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Abstract
It iswell known that the set of isomorphismclasses of extensions of groupswith abelian
kernel is characterized by the second cohomology group. In this paper we generalise
this characterization of extensions to a natural class of extensions ofmonoids, the cose-

tal extensions. An extension N G H
k e

is cosetal if for all g, g′ ∈ G in which
e(g) = e(g′), there exists a (not necessarily unique) n ∈ N such that g = k(n)g′.
These extensions generalise the notion of special Schreier extensions, which are them-
selves examples of Schreier extensions. Just as in the group case where a semidirect
product could be associated to each extension with abelian kernel, we show that to
each cosetal extension (with abelian group kernel), we can uniquely associate aweakly
Schreier split extension. The characterization of weakly Schreier split extensions is
combinedwith a suitable notion of a factor set to provide a cohomology group granting
a full characterization of cosetal extensions, as well as supplying a Baer sum.

Keywords Cohomology · Artin gluing · Protomodular · Monoid extension

1 Introduction

1.1 Group cohomology

The second cohomology group corresponding to group extensions with abelian
kernels is a classical piece of mathematics. We associate to each such extension

N G H
k e

an action ϕ of H on N .We do so by noting that, since N is normal,
it is closed under conjugation byG. This conjugation gives an actionα : G → Aut(N )

and since N is abelian, αk is the zero morphism. As e is the cokernel of k, we then get
that α uniquely extends to a map ϕ : H → Aut(N )—the desired action of H on N .
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656 P. F. Faul

We can then collect all isomorphism classes of extensions with the same action
together in a set Opext(H , N , ϕ) and show that this set is isomorphic in a natural way
to the abelian group of factor sets after we take the quotient by inner factor sets. This
allows Opext(H , N , ϕ) to inherit an abelian group structure called the Baer sum. For
more on this, see [5].

1.2 Monoid cohomology

Generalising this to the setting of extensions of monoids presents some difficulties.
Notably, in the above we made crucial use of conjugation, which is not something
available in the monoid setting.

Much work has been done to get around this problem. In [10], Schreier extensions

of monoids were introduced. An extension N G H
k e

is Schreier if in each
fibre e−1(h) there exists an element uh such that for all g ∈ e−1(h) there exists a
unique n ∈ N such that g = k(n)uh . This means that the fibre e−1(h) is equal to the
coset Nuh .

Although closer to the structure of a group extension, this setting is not quite enough
to adapt our original argument and extract an action.However, if an action is supplied—
that is, if Schreier extensions of a monoid H by an H -module N are considered—then
such extensions are classified by a cohomology group (as seen in [11]). This is further
generalised to cohomology groups for extensions of H by H -semimodules in [8,9].

In [7], a class of extensions are considered which have enough in common with the
group setting that an action can be extracted from the extension itself. The idea behind
these special Schreier extensions is as follows.

An extension N G H
k e

is special Schreier when the kernel equivalence
split extension of e is a Schreier split extension. Translating this into familiar terms, an
extension is special Schreier if and only if for each e(g) = e(g′) there exists a unique
element n ∈ N such that k(n)g′ = g. It is clear that special Schreier extensions are
Schreier in the sense of [10], but that the converse is not in general true.

To extract the actionwe observe that e(g) = e(gk(n)) and apply the special Schreier
property, which says that there is a unique element α(g, n) such that kα(g, n) · g =
g · k(n). Notice that if we were in the group setting we would have that α(g, n) =
g · k(n) · g−1 and so this action generalises the one from the group case. This action
then extends as before to one of H on N .

The authors of [7] then consider isomorphism classes SExt(H , N , ϕ) of extensions
associated to the action ϕ and are able to classify these extensions using a coho-
mology group corresponding to a generalised notion of factor sets, and thus imbue
SExt(H , N , ϕ) with a Baer sum.

In [3],weaklySchreier split extensions, a generalization of Schreier split extensions,
were characterized in a way that suggested the possibility of defining a cohomology
derived from the analogous special weakly Schreier extensions. We will demonstrate
that this approach succeeds and a coholomogy group can be associated to this class of
extensions.
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Baer sums for a natural class of monoid extensions 657

1.3 Outline

In this paper we generalise the notion of a special Schreier extension, doing away
with the uniqueness requirements. We call these extensions cosetal because of their
relation to cosets. Cosetal extensions are shown to be in one to one correspondancewith
extensions whose associated kernel equivalence split extension is weakly Schreier.

It is shown that analogous to the characterization ofweakly Schreier split extensions
in terms of an admissible quotient and a compatible action, such data can be uniquely
associated to a cosetal extension.

We then consider isomorphism classes of extensions with the same associated
data and characterize them using a cohomology group defined in terms of a natural
weakening of factor sets in our setting. This naturally yields a Baer sum.

2 Background

This paper makes extensive use of the characterization of weakly Schreier split exten-
sions in terms of admissible equivalence relations and compatible actions. Here we
outline the basic results and motivation found in [3].

Definition 2.1 A split extension N G H
k e

s
is weakly Schreier if for each

g ∈ G there exists a (not necessarily unique) n ∈ N such that g = k(n)se(g).

This generalises the notion of a Schreier split extensionwhich requires that for each
g there is a unique n ∈ N such that g = k(n)se(g).

