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Abstract
A countable semigroup is ℵ

0
-categorical if it can be characterised, up to isomor-

phism, by its first-order properties. In this paper we continue our investigation into 
the ℵ

0
-categoricity of semigroups. Our main results are a complete classification of 

ℵ
0
-categorical orthodox completely 0-simple semigroups, and descriptions of the ℵ

0

-categorical members of certain classes of strong semilattices of semigroups.

Keywords  ℵ0-categorical · Semigroups · Rees matrix semigroups

1  Introduction

A countable structure is ℵ0-categorical if it is uniquely determined by its first-order 
properties, up to isomorphism. While the concept of ℵ0-categoricity arises naturally 
from model theory, it has a purely algebraic formulation thanks to the Ryll-Nardze-
wski theorem (RNT). Independently accredited to Engeler [3], Ryll-Nardzewski [28] 
and Svenonius [29], it states that the ℵ0-categoricity of a structure M is equivalent to 
there being only finitely many orbits in the natural action of Aut(M) (the automor-
phism group of M) on Mn , for each n ≥ 1 . Significant results exist for both relational 
and algebraic structures from the point of view of ℵ0-categoricity, but, until recently, 
little was known in the context of semigroups. This article is the second of a pair ini-
tiating and developing the study of ℵ0-categorical semigroups. For background and 
motivation we refer the reader to Hodges [14] and Evans [5], and to our first article 
[9].
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We explore in [9] the behaviour of ℵ0-categoricity with respect to standard con-
structions, such as quotients and subsemigroups. For example, ℵ0-categoricity of 
a semigroup is inherited by both its maximal subgroups and its principal factors. 
Differences with the known theory for groups and rings emerged, for example, any 
ℵ0-categorical nil ring is nilpotent, but the same is not true for semigroups. While 
keeping the machinery at a low level, we were able to give, amongst other results, 
complete classifications of ℵ0-categorical primitive inverse semigroups and of 
E-unitary inverse semigroups with finite semilattices of idempotents.

For the work in this current article, it is helpful to develop some general strate-
gies and then apply them in various contexts. In view of this, in Sect. 2, we intro-
duce ℵ0-categoricity in the setting of (first-order) structures. Although we will 
mostly be working in the context of semigroups, this broader view will be useful 
for studying structures, such as graphs and semilattices, which naturally arise in 
our considerations of semigroups. Key results from Gould and Quinn-Gregson 
[9] are given in this setting. In particular, we formalise the previously defined 
concept of ℵ0-categoricity over a set of subsets; the ℵ0-categoricity of rectangular 
bands over any set of subrectangular bands acts as a useful example.

In Sect. 3 we construct a handy method for dealing with the ℵ0-categoricity of 
semigroups in which their automorphisms can be built from certain ingredients. 
This is then used in Sect. 4 to study the ℵ0-categoricity of strong semilattices of 
semigroups. The main results of this article are in Sect.  5, where we continue 
from [9] our study into the ℵ0-categoricity of completely 0-simple semigroups. 
We follow a method of Graham and Houghton by considering graphs arising from 
Rees matrix semigroups, which necessitated our study of ℵ0-categoricity in the 
general setting of structures.

We assume that all structures considered will be of countable cardinality.

2 � The ℵ0‑categoricity of a structure

We begin by translating a number of results in [9] to the general setting of (first-
order) structures. Their proofs easily generalize, and as such we shall omit them, 
referencing only the corresonding result in [9].

A (first-order) structure is a set M together with a collection of constants ℭ , 
finitary relations ℜ , and finitary functions � defined on M. We denote the struc-
ture as (M;ℜ,𝔉,ℭ) , or simply M where no confusion may arise. Each constant 
element is associated with a constant symbol, each n-ary relation is associated 
with an n-ary relational symbol, and each n-ary function is associated with an n-
ary function symbol. The collection L of these symbols is called the signature of 
M. We follow the usual convention of not distinguishing between the constants/
relations/functions of M, and their corresponding abstract symbols in L.

Our main example is that of a semigroup (S, ⋅) , where S is a set together with a 
single (associative) binary operation ⋅ , and so the associated signature consists of 
a single binary function symbol.
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A property of a structure is first-order if it can be formulated within first-order 
predicate calculus. A (countable) structure is ℵ0-categorical if it can be uniquely 
classified by its first-order properties, up to isomorphism.

The central result in the study of ℵ0-categorical structures is the Ryll-Nardze-
wski Theorem, which translates the concept to the study of oligomorphic auto-
morphism groups (see [14]). Before stating it, it is worth fixing some notation 
and definitions. Let � ∶ A → B be a map, let a = (a1,… , an) be an n-tuple of A 
and let M ⊆ A . Then we let a� denote the n-tuple of B given by (a1�,… , an�) , 
and M� denotes the subset {m� ∶ m ∈ M} of B.

Given a structure M, we say that a pair of n-tuples a = (a1,… , an) and 
b = (b1,… , bn) of M are automorphically equivalent or belong to the same 
n-automorphism type if there exists an automorphism � of M such that a� = b , 
that is, ai� = bi for each i ∈ {1,… , n} . We denote this equivalence relation as 
a ∼M,n b . We call Aut(M) oligomorphic if Aut(M) has only finitely many orbits 
in its action on Mn for each n ≥ 1 , that is, if each |Mn∕ ∼M,n | is finite.

Theorem 2.1  (The Ryll-Nardzewski theorem (RNT)) A structure M is ℵ0-categori-
cal if and only if Aut(M) is oligomorphic.

It follows from the RNT that every ℵ0-categorical structure is uniformly locally 
finite [14, Corollary  7.3.2], that is, there is a finite uniform bound on the size 
of the n-generated substructures, for each n ≥ 1 . In particular, an ℵ0-categorical 
semigroup is periodic, with bounded index and period.

Another immediate consequence of the RNT is that any characteristic sub-
structure inherits ℵ0-categoricity, where a subset/substructure is called charac-
teristic if it is invariant under automorphisms of the structure. However, key sub-
semigroups of a semigroup such as maximal subgroups and principal ideals are 
not necessarily characteristic, and a more general definition is required:

Definition 2.2  Let M be a structure and, for some fixed t ∈ ℕ , let {Xi ∶ i ∈ I} be 
a collection of t-tuples of M. Let {Ai ∶ i ∈ I} be a collection of subsets of M with 
the property that for any automorphism � of M such that there exists i, j ∈ I with 
Xi� = Xj , then �|Ai

 is a bijection from Ai onto Aj . Then we call A = {(Ai,Xi) ∶ i ∈ I} 
a system of t-pivoted pairwise relatively characteristic (t-pivoted p.r.c.) subsets (or, 
substructure, if each Ai is a substructure) of M. The t-tuple Xi is called the pivot of 
Ai ( i ∈ I ). If |I| = 1 then, letting A1 = A and X1 = X , we write {(A,X)} simply as 
(A, X), and call A an X-pivoted relatively characteristic ( X-pivoted r.c.) subset/sub-
structure of M.

In [9], Definition 2.2 was shown to be of use in regard to, for example, Green’s 
relations. In particular, {(He, e) ∶ e ∈ E(S)} forms a system of 1-pivoted p.r.c. sub-
groups of a semigroup S. It then followed from the proposition below that maxi-
mal subgroups inherit ℵ0-categoricity, and moreover there exists only finitely 
many non-isomorphic maximal subgroups in an ℵ0-categorical semigroup.
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Proposition 2.3  [9, Proposition 3.3] Let M be an ℵ0-categorical structure and 
{(Ai,Xi) ∶ i ∈ I} a system of t-pivoted p.r.c. subsets of M. Then {|Ai| ∶ i ∈ I} is 
finite. If, further, each Ai forms a substructure of M, then {Ai ∶ i ∈ I} is finite, up to 
isomorphism, with each Ai ℵ0-categorical.

We use the RNT in conjunction with [9, Lemma 2.8] to prove that a structure 
M is ℵ0-categorical in the following way. For each n ∈ ℕ , let �1,… , �r be a finite 
list of equivalence relations on Mn such that Mn∕�i is finite for each 1 ≤ i ≤ r and

A consequence of the two aforementioned results is that M is ℵ0-categorical. This 
result will often be drawn upon in a less formal way as follows. Suppose that we 
have an equivalence relation � on Mn that arises from different ways in which a 
given condition may be fulfilled; if Mn∕� is finite, then we say the condition has 
finitely many choices.

Example 2.4  Recalling [9, Example 2.10], consider the equivalence ♮X,n on n-tuples 
of a set X given by

A pair of n-tuples a and b are ♮X,n-equivalent if and only if there exists a bijection 
� ∶ {a1,… , an} → {b1,… , bn} such that ai� = bi , and the number of ♮X,n-classes of 
Xn is finite, for each n ∈ ℕ . Note also that if M is a structure then any pair of n-auto-
morphically equivalent tuples are clearly ♮M,n-equivalent.

Let M be a structure and A = {Ai ∶ i ∈ I} a collection of subsets of M. We may 
extend the signature of M to include the unary relations Ai ( i ∈ I ). We denote 
the resulting structure as M = (M;A) , which we call a set extension of M. If 
A = {A1,… ,An} is finite, then we may simply write M as (M;A1,… ,An).

Notice that automorphisms of M are simply those automorphisms of M which 
fix each Ai setwise, that is automorphisms � such that Ai� = Ai ( i ∈ I ). The set 
of all such automorphisms will be denoted Aut(M;A ), and clearly forms a sub-
group of Aut(M). The ℵ0-categoricity of M is therefore equivalent to our previous 
notion of M being ℵ0-categorical over A in [9].

Lemma 2.5  [9, Lemma 5.2] Let M be a structure with a system of t-pivoted p.r.c. 
subsets {(Ai,Xi) ∶ i ∈ I}. Then (M;{Ai ∶ i ∈ I}) is ℵ0-categorical if and only if M is 
ℵ0-categorical and I is finite.

Lemma 2.6  [9, Lemma 5.3] Let M be a structure, let t, r ∈ ℕ, and for each 
k ∈ {1,… , r} let Xk ∈ Mt. Suppose also that Ak is an Xk-pivoted relatively charac-
teristic subset of M for 1 ≤ k ≤ r. Then (M;A1,… ,Ar) is ℵ0-categorical if and only if 
M is ℵ0-categorical.

𝛾1 ∩ 𝛾2 ∩⋯ ∩ 𝛾r ⊆∼M,n .

(2.1)
(a1,… , an) ♮X,n (b1,… , bn) if and only if [ai = aj ⇔ bi = bj, for each i, j].
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Consequently, if S is an ℵ0-categorical semigroup and G1,… ,Gn is a collection 
of maximal subgroups of S then (S;G1,… ,Gn) is ℵ0-categorical.

However, note that not every ℵ0-categorical set extension of a semigroup requires 
the subsets to be relatively characteristic. We claim that any set extension of a rec-
tangular band by a finite set of subrectangular bands is ℵ0-categorical. This result is 
of particular use in the next section when considering the ℵ0-categoricity of normal 
bands.

Recall that every rectangular band can be written as a direct product of a left 
zero and right zero semigroup. The following isomorphism theorem for rectangular 
bands will be vital for proving our claim, and follows immediately from Howie [17, 
Corollary 4.4.3]:

Lemma 2.7  Let B1 = L1 × R1 and B2 = L2 × R2 be a pair of rectangular bands. If 
�L ∶ L1 → L2 and �R ∶ R1 × R2 are a pair of bijections, then the map � ∶ B1 → B2 
given by (l, r)� = (l�L, r�R) is an isomorphism, denoted � = �L × �R. Conversely, 
every isomorphism can be constructed this way.

Theorem 2.8  If B is a rectangular band and B1,… ,Br is a finite list of subrectangu-
lar bands of B, then B = (B;B1,… ,Br) is ℵ0-categorical. In particular, a rectangu-
lar band is ℵ0-categorical.

