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Abstract
A topologized semilattice X is called complete if each non-empty chain C ⊂ X
has inf C ∈ C̄ and supC ∈ C̄ . We prove that for any continuous homomorphism
h : X → Y from a complete topologized semilattice X to a sequential Hausdorff
semitopological semilattice Y the image h(X) is closed in Y .

Keywords Sequential space · Complete semitopological semilattice · The tower
number

This paper is a continuation of the investigations [1–3] of complete topologized
semilattices.

A semilattice is any commutative semigroup of idempotents (an element x of a
semigroup is called an idempotent if xx = x).

A semilattice endowedwith a topology is called a topologized semilattice. A topolo-
gized semilattice X is called a (semi)topological semilattice if the semigroup operation
X × X → X , (x, y) �→ xy, is (separately) continuous.

Each semilattice carries a natural partial order≤ defined by x ≤ y iff xy = x = yx .
Endowed with this partial order, the semilattice is a poset, i.e., partially ordered set.
Many properties of a semilattice can be expressed in the language of this partial order.
In particular, a subset C of a semilattice (more generally, poset) X is called a chain if
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any points x, y ∈ C are comparable in the sense that x ≤ y or y ≤ x . A poset X is
called chain-finite if each chain in X is finite.

In [13] Stepp proved that for any homomorphism h : X → Y from a chain-finite
semilattice to a Hausdorff topological semilattice Y the image h(X) is closed in Y . In
[1], the authors improved this result of Stepp proving the following theorem.

Theorem 1 For any homomorphism h : X → Y from a chain-finite semilattice to a
Hausdorff semitopological semilattice Y , the image h(X) is closed in Y .

A topological counterpart of the notion of a chain-finite poset is the notion of a
complete topologized poset. A topologized poset is a poset (X ,≤) endowed with a
topology. A topologized poset X is called complete if each chain C ⊂ X has inf C
and supC that belong to the closure C̄ of the chain C in X .

Complete topologized semilattices were introduced in [1] under the name k-
complete topologized semilattices. But we prefer to call such topologized semilattice
complete (taking into account the fundamental role of complete topologized semi-
lattices in the theory of absolutely closed topologized semilattices, see [1–4,7,11]).
In [1] the authors proved the following closedness property of complete topologized
semilattices.

Theorem 2 For any continuous homomorphism h : X → Y from a complete topolo-
gized semilattice X to a Hausdorff topological semilattice Y the image h(X) is closed
in Y .

Theorems 1 and 2 motivate the following (still) open problem.

Problem 1 Assume that h : X → Y is a continuous homomorphism from a complete
topologized semilattice X to aHausdorff semitopological semilattice Y . Is h(X) closed
in Y?

The answer to Problem 1 is affirmative if the semitopological semilattice Y is
functionally Hausdorff [5] or linearly ordered [10].

In this paper we answer Problem 1 affirmatively under the additional condition that
the semitopological semilattice Y is sequential. We recall that a topological space Y is
sequential if each sequentially closed subset of Y is closed. A subset A ⊂ Y is called
sequentially closed if A contains the limit points of all sequences {an}n∈ω ⊂ A that
converge in Y .

The following theorem is the main result of this paper.

Theorem 3 For any continuous homomorphism h : X → Y from a complete topolo-
gized semilattice X to a sequential Hausdorff semitopological semilattice Y the image
h(X) is closed in Y .

Theorem 3 will be proved in Sect. 3 after some preliminary work made in Sects. 1
and 2. More precisely, Theorem 3 is an immediate corollary of Corollary 4 treating
homomorphisms from complete topologized semilattices to Hausdorff semitopologi-
cal semilattices of countable tightness.
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664 T. Banakh, S. Bardyla

1 Some properties of �!-complete topologized semilattices

In this section we shall prove some properties of complete topologized semilattices,
which will be used in the proof of our main results.

First we introduce a parametric version of completeness. Let κ be an infinite car-
dinal. A topologized semilattice X is defined to be

• ↑κ-complete if any non-empty chainC ⊂ X of cardinality |C | ≤ κ has supC ∈ C̄ ;
• ↓κ-complete if any non-empty chainC ⊂ X of cardinality |C | ≤ κ has inf C ∈ C̄ ;
• 	κ-complete if X is ↑κ-complete and ↓κ-complete;
• down-complete if X is ↓κ-complete for any cardinal κ .