Natural examples of weakly Schreier extensions are the Artin glueings of frames
[4,12] and Billhardt’s [1] λ-semidirect products of inverse monoids [2].

Given a weakly Schreier split extension N G H
k e

s
, it is clear that the set

map f : N × H → G with f (n, h) = k(n)s(h) is surjective. We can thus take the
quotient of N × H by the equivalence relation defined by (n, h) ∼ (n′, h′) if and only
if k(n)s(h) = k(n′)s(h′).

This equivalence relation will always satisfy the following four properties.

(1) (n, 1) ∼ (n′, 1) implies n = n′,
(2) (n, h) ∼ (n′, h′) implies h = h′,
(3) (n, h) ∼ (n′, h) implies that (xn, h) ∼ (xn′, h) for all x ∈ N and
(4) (n, h) ∼ (n′, h) implies that (n, hx) ∼ (n′, hx) for all x ∈ H .

Any equivalence relation E on N × H satisfying the above properties is called admis-
sible.

Assuming the axiom of choice, given a weakly Schreier split extension

N G H
k e

s
, there exist maps q : G → N in which g = kq(g)se(g) for

all g ∈ G. Given such a map we can define a function α : H × N → N where
α(h, n) = q(s(h)k(n)).

This function α behaves like an action with respect to the associated admissible
equivalence relation in the following way.
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(1) (n1, h) ∼ (n2, h) implies [n1α(h, n), h] = [n2α(h, n), h] for all n ∈ N ,
(2) (n, h′) ∼ (n′, h′) implies [α(h, n), hh′] = [α(h, n′), hh′] for all h ∈ H ,
(3) [α(h, nn′), h] = [α(h, n) · α(h, n′), h],
(4) [α(hh′, n), hh′] = [α(h, α(h′, n)), hh′],
(5) [α(h, 1), h] = [1, h],
(6) [α(1, n), 1] = [n, 1].
Notice in particular the last four conditions which, in the first component, are just the
usual identities satisfied by an action.

Any function satisfying the above identities with respect to an admissible equiva-
lence relation E , we call a compatible action.

Now if we assume that we have extracted an admissible equivalence relation E and

a compatible action α from a weakly Schreier split extension N G H
k e

s
, we

can equip the quotient (N × H)/E with a multiplication given by

[n, h][n′, h′] = [nα(h, n′), hh′].

The monoid (N × H)/E is isomorphic to G, where [n, h] is sent to k(n)s(h). In fact,

we can construct a weakly Schreier extension N (N × H)/E H
k′ e′

s′ in which

k′(n) = [n, 1], e′([n, h]) = h and s′(h) = [1, h]. The isomorphism mentioned above
is then an isomorphism of split extensions.

Furthermore, if we chose a different map q : G → N originally, the resulting
compatible action would still give the same multiplication. This suggests that we
identify compatible actions which give the same multiplication. This occurs precisely
when (α(h, n), h) ∼ (α′(h, n), h) for all n ∈ N and h ∈ H .

We can do this process in the other direction too. Starting with an admissible
equivalence relation E and a class of compatible actions [α], we can construct the

associated weakly Schreier extension N (N × H)/E H
k e

s
and from this

extract the associated admissible equivalence relation E ′ and class of compatible
actions [α′]. Indeed, we find that E = E ′ and [α] = [α′].

Thus,we have thatweaklySchreier extensions are precisely characterized by admis-
sible equivalence relations and compatible actions.

The final point worth emphasising is that the split short five lemma fails for weakly
Schreier split extensions. Thus, there are morphisms of split extensions between
weakly Schreier extensions which are not necessarily isomorphisms. It is the case
however, that all such morphisms are unique and so the category of weakly Schreier
extensions is a preorder. This then imbues the set of pairs (E, [α]) of admissible equiv-
alence relations and compatible actions with an order structure, where (E, [α]) ≤
(E ′, [α′]) if and only if (α(h, n), h) ∼E ′ (α′(h, n), h) and (n, h) ∼E (n′, h) implies
(n, h) ∼E ′ (n′, h).
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Baer sums for a natural class of monoid extensions 659

3 Cosetal extensions

In this paper we consider a class of extensions we call cosetal extensions, which have
much in commonwith extensions of groups, specifically pertaining to their relationship
with cosets of the kernel.

Definition 3.1 An extension N G H
k e

is cosetal if for all g, g′ ∈ G in
which e(g) = e(g′), there exists an n ∈ N such that k(n)g′ = g.

Proposition 3.2 If N G H
k e

is a cosetal extension, then N is a group.

Proof The elements in the image of k are all sent by e to 1. Hence we may apply the
cosetal property to ek(n) = 1 = e(1), which gives that k(n) has a right inverse k(n′).
It follows that each element n ∈ N has a right inverse and so N must be a group.

��
Proposition 3.3 An extension N G H

k e
is cosetal if and only if Ng = Ng′

whenever e(g) = e(g′). Furthermore in this case the monoid of cosets is isomorphic
to H.

Proof Suppose the extension N G H
k e

is cosetal.
Suppose e(g) = e(g′) and consider x ∈ Ng. Notice that e(x) = e(g) = e(g′) thus

there exists an n ∈ N such that x = k(n)g′. Thus x ∈ Ng′ and so Ng ⊆ Ng′. By a
symmetric argument we get that Ng′ ⊆ Ng, which gives the desired result.