Proof  Let B = L × R , where L is a left zero semigroup and R is a right zero semi-
group. For each 1 ≤ k ≤ r , let Lk ⊆ L and Rk ⊆ R be such that Bk = Lk × Rk . Define 
a pair of equivalence relations �L and �R on L and R, respectively, by

The equivalence classes of �L are simply the set L⧵
⋃

1≤k≤r Lk together with certain 
intersections of the sets Lk . Since r is finite, it follows that L∕�L is finite, and simi-
larly R∕�R is finite. Let a = ((i1, j1),… , (in, jn)) and b = ((k1,�1),… , (kn,�n)) be a 
pair of n-tuples of B under the four conditions that 

(1)	 is �L ks for each 1 ≤ s ≤ n,
(2)	 js �R �s for each 1 ≤ s ≤ n,
(3)	 (i1,… , in) ♮L,n (k1,… , kn),
(4)	 (j1,… , jn) ♮R,n (�1,… ,�n),

where ♮L,n and ♮R,n are the equivalence relations given by (2.1). By conditions (3) and 
(4), there exists bijections

given by is�L = ks and js�R = �s for each 1 ≤ s ≤ n . By condition (1), we can pick a 
bijection �L of L which extends �L and fixes each �L-classes setwise, and similarly 
construct �R . Then � = �L ×�R is an automorphism of B. Moreover, if (i, j) ∈ Bk 
then i ∈ Lk and as i �L (i�L) we have i�L ∈ Lk . Dually, j ∈ Rk and as j �R (j�R) we 

i �L j ⇔ [i ∈ Lk ⇔ j ∈ Lk, for each k],

i �R j ⇔ [i ∈ Rk ⇔ j ∈ Rk, for each k].

�L ∶ {i1,… , in} → {k1,… , kn} and �R ∶ {j1,… , jn} → {�1,… ,�n}
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have j�R ∈ Rk . Hence there exists � ∈ L and r ∈ R such that (i�L, r) and (�, j�R) 
are in Bk , so that

as Bk is a subrectangular band. We have thus shown that (i, j)� = (i�L, j�R) ∈ Bk , 
and so Bk𝛷 ⊆ Bk . We observe that �−1 = �

−1
L

×�
−1
R

 is also an automorphism of B 
with �−1

L
 and �−1

R
 setwise fixing the �L-classes and �R-classes, respectively. Follow-

ing our previous argument we have Bk𝛷
−1

⊆ Bk , and so Bk� = Bk for each k. Thus 
� is an automorphism of B , and is such that

for each 1 ≤ s ≤ n , so that a ∼B,n b . Hence, as each of the four conditions on a and 
b have finitely many choices, it follows that B is ℵ0-categorical. 	�  ◻

Note that any set can be considered as a structure with no relations, functions or 
constants. Every bijection of the set is therefore an automorphism, and as such all 
sets are easily shown to be ℵ0-categorical. In fact a simplification of the proof of 
Theorem 2.8 gives:

Corollary 2.9  Let M be a set, and M1,… ,Mr be a finite list of subsets of M. Then 
(M;M1,… ,Mr) is ℵ0-categorical.

3 � A new method: (M,M�;N;�)‑systems

For many of the structures we will consider, automorphisms can be built from iso-
morphisms between their components. For example, for a strong semilattice of 
semigroups S = [Y;S

�
;�

�,�] , we can construct automorphisms of S from certain iso-
morphisms between the semigroups S

�
 . In this example we also require an automor-

phism of the semilattice Y, which acts as an indexing set for the semigroups S
�
 . We 

now extend this idea by setting up some formal machinery to deal with structures in 
which the automorphisms are built from a collection of data.

Notation 3.1  Given a pair of structures M and M′ , we let Iso(M;M�) denote the set of 
all isomorphisms from M onto M′.

Definition 3.2  Let M be an L-structure with fixed substructure M′ . 
Let A = {Mi ∶ i ∈ N}  be a set of substructures of M′ indexed by some K-struc-
ture N such that M� =

⋃
i∈N Mi . Let N1,… ,Nr be a finite partition of N, and set 

N = (N;N1,… ,Nr) . For each i, j ∈ N , let �i,j be a subset of Iso(Mi;Mj) under the 
conditions that 

	(3.1)	 if i, j ∈ Nk for some 1 ≤ k ≤ r then �i,j ≠ ∅,
	(3.2)	 if � ∈ �i,j and �� ∈ �j,� then ��� ∈ �i,�,

(i�L, r)(�, j�R) = (i�L, j�R) ∈ Bk

(is, js)� = (is�L, js�R) = (is�L, js�R) = (ks,�s)
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	(3.3)	 if � ∈ �i,j then �−1 ∈ �j,i,
	(3.4)	 if � ∈ Aut(N) and �i ∈ �i,i� for each i ∈ N , then there exists an automorphism 

of M extending the �i.

Letting � =
⋃

i,j∈N �i,j , then, under the conditions above, we call A = {Mi ∶ i ∈ N} 
an (M,M�;N;� )-system (in M). If M� = M then we may simply refer to this as an 
(M;N;� )-system.

By Condition (3.1) if i, j ∈ Nk for some k, then Mi ≅ Mj . Hence the num-
ber of isomorphism types in A is bounded by r. Moreover, it follows from Con-
ditions (3.1)–(3.3) that �i,i is a subgroup of Aut(Mi) , for each i ∈ N . If the sets 
Mi are not pairwise disjoint, then Condition (3.4) should be met with caution. 
Indeed, if x ∈ Mi ∩Mj then by taking � to be the identity map of N , we have that 
x�i, x�j ∈ Mi ∩Mj for all �i ∈ Aut(Mi) and �j ∈ Aut(Mj) by Condition (3.4). How-
ever, for our work the sets Mi will mostly be pairwise disjoint, or will all intersect 
at an element which is fixed by every isomorphism between the Mi . For example, M 
could be a semigroup containing a zero, and 0 is the intersection of each of the sets 
Mi.

Note also that no link needs to exist between the signatures L and K. For most of 
our examples they will be the signature of semigroups and the signature of sets (the 
empty signature), respectively.

Given an (M;M�;N;� )-system A = {Mi ∶ i ∈ N} in M, we aim to show that, if N 
is ℵ0-categorical and each Mi possess a stronger notion of ℵ0-categoricity, then M is 
ℵ0-categorical. The stronger notion that we require comes from the following defini-
tion, which generalises the notion of ℵ0-categoricity of set extensions.

Definition 3.3  Let M be a structure and � a subgroup of Aut(M). Then we say that 
that M is ℵ0-categorical over � if � has only finitely many orbits in its action on Mn 
for each n ≥ 1 . We denote the resulting equivalence relation on Mn as ∼M,� ,n.

By taking � to be those automorphisms which fix certain subsets of M we recover 
our original definition of ℵ0-categoricity of a set extension. Similarly, by taking � to 
be those automorphisms which preserve a fixed equivalence relation, or those which 
fix certain equivalence classes, we obtain a pair of notions defined in [9].

Lemma 3.4  Let M be a structure, and A = {Mi ∶ i ∈ N} be an (M,M�;N;� )-system. 
If N is ℵ0-categorical and each Mi is ℵ0-categorical over �i,i then

for each n ≥ 1.

Proof  Let N = (N;N1,… ,Nr) and, for each 1 ≤ k ≤ r , fix some mk ∈ Nk . For each 
i ∈ Nk , let �i ∈ �i,mk

 , noting that such an element exists by Condition (3.1) on � . 
Let a = (a1,… , an) and b = (b1,… , bn) be a pair of n-tuples of M′ , with at ∈ Mit

 
and bt ∈ Mjt

 , and such that (i1,… , in) ∼N,n (j1,… , jn) via � ∈ Aut(N) , say. For 

|(M�)n∕ ∼M,n | < ℵ0
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each 1 ≤ k ≤ r , let ik1, ik2,… , iknk be the entries of (i1,… , in) belonging to Nk , where 
k1 < k2 < ⋯ < knk , and set

We similarly form each bk , observing that as it� = jt for each 1 ≤ t ≤ n and � fixes 
the sets Nj setwise ( 1 ≤ j ≤ r ) the elements jk1, jk2,… , jknk are precisely the entries 
of (j1,… , jn) belonging to Nk , so that bk = (bk1,… , bknk ) for some bkt ∈ M� . Notice 
that as N1,… ,Nr partition N we have n = n1 + n2 +⋯ + nr . Since ikt, jkt ∈ Nk for 
each 1 ≤ t ≤ nk , we have that akt�ikt and bkt�jkt are elements of Mmk

 . We may thus sup-
pose further that for each 1 ≤ k ≤ r,

via �k ∈ �mk ,mk
 , say (where if ak is a 0-tuple, then we take �k to be the identity of 

Nmk
 ). For each 1 ≤ k ≤ r and each i ∈ Nk , let

noting that �i ∈ �i,i� by Conditions (3.2) and (3.3) on � , since �i, �k and �i� are ele-
ments of � . Hence, by Condition (3.4) on � , there exists an automorphism � of M 
extending each �i . For any 1 ≤ k ≤ r and any 1 ≤ t ≤ nk we have

and so a ∼M,n b via � . Since N is ℵ0-categorical and each Mi are ℵ0-categorical 
over �i,i , the conditions imposed on the tuples a and b have finitely many choices, 
and so |(M�)n∕ ∼M,n | is finite. 	�  ◻

By Corollary 2.9, the structure N in the lemma above can simply be a set. In 
most cases we take M� = M , and the result simplifies accordingly by the RNT as 
follows.

Corollary 3.5  Let M be a structure, and A = {Mi ∶ i ∈ N} be an (M;N;� )-system. If 
N is ℵ0-categorical and each Mi is ℵ0-categorical over �i,i, then M is ℵ0-categorical.

Example 3.6  The corollary above could be used to efficiently prove the interplay of 
ℵ0-categoricity and the greatest 0-direct decomposition of a semigroup with zero 
[9, Theorem  4.8]. Indeed, if S =

⨆0

i∈I
Si is the greatest 0-direct decomposition of 

S, and I1,… , In is a finite partition of I corresponding to the isomorphism types of 
the summands of S, then it is a simple exercise to show that S = {Si ∶ i ∈ I} is an 
(S;(I;I1,… , In);� )-system, where � is the collection of all isomorphisms between 
summands. Since (I;I1,… , In) is ℵ0-categorical, it follows by Corollary 3.5 that S is 
ℵ0-categorical if each Si is ℵ0-categorical (over �i,i = Aut(Si)).

ak = (ak1,… , aknk ) ∈ (M�)nk .

(ak1�ik1 ,… , aknk�iknk
) ∼Mmk

,�mk ,mk
,nk

(bk1�jk1 ,… , bknk�jknk
)

�i = �i�k�
−1
i�

∶ Mi → Mi� ,

akt� = akt�ikt
= akt�ikt�k�

−1
ikt�

= bkt�jkt�
−1
jkt

= bkt,
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4 � Strong semilattices of semigroups

In this section we study the ℵ0-categoricity of strong semilattices of semigroups by 
making use of our most recent methodology. We are motivated by the work of the 
author in [22] and [23], where the homogeneity of bands and inverse semigroups 
are shown to depend heavily on the homogeneity of strong semilattices of rectangu-
lar bands and groups, respectively. Recall that a structure is homogeneous if every 
isomorphism between finitely generated substructures extend to an automorphism. 
A uniformly locally finite homogeneous structure is ℵ0-categorical [19, Corollary 
3.1.3]. Consequently, each homogeneous band is ℵ0-categorical, although the same 
is not true for homogeneous inverse semigroups.

While there has not yet been a general study into ℵ0-categorical semilattices, a 
complete classification of countable homogeneous semilattices was completed in [6] 
and [7]. Since semilattices are uniformly locally finite, this provids us with a count-
ably infinite collection of ℵ0-categorical semilattices. For example, the linear order 
ℚ is a homogeneous semilattice, and all ℵ0-categorical linear orders are classified in 
[27].