It is clear that a topologized semilattice X is complete if and only if X is 	κ-complete
for every cardinal κ if and only if X is 	κ-complete for the cardinal κ = |X |.

A subset D of a poset (X ,≤) is called up-directed (resp. down-directed) if for any
elements x, y ∈ D there exists an element z ∈ D such that x ≤ z and y ≤ z (resp.
z ≤ x and z ≤ y). It is clear that each chain is both up-directed and down-directed.

Lemma 1 If a topologized semilattice X is ↑ω-complete, then any non-empty count-
able up-directed subset D ⊂ X has sup D ∈ D̄.

Proof Assume that the topologized semilattice X is ↑ω-complete and take any non-
empty countable directed subset D = {xn}n∈ω in X . Put y0 := x0 and for every n ∈ N

choose an element yn ∈ D such that yn ≥ xn and yn ≥ yn−1 (such an element yn
exists as D is directed).

By the ↑ω-completeness, the chain C := {yn}n∈ω has supC ∈ C̄ ⊂ D̄. We claim
that supC is the smallest upper bound of the set D. Indeed, for any n ∈ ω we get
xn ≤ yn ≤ sup D and hence supC is an upper bound for the set D. On the other hand,
each upper bound b for D is an upper bound for C and hence supC ≤ b. Therefore
sup D = supC ∈ C̄ ⊂ D̄. ��
Lemma 2 If a topologized semilattice X is ↓ω-complete, then each non-empty count-
able subset A ⊂ X has inf A ∈ S̄ where S is the semilattice generated by A in
X.

Proof Let A = {xn}n∈ω be a countable set in X . By the ↓ω-completeness of X ,
the chain C := {x0 · · · xn}n∈ω ⊂ S has inf C ∈ C̄ ⊂ S̄. Taking into account that
inf A = inf C , we conclude that inf A = inf C ∈ S̄. ��

Let X be an 	ω-complete topologized semilattice, A be a non-empty countable
set in X and S be a subsemilattice of X , generated by A. Let [A]<ω be the family of
all finite subsets of A. Lemma 2 implies that for each F ∈ [A]<ω the set A \ F has
inf(A \ F) ∈ S̄. By Lemma 1, the directed set D := {inf(A \ F) : F ∈ [A]<ω} has
sup D ∈ D̄ ⊂ S̄. The element

inf∗A := sup
F∈[A]<ω

inf(A \ F) = sup D ∈ S̄

will be called the essential infimum of the set A in X .
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An important property of the essential infimum is that inf∗ B ≤ inf∗ A for any
countable subset A ⊂∗ B in X . Here the symbol A ⊂∗ B means that the complement
A \ B is finite, so A is almost included into B.

We shall say that an infinite subset A of a topological space X converges to a point
x ∈ X if each neighborhood Ox ⊂ X of x contains all but finitely many points of the
set A (which means that A ⊂∗ Ox ). If an infinite set A converges to a point x , then
any infinite subset B ⊂ A also converges to x .

We are going to show that for any 	ω-complete Hausdorff topologized semilattice
X containing no strictly increasing transfinite sequences of length t, any countable
subset A ⊂ X that converges to a point x contains an infinite subset B ⊂ A such that
inf∗ B = x .

The cardinal t (called the tower number in [14]) is defined as the smallest cardinal
κ for which there exists a transfinite sequence (Tα)α∈κ of infinite subsets of ω having
the following two properties:

(1) Tβ ⊂∗ Tα for all α < β < κ;
(2) for any infinite set I ⊂ ω there exists α ∈ κ such that I �⊂∗ Tα .

It is known [14,15] that ω1 ≤ t ≤ c, and t = c under Martin’s Axiom. By a recent
breakthrough result of Malliaris and Shelah [12], t is equal to the pseudointersection
number p, defined as the smallest cardinality of a non-empty family A of subsets of
ω such that for any finite subfamily F ⊂ A the intersection ∩F is infinite but for any
infinite set I ⊂ ω there exists A ∈ A such that I �⊂∗ A. More information on cardinals
p, t and other cardinal characteristics of the continuum can be found in the surveys
[8,14,15]. We identify cardinals with the smallest ordinals of a given cardinality.

Let κ be an ordinal. A transfinite sequence (xα)α∈κ of points of a partially ordered
set X is called strictly increasing if xα < xβ for any ordinals α < β in κ .

