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Abstract
We establish a criterion for a semigroup identity to hold in the monoid of n × n upper
unitriangular matrices with entries in a commutative semiring S. This criterion is
combinatorial modulo the arithmetic of the multiplicative identity element of S. In the
case where S is non-trivial and idempotent, the generated variety is the variety Jn−1,
which by a result of Volkov is generated by any one of: the monoid of unitriangular
Boolean matrices, the monoid Rn of all reflexive relations on an n element set, or the
Catalan monoid Cn . We propose S-matrix analogues of these latter two monoids in
the case where S is an idempotent semiring whose multiplicative identity element is
the ‘top’ element with respect to the natural partial order on S, and show that each
generates Jn−1. As a consequence we obtain a complete solution to the finite basis
problem for Lossy gossip monoids.

Keywords Semigroup identities · Unitriangular matrices · Gossip monoids

1 Introduction

The finite basis problem for semigroups asks: which semigroups have an equational
theory admitting a finite basis of identities? Such semigroups are called finitely based.
In contrast to the situation for finite groups [12], it has long been known that there
exist finite semigroups which are non-finitely based [13], and there is a rich literature
studying the finite basis problem from viewpoint of finite semigroups (see the survey
[17]). As observed by Volkov [19], infinite semigroups are far less frequently studied
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in the context of the finite basis problem, due to the fact that many natural infinite
semigroups are in some sense ‘too big’ to allow for the kind of universal coincidences
demanded by identities. For example, if S is a commutative semiring into which the
semiring of natural numbers can be embedded, then for n > 1 the monoid of all n× n
(upper triangular) matrices over S satisfies no non-trivial identities, since the free
monoid of rank 2 embeds into all such semigroups (see [19] for example). The finite
basis problem is increasingly studied for families of infinite semigroups of combina-
torial interest for which identities are known to exist, with complete results available
for one-relator semigroups [14] and Kauffman monoids [2], and several recent partial
results for various semigroups of upper triangular matrices with restrictions on the
size of the matrices and the entries permitted on the diagonals [6,7,19,20].

In this work we consider the identities satisfied by several families of matrix
semigroups, beginning with upper triangular matrices with entries in a commuta-
tive semiring. Daviaud, the first author and Kambites [8] established necessary and
sufficient conditions for a semigroup identity to hold in the monoid of upper triangular
matrices over the tropical semifield, in terms of equivalence of certain tropical poly-
nomials, leading to an algorithm for checking whether such an identity holds in time
polynomial in the length of the identity and size of the alphabet. In Sect. 2 we show
how the analysis of [8] may be generalised to the setting of commutative semirings S
to provide necessary and sufficient conditions for a semigroup identity to hold in the
monoid of n×n upper triangular matrices with entries in S. This result is then applied
in Sect. 3 to establish a criterion for a semigroup identity to hold in the submonoid of
n × n upper unitriangular matrices, showing that the generated variety depends only
upon the isomorphism type of the subsemiring generated by the multiplicative iden-
tity element of S. In the case where S is a (non-trivial) idempotent semiring our result
together with a result of Volkov [18] yields that the generated variety is Jn−1, that is,
the variety of semigroups generated by the monoids of height n − 1 in Simon’s hier-
archy of finite J -trivial monoids [15]. In Sect. 4 we introduce the submonoid Rn(S)

of the full matrix monoid over a (non-trivial) interval semiring S, and show that this
generates the same variety as its finite (Boolean) counterpart, the reflexive monoid.
In Sect. 5 we consider several monoids related to the Catalan monoid, including the
so-called lossy gossip monoid Gn (that is, the monoid generated by all “metric” matri-
ces in the full matrix monoid over the tropical semiring [5]). By [18] this common
variety is once again seen to be Jn−1. Blanchet-Sadri has shown that the variety Jn−1
is finitely based for n ≤ 4 [3], and non-finitely based otherwise [4], and so this settles
the finite basis problem for the above mentioned families of monoids.

We conclude this introduction by briefly recalling the necessary definitions, notation
and background.

1.1 Semigroup identities

We write N0 and N respectively for the natural numbers with and without 0. If � is a
finite alphabet, then �+ will denote the free semigroup on �, that is, the set of finite,
non-empty words over � under the operation of concatenation. Likewise, �∗ will
denote the free monoid on �. Thus �∗ = �+ ∪ {1} where 1 denotes the empty word.
For w ∈ �+ and s ∈ � we write |w| for the length of w and |w|s for the number of
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occurrences of the letter s in w. For 1 ≤ i ≤ |w| we write wi to denote the i th letter
of w. The content of w is the map � → N0, s �→ |w|s .