Let Y be a semilattice. To each � ∈ Y  associate a semigroup S
�
 , and assume that 

S
�
∩ S

�
= � if � ≠ � . For each pair �, � ∈ Y  with � ≥ � , let �

�,� ∶ S
�
→ S

�
 be a mor-

phism such that �
�,� is the identity mapping and if � ≥ � ≥ � then �

�,���,� = �
�,� . 

On the set S =
⋃

�∈Y S� define a multiplication by

for a ∈ S
�
, b ∈ S

�
 , and denote the resulting structure by S = [Y;S

�
;�

�,�] . Then S is 
a semigroup, and is called a strong semilattice Y of the semigroups S

�
 ( � ∈ Y  ). The 

semigroups S
�
 are called the components of S. We follow the convention of denoting 

an element a of S
�
 as a

�
.

The idempotents of S = [Y;S
�
;�

�,�] are given by E(S) =
⋃

�∈Y E(S�) , and if E(S) 
forms a subsemigroup of S then

We build automorphisms of strong semilattices of semigroups in a natural way using 
the following well known result. A proof can be found in [21].

Theorem  4.1  Let S = [Y;S
�
;�

�,�] be a strong semilattices of semigroups. Let 
� ∈ Aut(Y) and, for each � ∈ Y , let �

�
∶ S

�
→ S

��
 be an isomorphism. Assume fur-

ther that for any � ≥ � , the diagram

commutes. Then the map � =
⋃

�∈Y �� is an automorphism of S, denoted 
� = [�

�
,�]

�∈Y.

a ∗ b = (a�
�,��)(b��,��)

E(S) = [Y;E(S
�
);�

�,�|E(S
�
)].

(4.1)
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We denote the diagram (4.1) by [�, �;��, ��] . The map � is called the induced 
(semilattice) automorphism of Y, denoted �Y.

Unfortunately, not all automorphisms of strong semilattices of semigroups can 
be constructed as in Theorem 4.1. We shall call a strong semilattice of semigroups 
S automorphism-pure if every automorphism of S can be constructed as in Theo-
rem 4.1. For example, every strong semilattice of completely simple semigroups is 
automorphism-pure [20, Lemma IV.1.8], and so both strong semilattices of groups 
(Clifford semigroups) and strong semilattices of rectangular bands (normal bands) 
are automorphism-pure.

Let S = [Y;S
�
;�

�,�] be a strong semilattice of semigroups. We denote the equiv-
alence relation on Y corresponding to isomorphism types of the semigroups S

�
 

by �S , so that � �S � ⇔ S
�
≅ S

�
. We let YS denote the set extension of Y given by 

YS ∶= (Y;Y∕�S).

Proposition 4.2  Let S = [Y;S
�
;�

�,�] be automorphism-pure and ℵ0-categorical. 
Then each S

�
 is ℵ0-categorical and YS is ℵ0-categorical, with Y∕�S finite.

Proof  For each � ∈ Y  fix some x
�
∈ S

�
 . We claim that {(S

�
, x

�
) ∶ � ∈ Y} forms a 

system of 1-pivoted p.r.c. subsemigroups of S. Indeed, let � be an automorphism of 
S such that x

�
� = x

�
 for some �, � ∈ Y  . Since S is automorphism-pure, there exists 

� ∈ Aut(Y) and isomorphisms �
�
∶ S

�
→ S

��
 ( � ∈ Y  ) such that � = [�

�
,�]

�∈Y . 
Hence S

�
� = S

�
 , and the claim follows. Consequently, by the ℵ0-categoricity of S 

and Proposition 2.3, each S
�
 is ℵ0-categorical and Y∕�S is finite.

Let a = (�1,… , �n) and b = (�1,… , �n) be a pair of n-tuples of Y such that 
there exists a

�k
∈ S

�k
 and b

�k
∈ S

�k
 with (a

�1
,… , a

�n
) ∼S,n (b

�1
,… , b

�n
) via 

[��
�
,��]

�∈Y ∈ Aut(S) , say. Since �� ∈ Aut(Y) and S
�
≅ S

��� for each � ∈ Y  , it follows 
that �� ∈ Aut(YS) . Moreover, �k�� = �k for each k, so that a ∼YS ,n b via �′ . We have 
thus shown that

as S is ℵ0-categorical. Hence YS is ℵ0-categorical. 	�  ◻

A natural question arises: how can we build an ℵ0-categorical strong semilattice 
of semigroups from an ℵ0-categorical semilattice and a collection of ℵ0-categorical 
semigroups? In this paper we will only be concerned with the ℵ0-categoricity of 
strong semilattices of semigroups in which all connecting morphisms are injective 
or all are constant. For arbitrary connecting morphisms, the problem of assessing 
ℵ0-categoricity appears to be difficult to capture in a reasonable way. Examples of 
more complex ℵ0-categorical strong semilattices of semigroups arise from Quinn-
Gregson [22], where the universal normal band is shown to have surjective but not 
injective connecting morphisms. We first study the case where each connecting 
morphism is a constant map.

Suppose that Y is a semilattice and, for each � ∈ Y  , S
�
 is a semigroup containing 

an idempotent e
�
 . For each � ∈ Y  let �

�,� be the identity automorphism of S
�
 , and 

for 𝛼 > 𝛽 let �
�,� be the constant map with image {e

�
} . We follow the notation of 

|(YS)n∕ ∼YS ,n | ≤ |Sn∕ ∼S,n | < ℵ0,
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Worawiset [30] and let �
�,� ∶= C

�,e
�
 for each 𝛼 > 𝛽 in Y. It is easy to check that 

�
�,���,� = �

�,� for all � ≥ � ≥ � in Y, so that S = [Y;S
�
;C

�,e
�
] forms a strong semi-

lattice of semigroups. We call S a constant strong semilattice of semigroups.

Definition 4.3  If S = [Y;S
�
;C

�,e
�
] is a constant strong semilattice of semigroups, 

then we denote the subset of Iso(S
�
;S

�
) consisting of those isomorphisms which map 

e
�
 to e

�
 as Iso(S

�
;S

�
)[e� ;e� ] . Notice that the set Iso(S

�
;S

�
)[e� ;e� ] is simply the subgroup 

Aut(S
�
;{e

�
}) of Aut(S

�
 ). We may then define a relation �S on Y by

so that 𝜐S ⊆ 𝜂S.

The relation �S is reflexive since 1S
�
∈ Aut(S

�
;{e

�
}) for each � ∈ Y  , and it easily 

follows that �S forms an equivalence relation on Y.

Proposition 4.4  Let S = [Y;S
�
;C

�,e
�
] be such that Y∕�S = {Y1,… , Yr} is finite, 

Y = (Y;Y1,… , Yr) is ℵ0-categorical and each S
�
 is ℵ0-categorical. Then S is ℵ0

-categorical.

Proof  We prove that {S
�
∶ � ∈ Y} forms an (S;Y;� )-system for some � . For each 

�, � ∈ Y  , let �
�,� = Iso(S

�
;S

�
)[e� ;e� ] and fix � =

⋃
�,�∈Y ��,� . Then Conditions 

(3.1)–(3.3) are seen to be satisfied since �S forms an equivalence relation on Y. Let 
� ∈ Aut(Y) and, for each � ∈ Y  , let �

�
∈ �

�,�� . We claim that � = [�
�
,�]

�∈Y is an 
automorphism of S. Indeed, for any s

�
∈ S

�
 and any 𝛽 < 𝛼 we have

so that the diagram [�, �;��, ��] commutes. Moreover [�, �;��, ��] commutes as

and the claim follows by Theorem  4.1. Since � extends each �
�
 , we have that 

{S
�
∶ � ∈ Y} is an (S;Y;� )-system. Moreover, as S

�
 is ℵ0-categorical, it is ℵ0-cat-

egorical over �
�,� = Aut(S

�
;{e

�
}) by [9, Lemma 2.6]. Hence S is ℵ0-categorical by 

Corollary 3.5. 	�  ◻

Examining our two main classes of automorphism-pure strong semilattices of 
semigroups: Clifford semigroups and normal bands, the result above reduces accord-
ingly. If S = [Y;G

�
;C

�,e
�
] is a constant strong semilattice of groups, then e

�
 is the 

identity of G
�
 , and so Iso(G

�
;G

�
) = Iso(G

�
;G

�
)[e� ;e� ] for each �, � ∈ Y  . On the other 

hand, if S = [Y;B
�
;C

�,e
�
] is a constant strong semilattice of rectangular bands, then it 

follows from Lemma 2.7 that Iso(B
�
;B

�
) ≠ � if and only if Iso(B

�
;B

�
)[e� ;e� ] ≠ � , for 

any e
�
∈ B

�
, e

�
∈ B

�
 . In both cases we therefore have �S = �S . Moreover, each rec-

tangular band B
�
 is ℵ0-categorical by Theorem 2.8, and the following result is then 

immediate by Propositions 4.2 and 4.4.

� �S � ⇔ Iso(S
�
;S

�
)[e� ;e� ] ≠ �,

s
�
C
�,e

�
�
�
= e

�
�
�
= e

��
= s

�
�
�
C
��,e

��

s
�
1S

�
�
�
= s

�
�
�
= s

�
�
�
1S

��
,
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Corollary 4.5  Let S = [Y;S
�
;C

�,e
�
] be a constant strong semilattice of rectangular 

bands (groups). Then S is ℵ0-categorical if and only if YS is ℵ0-categorical, with 
Y∕�S finite (and each group S

�
 is ℵ0-categorical).

We now consider the ℵ0-categoricity of a strong semilattice of semigroups 
S = [Y;S

�
;�

�,�] such that each connecting morphism is injective. For each 𝛼 > 𝛽 
in Y, we abuse notation somewhat by denoting the isomorphism �−1

�,�
|Im�

�,�
 simply 

by �−1
�,�

 . We observe that if 𝛼 > 𝛽 > 𝛾 and x
�
∈ Im �

�,� , say x
�
= x

�
�
�,� , then

Hence, on the restricted domain Im �
�,� , we have

If Y has a zero (i.e. a minimum element under the natural order) we may define an 
equivalence relation �S on Y by � �S � if and only if S

�
�
�,0 = S

�
�
�,0 . If � �S � then 

�
�,0�

−1
�,0

 is an isomorphism from S
�
 onto S

�
 , and so 𝜉S ⊆ 𝜂S.

Proposition 4.6  Let S = [Y;S
�
;�

�,�] be such that each �
�,� is injective. Let Y be a 

semilattice with zero and Y∕�S = {Y1,… , Yr} be finite, with

Then S is ℵ0-categorical if both Y = (Y;Y1,… , Yr) and S0 = (S0;T1,… , Tr) are ℵ0

-categorical. Moreover, if S is automorphism-pure and ℵ0-categorical, then con-
versely both Y and S0 are ℵ0-categorical.

Proof  Suppose first that both Y and S0 are ℵ0-categorical. Let a = (a
�1
,… , a

�n
) and 

b = (b
�1
,… , b

�n
) be n-tuples of S with (�1,… , �n) ∼Y,n (�1,… , �n) via � ∈ Aut(Y) , 

say. Suppose further that

via �0 ∈ Aut(S0) , say. Then for each � ∈ Y  we have S
�
�
�,0 = S

��
�
��,0 , and so we 

can take an isomorphism �
�
∶ S

�
→ S

��
 given by

For each � ≥ � in Y, the diagram [�, �;��, ��] commutes as

where the penultimate equality is due to (4.2) as Im �
��,0 = Im �

�,0 = (Im �
�,0)�0 . 

Hence � = [�
�
,�]

�∈Y is an automorphism of S by Theorem 4.1. Furthermore,

x
�
�

−1
�,�
�
�,� = x

�
�
�,��

−1
�,�
�
�,� = x

�
�
�,� = x

�
�

−1
�,�
.

(4.2)�
−1
�,�
�
�,� = �

−1
�,�
.