Let N G H
k e

be an extension and suppose Ng = Ng′ whenever e(g) =
e(g′).

This means that g ∈ Ng′ which in turn means that there exists an n ∈ N such that
g = k(n)g′, giving us that the extension is cosetal.

If G/N is the monoid of cosets then the map sending Ng to e(g) can easily be seen
to be an isomorphism. ��
Remark 1 This seems to be a very natural concept and so I would not be surprised if
it has already been defined in the literature already. I would be interested to know if
this is the case.

The following lemma follows immediately from the definition.

Lemma 3.4 Let N G H
k e

be cosetal and let s and s′ be (set-theoretic) sec-
tions of e. Then there exists a function t : H → N such that s(h) = kt(h) · s′(h) for
all h ∈ H.

There is a connection between cosetal extensions and weakly Schreier extensions
of monoids involving the kernel equivalence.

If N G H
k e

is an extension, then the kernel equivalence split extension
of e is the diagram

N Eq(e) G
(k, 0) π2

(1G, 1G)
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where Eq(e) is the monoid of all pairs (g, g′) in which e(g) = e(g′), (k, 0)(n) =
(k(n), 1), π2(g, g′) = g′ and (1G , 1G)(g) = (g, g).

Proposition 3.5 An extension N G H
k e

is cosetal if and only if the associ-
ated kernel equivalence split extension is weakly Schreier.

Proof Let N G H
k e

be an extension and consider the kernel equivalence
split extension

N Eq(e) G
(k, 0) π2

(1G , 1G)
.

For it to be weakly Schreier we require that for all (g, g′) ∈ Eq(e) there exists an
n ∈ N such that (g, g′) = (k, 0)(n) · (1G , 1G)π2(g, g′) = (k(n)g′, g′). Thus, we see
that this property will hold for all pairs if and only if whenever e(g) = e(g′) there
exists an n ∈ N such that k(n)g′ = g, which is precisely the cosetal condition. ��

3.1 The link to special Schreier extensions

In [7], a Baer sum was determined for the class of special Schreier extensions with
abelian kernel. Special Schreier extensions are those whose associated kernel equiv-
alence split extension is a Schreier split extension. Since all Schreier split extensions
are weakly Schreier split extensions, it is clear that all special Schreier extensions
are cosetal. We should verify that there are cosetal extensions which are not special
Schreier.

Proposition 3.6 A N G H
k e

s
weakly Schreier split extension is cosetal if

and only if N is a group.

Proof Wemust show that if e(a) = e(b) that there exists ann ∈ N such that k(n)b = a.
Since our extension is weakly Schreier there exists na and nb such that a = k(na)se(a)

and b = k(nb)se(b). Since se(a) = se(b) we can write b = k(nb)se(a). Notice then
that k(nan

−1
b )b = a and so we are done.

For the other direction, observe that e(k(n)) = e(1), so by the cosetal property n
must have a left inverse. This suffices to prove that N is a group. ��

In [7], this same result is proved for special Schreier extensions.
This strongly suggests that there are cosetal extensions which are not special

Schreier. In order to make this concrete, we present an example of a weakly Schreier
split extension with a group kernel, which is not a Schreier split extension.

Example 3.7 We make use of the coarse quotient construction in [3] on the integers Z
with addition as the group kernel and the two element meet-semilattice H = {1, h} as
the cokernel.
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Baer sums for a natural class of monoid extensions 661

This gives Z � {∞} where x + ∞ = ∞ = ∞ + x for x ∈ Z � {∞}. Now we can

consider the extension Z Z � {∞} H
k e

s
inwhich k is the inclusion, e(n) = 1

for all n ∈ Z, e(∞) = h and s(1) = 1 and s(h) = ∞.
Now, the kernel equivalence split extension will not be a Schreier split extension

as there will be many n ∈ Z for which (∞,∞) = (k(n), 0) · (∞,∞).

4 The cosetal extension problem

4.1 Extending the admissible equivalence relation and compatible action

Since we are interested in generalising the work done on group extensions to this new
setting, we shall henceforth assume that the kernel N is always an abelian group.

Despite a cosetal extension N G H
k e

not in general being a split exten-
sion, there is a version of the weakly Schreier condition that holds for all set theoretic
splittings of e. For convenience we assume that all set theoretic sections s of e which
we consider, preserve the identity.

Proposition 4.1 Let N G H
k e

be cosetal and let s be a section of e. Then
for all g ∈ G there exists an n ∈ N, such that g = k(n)se(g).

Proof Simply observe that e(g) = ese(g) and apply the cosetal property to g and
se(g). ��

In [6], a class of extensions more general than weakly Schreier extensions, called

semi-biproducts, are considered. These extensions N G H
k e

have as addi-
tional data a set theoretic section s of e and also a set theoretic retractionq of k. Together
they satisfy the weakly Schreier condition that for all g ∈ G, g = kq(g)se(g). It is
clear fromProposition 4.1, that cosetal extensions can be equippedwith q and s turning
them into semi-biproducts.

