the section. Recall that for a monoid S with 0 (i.e., for a semigroup S
with 1 and 0), we denote the set of units of S by U (S), and the ideal of nonunits by
T (S), i.e., T (S) = S\U (S).

Proposition 3.1 If S is a finite cyclic group with zero adjoined or S is a cyclic nilsemi-
group with identity adjoined, then S is a commutative monoid with 0 and every
endomorphism of S preserving 0 and 1 is a power function.

Proof Assume that S is a finite cyclic group with zero adjoined, i.e., U (S) = S\{0}
and the group U (S) is finite and cyclic. If f : S → S is an endomorphism of S
preserving 0 and 1, then f (1) = 1 �= 0, which implies that f (U (S)) ⊆ U (S). Hence
the restriction f̄ of f to U (S) is an endomorphism of the group U (S), and thus it
follows from Lemma 2.1 that f̄ is a power function of U (S). Therefore, f is a power
function of S, as desired.

To complete the proof, we consider the remaining case where S is a cyclic nilsemi-
group with identity adjoined. Then there exists a nilpotent element a ∈ S such that
all elements of S\{1} are of the form ai with i ∈ N. Let f : S → S be an arbitrary
endomorphism of S preserving 0 and 1. Since a is nilpotent and f (0) = 0 �= 1, it
follows that f (a) �= 1 and thus f (a) = am for some m ∈ N. Hence if x ∈ S\{1},
then x = ai for some i ∈ N, and thus

f (x) = f (ai ) = f (a)i = (am)i = (ai )m = xm .

Since furthermore f (1) = 1 = 1m , f is a power function. �	
The following result will be useful in the rest of this section.

Proposition 3.2 Let S be a nontrivial commutative monoid with 0 such that every
endomorphism of S preserving 0 and 1 is a power function. Then

(a) U (S) is a finite cyclic group.
(b) There exists m ∈ N such that am = 0 for any a ∈ T (S). In particular, T (S) is a

nilsemigroup.
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(c) For any a ∈ T (S) and i, j ∈ N, if ai �= 0, a j �= 0 and i �= j , then

aiU (S) ∩ a jU (S) = ∅.

Proof (a) If f : U (S) → U (S) is an endomorphism of the group U (S), then the map
f̂ : S → S defined by

f̂ (x) =
{
f (x) if x ∈ U (S),

0 if x ∈ T (S),

is an endomorphismof the semigroup S preserving0 and1.Hence f̂ is a power function
of S, and consequently f is a power function of U (S). Thus every endomorphism of
the groupU (S) is a power function, so Lemma 2.1 implies thatU (S) is a finite cyclic
group.
(b) The function f : S → S defined by

f (x) =
{
1 if x ∈ U (S),

0 if x ∈ T (S),

is easily seen to be an endomorphism of S preserving 0 and 1, and thus there exists
m ∈ N such that for any a ∈ T (S) we have am = f (a) = 0, i.e., (b) holds.
(c) Assume that a ∈ T (S), ai �= 0, a j �= 0 and i �= j , but aiU (S) ∩ a jU (S) �= ∅.
Then aiu = a jv for some u, v ∈ U (S).Without loss of generality wemay assume that
i < j . Then ai = ai t with t = a j−ivu−1 ∈ T (S), and an easy induction argument
shows that ai = ai tl for any l ∈ N. Since by (b) the element t is nilpotent, ai = 0
follows and this contradiction completes the proof. �	
To prove the main result of this section, we will need the following lemma.

Lemma 3.1 Let S be a nontrivial commutative monoid with 0. Denote U = U (S) and
T = T (S). If every endomorphism of S preserving 0 and 1 is a power function and
T �= T 2, then T \T 2 = aU for some a ∈ T .

Proof Assume that T �= T 2. By Proposition 3.2(b) there exists n ∈ N such that tn = 0
for any t ∈ T . Hence there exists a smallest k ∈ N such that ak �= 0 and ak+1 = 0 for
some a ∈ T \T 2. We denote C = T \aU and define g : S → S as follows:

g(x) =
⎧⎨
⎩
1 if x ∈ U ,

ak if x ∈ aU ,

0 if x ∈ C .

Since the sets U , aU and C are pairwise disjoint and S = U ∪ aU ∪ C , g is well
defined. It is also clear that g(1) = 1. To show that g is an endomorphism of S, we
first observe that

T 2 ⊆ C . (3.1)
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Indeed, if T 2
� C = T \aU , then since T 2 ⊆ T , there exist t1, t2 ∈ T with t1t2 ∈ aU ,

that is, t1t2 = au for some u ∈ U . Hence a = t1(t2u−1) ∈ T 2, and this contradiction
proves (3.1). Note that (3.1) implies also that g(0) = 0.

