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Imre Simon

Introduction

Imre Simon, a Brazilian mathematician and computer scientist, was born in Budapest,
Hungary on August 14, 1943. He died in São Paulo, Brazil on August 13, 2009, just a
day short of his 66th birthday. More details on his life can be found in the preface to
the volume written on the occasion of his 60th birthday (Choffrut and Wakabayashi
in Theor Inform Appl 39(1): i–vii, 2005). Among the contributions of this volume,
the article Imre Simon: an exceptional graduate student by Thérien (Theor Inform
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Appl 39(1):297–304, 2005) deserves special mention. The purpose of this tribute is
to review three major results due to Simon that had a considerable influence on the
development of automata and semigroup theory.

1 J -trivial monoids and their languages

Let A be a finite alphabet. A language of A∗ is piecewise testable if it is a Boolean
combination of languages of the form A∗a1A∗a2 · · · A∗ak A∗, where a1, . . . , ak are
letters. In 1972, Simon obtained an elegant characterization of these languages. Recall
that a monoid is J -trivial if each of its J -classes is a singleton.

Theorem 1.1 (Simon [47,48]). A language is piecewise testable if and only if its syn-
tactic monoid is finite and J -trivial.

This result inspired a lot of subsequent research and a number of alternative proofs
have been proposed [1,2,23,25,28,29,60,63], not to mention unpublished ones. It was
proved seven years after Schützenberger’s characterization of star-free languages in
terms of aperiodic monoids [45] and these two results, together with Theorem 2.1
below, inspired Eilenberg’s varieties theorem [16].

Theorem 1.1 is a key step in the study of concatenation hierarchies initiated by
Cohen and Brzozowski [11]. A detailed account of the numerous developments on
this topic, including connections with automata, languages and finite model theory
can be found in the survey [39]. For this reason, I will omit this important topic and
rather focus on some consequences in semigroup theory. For each integer n > 0, three
monoids, Cn , Rn and Un will serve us as examples of J -trivial monoids.

The monoid Cn consists of all order preserving and extensive functions from
{1, . . . , n} to itself. Recall that a transformation a on {1, . . . , n} is order preserving if
p � q implies p · a � q · a and extensive if for all p, p� p · a.

Let Rn denote the monoid of all reflexive relations on {1, . . . , n}. It is convenient
to consider Rn as the monoid of Boolean matrices of size n × n having only entries
1 on the diagonal. For example

R2 = {(
1 0
0 1

)
,
(
1 1
0 1

)
,
(
1 0
1 1

)
,
(
1 1
1 1

)}

Finally, Un is the submonoid of Rn consisting of the upper triangular matrices of Cn .
The matrices of Un are called unitriangular. For example,

U3 =
{(

1 ε1 ε2
0 1 ε3
0 0 1

)
| ε1, ε2, ε3 ∈ {0, 1}

}

Recall that a monoid M divides a monoid N if M is a quotient of a submonoid of N .
It is relatively easy to prove the equivalence of Theorems 1.1 and the following result
of Straubing [61], but proving one of them is much more difficult.

Theorem 1.2 For each n > 0, the monoids Cn, Rn and Un are J -trivial. Moreover,
for a finite monoid M, the following conditions are equivalent:
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(1) M is J -trivial,
(2) there exists an integer n > 0 such that M divides Cn,
(3) there exists an integer n > 0 such that M divides Rn,
(4) there exists an integer n > 0 such that M divides Un.

Almeida obtained another proof of Theorem 1.1 as a byproduct of his complete
description of the free profinite J -trivial monoid [1]. He proved in particular that the
free profinite J -trivial monoid on an n-letter alphabet is countable and contains 2n

idempotents.
Another important consequence of Theorem 1.1 relates J -trivial monoids to

ordered monoids. It was first stated and proved by Straubing and Thérien [63]. An
ordered monoid is a monoid equipped with a partial order � compatible with the
product: x � y implies xz � yz and zx � zy.

Theorem 1.3 A finite monoid isJ -trivial if and only if it is a quotient of a finite ordered
monoid satisfying the identity 1 � x.