It was shown (albeit in a different, but equivalent form) that the characterization
of weakly Schreier extensions in [3] generalises naturally to semi-biproducts. When

N is an abelian group and N G H
k e

is assumed to be cosetal, we obtain a
characterization even more closely resembles the weakly Schreier characterization.

Proposition 4.2 Let N G H
k e

be a cosetal extension and let s be a section
of e. The equivalence relation Es, defined by (n, h) ∼ (n′, h′) if and only if k(n)s(h) =
k(n′)s(h′), is admissible.

Proof Notice that if (n, 1) ∼ (n′, 1), then k(n) = k(n′), since s preserves the unit.
This implies that n = n′ as required.

Now if (n, h) ∼ (n′, h′), then k(n)s(h) = k(n′)s(h′). Applying e to both sides
yields h = h′ as required.
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If k(n)s(h) = k(n′)s(h) then of course k(x)k(n)s(h) = k(x)k(n′)s(h). Since k
is a monoid homomorphism, this gives that (n, h) ∼ (n′, h) implies that (xn, h) ∼
(xn′, h) for all x ∈ N .

Finally, suppose that k(n)s(h) = k(n′)s(h) and consider k(n)s(hx) and k(n′)s(hx).
Notice that e(s(h)s(x)) = es(hx) and so, since our extension is cosetal, we have that
there exists an a ∈ N such that k(a)s(hx) = s(h)s(x). Now consider the following
calculation.

k(a)k(n)s(hx) = k(n)k(a)s(hx)

= k(n)s(h)s(x)

= k(n′)s(h)s(x)

= k(a)k(n′)s(hx).

Here the first equality holds because N is an abelian group. Now since a is invertible it
follows that k(n)s(hx) = k(n′)s(hx). This shows that for all x ∈ H , (n, h) ∼ (n′, h)

implies (n, hx) ∼ (n′, hx), and hence E is admissible. ��
The above result required an arbitrary choice of splitting. The following proposition

demonstrates that the choice of splitting does not matter.

Proposition 4.3 Let N G H
k e

be a cosetal extension and let s and s′ be
sections of e. Then the associated equivalence relations Es and Es′ are equal.

Proof Without loss of generality, it is sufficient to show that Es ⊆ Es′ . By Lemma 3.4
there exists a function t : H → N such that kt(h)s(h) = s′(h).

Suppose that (n, h) ∼s (n′, h). This means that k(n)s(h) = k(n′)s(h). We now
have

k(n)s′(h) = k(n)kt(h)s(h)

= kt(h)k(n)s(h)

= kt(h)k(n′)s(h)

= k(n′)kt(h)s(h)

= k(n′)s′(h).

Hence (n, h) ∼s′ (n′, h) as required. ��
For admissible equivalence relations, it makes sense to consider the following two

operations.

(1) n′ ∗ [n, h] = [n′n, h] and
(2) [n, h] ∗ h′ = [n, hh′].

We also find that each cosetal extension N G H
k e

has a unique equiva-
lence class of actions compatible with the admissible equivalence relation. The idea is

to consider the kernel equivalence split extension N Eq(e) G
(k, 0) π2

(1G , 1G)
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Baer sums for a natural class of monoid extensions 663

which we know to be weakly Schreier and to take one of the compatible actions
α : G × N → N associated to it. Then we simply define the ’action’ ϕ : H × N → N
as α(s × 1N ) for some section s. Before we can show this action is compatible, we
prove the following useful lemma.

Lemma 4.4 Let N G H
k e

be cosetal and let N Eq(e)
(k, 0) π2

(1G , 1G)G be its associated weakly Schreier kernel equivalence split extension. Then
if α : G × N → N is a compatible action, we have that kα(g, n)g = gk(n).

Proof Recall that all compatible actions α come from particular Schreier retractions.

Let q be a Schreier retraction for N Eq(e) G
(k, 0) π2

(1G , 1G)
and define

α(g, n) = q((1G , 1G)(g) · (k, 0)(n))

= q(gk(n), g).

Notice that we have

(gk(n), g) = (k, 0)q(gk(n), g) · (1G , 1G)π2(gk(n), g)

= (k, 0)α(g, n) · (1G , 1G)π2(gk(n), g)

= (kα(g, n), 1) · (g, g)

= (kα(g, n)g, g).

Thus we can deduce that kα(g, n)g = gk(n) as required. ��

Proposition 4.5 Let N G H
k e

be cosetal, let s be a section of e and let
α : G × N → N be a compatible action associated to its (weakly Schreier) ker-
nel equivalence split extension. Then the map ϕ = α(s × 1N ) is compatible with the
associated admissible equivalence relation E.

Proof We begin by showing that (n, h) ∼ (n′, h) implies that (nϕ(h, x), h) ∼
(n′ϕ(h, x), h) for all x ∈ N .

Consider k(n)kϕ(h, x)s(h). Using Lemma 4.4 and the fact that ϕ(h, x) =
α(s(h), x) we get

k(n)kϕ(h, x)s(h) = k(n)s(h)k(x)

= k(n′)s(h)k(x)

= k(n′)kϕ(h, x).