We are now ready to show that g(xy) = g(x)g(y) for any x, y ∈ S. For this, since
S is commutative, it suffices to consider the following four cases.

Case 1: x, y ∈ T . Then by (3.1), xy ∈ C and thus g(xy) = 0. On the other hand,
from the definition of g it follows that g(x), g(y) ∈ {0, ak}, and since ak+1 = 0, we
obtain g(x)g(y) = 0 = g(xy) in this case.

Case 2: x, y ∈ U . Then xy ∈ U , so g(xy) = 1 = 1 · 1 = g(x)g(y).
Case 3: x ∈ U , y ∈ aU . Then xy ∈ aU , so g(xy) = ak = 1 · ak = g(x)g(y).
Case 4: x ∈ U , y ∈ C . Then xy ∈ C , so g(xy) = 0 = 1 · 0 = g(x)g(y).
We have shown that g is an endomorphism of S preserving 0 and 1, and thus there

exists m ∈ N with g(x) = xm for every x ∈ S. In particular, ak = g(a) = am ,
and since ak �= 0, Proposition 3.2(c) implies that k = m. Hence it follows from the
definition of g that xk = 0 for every x ∈ C , and we conclude from our choice of
k that C ⊆ T 2. Combining this with (3.1), we obtain T 2 = C = T \aU and thus
T \T 2 = aU . �	

The following theorem solves the Lesokhin–Oman problem for the class of com-
mutative atomic monoids with 0.

Theorem 3.1 Let S be a nontrivial commutative monoid with 0. If S is atomic, then
the following conditions are equivalent.

(i) Every endomorphism of S preserving 0 and 1 is a power function.
(ii) Either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup

with identity adjoined.

Proof Denote U = U (S) and T = T (S).
(i) ⇒ (ii): Assume (i). By Proposition 3.2, U is a finite cyclic group and T is a
nilsemigroup. Hence, if T = {0}, then S is a finite cyclic group with zero adjoined.
We are left with the case where T �= {0}. Then, since S is atomic, there exist atoms
of S, i.e., T �= T 2. Hence by Lemma 3.1, for some a ∈ T we have that T \T 2 = aU .
Since T is a nilsemigroup and a /∈ T 2, there exists k ∈ N such that ak �= 0 and
ak+1 = 0. Since S is atomic and the set of atoms of S is equal to T \T 2 = aU , we
deduce that

T = aU ∪ a2U ∪ · · · ∪ akU ∪ ak+1U .

Let h : S → S be defined as follows:

h(x) =
{
1 if x ∈ U ,

ai if x ∈ aiU for some positive integer i ≤ k + 1.

Proposition 3.2(c) implies that the sets U , aU , a2U , . . . , akU , ak+1U are pairwise
disjoint and thus h is well-defined. Since obviously h is an endomorphism of S pre-
serving 0 and 1, there existsm ∈ N such that h(x) = xm for every x ∈ S. In particular,
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am = h(a) = a, so we obtain from Proposition 3.2(c) that m = 1. Hence it follows
from the definition of h that U = {1}, and thus

S = U ∪ aU ∪ a2U ∪ · · · ∪ akU ∪ ak+1U = {1} ∪ {a, a2, . . . , ak, ak+1},

where ak+1 = 0. Thus S is a cyclic nilsemigroup with identity adjoined.
(ii) ⇒ (i): This implication follows from Proposition 3.1. �	

The following theorem solves the Lesokhin–Oman problem in the class of com-
mutative ACCP-monoids with 0.

Theorem 3.2 Let S be a nontrivial commutative ACCP-monoid with 0. Then the fol-
lowing conditions are equivalent.

(i) Every endomorphism of S preserving 0 and 1 is a power function.
(ii) Either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup

with identity adjoined.

Proof Assume (i). Since S is an ACCP-monoid, T (S) is an ACCP-semigroup, which
furthermore, by Proposition 3.2(b), is a nilsemigroup. Hence by Proposition 2.2, T (S)

is a 0-atomic semigroup, i.e., S is an atomicmonoid. Thus (ii) follows by Theorem 3.1,
which completes the proof of the implication (i) ⇒ (ii). The opposite implication
follows from Proposition 3.1. �	

Since all finitely generated commutative semigroups are ACCP-semigroups (see,
[7, Corollary 1.4]), the following result is an immediate consequence of Theorem 3.2.