Lemma 3 Let Y be a Hausdorff semitopological semilattice and X be an	ω-complete
subsemilattice of Y containing no strictly increasing transfinite sequences of length
t. Then each infinite set A ⊂ X that converges to a point y ∈ Y contains an infinite
subset B ⊂ A such that inf∗B = y.

Proof Fix an infinite set A ⊂ X that converges to a point y ∈ Y . To derive a contra-
diction, assume that inf∗B �= y for any infinite subset B ⊂ A.

Claim 1 For any infinite subset B ⊂ A there exists an infinite subset C ⊂ B such that
inf∗B < inf∗C.

Proof By our assumption, inf∗B �= y. By the Hausdorff property of Y , there exists an
open neighborhood U ⊂ Y of y such that inf∗B /∈ Ū .

Inductively we shall construct a sequence of pairwise distinct points {xn}n∈ω in B
such that for every k ≤ n the product yk,n := xk · · · xn y is contained in U .

To start the inductive construction, find a neighborhood V0 ⊂ U of y such that
V0y ⊂ U and choose any point x0 ∈ V0 ∩ B (such a point exists as B ⊂ A converges
to y). It follows that x0y ∈ V0y ⊂ U .

Assume that for some n ∈ ω points x0, . . . , xn ∈ B are chosen so that yk,n :=
xk · · · xn y ∈ U for every k ≤ n. For every k ≤ n choose a neighborhood Vk,n ⊂ U of
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y such that yk,nVk,n y ⊂ U (such neighborhood exists since yk,n yy = yk,n ∈ U and Y
is a semitopological semilattice). Consider the neighborhood Vn+1 := ⋂

k≤n Vk,n of
y and choose any point xn+1 ∈ Vn+1∩ B \{x0, . . . , xn}. For every k ≤ n the choice of
the neighborhood Vk,n guarantees that yk,n+1 := xk · · · xnxn+1y ∈ U . This completes
the inductive step.

After completing the inductive construction, consider the set C = {xk}k∈ω ⊂ B.
We claim that inf∗ C = y · inf∗ C ∈ Ū . For every k ∈ ω consider the set Ck =
{xn}n≥k ⊂ C and let Sk be the subsemilattice generated by Ck in X . By the ↓ω-
completeness of X and Lemma 2, the set Ck has inf Ck = inf Sk ∈ S̄k . In fact,
inf Ck = inf Sk = inf{xk · · · xn : n ≥ k} ∈ clX ({xk · · · xn : n ≥ k}). Observe that
inf Ck ≤ xn for all n ≥ k. Consequently, y ∈ clY ({xn}n≥k) ⊂ ↑ inf Ck and hence
y · inf Ck = inf Ck .

The continuity of the shift sy : Y → Y , sy : z �→ zy, guarantees that inf Ck =
y · inf Ck ∈ y · clX ({xk · · · xn : n ≥ k}) ⊂ clY ({xk · · · xn y : n ≥ k}) ⊂ Ū .

By the ↑ω-completeness of X , we have inf∗C = supk∈ω inf Ck ∈ clX ({inf Ck :
k ∈ ω}) ⊂ Ū and hence inf∗C �= inf∗B as inf∗B /∈ Ū . Taking into account that
inf∗B ≤ inf∗C , we conclude that inf∗B < inf∗C . ��

Choose any countable infinite subset A0 ⊂ A. Claim 1 (on successor steps) and the
definition of the cardinal t (on limit steps) help us to construct a transfinite sequence
(Aα)α<t of infinite subsets of A0 such that for any α < t the following conditions are
satisfied:

(1) Aα+1 ⊂ Aα and inf∗Aα < inf∗Aα+1.
(2) Aα ⊂∗ Aγ for all γ < α.

Then
(
inf∗Aα

)
α∈t is a strictly increasing transfinite sequence of length t in X , whose

existence is forbidden by our assumption. This contradiction completes the proof of
the lemma. ��

We recall that a topological space X is defined to have countable tightness if for
any set A ⊂ X and point a ∈ Ā, there exists a countable set B ⊂ A such that a ∈ B̄. It
is known [9, 1.7.3c] that each subspace of a sequential space has countable tightness.

Lemma 4 A topologized semilattice X contains no strictly increasing transfinite
sequences of length ω1 if X is ↑ω1-complete, the space X has countable tightness,
and for every x ∈ X the lower set ↓x is closed in X.