{S
�
�
�,0 ∶ � ∈ Y} = {T1,… , Tr}.

(a
�1
�
�1,0

,… , a
�n
�
�n,0

) ∼S0,n
(b

�1
�
�1,0

,… , b
�n
�
�n,0

)

�
�
= �

�,0 �0 �
−1
��,0

.

�
�,� �� = �

�,� (��,0 �0 �
−1
��,0

) = �
�,0 �0 �

−1
��,0

= �
�,0 �0 (�

−1
��,0

�
��,��) = �

�
�
��,�� ,
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for each 1 ≤ k ≤ n , so that a ∼S,n b via � . We thus have that

and so S is ℵ0-categorical.
Conversely, suppose S is automorphism-pure and ℵ0-categorical. For 

each 1 ≤ k ≤ r , fix some �k ∈ Yk , where we assume without loss of general-
ity that S

�k
�
�k ,0

= Tk . For each � ∈ Y  , fix some x
�
∈ S

�
 . Let a = (�1,… , �n) and 

b = (�1,… , �n) be n-tuples of Y such that

via � ∈ Aut(S) , say. Since S is automorphism-pure there exists � ∈ Aut(Y) and 
�
�
∈ Iso(S

�
;S

��
) such that � = [�

�
,�]

�∈Y . The automorphism � fixes each �k , so that 
S
�k
� = S

�k
 . Hence, as the diagram [�k, 0;�k, 0] commutes for each k, we have

If � ∈ Yk then, by the commutativity of the diagram [�;0;��, 0] , we therefore have

and so � ∈ Aut(Y) . We have shown that

and so Y is ℵ0-categorical. Now suppose c and d are n-tuples of S0 such that

via �� = [��
�
,��]

�∈Y ∈ Aut(S) , say. Then arguing as before we have that Tk�� = Tk for 
each k, and it follows that ��

0
∈ Aut(S0) , with c��

0
= d . Hence

and so S0 is ℵ0-categorical. 	�  ◻

Note that if Y is finite, then the meet of all the elements of Y is a zero. Moreover, 
as Y is finite, it is ℵ0-categorical over any set of subsets by the RNT, and so the 
result above simplifies accordingly in this case:

Corollary 4.7  Let S = [Y;S
�
;�

�,�] be such that Y is finite and each �
�,� is injective. If 

S0 = (S0;{S���,0 ∶ � ∈ Y}) is ℵ0-categorical then S is ℵ0-categorical. Conversely, if 
S is automorphism-pure and ℵ0-categorical then S0 is ℵ0-categorical.

For a Clifford semigroup S, the property that the connecting morphisms are 
injective is equivalent to S being is E-unitary, that is, such that for all e ∈ E(S) 

a
�k
� = a

�k
�
�k
= a

�k
�
�k ,0

�0 �
−1
�k�,0

= b
�k
�
�k ,0

�
−1
�k ,0

= b
�k

|Sn∕ ∼S,n | ≤ |Yn∕ ∼Y,n | ⋅ |Sn
0
∕ ∼S0,n

| < ℵ0

(x
�1
,… , x

�n
, x

�1
,… , x

�r
) ∼S,n+r (x

�1
,… , x

�n
, x

�1
,… , x

�r
),

Tk = S
�k
�
�k ,0

= (S
�k
�
�k
)�

�k ,0
= S

�k
�
�k ,0

�0 = Tk�0 = Tk�.

S
�
�
�,0 = Tk = Tk�0 = S

�
�
�,0�0 = S

�
�
�
�
��,0 = S

��
�
��,0,

|Yn∕ ∼Y,n | ≤ |Sn+r∕ ∼S,n+r | < ℵ0

(c, x
�1
,… , x

�r
) ∼S,n+r (d, x

�1
,… , x

�r
),

|Sn
0
∕ ∼S0,n

| ≤ |Sn+r∕ ∼S,n+r | < ℵ0
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and all s ∈ S , if es ∈ E then s ∈ E(S) [17, Exercise 5.20]. Since Clifford semi-
groups are automorphism-pure, we therefore have the following simplification of 
Proposition 4.6.

Corollary 4.8  Let S = [Y;G
�
;�

�,�] be an E-unitary Clifford semigroup. Let Y be 
a semilattice with zero and Y∕�S be finite. Then S is ℵ0-categorical if and only if 
(Y;Y∕�S) and (S0;{S���,0 ∶ � ∈ Y}) are ℵ0-categorical. In particular, if Y is finite 
then S is ℵ0-categorical if and only if (S0;{S���,0 ∶ � ∈ Y}) is ℵ0-categorical.

Example 4.9  We use the work of Apps [1] to construct examples of ℵ0-categorical 
E-unitary Clifford semigroups as follows. Let G be an ℵ0-categorical group and 
H1 < H2 < ⋯ a characteristic series in G, so that each Hi is a characteristic subgroup 
of G and Hi is a subgroup of Hi+1 . Apps proved that such a series must be finite, 
and there exists a characteristic series {1} = G0 < G1 < G2 < ⋯ < Gn = G with 
each Gi∕Gi−1 a characteristically simple ℵ0-categorical group. For each 0 ≤ i ≤ n , let 
Ki = Gi × {i} be an isomorphic copy of Gi . For each 0 ≤ i ≤ j ≤ n , let �i,j ∶ Ki → Kj 
be the map given by (x, i)�i,j = (x, j) . Then we may form a strong semilattice of the 
groups Ki by taking S = [Y;Ki;�i,j] , where Y is the set {0, 1,… , n} with the reverse 
ordering 0 > 1 > 2 > ⋯ > n . Notice that S is E-unitary as each connecting mor-
phism is injective. Moreover, each Ki�i,n = Gi × {n} is a characteristic subgroup of 
Kn = Gn × {n} . Hence, by Lemma 2.6, (Kn;{Ki�i,n ∶ 1 ≤ i ≤ n}) is ℵ0-categorical. 
Since Y is finite, we have that (Y;Y∕�S) is ℵ0-categorical, and so S is ℵ0-categorical 
by Corollary 4.8.

If S = [Y;S
�
;�

�,�] is such that each connecting morphism is an isomorphism, 
then Y∕�S = {Y} , and so the result above simplifies accordingly. However we can 
prove a more general result directly (without the condition that Y has a zero) 
with aid of the following proposition. The result is folklore, but a proof can be 
found in [21].

Proposition 4.10  Let S = [Y;S
�
;�

�,�] be such that each �
�,� is an isomorphism. Then 

S ≅ S
�
× Y  for any � ∈ Y . Conversely, if T is a semigroup and Z is a semilattice then 

T × Z is isomorphic to a strong semilattice of semigroups such that each connecting 
morphism is an isomorphism.

Corollary 4.11  Let S = [Y;S
�
;�

�,�] be such that each �
�,� is an isomorphism. If S

�
 

and Y are ℵ0-categorical, then S is ℵ0-categorical. Moreover, if S is automorphism-
pure then the converse holds.

Proof  By Proposition 4.10, S is isomorphic to S
�
× Y  for any � ∈ Y  . The first half of 

the result then follows as ℵ0-categoricity is preserved by finite direct products [12].
If S is automorphism-pure then the converse holds by Proposition 4.2, as (Y;Y∕�S) 

being ℵ0-categorical clearly implies Y is ℵ0-categorical. 	�  ◻
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5 � ℵ0‑categorical Rees matrix semigroups

A semigroup S is called simple (0-simple) if it has no proper ideals (if its only 
proper ideal is {0} and S2 ≠ {0} ). A simple (0-simple) semigroup is called com-
pletely simple (completely 0-simple) if contains a primitive idempotent, i.e. a 
non-zero idempotent e such that for any non-zero idempotent f of S,

Since an ℵ0-categorical semigroup is periodic, it follows that every ℵ0-categorical 
(0-)simple semigroup is completely (0)-simple (see the proof of Theorem 3.12 of 
[9]). By Rees theorem [25], to study the ℵ0-categoricity of a completely 0-simple 
semigroup, it is sufficient to consider Rees matrix semigroups:

Theorem  5.1  (The Rees Theorem) Let G be a group, let I and � be non-empty 
index sets and let P = (p

�,i) be an � × I matrix with entries in G ∪ {0}. Sup-
pose no row or column of P consists entirely of zeros (that is, P is regular). Let 
S = (I × G × �) ∪ {0}, and define multiplication ∗ on S by

Then S is a completely 0-simple semigroup, denoted M0[G;I,�;P], and is called a 
(regular) Rees matrix semigroup (over G). Conversely, every completely 0-simple 
semigroup is isomorphic to a Rees matrix semigroup.

The matrix P is called the sandwich matrix of S. If P has no zero entries, then 
I × G × � forms a subsemigroup of M0[G;I,�,P] , called a Rees matrix semi-
group without zero and denoted M[G;I,�;P] . Every completely simple semi-
group is isomorphic to a Rees matrix semigroup without zero [17, Section 3.3].

Lemma 5.2  Let G be a group and P be a � × I matrix with entries from G. Then 
M[G;I,�;P] is ℵ0-categorical if and only if M0[G;I,�;P] is ℵ0-categorical.

Proof  The result is immediate from Gould and Quinn-Gregson [9, Corollary 2.12] 
since M0[G;I,�;P] is isomorphic to M[G;I,�;P] with a zero adjoined. 	�  ◻

As a consequence, to examine the ℵ0-categoricity of both completely simple 
and completely 0-simple semigroups, it suffices to study Rees matrix semigroups.

A fundamental discovery in [9] was that to understand the ℵ0-categoricity of 
an arbitrary semigroup, it is necessary to study ℵ0-categorical completely (0-)
simple semigroups. Indeed, they arise as principal factors of an ℵ0-categorical 
semigroup, as well as giving examples of 0-direct indecomposable summands in 
a semigroup with zero.

ef = fe = f ⇒ e = f .

(i, g, �) ∗ (j, h,�) =

{
(i, gp

�,jh,�) if p�,j ≠ 0

0 else

0 ∗ (i, g, �) = (i, g, �) ∗ 0 = 0 ∗ 0 = 0.
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In [9] the ℵ0-categoricity of Rees matrix semigroups over identity matrices 
(known as Brandt semigroups) were determined, although we deferred the general 
case to this current article. Countable homogeneous completely simple semigroups 
have been classified (modulo our understanding of homogeneous groups) in [24], 
which gives rise to more complex examples of ℵ0-categorical completely (0-)simple 
semigroups.

Given a Rees matrix semigroup S = M0[G;I,�;P] with P = (p
�,i) , we let G(P) 

denote the subset of G of all non-zero entries of P, that is, G(P) ∶= {p
�,i ∶ p

�,i ≠ 0} . 
The idempotents of S are easily described [17, Page 71]:

Since there exists a simple isomorphism theorem for Rees matrix semigroups [17, 
Theorem 3.4.1] (see Theorem 5.10), we should be hopeful of achieving a thorough 
understanding of ℵ0-categorical Rees matrix semigroups via the RNT. However, 
from the isomorphism theorem it is not clear how the ℵ0-categoricity of the semi-
group M0[G;I,�;P] affects the sets I and � . We instead follow a technique of Gra-
ham [10] and Houghton [15] of constructing a bipartite graph from the sets I and �.

A bipartite graph is a (simple) graph whose vertices can be split into two disjoint 
non-empty sets L and R such that every edge connects a vertex in L to a vertex in 
R. The sets L and R are called the left set and the right set, respectively. Formally, 
a bipartite graph is a triple � = ⟨L,R,E⟩ such that L and R are non-empty trivially 
intersecting sets and

We call L ∪ R the set of vertices of �  and E the set of edges. An isomorphism 
between a pair of bipartite graphs � = ⟨L,R,E⟩ and � � = ⟨L�,R�,E�⟩ is a bijec-
tion � ∶ L ∪ R → L� ∪ R� such that L� = L� , R� = R� , and {l, r} ∈ E if and only 
if {l� , r�} ∈ E� . We are therefore regarding bipartite graphs in the signature 
LBG = {QL,QR,E} , where QL and QR are unary relations, which correspond to the 
sets L and R, respectively, and E is a binary relation corresponding to the edge rela-
tion (here we abuse the notation somewhat by letting E denote the edge relation and 
the set of edges).