Corollary 3.1 Let S be a nontrivial finitely generated commutative monoid with 0.
Then every endomorphism of S preserving 0 and 1 is a power function if and only if
either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with
identity adjoined.

Corollary 3.1 applies, in particular, to finite commutative semigroups with 1 �= 0,
giving Theorem 1.2 (which is one of the main results of [11]).

4 Commutative semigroups without idempotents whose
endomorphisms are power functions

In this section we focus on the class of finitely generated commutative semigroups
without idempotents whose endomorphisms are power functions. The following result
shows that every subsemigroup of an infinite cyclic semigroup belongs to this class
of semigroups.

Theorem 4.1 If S is a subsemigroup of an infinite cyclic semigroup, then every endo-
morphism of S is a power function, S is a finitely generated commutative semigroup
and S has no idempotents.
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Proof Since every infinite cyclic semigroup is isomorphic to the additive semigroup of
positive integers N, without loss of generality we can assume that S is a subsemigroup
of N (consequently, in the rest of the proof S is written additively). Clearly S is a
semigroup without idempotents (i.e., without an element e such that 2e = e). Further-
more, it is well known that all subsemigroups of N are finitely generated (see, e.g., [8,
Corollary 3.1.1]). Hence there exist a1, a2, . . . , a j ∈ N such that S = 〈a1, a2, . . . , a j 〉.

It remains to show that every endomorphism f of S is a power function (i.e., there
exists m ∈ N such that f (x) = mx for any x ∈ S). By Lemma 2.2 the case j = 1
is obvious, so we assume that j > 1. Let f : S → S be an endomorphism of the
semigroup S = 〈a1, a2, . . . , a j 〉. Set d = gcd{a1, a2, . . . , a j } and put

Ŝ =
〈a1
d

,
a2
d

, . . . ,
a j

d

〉
.

Since gcd{ a1d , a2
d , . . . ,

a j
d } = 1, it follows from [8, Lemma 3.1] that there exists k ∈ N

such that n ∈ Ŝ for any integer n ≥ k. Hence

nd ∈ S for any n ≥ k.

In particular, kd ∈ S and (k + 1)d ∈ S, and thus

f (kd), f ((k + 1)d) ∈ S = 〈a1, a2, . . . , a j 〉.

Since d = gcd{a1, a2, . . . , a j }, d divides any integral combination of a1, a2, . . . , a j

and thus there exist u, v ∈ N such that f (kd) = ud and f ((k + 1)d) = vd. Since

(k + 1)ud = (k + 1) f (kd) = f ((k + 1)kd) = f (k(k + 1)d) = k f ((k + 1)d) = kvd,

it follows that (k+1)u = kv.Hence k divides (k+1)u and thus k divides u. Therefore
u = mk for some m ∈ N. Thus for any i ∈ {1, 2, . . . , j} we have

kd f (ai ) = f (ai kd) = ai f (kd) = aiud = aimkd.

Hence f (ai ) = mai for any generator ai of S, which implies that f (x) = mx for any
x ∈ S. �	

We do not know whether the implication in Theorem 4.1 is in fact an equivalence.
As we will show in Theorem 4.2, it is so for commutative 2-generated semigroups
without idempotent. In the proof of this theorem we will need the following lemma
and its corollary.

Lemma 4.1 Let S be a commutative semigroup. If there exist x, y ∈ S and i, j ∈ N

such that xi = x j y and i < j, then S has an idempotent.

Proof Assume xi = x j y with i < j . Then xi = xi (x j−i y) and thus xi = xi (x j−i y)i .
Obviously (x j−i y)i = xi t for some t ∈ S. Hence xi = xi xi t and consequently
xi t = (xi t)2 is an idempotent of S. �	
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Corollary 4.1 If S is a commutative semigroup without idempotents, x ∈ S and xi ∈
x j S for some i, j ∈ N, then i ≥ j .

The following theorem solves the Lesokhin–Oman problem for 2-generated com-
mutative semigroups without idempotents.

Theorem 4.2 Let S be a commutative semigroup generated by two elements a, b ∈ S.
Then the following conditions are equivalent.

(i) Every endomorphism of S is a power function and S has no idempotents.
(ii) The element a has infinite order and there exist relatively prime positive integers

m, n such that am = bn .
(iii) S is a subsemigroup of an infinite cyclic semigroup.