This gives the desired result.
Now let us show that (n, h) ∼ (n′, h) implies that (ϕ(x, n), xh) ∼ (ϕ(x, n′), xh).
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Let a ∈ N be such that k(a)s(xh) = s(x)s(h) and consider

k(a)kϕ(x, n)s(xh) = kϕ(x, n)s(x)s(h)

= s(x)k(n)s(h)

= s(x)k(n′)s(h)

= k(a)kϕ(x, n′)s(xh).

Again, since a is invertible we get that kϕ(x, n)s(xh) = kϕ(x, n′)s(xh) as required.
Next we show that (ϕ(h, nn′), h) ∼ (ϕ(h, n)ϕ(h, n′), h).
Observe the following calculation.

kϕ(h, nn′)s(h) = s(h)k(n)k(n′)
= kϕ(h, n)s(h)k(n′)
= kϕ(h, n)kϕ(h, n′)s(h).

This gives the desired result.
Next we show that (ϕ(hh′, n), hh′) ∼ (ϕ(h, ϕ(h′, n))).
Let a ∈ N be such that k(a)s(hh′) = s(h)s(h′) and consider the following.

k(a)kϕ(hh′, n)s(hh′) = k(a)s(hh′)k(n)

= s(h)s(h′)k(n)

= s(h)kϕ(h′, n)s(h′)
= kϕ(h, ϕ(h′, n))s(h)s(h′)
= k(a)kϕ(h, ϕ(h′, n))s(hh′).

This gives that kϕ(hh′, n)s(hh′) = kϕ(h, ϕ(h′, n))s(hh′), which in turn yields our
desired result.

Finally, we must show that (ϕ(h, 1), h) ∼ (1, h) and that (ϕ(1, n), 1) ∼ (n, 1).
For the first observe that kϕ(h, 1)s(h) = s(h)k(1) = s(h) and for the second that

kϕ(1, n)s(1) = k(n). Notice that the latter case in fact implies that ϕ(1, n) = n.
Thus, we have shown that each of the six necessary conditions are satisfied and so

ϕ is compatible with E . ��
Our construction of ϕ required an arbitrary choice of α. We now show this choice

does not matter.

Proposition 4.6 Let N G H
k e

be cosetal, let s be a section of e and let
α : G × N → N and α′ : G × N → N be compatible actions associated to its kernel
equivalence split extension. Then the maps ϕ = α(s × 1N ) and ϕ′ = α′(s × 1N ) are
equivalent compatible actions with respect to the admissible equivalence relation E.

Proof We must show that (ϕ(h, n), h) ∼ (ϕ′(h, n), h) for all n ∈ N and h ∈ H .
This follows immediately from Lemma 4.4 applied to α and α′ as kϕ(h, n)s(h) =
s(h)k(n) = kϕ′(h, n)s(h). ��
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In fact, the choice of splitting does not matter either.

Proposition 4.7 Let N G H
k e

be cosetal, let s and s′ be sections of e and
let α : G × N → N be a compatible action associated to its kernel equivalence split
extension. Then the maps ϕ = α(s × 1N ) and ϕ′ = α(s′ × 1N ) are equivalent with
respect to the associated admissible equivalence relation E.

Proof We must show that (ϕ(h, n), h) ∼ (ϕ′(h, n), h). By Lemma 3.4, we have a
function t : H → N such that kt(h)s′(h) = s(h). Now consider

kϕ′(h, n)s(h) = kϕ′(h, n)kt(h)s′(h)

= kt(h)kϕ′(h, n)s′(h)

= kt(h)s′(h)k(n)

= s(h)k(n)

= kϕ(h, n)s(h).

This completes the proof. ��

So given a cosetal extension N G H
k e

, we can associate a unique admis-
sible equivalence relation E and a unique equivalence class of compatible actions
[ϕ].

4.2 Factor sets and the Baer sum

We can now partition the set of isomorphism classes of cosetal extensions, parame-
terised by an admissible equivalence relation and a compatible action.

Definition 4.8 Let CExt(H , N , E, [ϕ]) be the set of isomorphism classes of cosetal
extension

N G H
k e

,

such that E is the associated admissible equivalence relation and [ϕ] the associated
class of compatible actions.

As in the case of extensions groups or special Schreier extensions of monoids, the
extensions in CExt(H , N , E, ϕ) correspond to some notion of factor sets.

Let N G H
k e

be a cosetal extension and let s be a section of e. Recall
that e(s(h)s(h′)) = hh′ = e(s(hh′)) and so there exists an x ∈ N such that xs(hh′) =
s(h)s(h′). Let g : H × H → N be a function such that g(h, h′)s(hh′) = s(h)s(h′).
Notice that we may always choose g such that g(x, 1) = 1 = g(1, x).

Definition 4.9 Let N G H
k e

be a cosetal extension and let s be a section of
e. Then an associated factor set is function gs : H × H → N for which gs(x, 1) =
1 = gs(1, x) and gs(h, h′)s(hh′) = s(h)s(h′) for all h, h′ ∈ H .
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The following result will motivate our definition of a general factor set below.

Proposition 4.10 Let N G H
k e

be a cosetal extension, s a section of e, gs
an associated factor set and E and ϕ the associated admissible equivalence relation
and compatible action respectively. Then

(g(x, y)g(xy, z), xyz) ∼ (ϕ(x, g(y, z))g(x, yz), xyz).