Let � = ⟨L,R,E⟩ be a bipartite graph. Then �  is called complete if, for all 
x ∈ L, y ∈ R , we have {x, y} ∈ E . If E = � then �  is called empty. If each vertex of 
�  is incident to exactly one edge, then �  is called a perfect matching. The comple-
ment of �  is the bipartite graph ⟨L,R,E′⟩ with

Hence an empty bipartite graph is the complement of a complete bipartite graph, 
and vice-versa. We call �  random if, for each k,� ∈ ℕ , and for every distinct 
x1,… , xk, y1,… , y� in L (in R) there exists infinitely many u ∈ R ( u ∈ L ) such that 
{u, xi} ∈ E but {u, yj} ∉ E for each 1 ≤ i ≤ k and 1 ≤ j ≤ �.

Clearly, for each pair n,m ∈ ℕ∗ = ℕ ∪ {ℵ0} , there exists a unique (up to isomor-
phism) complete biparite graph with left set of size n and right set of size m, which 

E(S) = {(i, p−1
�,i
, �) ∶ p

�,i ≠ 0}.

E ⊆ {{x, y} ∶ x ∈ L, y ∈ R}.

E� = {{x, y} ∶ x ∈ L, y ∈ R, {x, y} ∉ E}.
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we denote as Kn,m . There also exists a unique, up to isomorphism, perfect matching 
with left and right sets of size n, denoted Pn . Similar uniqueness holds for the empty 
bipartite graph En,m with left set of size n and right set of size m, and the comple-
ment of the perfect matching Pn , which we denote as CPn . Less obviously, any pair 
of random bipartite graphs are isomorphic [4].

Theorem 5.3  [8] A countable bipartite graph is homogeneous if and only if it is iso-
morphic to either Kn,m,  En,m, Pn, CPn for some n,m ∈ ℕ∗, or the random bipartite 
graph.

Since bipartite graphs are relational structures with finitely many relations, 
homogeneous bipartite graphs are uniformly locally finite,1 and thus ℵ0-categorical. 
Unfortunately, no full classification of ℵ0-categorical bipartite graphs exists.

Let � = ⟨L,R,E⟩ be a bipartite graph. A path � in �  is a finite sequence of 
vertices

such that vi and vi+1 are adjacent for each 0 ≤ i ≤ n − 1 . For example, if {x, y} is an 
edge in E then both (x, y) and (y, x) are paths in �  . A pair of vertices x and y are con-
nected, denoted x ⋈ y , if and only if x = y or there exists a path (v1, v2,… , vn) in �  
such that v1 = x and vn = y . It is clear that ⋈ is an equivalence relation on the set of 
vertices of �  , and we call the equivalence classes the connected components of �  . 
Each connected component is a sub-bipartite graph of �  under the induced struc-
ture, and we let C(� ) denote the set of connected components of � .

Let �  be a bipartite graph with C(� ) = {�i ∶ i ∈ A} . For any automorphism 
� of �  and x, y ∈ �  we have that (x, v2,… , vn−1, y) is a path in �  if and only if 
(x�, v2�,… , vn−1�, y�) is a path in �  , since � preserves edges and non-edges. 
Hence x ⋈ y if and only if x� ⋈ y� , and so there exists a bijection � of A such that 
�i� = �i� for each i ∈ I . We have thus proven the reverse direction of the following 
result, the forward being immediate.

Proposition 5.4  Let � = ⟨L,R,E⟩ be a bipartite graph with C(� ) = {�i ∶ i ∈ A}. Let 
� be a bijection of A and �i ∶ �i → �i� an isomorphism for each i ∈ A. Then 

⋃
i∈I �i 

is an automorphism of � . Conversely, every automorphism of �  can be constructed 
in this way.

Proposition 5.5  Let � = ⟨L,R,E⟩ be a bipartite graph with C(� ) = {�i ∶ i ∈ A}. 
Then �  is ℵ0-categorical if and only if each connected component is ℵ0-categorical 
and C(� ) is finite, up to isomorphism.

� = (v0, v1,… , vn)

1  This differs from the graph theoretical notion of being uniformly locally finite, i.e. such that the 
degrees of the vertices are bounded above by some finite value.
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Proof  (⇒ ) By Proposition 5.4 we have that, for any choice of xi ∈ �i ( i ∈ A ), the set 
{(�i, xi) ∶ i ∈ A} forms a system of 1-pivoted p.r.c. sub-bipartite graphs of �  . The 
result then follows from Proposition 2.3.

(⇐ ) First we show that C(� ) forms a (� ;A;� )-system in �  for some A and � . Let 
A1,… ,Ar be the finite partition of A corresponding to the isomorphism types of 
the connected components of �  , that is, �i ≅ �j if and only if i, j ∈ Ak for some k. 
Fix A = (A;A1,… ,Ar) . For each i, j ∈ A , let �i,j = Iso(�i;�j) and fix � =

⋃
i,j∈A �i,j . 

Then � clearly satisfy Conditions (3.1)–(3.3). Let � ∈ Aut(A) and, for each i ∈ A , 
let �i ∈ �i,i� . Then by Proposition 5.4, � =

⋃
i∈A �i is an automorphism of �  , and 

so � satisfies Condition (3.4). Hence C(� ) forms an (� ;A;� )-system. Each �i is ℵ0

-categorical (over �i,i = Aut(�i) ) and A is ℵ0-categorical by Corollary 2.9, and so �  
is ℵ0-categorical by Corollary 3.5. 	�  ◻

Definition 5.6  Let S = M0[G;I,�;P] be a Rees matrix semigroup with P = (p
�,i) . 

Then we form a bipartite graph � (P) = ⟨I,�,E⟩ with edge set

which we call the induced bipartite graph of S.

The above construct has long been fundamental to the study of Rees matrix 
semigroups, and has its roots in a paper by Graham in [10]. Here, it is used to 
describe the maximal nilpotent subsemigroups of a Rees matrix semigroup, 
where a semigroup is nilpotent if some power is equal to {0} . All maximal sub-
semigroups of a finite Rees matrix semigroup were described in the same paper, 
a result which was later extended in [11] to arbitrary finite semigroups. In [16], 
Howie used the induced bipartite graph to describe the subsemigroup of a Rees 
matrix semigroup generated by its idempotents. Finally, in [15], Houghton 
described the homology of the induced bipartite graph, and a detailed overview 
of his work is given in [26].

Example 5.7  Let S = M0[G;{1, 2, 3}, {�,�};P] where

E = {{i, �} ∶ p
�,i ≠ 0},

Fig. 1   Induced bipartite graph
1 2 3

λ µ
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Then the induced bipartite graph of S is given in Fig. 1.

Example 5.8  Let S = M0[G;I,�;P] be such that P has no zero entries, so that S is 
isomorphic to a completely simple semigroup with zero adjoined. Then � (P) is a 
complete bipartite graph.

Notation 5.9  Let S = M0[G;I,�;P] be a Rees matrix semigroup. For an n-tuple 
a = ((i1, g1, �1),… , (in, gn, �n)) of S∗ , we write � (a) for the 2n-tuple (i1, �1,… , in, �n) 
of � (P).

Following [2], we adapt the isomorphism theorem for Rees matrix semigroups to 
explicitly highlight the role of the induced bipartite graph:

Theorem  5.10  Let S1 = M0[G1;I1,�1;P1] and S2 = M0[G2;I2,�2;P2] be a pair 
of Rees matrix semigroups with sandwich matrices P1 = (p

�,i) and P2 = (q
�,j)

, respectively. Let � ∈ Iso(� (P1);� (P2)), � ∈ Iso(G1;G2), and ui, v� ∈ G2 for each 
i ∈ I1, � ∈ �1. Then the mapping � ∶ S1 → S2 given by

is an isomorphism if and only if p
�,i � = v

�
⋅ q

�� ,i� ⋅ ui whenever p
�,i ≠ 0. Moreover, 

every isomorphism from S1 to S2 can be described in this way.

The isomorphism � will be denoted as (�,� , (ui)i∈I , (v�)�∈�) . We also denote the 
induced group isomorphism � as �G1

 , and the induced bipartite graph isomorphism � 
as �

� (P1)
 , so that � = (�G1

,�
� (P1)

, (ui)i∈I1 , (v�)�∈�1
) . Note that the induced group iso-

morphism is not uniquely defined by � . That is, there may exist �� ∈ Iso(G1;G2) and 
u�
i
, v�

�
∈ G2 , such that �′ ≠ � but � = (��,� , (u�

i
)i∈I1 , (v

�
�
)
�∈�1

) . Examples of this phe-
nomenon will occur throughout this work.

The composition and inverses of isomorphisms between Rees matrix semigroups 
behave in a natural way as follows, and a proof can be found in [21].

Corollary 5.11  Let Sk = M
0[Gk;Ik,�k;Pk] ( k = 1, 2, 3 ) be Rees matrix semigroups. 

Then for any pair of isomorphisms � = (�,� , (ui)i∈I1 , (v�)�∈�1
) ∈ Iso(S1;S2) and 

�
� = (��,� �, (u�

j
)j∈I2 , (v

�
�
)
�∈�2

) ∈ Iso(S2;S3) we have:

	 (i)	 ��
� =

(
��

�,��
�, (u�

i�
(ui�

�))i∈I1 , ((v��
�)v�

��
)
�∈�1

)
;

	 (ii)	 �
−1 = (�−1,�−1, ((ui�−1)−1�−1)i∈I2 , ((v��−1)−1�−1)�∈�2

).

Let � = ⟨L,R,E⟩ be a bipartite graph. For each n ∈ ℕ , we let �
� ,n be the equiva-

lence relation on � n given by

Since each entry of an n-tuple of �  lies in either L or R we have that

(i, g, �)� = (i� , ui(g�)v�, ��)

(x1,… , xn) �� ,n (y1,… , yn) ⇔ [xi ∈ L ⇔ yi ∈ L, for each 1 ≤ i ≤ n].
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for each n. Moreover, as the automorphisms of �  fixes the sets L and R, it easily fol-
lows that ∼

𝛤 ,n ⊆ 𝜎
𝛤 ,n.

Proposition 5.12  If S = M0[G;I,�;P] is ℵ0-categorical, then G and � (P) are ℵ0

-categorical.

Proof  Since G is isomorphic to the non-zero maximal subgroups of S, it is ℵ0-cat-
egorical by Gould and Quinn-Gregson [9, Corollary 3.7]. Now let a = (a1,… , an) 
and b = (b1,… , bn) be a pair of �

� (P),n-related n-tuples of � (P) . Let i1 < i2 < ⋯ < is 
and j1 < j2 < ⋯ < jt be the indexes of entries of a lying in I and � , respectively 
(noting that the same is true for b as a �

� ,n b ). Suppose further that there exists 
i ∈ I, � ∈ � such that the n-tuples

are automorphically equivalent via � ∈ Aut(S) , say. By Theorem 5.10, air�� (P) = bir 

and ajr��� (P) = bjr� for each 1 ≤ r ≤ s and 1 ≤ r′ ≤ t . Hence a ∼
� (P),n b via �

� (P) , 
and we have thus shown that

Hence � (P) is ℵ0-categorical by the ℵ0-categoricity of S. 	�  ◻

However, the converse to the proposition above does not hold in general (even 
in the completely simple case).