Again, it is not very difficult to establish the equivalence of Theorems 1.1 and 1.3.
But Straubing and Thérien gave a direct proof of Theorem 1.3 based on the ideal
structure of themonoid and a suitable semigroup expansion.Another proof of Theorem
1.3 proposed in [23]makes use of factorisation trees, a notion inspired by Imre Simon’s
factorisation forests described in Sect. 3.

Theorem 1.3, far from being an isolated result, is actually the prototype of similar
covering theorems involving orderedmonoids. Recall that a block group is amonoid in
which every regularR-class and L-class contains a unique idempotent. Many equiva-
lent definitions can be found for instance in [38]. The following result was first stated
in [42, Corollary 9.7], but is a consequence of a series of some deep results obtained
in the eighties [4,5,21,22,24,30]. See [38] for a survey and related results.

Theorem 1.4 Every finite block groupmonoid is the quotient of a finite orderedmonoid
satisfying the identity 1 � xω.

This result can be relativised to monoids with commuting idempotents but, even in
this case, it is a challenging open problem to find a direct proof of this result using the
techniques proposed in [63] or in [23].

Simon’s original proof [48] relied on the combinatorial study of subwords, one
of his favourite topics [58]. He also used the related shuffle operation to solve with
Ésik an open problem in language theory [17]. Subwords were later used to describe
languageswhose syntacticmonoids are p-groups [16, p. 238].Another elegant proof of
Theorem 1.1 via combinatorics on words was proposed by Klíma [28] and is probably
the shortest proof known to date.

The combinatorial study of subwords was initiated by Chen, Fox and Lyndon [9]
in a different context. See the survey chapter [33, Chapter 6] written by Sakarovitch
and Simon, and [43] for applications to Lie algebras.
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2 Locally trivial semigroups and graph congruences

A semigroup S is said to be locally trivial if, for every idempotent e of S, eSe = e.
Similarly, a semigroup S is said to be locally idempotent and commutative if, for every
idempotent e of S, the monoid eSe is idempotent and commutative, i.e. a semilattice.

Locally trivial semigroups form a variety of finite semigroups, denoted LI. IfV is a
variety of finite monoids, letV∗LI be the variety generated by all semidirect products
of monoids in V with semigroups in LI.

A language of A+ is locally testable if it is a Boolean combination of sets of the form
uA∗, A∗v or A∗wA∗ where u, v, w ∈ A+. It it relatively easy to prove that a language
is locally testable if and only if its syntactic semigroup belongs to the variety SL ∗LI
where SL is the variety of finite semilattices. Quoting Eilenberg [16, p. 222], this is
not regarded as a satisfactory solution as it is not clear how to decide membership in
this variety. Amuch better answer was given independently by Brzozowski and Simon
[8] and by McNaughton [36], who proved the following result:

Theorem 2.1 A language is locally testable if and only if its syntactic semigroup is
locally idempotent and commutative.

In terms of semigroups, a finite semigroup belongs to SL ∗ LI if and only if it is
locally idempotent and commutative. The proof relies on a result on graph congruences
first detailed in Simon’s Ph.D. thesis [47]. Given a finite graph G, a path congruence
is an equivalence relation on the set of paths of G such that:

(1) any two equivalent paths are coterminal (i.e. have the same origin and the same
end),

(2) if p and q are equivalent paths, and if r , p and s are consecutive paths, then rps
is equivalent to rqs.

Theorem 2.2 (Simon [47]) Let ∼ be a path congruence such that, for every pair of
loops p, q around the same state, p2 ∼ p and pq ∼ qp. Then two coterminal paths
using the same sets of edges are equivalent.

Theorem 2.2 initiated the graph congruence techniques later developed in a series
of subsequent papers by Knast [30], Thérien [64], Thérien-Weiss [66], Straubing [62],
Jones and Szendrei [26], Jones and Trotter [27], Almeida [3], Pin, Pinguet and Weil
[41], Steinberg [59], etc.