Proof (i) ⇒ (ii) Assume (i). It is clear that a has infinite order.
Suppose that a and b are free generators of S. Then every element x ∈ S can be

uniquely written in the form x = aαbβ , where α, β ∈ N ∪ {0} and α + β > 0 (as
usually, by aαbβ withα = 0 (resp.β = 0)wemean bβ (resp. aα)). By defining f (x) =
f (aαbβ) = bα+β, we obtain an endomorphism of S. Since every endomorphism of
S is a power function, there exists m ∈ N such that f (x) = xm for any x ∈ S. Thus
am = f (a) = b, which contradicts that a, b are free generators of S.

By the above, the generators a, b of S are not free generators and thus there exist
s, t, u, v ∈ N such that

asbt = aubv and (s, t) �= (u, v). (4.1)

We claim that

(ab)i = (ab) j bk for some i, j, k ∈ N such that j ≤ i ≤ j + k. (4.2)

To prove the claim, note first that (4.1) implies that

(ab)s+t = au+t bv+s . (4.3)

If u + t = v + s, then (4.3) yields (ab)s+t = (ab)u+t , and since S contains no
idempotents, s+t = u+t follows.Hence s = u, and consequently t = v, contradicting
that (s, t) �= (u, v). Thus u + t �= v + s. If u + t < v + s, then (4.3) implies
(ab)s+t = (ab)u+t bv+s−(u+t), so for i = s+ t, j = u+ t and k = v + s− (u+ t) we
have i, j, k ∈ N and (ab)i = (ab) j bk . If u+ t > v+s, then by multiplying both sides
of (4.3) by bu+t−(v+s), we obtain (ab)u+t = (ab)s+t bu+t−(v+s) and thus for i = u+t,
j = s + t and k = u + t − (v + s) we have i, j, k ∈ N and (ab)i = (ab) j bk .
We already know that there exist i, j, k ∈ N such that (ab)i = (ab) j bk . Then

also (ab) j+k = (ab)i ak, and thus Corollary 4.1 implies that j ≤ i ≤ j + k, which
completes the proof of (4.2).

Let i, j, k ∈ N be as in (4.2). We claim that for any α, β, γ, δ ∈ N ∪ {0} such that
α + β > 0 and γ + δ > 0,

if aαbβ = aγ bδ, then α( j + k − i) + β(i − j) = γ ( j + k − i) + δ(i − j).(4.4)
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To prove (4.4), note first that without loss of generality we can assume that all the
exponents α, β, γ, δ are positive (it suffices to increase each of the exponents by 1,
i.e., replace α with α + 1, β with β + 1, etc.) Now, since aαbβ = aγ bδ, it follows that
(ab)α+β = aγ+βbδ+α and thus, by using also the equation (4.2), we obtain that

(ab)k(α+β)+ j(δ+α)+i(γ+β) = (
(ab)α+β

)k(
(ab)i

)γ+β
(ab) j(δ+α)

= (
aγ+βbδ+α

)k(
(ab) j bk

)γ+β
(ab) j(δ+α) = (

(ab)γ+β
)k(

(ab) j
)γ+β(

(ab) j bk
)δ+α

= (
(ab)γ+β

)k(
(ab) j

)γ+β(
(ab)i

)δ+α = (ab)k(γ+β)+ j(γ+β)+i(δ+α).

Since S has no idempotent, it follows that

k(α + β) + j(δ + α) + i(γ + β) = k(γ + β) + j(γ + β) + i(δ + α).

Hence α( j + k − i) + β(i − j) = γ ( j + k − i) + δ(i − j), which proves (4.4).
It is clear that in (4.2) at least one of the inequalities j ≤ i ≤ j + k is strict. Below

we show that in fact both of them are strict. We separately exclude the cases when
j = i and when i = j + k.
Case 1. Suppose, for contradiction, that j = i . Then

(ab)i = (ab)i bk . (4.5)

For any w ∈ N we show that by setting

g(aαbβ) = (ab)iαbkw(α+β) for any α, β ∈ N ∪ {0} with α + β > 0

we obtain an endomorphism of S. To show that g is well-defined, assume that aαbβ =
aγ bδ , where α, β, γ, δ ∈ N ∪ {0}, and both α + β and γ + δ are positive. Then (4.4)
implies αk = γ k and thus α = γ . If α = 0, we get bβ = bδ, hence β = δ, and thus

(ab)iαbkw(α+β) = (ab)iγ bkw(γ+δ).