Example 5.13  Let G = {1, a} be the group of size 2 and let I = {i0, i1,… , } and 
� = {�0, �1,… , } be infinite sets. Let P be the � × I matrix in which p

�k ,i�
= a if 

and only if k ≥ � ≥ 1 , that is,

Let S = M[G;I,�;P] . Then � (P) is a complete bipartite graph, and thus ℵ0-cate-
gorical. However, {((i0, 1, �0), (ik, 1, �k)) ∶ k ∈ ℕ} can be shown to be an infinite set 
of distinct 2-automorphism types of S. Alternatively, we will show at the end of the 
section that S is not ℵ0-categorical by Proposition 5.29.

|� n∕�
� ,n| = 2n,

((ai1 , 1, �),… , (ais , 1, �), (i, 1, aj1 ),… , (i, 1, ajt )) and

((bi1 , 1, �),… , (bis , 1, �), (i, 1, bj1),… , (i, 1, bjt )),

|� (P)n∕ ∼
� (P),n | ≤ 2n ⋅ |Sn∕ ∼S,n |.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 ⋯ 1 ⋯

1 a 1 1 ⋯ 1 ⋯

1 a a 1 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 1 1 ⋯

1 a ⋯ a a 1 ⋯

1 a ⋯ a a a ⋯

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.



829

1 3

ℵ
0

‑categoricity of semigroups II﻿	

5.1 � Connected Rees components

Let Sk = M0[G;Ik,�k;Pk] ( k ∈ A ) be a collection of Rees matrix semigroups 
with Pk = (p

(k)

�,i
) and Sk ∩ S� = {0} for each k,� ∈ A . Then we may form a single 

Rees matrix semigroup S = M0[G;I,�;P] , where I =
⋃

k∈A Ik , � =
⋃

k∈A �k and 
P = (p

�,i) is the � by I matrix defined by

That is, P is the block matrix

We denote S by ⊛G
k∈A

Sk . The subsemigroups Sk of S are called Rees components of S. 
Notice that each � (Pk) is a union of connected components of � (P) . The subsemi-
group Sk will be called a connected Rees component of S if � (Pk) is connected (and 
is therefore a connected component of � (P)).

Conversely, for any Rees matrix semigroup S = M0[G;I,�;P] there exists 
partitions {Ik ∶ k ∈ A} and {�k ∶ k ∈ A} of I and � , respectively, such that 
C(� (P)) = {�k ∪ Ik ∶ k ∈ A} . Consequently, for each k ∈ A , the subsemigroup 
Sk = M0[G;Ik,�k;Pk] of S is a connected Rees component, where Pk is the �k × Ik 
submatrix of P, and are such that SkS� = 0 for all k ≠ � . Following the work of 
Graham [10], we may then permute the rows and columns of P if necessary to 
assume without loss of generality that P is a block matrix of the form (5.1).

Note that if S is a Rees matrix semigroup with connected Rees components 
{Sk ∶ k ∈ A} then clearly

Using the fact that automorphisms of � (P) arise as collections of isomorphisms 
between its connected components, we obtain an alternative description of automor-
phisms of a Rees matrix semigroups. The proof is a simple exercise, and can be 
found in [21].

Corollary 5.14  Let S = ⊛
G
k∈A

Sk = M0[G;I,𝛬;P] be a Rees matrix semigroup such 
that each Sk = M0[G;Ik,�k;Pk] is a connected Rees component of S. Let � be a 
bijection of A and, for each k ∈ A, let �k = (�,�k, (u

(k)

i
)i∈Ik , (v

(k)

�
)
�∈�k

) be an iso-
morphism from Sk to Sk�. Then � = (�,� , (ui)i∈I , (v�)�∈�) is an automorphism of S, 
where � =

⋃
k∈A �k, and if i, � ∈ � (Pk) then ui = u

(k)

i
 and v

�
= v

(k)

�
. Moreover, every 

automorphism of S can be described in this way.

p
�,i =

{
p
(k)

�,i
if �, i ∈ � (Pk), for some k

0 else.

(5.1)P =

⎡
⎢⎢⎢⎣

P1 0 0 ⋯

0 P2 0 ⋯

0 0 P3 ⋱

⋮ ⋮ ⋱ ⋱

⎤
⎥⎥⎥⎦
.

(5.2)E(S) =
⋃
k∈A

E(Sk).
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We observe that the induced group automorphisms of the isomorphisms �k above 
must all be equal.

Recall that if S = M0[G;I,�;P] is ℵ0-categorical, then � (P) is ℵ0-categorical by 
Proposition 5.12, and thus C(� (P)) is finite, up to isomorphism, with each connected 
component being ℵ0-categorical by Proposition 5.5. We extend this result to the set 
of all connected Rees components of S as follows:

Proposition 5.15  Let S = ⊛
G
k∈A

Sk be an ℵ0-categorical Rees matrix semigroup such 
that each Sk is a connected Rees component of S. Then each Sk is ℵ0-categorical and 
S has finitely many connected Rees components, up to isomorphism.

Proof  We claim that {(Sk, ak) ∶ k ∈ A} is a system of 1-pivoted p.r.c. subsemigroups 
of S for any ak ∈ S∗

k
 , to which the result follows by Proposition 2.3. Indeed, let � 

be an automorphism of S such that ak� = al for some k, l. Then, by Corollary 5.14, 
there exists a bijection � of A with Sk� = Sk� = Sl as required. 	� ◻

Our interest is now in attaining a converse to the proposition above, since it would 
provide us with a method for building ‘new’ ℵ0-categorical Rees matrix semigroups 
from ‘old’. With the aid of Lemma 3.4, we shall prove that a converse exists in the 
class of Rees matrix semigroups over finite groups. The case where the maximal 
subgroups are infinite is an open problem.

Given a pair S = M0[G;I,�;P] and S� = M0[G;I�,��;Q] of Rees matrix semi-
groups over a group G, we denote Iso(S;S�)(1G) as the set of isomorphisms between 
S and S′ with trivial induced group isomorphism. That is, Iso(S;S�)(1G) is the subset 
of Iso(S;S�) given by

If S = S� we denote this simply as Aut(S)(1G) , and notice that Aut(S)(1G) is a sub-
group of Aut(S) by Corollary 5.11.

Lemma 5.16  Let S = M0[G;I,�;P] be a Rees matrix semigroup over a finite group 
G. Then S is ℵ0-categorical if and only if S is ℵ0-categorical over Aut(S)(1G).

Proof  Let S be ℵ0-categorical with G = {g1,… , gr} finite. Let a and b be a 
pair of n-tuples of S. For some fixed p

�,j ≠ 0 , let g be the r-tuple of S given 
by g = ((j, g1,�),… , (j, gr,�)) , and suppose that (a, g) ∼S,n+r (b, g) via 
� = (�,� , (ui)i∈I , (v�)�∈�) , say. Then, for each 1 ≤ k ≤ r , we have

so that gk� = u−1
j
gkv

−1
�

 . For each i ∈ I, � ∈ � , let ūi = uiu
−1
j

 and v̄
𝜆
= v−1

𝜇
v
𝜆
 . Then

{� ∶ ∃� ∈ Iso(� (P);� (Q)) and ui, v� ∈ G such that � = (1G,� , (ui)i∈I , (v�)�∈�)}.

(j, gk,�)� = (j� , uj(gk�)v�,��) = (j, gk,�),

(i𝜓 , ūigkv̄𝜆, 𝜆𝜓) = (i𝜓 , (uiu
−1
j
)gk(v

−1
𝜇
v
𝜆
), 𝜆𝜓)

= (i𝜓 , ui(gk𝜃)v𝜆, 𝜆𝜓)

= (i, gk, 𝜆)𝜙,
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for any (i, gk, �) ∈ S , so that 𝜙 = (1G,𝜓 , (ūi)i∈I , (v̄𝜆)𝜆∈𝛬) ∈ Aut(S)(1G) . Conse-
quently, (a, g) ∼S,Aut(S)(1G),n+r

(b, g) and in particular a ∼S,Aut(S)(1G),n
b . We have thus 

shown that

as S is ℵ0-categorical. Hence S is ℵ0-categorical over Aut(S)(1G).
The converse is immediate. 	�  ◻

We are now able to prove our desired converse to Proposition 5.15 in the case 
where the maximal subgroups are finite.

Theorem  5.17  Let S = M0[G;I,�;P] be a Rees matrix semigroup such that G is 
finite. Then S is ℵ0-categorical if and only if each connected Rees component of S 
is ℵ0-categorical and S has only finitely many connected Rees components, up to 
isomorphism.

Proof  (⇒ ) Immediate from Proposition 5.15.
(⇐ ) Since S is regular with finite maximal subgroups, to prove S is ℵ0-categori-

cal, it suffices by [9, Corollary 3.14] to show that |E(S)n∕ ∼S,n | is finite, for each 
n ∈ ℕ . Let {Sk ∶ k ∈ A} be the set of connected Rees components of S, which is 
finite up to isomorphism and with each Sk being ℵ0-categorical. Define a relation � 
on A by i � j if and only if Iso(Si;Sj)(1G) ≠ � . By Corollary 5.11 we have that � is an 
equivalence relation.

We first prove that A∕� is finite. Suppose for contradiction that there exists an 
infinite set X of pairwise �-inequivalent elements of A. Since S has finitely many 
connected components up to isomorphism, there exists an infinite subset {ir ∶ r ∈ ℕ} 
of X such that Sin ≅ Sim for each n, m. Fix an isomorphism �in

∶ Sin → Si1 for each 
n ∈ ℕ . Then as Aut(G) is finite there exists distinct n, m such that �G

in
= �

G
im

 , and so 
�in

�
−1
im

∈ Iso(Sin ;Sjm)(1G) by Corollary  5.11. Hence in � im , a contradiction, and so 
A∕� is finite.

Let S� =
⋃

k∈A Sk , noting that S′ is the 0-direct union of the Sk , and in particular 
is a subsemigroup of S. Let A∕� = {A1,… ,Ar} and set A = (A;A1,… ,Ar) . For each 
i, j ∈ A , let �i,j = Iso(Si;Sj)(1G) and fix � =

⋃
i,j∈A �i,j . We prove that {Sk ∶ k ∈ A} 

forms an (S;S�;A;� )-system in S. First, by our construction, if i, j ∈ Am for some m 
then �i,j ≠ ∅ , and so � satisfies Condition (3.1). Furthermore, it follows immediately 
from Corollary  5.11 that � satisfies Conditions (3.2) and (3.3). Finally, take any 
� ∈ Aut(A) and, for each k ∈ A , let �k ∈ �k,k� . Then as �G

k
= 1G for each k ∈ A , we 

may construct an automorphism � of S from the set of isomorphisms {�k ∶ k ∈ A} 
by Corollary  5.14. Hence, as � extends each �k by construction, we have that 
{Sk ∶ k ∈ A} forms an (S;S�;A;� )-system as required. Since Sk is ℵ0-categorical, it 
is ℵ0-categorical over �k,k = Aut(Sk)(1G) by Lemma 5.16. By Corollary 2.9 A is ℵ0

-categorical, and so

|Sn∕ ∼S,Aut(S)(1G),n
| ≤ |Sn+r∕ ∼S,n+r | < ℵ0,

|(S�)n∕ ∼S,n | < ℵ0
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by Lemma 3.4. Given that E(S) ⊆ S� by (5.2), we therefore have that

Hence S is ℵ0-categorical. 	� ◻

Open Problem 5.18  Does Theorem 5.17 hold if G is allowed to be any ℵ0-categori-
cal group?

5.2 � Labelled bipartite graphs

In Example 5.13, the problem which arose was that by shifting from the sandwich 
matrix P = (p

�,i) to the induced bipartite graph � (P) we have “forgotten” the value 
of the entries p

�,i . In this subsection we extend the construction of the induced 
bipartite graph of a Rees matrix semigroup to attempt to rectifying this problem, as 
well as to build classes of ℵ0-categorical Rees matrix semigroups. Further examples 
of ℵ0-categorical Rees matrix semigroups can then be built using Theorem 5.17.

Definition 5.19  Let � = ⟨L,R,E⟩ be a bipartite graph, � a set, and f ∶ E → � a 
surjective map. Then the triple (� ,�, f ) is called a �-labeled (by f) bipartite graph, 
which we denote as � f .