Proof To derive a contradiction, assume that X contains a strictly increasing transfinite
sequence (xα)α∈ω1 . By the ↑ω1-completeness of X the chain C = {xα : α ∈ ω1} has
c := supC ∈ C̄ . Since (xα)α∈ω1 is strictly increasing, c /∈ C . By the countable
tightness of X , there exists a countable set B ⊂ C such that c ∈ B̄. By the countability
of B, there exists a countable ordinal β such that B ⊂ {xα : α < β}. Then c ∈ B̄ ⊂
↓xβ = ↓xβ and hence c ≤ xβ < xβ+1 ≤ c, which is a desired contradiction. ��

2 The closedness of complete subsemilattices

In this section we search for conditions of (sequential) closedness of a 	ω-complete
semilattice X in a Hausdorff semitopological semilattice Y .

123



On images of complete topologized subsemilattices in… 667

Theorem 4 Let Y be aHausdorff semitopological semilattice and X be a	ω-complete
subsemilattice of Y . If X contains no strictly increasing transfinite sequences of length
t, then X is sequentially closed in Y and the partial order {(x, y) ∈ X × X : xy = x}
of X is sequentially closed in Y × Y .

Proof Assuming that X is not sequentially closed in Y , we can find a sequence (xn)n∈ω

of pairwise distinct points of X that converges to a point y ∈ Y \ X . It follows that
the infinite set A = {xn}n∈ω ⊂ X converges to y. By Lemma 3, the set A contains an
infinite subset B ⊂ A such that y = inf∗ B ∈ X . But this contradicts the choice of y.

To show that the partial order P = {(x, y) ∈ X × X : xy = x} of X is sequentially
closed in Y ×Y , fix any sequence {(xn, yn)

}
n∈ω

⊂ P that converges to a pair (x, y) ∈
Y × Y . We should prove that (x, y) ∈ P . Since X is sequentially closed in Y , the
limits x, y of the sequences (xn)n∈ω and (yn)n∈ω belong to X . The separate continuity
of the semigoup operation on the Hausdorff space X implies that the sets ↑x := {z ∈
Y : zx = x} and ↓y := {z ∈ Y : zy = z} are closed in Y .

If the set {xn}n∈ω is finite, then the convergence x = limn→∞ xn implies that the set
I := {n ∈ ω : xn = x} is infinite and then y ∈ clY ({yn}n∈I ) ⊂ ↑x (as x = xn ≤ yn
for all n ∈ I ) and hence (x, y) ∈ P . So, we can assume that the set {xn}n∈ω is infinite.
Applying Lemma 3, we can find an infinite set � ⊂ ω such that x = inf∗{xn}n∈�.

If the set {yn}n∈� is finite, then the convergence y = limn→∞ yn implies that the set
J := {n ∈ � : yn = y} is infinite and then x ∈ clX ({xn}n∈J ) ⊂ ↓y and (x, y) ∈ P .

So we can assume that the set {yn}n∈� is infinite. Applying Lemma 3, we can find
an infinite set � ⊂ � such that y = inf∗{yn}n∈�. Taking into account that xn ≤ yn
for all n ∈ ω, we see that x = inf∗{xn}n∈� ≤ inf∗{xn}n∈� ≤ inf∗{yn}n∈� = y and
hence (x, y) ∈ P . ��

Theorem 4 and Lemma 4 imply

Corollary 1 Let X be a subsemilattice of a Hausdorff semitopological semilattice Y
such that X is ↓ω-complete and ↑ω1-complete. If X has countable tightness, then X
is sequentially closed in Y and the partial order {(x, y) ∈ X × X : xy = x} of X is
sequentially closed in Y × Y .

Taking into account that subspaces of sequential spaces have countable tightness
[9, 1.7.3c], we can see that Corollary 1 implies another corollary.

Corollary 2 Let X be a subsemilattice of a sequential Hausdorff semitopological semi-
lattice Y . If X is ↓ω-complete and ↑ω1-complete, then X is closed in Y and the partial
order {(x, y) ∈ X × X : xy = x} of X is sequentially closed in Y × Y .

Remark 1 The ↓ω-completeness of X is essential in Corollaries 1 and 2: by [6], there
exists a metrizable semitopological semilattice X whose partial order is not closed in
X × X , and for every x ∈ X the upper set ↑x is finite.

3 The closedness of images of complete semilattices

In this section we apply the results of the preceding section to establish the (sequential)
closedness of images of complete semilattices under continuous homomorphisms.
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Lemma 5 Let h : X → Y be a surjective continuous homomorphism from a down-
complete topologized semilattice X to a Hausdorff semitopological semilattice Y . Let
κ be a cardinal.