Proof Wemust check that kg(x, y)kg(xy, z)s(xyz)=kϕ(x, g(y, z))kg(x, yz)s(xyz).
The left hand side gives

kg(x, y)kg(xy, z)s(xyz) = kg(x, y)s(xy)s(z)

= s(x)s(y)s(z).

The right side similarly gives

kϕ(x, g(y, z))kg(x, yz)s(xyz) = kϕ(x, g(y, z))s(x)s(yz)

= s(x)kg(y, z)s(yz)

= s(x)s(y)s(z).

Thus it follows that these two pairs are equivalent. ��
Definition 4.11 A map g : H × H → N is a factor set with respect to an admissible
equivalence relation E and a compatible action ϕ if g(x, 1) = 1 = g(1, x) and

(g(x, y)g(xy, z), xyz) ∼ (ϕ(x, g(y, z))g(x, yz), xyz).

Notice that the first components of the equivalence are just the usual factor set
definition for special Schreier extensions.

Given an abelian group N and amonoid H with the additional data of an admissible
equivalence relation E on N × H , a compatible action ϕ and a factor set g, we can
construct an extension.

Lemma 4.12 Let E be an admissible equivalence relation on N×H with N an abelian
group. Then if [n, h] = [n′, h], we have [xny, hz] = [xn′y, hz] for all x, y ∈ N and
z ∈ H.

Proof Suppose [n, h] = [n′, h]. Then consider

[xny, hz] = xy ∗ [n, h] ∗ z

= xy ∗ [n′, h] ∗ z

= [xn′y, hz].

This completes the proof. ��
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Proposition 4.13 Let N be an abelian group, H a monoid, E an admissible equiva-
lence relation, ϕ a compatible action and g a factor set. Then (N × H)/E can be
equipped with a multiplication

[n, h][n′, h′] = [nϕ(h, n′)g(h, h′), hh′],

which makes it into a monoid with identity [1, 1]. We call this monoid (N × H)/Eϕ
g .

Proof For the identity we have [1, 1][n, h] = [ϕ(1, n)g(1, h), h] = [n, h] and
[n, h][1, 1] = [nϕ(h, 1)g(h, 1), h] = [n, h].

Thus, it remains to show that the multiplication is associative. First we consider

([n1, h1][n2, h2]
)[n3, h3]

= [n1ϕ(h1, n2)g(h1, h2), h1h2][n3, h3]
= [n1ϕ(h1, n2)g(h1, h2)ϕ(h1h2, n3)g(h1h2, h3), h1h2h3]
= n1ϕ(h1, n2)ϕ(h1h2, n3) ∗ [g(h1, h2)g(h1h2, h3), h1h2h3].

Compare this to

[n1, h1]
([n2, h2][n3, h3]

)

= [n1, h1][n2ϕ(h2, n3)g(h2, h3), h2h3]
= [n1ϕ(h1, n2ϕ(h2, n3)g(h2, h3))g(h1, h2, h3), h1h2h3]
= [n1ϕ(h1, n2)ϕ(h1, ϕ(h2, n3))ϕ(h1, g(h2, h3))g(h1, h2h3), h1h2h3]
= n1ϕ(h1, n2) ∗ [ϕ(h1h2, n3)ϕ(h1, g(h2, h3))g(h1, h2h3), h1h2h3]
= n1ϕ(h1, n2)ϕ(h1h2, n3) ∗ [g(h1, h2)g(h1h2, h3), h1h2h3],

which gives us our result. ��
Proposition 4.14 Let N be an abelian group, H a monoid, E an admissible equiva-
lence relation, ϕ a compatible action and g a factor set. Then

N (N × H)/Eϕ
g H

k e
is a cosetal extension, where k(n) = [n, 1] and

e([n, h]) = h.

Proof It is apparent that k and e are well defined monoid homomorphisms. It is also
not hard to see that k is the kernel of e. Thus, we must just demonstrate that e is the
cokernel of k and that the extension is cosetal.

Let f : (N × H)/Eϕ
g → M be a monoid homomorphism in which f k = 0. It is

easy to see that that [n, h] = [n, 1][1, h] and so we have

f ([n, h]) = f ([n, 1][1, h])
= f (k(n)) f ([1, h])
= f ([1, h]).
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We have a map � : H → M such that �(h) = f ([1, h]). It is clear that �e = f and
since e is surjective we must just check that � is a homomorphism. We have

�(h)�(h′) = f ([1, h]) f ([1, h′])
= f ([1, h][1, h′])
= f ([g(h, h′), hh′])
= f ([g(h, h′), 1][1, hh′])
= f ([1, hh′])
= �(hh′),

which demonstrates that e is the cokernel.

Now we must show that N (N × H)/Eϕ
g H

k e
is cosetal. This entails

demonstrating that for two equivalence classes [n, h] and [n′, h], there exists an x ∈ N
such that [x, 1][n, h] = [n′, h]. Choosing x = n′n−1 suffices. This completes the
proof. ��

We know how to extract from a cosetal extension the data (E, [ϕ], g), where E is
an admissible equivalence relation, ϕ a compatible action and g a factor set associated
to some section s of e.

We also know how to take data (E, [ϕ], g) of the same type and generate a cosetal
extension

N (N × H)/Eϕ
g H

k e
.