Recall that a (semigroup) identity is a pair of words, usually written “u = v”, in the
free semigroup�+ on an alphabet�. The identity is said to be balanced if |u|a = |v|a
for all a ∈ �. We say that the identity holds in a semigroup U (or that U satisfies
the identity) if every morphism from �+ to U maps u and v to the same element of
U . If a morphism maps u and v to the same element we say that it satisfies the given
identity inU ; otherwise it falsifies it. We write Id(U ) to denote the set of all identities
satisfied by the semigroup U .

1.2 Semirings

Throughout we shall assume that S is a commutative semiring, that is, S is a set
equipped with two binary operations + and ·, such that (S,+) and (S, ·) are commu-
tativemonoids, with additively neutral element 0S andmultiplicatively neutral element
1S satisfying:

a · (b + c) = a · b + a · c and 0S · a = 0S,

for all a, b, c ∈ S. We say that S is trivial if 0S = 1S , and S is idempotent if
a + a = a for all a ∈ S. Examples include the Boolean semiring B = {0, 1} in which
the only undetermined operation is defined by 1 + 1 = 1, and the tropical semifield
T:=(R ∪ {−∞},⊕,⊗), where a ⊕ b = max(a, b) and a ⊗ b = a + b, and in which
−∞ is the ‘zero’ element, and 0 is the ‘one’. There is a natural partial order on every
idempotent semiring S given by a ≤ b if and only if a + b = b; it is clear from
definition that a + b ≥ a, b for all a, b ∈ S. Thus 0S is the least element of S with
respect to this order. Moreover, if a ≤ b in S, then cad ≤ cbd and a + c ≤ b + c for
all c, d ∈ S.

We say that a commutative semiring S is an interval semiring if S is idempotent and
1S is the greatest element of S with respect to the natural partial order on S. Examples
of interval semirings include: the Boolean semiring B; the semiring I = ([0, 1], ·,⊕)

with usual multiplication of numbers and addition given by taking the maximum; the
semiring (R≤0∪{−∞},⊗,⊕)with multiplication given by usual addition of numbers
and addition given by taking the maximum; any complete distributive lattice L with
addition ∨ and multiplication ∧.

1.3 Matrix semigroups

It is easy to see that the set of all n×n matrices with entries in S forms a monoid under
the matrix multiplication induced from the operations in S. We denote this semigroup
by Mn(S) and write UTn(S) to denote the subsemigroup of Mn(S) consisting of the
upper-triangular matrices in Mn(S) whose entries below the main diagonal are zero.
We also write Un(S) to denote the semigroup of unitriangular matrices, namely those
elements of UTn(S) whose diagonal entries are all equal to 1S .

In the case where S is an idempotent semiring we define a partial order � on
Mn(S) by A � B if and only if Ai, j ≤ Bi, j for all i and j . It is easy to see that matrix
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multiplication respects the partial order � (i.e. Mn(S) is an ordered monoid). Indeed,
for A, B,C ∈ Mn(S) with A � B, for all i, j we have

(CA)i, j =
n∑

k=1

Ci,k Ak, j ≤
n∑

k=1

Ci,k Bk, j = (CB)i, j ,

and in the same way it can be verified that AC � BC .

1.4 Polynomials

By a formal polynomial in variables from a set X we mean an element of the commu-
tative polynomial semiring S[X ], that is, a finite formal sum in which each term is a
formal product of a non-zero coefficient from S and formal powers of finitely many
of the variables of X , considered up to the commutative and distributive laws in S.
We view S as a subsemiring of S[X ] by identifying 0S with an empty sum, and each
non-zero element a ∈ S with the term having coefficient a and in which all exponents
of x ∈ X are zero. If S is trivial, then S[X ] is isomorphic to S. If S is idempotent, we
consider the summation up to idempotency of addition.

Each formal polynomial naturally defines a function from SX to S, by interpreting
all formal products and formal sums as products and sums within S. Two distinct
formal polynomials may define the same function. For example, x⊗2 ⊕ x ⊕ 1 and
x⊗2 ⊕ 1 are distinct formal tropical polynomials defining the same function, since x
can never exceed both x⊗2 and 1.We say that two formal polynomials are functionally
equivalent over S if they represent the same function from SX to S.

2 The identities of triangular matrices

We begin by providing analogues of [8, Lemma 5.1 and Theorem 5.2] for upper
triangular monoids over more general commutative semirings. The two mentioned
results are stated for the class of ‘chain structured tropical matrix semigroups’, defined
over the tropical semifield using a fixed partial order on the set [n]. In the case where
this partial order is total, one obtains the upper triangular monoid UTn(T).