A pair of �-labeled bipartite graphs � f = (� ,�, f ) and � f � = (� �,�, f �) are iso-
morphic if there exists an isomorphism � ∶ � → �

� which preserves labels, that is, 
such that

This gives rise to a natural signature in which to consider �-labeled bipartite graphs 
as follows. For each � ∈ � , take a binary relation symbol E

�
 and let

Then we call LBG� the signature of �-labeled bipartite graphs, where (x, y) ∈ E
�
 if 

and only if {x, y} ∈ E and {x, y}f = �.
Let � f  be a �-labeled bipartite graph. Then for any set �′ and bijection 

g ∶ � → �
� , we can form a �′-labeling of �  simply by taking � fg , which we call a 

relabeling of � f  . Notice that if � is an automorphism of �  , then � ∈ Aut(� f ) if and 
only if � ∈ Aut(� fg) . Indeed, if � ∈ Aut(� f ) then for any edge {x, y} of �  we have

since g is a bijection. The converse is proven similarly, and the following result is 
then immediate from the RNT.

Lemma 5.20  Let � f  be a �-labeling of a bipartite graph � . Then � f  is ℵ0-categori-
cal if and only if any relabeling of � f  is ℵ0-categorical.

|E(S)n∕ ∼S,n | ≤ |(S�)n∕ ∼S,n | < ℵ0.

{x, y}f = � ⇔ {x� , y�}f � = �.

LBG� = LBG ∪ {E
�
∶ � ∈ �}.

{x, y}fg = �
�
⇔ {x, y}f = �

�g−1 ⇔ {x� , y�}f = �
�g−1 ⇔ {x� , y�}fg = �

�,
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Lemma 5.21  If � f = (� ,�, f ) is an ℵ0-categorical labeled bipartite graph then � is 
finite and �  is ℵ0-categorical.

Proof  For each � ∈ � , let {x
�
, y

�
} be an edge in �  such that {x

�
, y

�
}f = � . Then 

{(x
�
, y

�
) ∶ � ∈ �} is a set of distinct 2-automorphism types of � f  , and so � is finite 

by the RNT. Since automorphisms of � f  induce automorphisms of �  , the final result 
is immediate from the RNT. 	�  ◻

A consequence of the previous pair of lemmas is that, in the context of ℵ0-cat-
egoricity, it suffices to consider finitely labeled bipartite graphs, with labeling set 
� = {1, 2,… ,m} for some m ∈ ℕ.

Lemma 5.22  Let � f = (⟨L,R,E⟩,�, f ) be an �-labeled bipartite graph such that 
either L or R are finite. Then � f  is ℵ0-categorical.

Proof  Without loss of generality assume that L = {l1, l2,… , lr} is finite. Define a 
relation � on R by y � y′ if and only if y and y′ are adjacent to the same elements 
in L and {li, y}f = {li, y

�}f  for each such li ∈ L . Note that since both L and m are 
finite, R has finitely many �-classes, say R1,… ,Rt . Considering R simply as a set, 
fix A = (R;R1,… ,Rt).

Since L is finite, to prove the ℵ0-categoricity of � f  it suffices to show that 
(� f⧵L)n = Rn has finitely many ∼

� f ,n-classes for each n ∈ ℕ by a simple generali-
zation of Gould and Quinn-Gregson [9, Proposition 2.11]. Let a = (r1,… , rn) and 
b = (r�

1
,… , r�

n
) be n-tuples of R such that a ∼A,n b via � ∈ Aut(A) , say. We claim 

that the map 𝜓̂ ∶ 𝛤
f
→ 𝛤

f  which fixes L and is such that 𝜓̂|R = 𝜓 is an automor-
phism of � f  . Indeed, as � setwise fixes the �-classes, we have (r, r�) ∈ � for each 
r ∈ R . Hence r and r� are adjacent to the same elements in L, and so

so that 𝜓̂ is an automorphism of �  . Similarly {li, r}f = {li, r𝜓}f = {li𝜓̂ , r𝜓̂}f  , so 
that 𝜓̂ preserves labels. This proves the claim.

For each 1 ≤ k ≤ n we have rk𝜓̂ = rk𝜓 = r�
k
 , so that a ∼

� f ,n b . Consequently,

The set extension A is ℵ0-categorical by Corollary 2.9, and so |An∕ ∼A,n | is finite 
for each n ≥ 1 . Hence � f  is ℵ0-categorical. 	�  ◻

Lemma 5.23  Let � f = (⟨L,R,E⟩,�, f ) be such that there exists p ∈ � with 
{x, y}f = p for all but finitely many edges in � . Then � f  is ℵ0-categorical if and only 
if �  is ℵ0-categorical.

Proof  Suppose �  is ℵ0-categorical, and that {l1, r1},… , {lt, rt} are precisely the 
edges of �  such that {lk, rk}f ≠ p , where lk ∈ L and rk ∈ R . Let a and b be n-tuples 
of � f  such that

{li, r} ∈ E ⇔ {li, r𝜓} ∈ E ⇔ {li𝜓̂ , r𝜓̂} ∈ E,

|(� f⧵L)n∕ ∼
� f ,n | ≤ |An∕ ∼A,n |.
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via � ∈ Aut(� ) , say. We claim that � is an automorphism of � f  . For each 1 ≤ k ≤ t 
we have lk� = lk and rk� = rk so that

It follows that {l, r}f = p if and only if {l� , r�}f = p , and so � preserves all labels, 
thus proving the claim. Consequently, a ∼

� f ,n b via � , so that

by the ℵ0-categoricity of �  . Hence � f  is ℵ0-categorical.
The converse is immediate from Lemma 5.21. 	�  ◻

Definition 5.24  Given a Rees matrix semigroup S = M0[G;I,�;P] , we form a G(P)-
labeling of the induced bipartite graph � (P) = ⟨I,�,E⟩ of S in the natural way by 
taking the labeling f ∶ E → G(P) given by

We denote the labeled bipartite graph by � (P)l , which we call the induced labeled 
bipartite graph of S.

Note that, unlike the corresponding case for the induced bipartite graph � (P) , 
there exist isomorphic Rees matrix semigroups with non-isomorphic induced 
labeled bipartite graphs. For example, let G be a non-trivial group and P and Q be 
� × � matrices over G ∪ {0} given by

where a ∉ {0, 1} . Let S = M0[G;�, �;P] and T = M0[G;�, �;Q] , noting that 
� (P) = � (Q) (and are isomorphic to K2,1 ). Then (1G, 1� (P), (ui)i∈�, (v�)�∈�) is an iso-
morphism from S to T, where u1 = 1 = v1 , and u2 = a . However, since � (P)l and 
� (Q)l have different labeling sets, they are not isomorphic.

Proposition 5.25  Let S = M0[G;I,�;P] be a Rees matrix semigroup such that G and 
� (P)l are ℵ0-categorical. Then S is ℵ0-categorical.

Proof  Since � (P)l is ℵ0-categorical, the set G(P) is finite by Lemma  5.21, say 
G(P) = {x1,… , xr} . Consider a pair of n-tuples a = ((i1, g1, �1),… , (in, gn, �n)) and 
b = ((j1, h1,�1),… , (jn, hn,�n)) of S∗ under the pair of conditions that 

(1)	 (g1,… , gn, x1,… , xr) ∼G,n+r (h1,… , hn, x1,… , xr),
(2)	 � (a) ∼

� (P)l,2n � (b),

via � ∈ Aut(G) and � ∈ Aut(� (P)l) , respectively (noting the use of Nota-
tion  5.9 here). We claim that � = (�,� , (1)i∈I , (1)�∈�) is an automorphism of 

(a, l1, r1,… , lt, rt) ∼
� ,n+2t (b, l1, r1,… , lt, rt)

{lk, rk}f = {lk� , rk�}f .

|(𝛤 f )n∕ ∼
𝛤 f ,n | ≤ |𝛤 n+2t∕ ∼

𝛤 ,n+2t | < ℵ0

{i, �}f = p
�,i.

P =
(
1 a

)
Q =

(
1 1

)
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S. Indeed, if p
�,i ≠ 0 for some i ∈ I, � ∈ � , then p

�,i = xk for some k, so that 
{i, �}f = {i� , ��}f = xk . Consequently,

and the claim follows by Theorem 5.10. Hence

for each 1 ≤ t ≤ n , so that

as G and � (P)l are ℵ0-categorical. Hence S is ℵ0-categorical by Gould and Quinn-
Gregson [9, Proposition 2.11]. 	�  ◻

The proposition above enables us to produce concrete examples of ℵ0-categori-
cal Rees matrix semigroups. For example, the result below is immediate from 
Lemma 5.22.

Corollary 5.26  Let S be a Rees matrix semigroup over an ℵ0-categorical group hav-
ing sandwich matrix P with finitely many rows or columns, and G(P) being finite. 
Then S is ℵ0-categorical.

Similarly, Lemma  5.23 may be used in conjunction with Proposition  5.25 to 
obtain:

Corollary 5.27  Let S = M0[G;I,�;P] be a Rees matrix semigroup such that G and 
� (P) are ℵ0-categorical, and all but finitely many of the non-zero entries of P are 
the identity of G. Then S is ℵ0-categorical.

However, the converse to Proposition 5.25 fails to hold in general, and a coun-
terexample will be constructed later in the next subsection. The idea is that any 
M0[G;I,�;P] in which G(P) is infinite forces � (P)l to be non ℵ0-categorical by 
Lemma 5.25.

Open Problem 5.28  Does there exist an ℵ0-categorical connected Rees matrix semi-
group with G(P) finite which is not isomorphic to a Rees matrix semigroup with ℵ0

-categorical induced labeled bipartite graph?

We prove that the open problem has a negative answer for the case of com-
pletely simple semigroups. Given a completely simple semigroup M[G;I,�;P] , 
we call P normal if there exist i ∈ I and � ∈ � such that p

�,i = p
�,j = 1 for every 

j ∈ I and � ∈ � . Every completely simple semigroup is isomorphic to a Rees 
matrix semigroup without zero in which the sandwich matrix is normal [17].

p
�,i� = xk� = xk = p

�� ,i� ,

(it, gt, �t)� = (it� , gt�, �t�) = (jt, ht,�t)

|(S∗)n∕ ∼S,n | ≤ |Gn+r∕ ∼G,n+r | ⋅ |(𝛤 (P)l)2n∕ ∼
𝛤 (P)l,2n | < ℵ0,
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Proposition 5.29  Let M[G;I,�;P] be an ℵ0-categorical completely simple semi-
group in which P is normal and G(P) is finite. Then � (P)l is ℵ0-categorical.

Proof  Suppose P is normalised via i∗ ∈ I and �∗ ∈ � . Since G(P) is finite we may 
fix some finite subsets I� = {x1,… , xp} ⊆ I and 𝛬� = {y1,… , yq} ⊆ 𝛬 such that the 
�

� × I� submatrix of P contains every element of G(P). Let x be the pq-tuple of S 
given by

Using the notation of Proposition 5.12, let a = (a1,… , an) and b = (b1,… , bn) be a 
pair of �

� (P)l,n-related n-tuples of � (P)l . Let i1 < i2 < ⋯ < is and j1 < j2 < ⋯ < jt 
be the indexes of entries of a (and thus b ) lying in I and � , respectively. Suppose 
further that there exists i ∈ I and � ∈ � such that the n + pq + 1-tuples

are automorphically equivalent via � = [�,� , (ui)i∈I , (v�)�∈�] ∈ Aut(S) , say. Then � 
is an automorphism of � (P) which maps a to b . We aim to show that � preserves 
labels, i.e., p

�,i = p
�� ,i� for every i ∈ I, � ∈ � . Since � fixes (i∗, 1, �∗) we have by 

Gould and Quinn-Gregson [24, Corollary 4.9] that there exists g ∈ G with ui = g 
and v

�
= g−1 for every i ∈ I, � ∈ � . Since � fixes x1,… , xp, y1,… , yq we have

Consequently, as every p
�,i is equal to some pyk ,x� , we have p

�,i� = g−1p
�,ig for every 

i ∈ I , � ∈ � . However, p
�,i� = v

�
p
�� ,i�ui = g−1p

�� ,i�g , and hence � preserves 
labels as required. We have thus shown that

as S is ℵ0-categorical. 	�  ◻

The sandwich matrix P of a Rees matrix semigroup M0[G;I,�;P] can also 
always be normalised, but it is necessarily more complex. We can restate Open 
Problem 5.28 as follows:

Open Problem 5.30  If M0[G;I,�;P] is ℵ0-categorical, where P is normal and G(P) 
is finite, then is � (P)l ℵ0-categorical?