We now relate these two processes to one another.
Fixing E and [ϕ]we can consider the set of associated factor setsF∗(H , N , E, [ϕ]).

This has a natural abelian group structure given by pointwise multiplication.

Proposition 4.15 F∗(H , N , E, [ϕ]) is an abelian group where (g · g′)(h, h′) =
g(h, h′) · g′(h, h′).

Proof It is clear that the constant 1 map is a factor set and that this will behave as an
identity.

If g and g′ are factor sets, then using commutativity and Lemma 4.12 we can show
that

[(g · g′)(x, y)(g · g′)(xy, z), xyz] = [ϕ(x, (g · g′)(y, z))(g · g′)(x, yz), xyz].

Finally, we claim that if g is a factor set, then the map g−1 with g−1(h, h′) =
g(h, h′)−1 is a factor set. Observe that [g(x, y)g(x, yz), 1][g−1(x, y)g−1(x, yz),

123



Baer sums for a natural class of monoid extensions 669

xyz] = [1, 1] and also

[g(x, y)g(x, yz), 1][ϕ(x, g−1(y, z))g−1(x, yz), xyz]
= [g(x, y)g(x, yz)ϕ(x, g−1(y, z))g−1(x, yz), xyz]
= [ϕ(x, g(y, z))g(x, yz)ϕ(x, g−1(y, z))g−1(x, yz), xyz]
= [1, 1].

Since g(x, y)g(x, yz) is invertible, this gives the desired result. ��
From Proposition 4.14 we have a map ρ : F∗(H , N , E, [ϕ]) → CExt(H , N , E,

[ϕ]). We do not have a canonical map

ζ : CExt(H , N , E, [ϕ]) → F∗(H , N , E, [ϕ]),

as in general there are many factor sets associated to each cosetal extension. We thus
would like to take a quotient of F∗(H , N , E, [ϕ]) so that all such factor sets are
equivalent.

In classical group cohomology and in [7] this is a matter of defining the subgroup
of inner factor sets. The idea is that if factor sets g and g′ correspond to different
splittings of the same extension, that they differ by an inner factor set.

Here our situation is slightly more complicated. It is possible to have two factor
sets g and g′ corresponding to the same splitting of a particular extension. So before
we turn to inner factor sets, let us resolve this issue first.

Proposition 4.16 The equivalence relation F on F∗(H , N , E, [ϕ]) defined by g ∼ g′
if and only if

(g(h, h′), hh′) ∼ (g′(h, h′), hh′)

is a congruence.

Proof Suppose g ∼ g′ and r ∼ r ′ and consider [g(h, h′)r(h, h′), hh′] and
[g′(h, h′)r ′(h, h′), hh′]. Lemma 4.12 easily demonstrates their equality. ��

Intuitively, this is the correct equivalence relation as it gives kg(h, h′)s(hh′) =
kg′(h, h′)s(hh′) for all splittings s.

Now define F(H , N , E, [ϕ]) = F∗(H , N , E, [ϕ])/F where F is the equivalence
relation above. We can now consider the generalisation of inner factor sets.

Definition 4.17 A factor set g ∈ F∗(H , N , E, [ϕ]) is an inner factor set if and only
if for some identity preserving t : H → N we have g = δt where δt(h, h′) =
ϕ(h, t(h′))t(hh′)−1t(h).

First we will show that if ρ(g) = ρ(g′), then g and g′ differ by an inner factor set.

Proposition 4.18 Let g, g′ ∈ F∗(H , N , E, [ϕ]) and let ρ(g) = ρ(g′). Then there
exists an inner factor set δt such that g′ ∼F δt · g.
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Proof Let N (N × H)/Eϕ
g H

k e
and N (N × H)/Eϕ

g′ H
k′ e′

be the

associated cosetal extensions and let s : H → (N ×H)/Eϕ
g be such that s(h) = [1, h]

and s′ : H → (N × H)/Eϕ

g′ be such that s′(h) = [1, h].
Since ρ(g) = ρ(g′) there is an isomorphism of extensions f : (N × H)/Eϕ

g →
(N × H)/Eϕ

g′ . Now observe that we have

f ([n, h]) = f ([n, 1][1, h])
= f ([n, 1]) f ([1, h])
= [n, 1] f ([1, h]).

Then let f ∗ : H → N be a function which preserves identity and for which f [1, h] =
[ f ∗(h), 1]. Observe then that f ([n, h]) = [ f ∗(h)n, h]. We can then define s∗ = f s
and notice that for t(h) = f ∗(h)−1 we have that s′(h) = kt(h)s∗(h). It is also not
hard to see that k′g(h, h′)s∗(hh′) = s∗(h)s∗(h′).

We must show that (δt · g(h, h′), hh′) ∼ (g′(h, h′), hh′). We know that
k′g′(h, h′)s′(hh′) = s′(h)s′(h′) and so a single calculation remains.

k′(δt · g)(h, h′)s′(hh′) = k′ϕ(h, t(h′))k′t(hh′)−1k′t(h)k′g(h, h′)s′(hh′)
= k′ϕ(h, t(h′))k′t(hh′)−1k′t(h)k′g(h, h′)k′t(hh′)s∗(hh′)
= k′ϕ(h, t(h′))k′t(h)k′g(h, h′)s∗(hh′)
= k′ϕ(h, t(h′))k′t(h)s∗(h)s∗(h′)
= k′ϕ(h, t(h′))s′(h)s∗(h′)
= s′(h)k′t(h′)s∗(h′)
= s′(h)s′(h′).