Let [n] = {1, 2, . . . , n}. By a k-vertex walk (or walk of vertex length k) in [n] we
mean a k-tuple (v1, . . . , vk) such that v1 ≤ v2 ≤ · · · ≤ vk . A k-vertex path (or path
of vertex length k) is a k-vertex walk in which consecutive vertices (and hence all
vertices) are distinct.

Let w be a word over the alphabet �. For 0 ≤ p < q ≤ |w| + 1 and s ∈ � we
define

βw
s (p, q) = |{i ∈ N | p < i < q, wi = s}|

to be the number of occurrences of s lying strictly between wp and wq . For each
u ∈ �∗ with |u| ≤ n − 1 and each (|u| + 1)-vertex path ρ = (ρ0, ρ1, . . . , ρ|u|) in [n],
we define a formal polynomial (over an arbitrary, but fixed, commutative semiring S)
having variables x(s, i) for each letter s ∈ � and vertex i ∈ [n] as follows:
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f w
u,ρ =

∑ ∏

s∈�

|u|∏

k=0

x(s, ρk)
βw
s (αk ,αk+1),

where the sum ranges over all 0 = α0 < α1 < · · · < α|u| < α|u|+1 = |w|+1 such that
wαk = uk for k = 1, . . . , |u|. If S is non-trivial it is thus easy to see that f w

u,ρ �= 0S
if and only if u is a scattered subword of w of length � − 1, where � is the vertex
length of path ρ. Note that taking u to be the empty word forces ρ = (ρ0) for some
ρ0 ∈ [n] and hence f w

u,ρ = ∏
s∈� x(s, ρ0)|w|s is a monomial completely determined

by the content of w.

Lemma 2.1 (cf [8, Lemma 5.1]) Let S be a commutative semiring, and let φ : �+ →
UTn(S) be a morphism. Define x ∈ S�×[n] by

x(s, i) = φ(s)i,i .

Then for any word w ∈ �+ and vertices i, j ∈ [n] we have

φ(w)i, j =
∑

u∈�∗,
|u|≤n−1

∑

ρ∈[n]|u|
i, j

⎛

⎝
|u|∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ · f w
u,ρ(x), (1)

where [n]|u|
i, j denotes the set of all (|u| + 1)-vertex paths from i to j in [n].

Proof We follow the proof given in [8].
Let i and j be vertices. Using the definition of the functions f w

u,ρ , the value given
to x and the distributivity of multiplication over addition, the right-hand-side of (1) is
equal to

∑

u∈�∗,
|u|≤n−1

∑

α∈Aw
u

∑

ρ∈[n]|u|
i, j

⎛

⎝
|u|∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ ·
⎛

⎝
∏

s∈�

|u|∏

k=0

(φ(s)ρk ,ρk )
βw
s (αk ,αk+1)

⎞

⎠

where

Aw
u = {(α0, . . . , α|u|+1) : 0 = α0 < α1 < · · · < α|u| < α|u|+1 = |w| + 1

with wαk = uk}.

Notice that we are summing over all possible words u of length less than n, and then
over all scattered subwords of w equal to u. Thus, we are simply summing over all
scattered subwords of w of length less than n, so the above is equal to:

n−1∑

l=0

∑

α∈Al

∑

ρ∈[n]li, j

(
l∏

k=1

φ(wαk )ρk−1,ρk

)
·
(

∏

s∈�

·
l∏

k=0

(φ(s)ρk ,ρk )
βw
s (αk ,αk+1)

)
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where Al = {(α0, . . . , αl+1) : 0 = α0 < α1 < · · · < αl < αl+1 = |w| + 1}.
Now to each term in the above sum, defined by a choice of αi ’s and a ρ ∈ [n]li, j , we

can associate a (|w|+1)-vertex walk (σ0 = i, . . . , σ|w| = j) in [n] whose underlying
path is ρ and which transitions to vertex ρk after αk steps. Clearly every (|w| + 1)-
vertex walk from i to j arises exactly once in this way, and so we are summing over
all such walks. In each term, the first bracket gives a factor φ(wq)σq−1,σq when q = αk

for some k, while from the definition of the functions βw
s , the second bracket gives a

factor φ(wq)σq−1,σq for each q not of this form. Thus, the above is simply equal to:

∑ |w|∏

q=1

φ(wq)σq−1,σq

where the sum is taken over all (|w| + 1)-vertex walks (i = σ0, σ1, . . . , σ|w| = j) in
[n]. But by the definition of multiplication in UTn(S), this is easily seen to be equal
to

(
φ(w1) . . . φ(w|w|)

)
i, j = φ(w)i, j . ��

Let f w
u denote the polynomial f w

u,ρ with ρ = (1, 2, . . . , |u|+1) in variables x(s, i),
with s ∈ � and 1 ≤ i ≤ |u| + 1. We are now ready to prove the main theorem of this
section, which generalises [8, Theorem 5.2] modulo a reduction in the number of the
formal polynomials considered.