Notice that in Example 5.13, the labeled bipartite graph is clearly not ℵ0-cate-
gorical since each ik is adjacent to exactly k vertices in which the edge is labeled 
by a. By construction the matrix P is normal via row �0 and column i0 , and 
hence S is not ℵ0-categorical by the proposition above.

((x1, 1, y1), (x1, 1, y2),… , (x1, 1, yq), (x2, 1, y1),… , (xp, 1, yq)),

((ai1 , 1, �),… , (ais , 1, �), (i, 1, aj1 ),… , (i, 1, ajt ), x, (i
∗, 1, �∗)) and

((bi1 , 1, �),… , (bis , 1, �), (i, 1, bj1),… , (i, 1, bjt ), x, (i
∗, 1, �∗))

pyk ,x�� = vykpyk� ,x��
ux� = g−1pyk ,x�g.

(𝛤 (P)l)n∕ ∼
𝛤 (P)l,n | ≤ |Sn+pq+1∕ ∼S,n+pq+1 | < ℵ0
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5.3 � Pure completely 0‑semigroups

Following Jackson and Volkov [18], we call a completely 0-simple semigroup S pure 
if it is isomorphic to a Rees matrix semigroup with sandwich matrix over {0, 1} . 
Houghton [15] considered trivial cohomology classes of Rees matrix semigroups, 
a property which is proven in Sect. 2 of his article to be equivalent to being pure. 
Hence, by Houghton [15, Theorem 5.1], a completely 0-simple semigroup is pure if 
and only if, for each a, b ∈ S,

It follows that all orthodox completely 0-simple semigroups are necessarily pure, 
but the converse is not true in general. Indeed, a completely 0-simple semigroup is 
orthodox if and only if it is isomorphic to a Rees matrix semigroup with sandwich 
matrix over {0, 1} and with induced bipartite graph a disjoint union of complete 
bipartite graphs [13, Theorem 6]. Hence, in this case, it can be easily shown that the 
isomorphism types of the connected Rees components depends only on the isomor-
phism types of the induced (complete) bipartite graphs.

We observe that if the sandwich matrix of a Rees matrix semigroup is over {0, 1} 
then � (P)l is simply labeled by {1} . Therefore all automorphisms of � (P) automat-
ically preserve the labeling, and so � (P)l is ℵ0-categorical if and only if � (P) is 
ℵ0-categorical. The equivalence of statements (1), (3), and (4) in the result below 
therefore follow from Propositions 5.12 and 5.25. For the interest of the reader we 
give an alternative proof of (4) ⇒ (1) using results in [9].

Lemma 5.31  Let S = M0[G;I,�;P] be a pure Rees matrix semigroup. Then the fol-
lowing are equivalent:

(1)	 S is ℵ0-categorical;
(2)	 G and ⟨E(S)⟩ are ℵ0-categorical;
(3)	 G and � (P) are ℵ0-categorical;
(4)	 G and M0[{1};I,�;P] are ℵ0-categorical.

Proof  (1) ⇒ (2) If S is ℵ0-categorical then so is G by Proposition 5.12. Clearly E(S) 
is preserved by automorphisms of S, and hence ⟨E(S)⟩ is a characteristic subsemi-
group of S, and thus inherits ℵ0-categoricity.

(2) ⇒ (3) Suppose that ⟨E(S)⟩ = ⟨{(i, 1, �) ∶ p
�,i ≠ 0} ∪ {0}⟩ is ℵ0-categorical. 

Let Sk = M0[G;Ik,�k;Pk] ( k ∈ A ) be the connected Rees components of S, where 
Pk is the �k × Ik submatrix of P. Then ⟨E(S)⟩ is isomorphic to the 0-direct union of 
the semigroups Ek = ⟨E(Sk)⟩ , and since each Pk is regular it is a simple exercise to 
show that Ek = M0[{1};Ik,�k;Pk] . By Gould and Quinn-Gregson [9, Corollary 4.9] 
⟨E(S)⟩ is ℵ0-categorical if and only if each Ek is ℵ0-categorical and {Ek ∶ k ∈ A} is 
finite, up to isomorphism. By Proposition 5.12 each � (Pk) is ℵ0-categorical, and by 
Theorem 5.10 C(� (P)) = {� (Pk) ∶ k ∈ A} is finite, up to isomorphism. Hence � (P) 
is ℵ0-categorical by Proposition 5.5.

[a, b ∈ ⟨E(S)⟩ and aH b] ⇒ a = b.
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(3) ⇒ (4) Immediate from Corollary 5.27.
(4) ⇒ (1) The elements of the combinatorial Rees matrix semigroup 

T = M0[{1};I,�;P] can be identified2 with the set (I × �) ∪ {0} . Since ℵ0-catego-
ricity is preserved by finite direct products [12], the semigroup U = G × T  is ℵ0

-categorical. The set I = {(g, 0) ∶ g ∈ G} is an ideal of U, and the Rees quotient 
U/I is a principal factor of U. Hence U/I is ℵ0-categorical by Gould and Quinn-
Gregson [9, Theorem 3.12]. Moreover, the map � ∶ U∕I → S given by 0� = 0 and 
(g, (i, �))� = (i, g, �) ( g ∈ G, i ∈ I, � ∈ � ) is an isomorphism, to which the result 
follows. 	� ◻

Furthermore, since complete bipartite graphs are ℵ0-categorical by Theorem 5.3, 
a disjoint union of complete bipartite graphs is ℵ0-categorical if and only if it has 
finitely many connected components, up to isomorphism, by Proposition 5.5. The 
corollary above thus reduces in the orthodox case as follows.

Corollary 5.32  Let S = M0[G;I,�;P] be an orthodox Rees matrix semigroup. Then 
the following are equivalent:

(1)	 S is ℵ0-categorical;
(2)	 G and E(S) are ℵ0-categorical;
(3)	 G is ℵ0-categorical and � (P) has finitely many connected components, up to 

isomorphism;
(4)	 G and M0[{1};I,�;P] are ℵ0-categorical.

In [9] we studied inverse completely 0-simple semigroups, that is, Brandt semi-
groups. These are necessarily orthodox, and are isomorphic to a Rees matrix semi-
group of the form M0[G;I, I;P] where P is the identity matrix, that is, pii = 1 and 
pij = 0 for each i ≠ j in I, and are denoted B0[G;I] . Since the induced biparite graph 
of a Brandt semigroup is a perfect matching, it is ℵ0-categorical by Theorem 5.3. 
Corollary 5.32 then simplifies to obtain our classification of ℵ0-categorical Brandt 
semigroups [9, Theorem 4.2], which states that a Brandt semigroup over a group G 
is ℵ0-categorical if and only if G is ℵ0-categorical.

We are now able to construct a simple counterexample to the converse of Propo-
sition 5.25. Let G = {gi ∶ i ∈ ℕ} be an infinite ℵ0-categorical group. Let

where Q = (qi,j) is such that qi,i = gi and qi,j = 0 for each i ≠ j . Then � (P) = � (Q) 
(and are isomorphic to Pℕ ) and (1G, 1� (P), (g

−1
i
)i∈ℕ, (1)�∈ℕ) is an isomorphism from 

S to T by Theorem 5.10 since

S = M0[G;ℕ,ℕ;P] = B0[G;ℕ] and T = M0[G;ℕ,ℕ;Q],

pi,i1G = 1 = gig
−1
i

= 1 ⋅ qi,i ⋅ g
−1
i
,

2  Semigroups of this form are known as rectangular 0-bands.
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for each i ∈ ℕ . Since S is ℵ0-categorical by the ℵ0-categoricity of G, the same is true 
of T. However, � (Q)l is a G-labeling, and is thus not ℵ0-categorical by Lemma 5.21. 
Hence T is our desired counterexample.

5.4 � Alternative directions

To further incorporate the link between the induced bipartite graph of a Rees matrix 
semigroup and the entries of the sandwich matrix, we could instead introduce the 
stronger notion of an induced group labeled bipartite graph. A group labeled bipar-
tite graph is a G-labeled bipartite graph � f = (⟨L,R,E⟩,G, f ) , for some group G, 
where an automorphism of � f  is a pair (� , �) ∈ Aut(� ) × Aut(G) such that, for each 
� ∈ L, r ∈ R,

However, group labeled biparite graphs do not appear to be first-order structures.
Let S = M0[G;I,�;P] be such that G(P) forms a subgroup of G. Then we may 

define the induced group labeled bipartite graph of S as the G(P)-labeled bipar-
tite graph � (P)f  , with automorphisms being pairs (� , �) ∈ Aut(� ) × Aut(G(P)) such 
that p

�� ,i� = p
�,i� for each i ∈ I, � ∈ � . Notice that if (� , �) is an automorphism 

of the induced group labeled bipartite graph of S and is such that � extends to an 
automorphism �′ of G, then (��,� , (1)i∈I , (1)�∈�) is clearly an automorphism of S. 
However, we do not in general obtain all automorphisms of S in this way. Similar 
problems therefore arise in regard to when ℵ0-categoricity of S passes to its induced 
group labeled bipartite graph (by which we mean the induced group labeled bipar-
tite graph has an oligomorphic automorphism group).

An alternative next step could be to extend the scope of this section by consider-
ing the ℵ0-categoricity of Rees matrix semigroups over semigroups (or monoids), 
denoted M0[S;I,�;P] , where again we assume P is regular. Similarly we may define 
M[S;I,�;P] . However, this task is as difficult as considering the ℵ0-categoricity 
of all semigroups. Indeed, if S is a semigroup then T = M0[S1;{i}, {�};(1)] is iso-
morphic to S with both a zero and an identity adjoined, and by Gould and Quinn-
Gregson [9, Corollary 2.12] S is ℵ0-categorical if and only if T is ℵ0-categorical. A 
second problem that arises is that the vital Theorem 5.10 only holds in the forwards 
direction for Rees matrix semigroups over semigroups. As such we do not have an 
explicit description of the automorphism group of M0[S;I,�;P] via its components, 
and many of the proofs of this section do not seem to be easily extendable. In fact 
the ℵ0-categoricity of a Rees matrix semigroup over a semigroup S does not neces-
sarily pass to S, unlike for groups as shown in Proposition 5.12. For example, take 
any semigroup S with zero element � , and consider M = M[S;{i}, {�};(�)] . Then M 
is isomorphic to a null semigroup with zero element (i, �, �) , which is ℵ0-categorical 
by Gould and Quinn-Gregson [9, Example 2.7]; taking S to be non ℵ0-categorical 
gives our desired example. On the other hand, it can be easily shown that Proposi-
tion 5.25 can be extended to Rees matrix semigroups over monoids. This allows us 
to build chains of ℵ0-categorical semigroups as follows. Let M be an ℵ0-categorical 
monoid, and let P be a � × I matrix over {0, 1} in which � (P) is ℵ0-categorical. Take 

(�, r)f = g ⇔ (�� , r�)f = g�.
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M1 = M0[M;I,�;P] , and inductively define Mk = M0[M1
k−1

;I,�;P] for k > 1 . Then 
each Mk is ℵ0-categorical, and Mk−1 embeds into Mk , for each k ∈ ℕ.
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