(1) The topologized semilattice Y is down-complete.
(2) If X is ↑κ-complete, then Y is ↑κ-complete.
(3) If X contains no strictly increasing transfinite sequences of length κ , then Y

contains no strictly increasing transfinite sequences of length κ .

Proof For every y ∈ Y consider the closed subsemilattice Sy := h−1(↑y) in X . Let
My be a maximal chain in Sy . By the down-completeness of X , the chain My has
inf My ∈ My ⊂ Sy = Sy . We claim that sy := inf My is the smallest element of
Sy . In the opposite case, there would exist an element x ∈ Sy such that sy �≤ x and
hence xsy < sy . Then {xsy} ∪ My is a chain in Sy , properly containing the maximal
chain My , which is a desired contradiction showing that sy is the smallest element
min Sy of the semilattice Sy . It follows from h(Sy) = ↑y that h(sy) ∈ h(Sy) = ↑y
and hence y ≤ h(sy). On the other hand, for any x ∈ h−1(y) we get sy ≤ x and hence
h(sy) ≤ h(x) = y and finally h(sy) = y. It is clear that for any x ≤ y in C , we get
Sx ⊂ Sy and hence min Sx ≤ min Sy .

1. To prove that Y = h(X) is down-complete, we should show that any non-
empty chain C ⊂ Y has inf C ∈ C̄ . It follows that for any x ≤ y in C , we get
min Sx ≤ min Sy , which means that D := {min Sx }x∈C is a chain in X . By the
down-completeness of X , the chain D has inf D ∈ D̄.

The continuity of the homomorphism h ensures that h(inf D) ∈ h(D) ⊂ h(D) =
C . It remains to check that h(inf D) = inf C . Taking into account that h is a semilattice
homomorphism, we can show that h(inf D) is a lower bound of the set C = h(D)

in Y = h(X). For any other lower bound b ∈ h(X) of C , we see that C ⊂ ↑b,
D ⊂ h−1(↑b) = Sb and hence min Sb ≤ inf D, which implies that b = h(min Sb) ≤
h(inf D). So, inf C = h(inf D) ∈ C̄ .

2. Assuming that X is ↑κ-complete, we shall check that the topologized semilattice
Y is ↑κ-complete. Given any non-empty chain C ⊂ Y of cardinality |C | ≤ κ , we
should show that C has supC ∈ C̄ . It is clear that for any x ≤ y in C , we get
min Sx ≤ min Sx , which means that D := {min Sx }x∈C is a chain in X of cardinality
|D| ≤ |C | ≤ κ . Since X is ↑κ-complete, the chain D has sup D ∈ D̄.

The continuity of the homomorphism h ensures that h(sup D) ∈ h(D) ⊂ h(D) =
C . It remains to check thath(sup D) = supC . Taking into account thath is a semilattice
homomorphism, we can show that h(sup D) is an upper bound for the set C = h(D)

in Y = h(X). For any other upper bound b ∈ h(X) of b, we see that C ⊂ ↓b, D ⊂
↓min Sb and hence sup D ≤ min Sb, which implies that h(sup D) ≤ h(min Sb) = b.
So, supC = h(sup D) ∈ C̄ .

3. Assuming that (yα)α∈κ is a strictly increasing transfinite sequence of length κ in
Y , we can see that (min Syα )α∈κ is a strictly increasing transfinite sequence of length
κ in X . ��

Lemma 5 and Theorem 4 imply:
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Corollary 3 Let X be a down-complete ↑ω-complete topologized semilattice con-
taining no strictly increasing transfinite sequences of length t. For any continuous
homomorphism h : X → Y to a Hausdorff semitopological semilattice Y , the image
h(X) is sequentially closed in Y .

Lemma 5 and Corollary 1 imply:

Theorem 5 Let X be a countably tight down-complete ↑ω1-complete topologized
semilattice. For any continuous homomorphism h : X → Y to a Hausdorff semi-
topological semilattice Y , the image h(X) is sequentially closed in Y .

Corollary 4 For any continuous homomorphism h : X → Y from a down-complete
↑ω1-complete topologized semilattice X to a Hausdorff semitopological semilattice
Y of countable tightness, the image h(X) is sequentially closed in Y .

Since sequential spaces have countable tightness [9, 1.7.13(c)], Corollary 4 implies
Theorem 3 announced in the introduction.
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