If α �= 0, then using (4.5) we obtain that

(ab)iα = (ab)iα−i (ab)i = (ab)iα−i (ab)i bk = (ab)iαbk,

hence (ab)iα = (ab)iαbkl for any l ∈ N, and since α = γ , also in this case we have
that

(ab)iαbkw(α+β) = (ab)iγ bkw(γ+δ).

Hence g is well-defined. It is easy to see that g is an endomorphism of S. Since every
endomorphism of S is a power function, there exists m ∈ N such that g(x) = xm for
any x ∈ S. Since bm = g(b) = bkw, it follows that m = kw, which together with
(4.5) implies that akw = am = g(a) = (ab)i bkw = (ab)i . Hence akw = (ab)i for
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any w ∈ N. In particular, ak = a2k = (ak)2, which is a contradiction, since S has no
idempotent.

Case 2. Suppose i = j + k. Then (ab)i = (ab) j+k = (
(ab) j bk

)
ak = (ab)i ak , and

we are in conditions of Case 1, with a and b interchanged. The same argument as in
Case 1 shows that also Case 2 is impossible.

We have proved that j < i and i < j + k. Now (4.4) shows that by setting

f (aαbβ) = bα( j+k−i)+β(i− j) for any α, β ∈ N ∪ {0} with α + β > 0

we obtain awell-definedmap f : S → S. It is easy to verify that f is an endomorphism
of S, and since every endomorphism of S is a power function, there existsm ∈ N such
that f (x) = xm for any x ∈ S. Hence

am = f (a) = b j+k−i .

Thus there exist m, n ∈ N such that am = bn . To complete the prove of (i) ⇒ (ii), it
suffices to show that m, n can be chosen to be relatively prime. Let d = gcd{m, n}.
Then m = dm1 and n = dn1 for some relatively prime m1, n1 ∈ N, and thus it
suffices to show that am1 = bn1 .

Since am = bn , for any α, β, γ, δ ∈ N ∪ {0} with α + β > 0 and γ + δ > 0 we
have that if aαbβ = aγ bδ , then

anα+mβ = anα(am)β = anα(bn)β = (aαbβ)n

= (aγ bδ)n = anγ (bn)δ = anγ (am)δ = anγ+mδ,

and nα +mβ = nγ +mδ follows. Hence also n1α +m1β = n1γ +m1δ and thus the
map h : S → S given by

h(aαbβ) = bn1α+m1β for any α, β ∈ N ∪ {0} with α + β > 0

is well-defined. It is easy to see that h is an endomorphism of S. Since every endo-
morphism of S is a power function, there exists l ∈ N such that h(x) = xl for any
x ∈ S. Since bl = h(b) = bm1 , we obtain l = m1. Hence am1 = al = h(a) = bn1 ,
as desired.

(ii) ⇒ (iii) Assume (ii). To prove (iii) it suffices to show that S is isomorphic to a
subsemigroup of the additive semigroup of positive integersN. Note first that the same
argument as in the last part of the proof of (i) ⇒ (ii) shows that for any α, β, γ, δ ∈
N ∪ {0} with α + β > 0 and γ + δ > 0, if aαbβ = aγ bδ , then nα +mβ = nγ +mδ.
Hence the map f : S → N given by

f (aαbβ) = nα + mβ for any α, β ∈ N ∪ {0} with α + β > 0,

is well-defined. Obviously, f is a semigroup homomorphism from S to the additive
semigroup N.

We show that f is injective. Assume f (aαbβ) = f (aγ bδ) for some α, β, γ, δ ∈
N ∪ {0} with α + β > 0 and γ + δ > 0. Then nα + mβ = nγ + mδ. Since
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n(α − γ ) = m(δ − β) and m, n are relatively prime, it follows that α = γ + lm
and δ = β + ln for some integer l. Without loss of generality we can assume that
l ∈ N ∪ {0} (i.e., α ≥ γ ). Hence

aαbβ = aγ+lmbβ = aγ (am)lbβ = aγ (bn)lbβ = aγ bβ+nl = aγ bδ,

which proves that f is an injection. Hence S is isomorphic to the subsemigroup
f (S) = 〈m, n〉 of N.
(iii) ⇒ (i) is an immediate consequence of Theorem 4.1. �	

As the author was informed byM. Volkov, recently A.A. Borisov announced a solu-
tion of the Lesokhin–Oman problem for finitely generated cancellative commutative
semigroups without idempotents.
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