This completes the proof. ��
In order to show that equivalence classes of inner factor sets are the appropriate

subgroup to take a quotient by, there is one final result to check.

Proposition 4.19 Let g ∈ F∗(H , N , E, [ϕ]) and let δt be an inner factor set. Then
ρ(g) = ρ(δt · g).

Proof Let N (N × H)/Eϕ
g H

k e
and N (N × H)/Eϕ

δt ·g H
k′ e′

be

the associated cosetal extensions and let s : H → (N × H)/Eϕ
g be such that s(h) =

[1, h] and s′ : H → (N × H)/Eϕ

g′ be such that s′(h) = [1, h].
Now inspired by the proof of Proposition 4.18 we define a function f : (N ×

H)/Eϕ
g → (N × H)/Eϕ

δt ·g such that f ([n, h]) = [t(h)−1n, h]. Since t(h)−1 is
invertible, it is clear that f is bijective. Furthermore we have f k(n) = f ([n, 1]) =
[n, 1] = k′(n) and e′ f ([n, h]) = h = e([n, h]). It is also clear that f preserves the
identity and so all that remains is to show that f preserves multiplication.

As before we define s∗ = f s and we see that k′t(h)s∗(h) = s′(h).
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Baer sums for a natural class of monoid extensions 671

First we look at f ([n, h]) f ([n′, h′]). Notice that

f ([n, h]) f ([n′, h′]) = [t(h)−1n, h][t(h′)−1n′, h′]
= [n, 1][t(h)−1, h][n′, 1][t(h′)−1, h′]
= k′(n)s∗(h)k′(n′)s∗(h′).

Next we consider f ([n, h][n′, h]). We have the following.

f ([n, h][n′, h]) = [t(hh′)−1nϕ(h, n′)g(h, h′), hh′]
= k′t(hh′)−1k′(n)k′ϕ(h, n′)k′g(h, h′)s′(hh′)
= k′t(hh′)−1k′(n)k′ϕ(h, n′)k′g(h, h′)k′t(hh′)s∗(hh′)
= k′(n)k′ϕ(h, n′)k′g(h, h′)s∗(hh′)
= k′(n)k′ϕ(h, n′)s∗(h)s∗(h′)
= k′(n)k′ϕ(h, n′)k′t(h)−1s′(h)s∗(h′)
= k′(n)k′t(h)−1k′ϕ(h, n′)s′(h)s∗(h′)
= k′(n)k′t(h)−1s′(h)k′(n′)s∗(h)

= k′(n)s∗(h)k′(n′)s∗(h′).

This completes the proof. ��
Let IF∗(H , N , E, [ϕ]) be the subgroup of inner factor sets and then define the

subgroup

IF(H , N , E, [ϕ]) = {[δt] : δt ∈ IF∗(H , N , E, [ϕ])}.

This then allows us to define H2(H , N , E, [ϕ]) = F(H , N , E, [ϕ])/IF(H , N , E,

[ϕ]) and the map

ζ : CExt(H , N , E, [ϕ]) → H2(H , N , E, [ϕ])

in which an isomorphism class of extensions is sent to the equivalence class of factor
sets which generate it.

It is clear that ζρ is the identity. We now show that the reverse also holds true.

Proposition 4.20 Let N G H
k e

be a cosetal extension, E the associated
admissible equivalence relation, ϕ the compatible action and g the factor set corre-
sponding to a splitting s. Then

N (N × H)/Eϕ
g H

k′ e′

is isomorphic to N G H
k e

—that is, ρζ is the identity.
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Proof Let s be a section of N G H
k e

and consider the map f : (N ×
H)/Eϕ

g → G where f ([n, h]) = k(n)s(h). It is clear that this is a bijective map
and preserves the identity. Let us show that it preserves the multiplication.

f ([n, h][n′, h]) = f ([nϕ(h, n′)g(h, h′), hh′])
= k(n)kϕ(h, n′)kg(h, h′)s(hh′)
= k(n)kϕ(h, n′)s(h)s(h′)
= k(n)s(h)k(n′)s(h′)
= f ([n, h]) f ([n′, h′]).

Now it only remains to show f k′ = k and e f = e′. For the first consider f k(n) =
f ([n, 1]) = k(n)s(1) = k(n). For the second e f ([n, h]) = e(k(n)s(h)) = h. ��
Thus, putting this together we obtain our main result.

Theorem 4.21 Themaps ρ and ζ give an isomorphism between the setCExt(H , N , E,

[ϕ]) and the abelian group H(H , N , E, [ϕ]).
Naturally, CExt(H , N , E, [ϕ]) inherits a multiplication through this isomorphism.

It is this that we call the Baer sum.
In a follow up paper we will explore the interplay between the cohomology groups

H2(H , N , E, [ϕ]) and the order structure of weakly Schreier extensions.
Further work could also be done studying cosetal extensions in full generality,

without assuming that the kernel is an abelian group.
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