Straubing [62] generalized Theorems 2.1 and 2.2 to describe membership inV∗LI
in terms of graph congruences. The modern formulation in terms of categories is due
to Tilson [67] (see also [44, p. 279, Theorem 4.8.9]).

Theorem 2.2 is also one of the key ingredients for the algebraic proof of
McNaughton’s theorem on the equivalence between non deterministic Büchi automata
and deterministic Muller automata over infinite words [32].

3 Factorization forests

Ramsey’s Theorem is frequently used in combinatorics on words to establish the
existence of unavoidable regularities in very long words [33, Chapter 4]. Simon’s
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factorisation forest theorem is a nested variant of this result. It has become over the
years an essential tool in the theory of finite semigroups.

A factorisation forest is a function d that associates to every word x of length� 2 a
factorisation d(x) = (x1, . . . , xn) of x with n � 2 such that x1, . . . , xn are nonempty
words. The integer n is the degree of the factorisation.

Let S be a finite semigroup and let ϕ : A+ → S be a morphism. A factorisation
forest d is ϕ-Ramseyan if, for every word x of length� 2, d(x) is either of degree 2 or
there exists an idempotent e of S such that d(x) = (x1, . . . , xn) and ϕ(x1) = ϕ(x2) =
. . . = ϕ(xn) = e for 1 � i � n.

Simon first stated his factorisation forest theorem in the technical report [50], which
was subsequently published in [52,53]. He later gave a different proof in [55].

Theorem 3.1 (Simon [50]) Let ϕ : A+ → S be a morphism onto a finite semigroup.
Then there exists a factorisation forest of height � 9|S| which is ϕ-Ramseyan.

The bound 9|S| was subsequently improved to 3|S| in [13] and to the optimal bound
3|S|−1 in [31]. Simonwas led to his factorisation forest theorem in connectionwith his
research on three topics: Brown’s theoremon locally finite semigroups, the limitedness
problem for the tropical semiring [34,49,51,56] and the star-height problem. Despite
their importance, I will not develop further these topics, which are already covered in
the historical survey [40].

The term tropical was given in honour of Imre Simon, who gave credit to Christian
Choffrut in [51], but further investigation among the members of the French school
suggests that the term was originally coined by Schützenberger. The term has become
standard since the success of tropical geometry.

Simon’s factorisation forest theorem has been extended by Colcombet to infinite
words [13] and to trees [12]. It is also crucial in the characterization of polynomial
languages [42]. Bojanczyck [6] wrote a survey of applications of factorisation forests
to fast string algorithms and transducers. There are aspects of Simon’s work that
remain to be explored. For instance, very recently an unambiguous version of the
Factorization Theorem has been announced in [15,18].

The reader is referred to the recent survey by Colcombet [14] for more information
on Simon’s forest factorisation theorem.

4 Conclusion

Due to space constraints, several areas studied by Imre Simon had to be omitted,
notably nondeterministic complexity of finite automata [54], compression and entropy
[20], string matching algorithms [57]. However, I would like to briefly mention
Simon’s research on the Burnside problem for semigroups. Simon’s contribution to
this question is reported in the survey [37] coauthored with do Lago.

The general problem concerns the free Burnside monoid satisfying xn = xn+m , but
the results of Green and Rees [19] and McLean [35] essentially reduce the problem
for n = 1 to the case n = 0, that is, the Burnside problem for groups. Simon addressed
in 1970 what he thought to be the easiest remaining case: the free Burnside monoid
satisfying x2 = x3. Unfortunately for him, it turns out to be the hardest case, which
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is not yet completely understood. Simon rediscovered the fact that this monoid was
infinite, a result previously obtained by Brzozowski et al. [7], but also extended some
properties of the free bands to the free Burnside monoids. He never published his
results [46], but later passed the problem on to his best student, Alair Pereira do Lago,
who obtained the beautiful results reported in the surveys [37] and [40, Section 6].

Imre Simon’s work had a tremendous impact on subsequent research and consid-
erable influence in semigroup theory, automata, formal languages, combinatorics on
words and finite model theory. Ten years after his death, his work is still at the heart
of current research.
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