Theorem 2.2 Let S be a commutative semiring. The identity w = v over alphabet �

is satisfied in UTn(S) if and only if for every u ∈ �∗ with |u| ≤ n−1 the polynomials
f w
u and f v

u are functionally equivalent over S.

Proof (In the case where S is trivial, UTn(S) is the trivial group, whilst each of the
formal polynomials f w

u is equal to 0S . Thus the result holds trivially.)
Suppose first that f w

u (x) �= f v
u (x) for some word u ∈ �+ of length at most n − 1

and x ∈ S�×[n]. Define a morphism φ : �+ → UTn(S) by

φ(s)p,p = x(s, p) ∈ S, for all p ∈ [n] and s ∈ �; and

φ(s)p,q =
{
1S if s = ui , p = i, q = i + 1,

0S otherwise.

Then by Lemma 2.1,

φ(v)i, j = f v
u (x) �= f w

u (x) = φ(w)i, j ,

and so the morphism φ falsifies the identity in UTn(S).
Conversely, suppose that f w

u and f v
u are functionally equivalent over S for all

u ∈ �∗ of length at most n − 1. Noting that for any path ρ of vertex length |u|, the
polynomials f w

u,ρ and f w
u differ only in the labelling of their variables, it is then easy

to see that f w
u,ρ and f v

u,ρ are functionally equivalent for all pairs u, ρ with u ∈ �∗ of
length at most n − 1, and ρ a path of vertex length |u| + 1 through [n].

It suffices to show that the identityw = v is satisfied by every morphism φ : �+ →
UTn(S), so let φ be such a morphism and define x ∈ S�×[n] by x(s, i) = φ(s)i,i .
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Since φ is a morphism to UTn(S), we know that φ(w)i, j = 0S = φ(v)i, j whenever
i > j . On the other hand, if i ≤ j then Lemma 2.1 gives

φ(w)i, j =
∑

u∈�∗,
|u|≤n−1

∑

ρ∈[n]|u|
i, j

⎛

⎝
|u|∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ · f w
u,ρ(x) = φ(v)i, j .

��
Lemma 2.3 Let S be a semiring whose multiplicative monoid contains an element α

generating a free submonoid of rank 1, and let w, v ∈ �+.

(i) The polynomials f w
1 and f v

1 are functionally equivalent if and only if w and v

have the same content.
(ii) Suppose further that the partial sums

∑ j
i=0 αi for j ∈ N0 are pairwise distinct.

If f w
a is functionally equivalent to f v

a for all a ∈ �, then f w
1 is functionally

equivalent to f v
1 .

Proof (i) By definition, f w
1 is the monomial

∏
s∈� x(s, 1)|w|s , and it is clear that

w and v have the same content if and only if the formal polynomials f w
1 and

f v
1 are identical. In particular, if the content of the two words agree, then these

polynomials are functionally equivalent. Suppose then that f w
1 and f v

1 are func-
tionally equivalent. Setting x(s, 1) = α and x(t, 1) = 1S for all t �= s then
yields α|w|s = α|v|s , and hence |w|s = |v|s . Repeating this argument for each
s ∈ � yields that the two words have the same content.

(ii) It suffices to show that if f w
a is functionally equivalent to f v

a for all a ∈ �, then
the content of the two words must be equal. Evaluating the polynomials f w

a and

f v
a at x(a, 1) = α and x(z, i) = 1S for all other choices of z, i yields

∑|w|a−1
i=0 αi

=
∑|v|a−1

i=0 αi , and hence |w|a = |v|a . Repeating this argument for each a ∈ �

gives that the two words have the same content. ��
The multiplicative monoid of S clearly embeds into UTn(S), and so under the

hypothesis of the previous lemma we note that identities satisfied by UTn(S) must be
balanced (as all identities satisfied by the free monoid of rank 1 are). The polynomial
f w
1 essentially records the content of w. Under the stronger hypotheses of Lemma 2.3

(ii), this information can be deduced from the set of polynomials { f w
a : a ∈ �}, hence

reducing the number of polynomials to be checked by 1.

Corollary 2.4 Let S be a semiring whose multiplicative monoid contains an element
α generating a free submonoid of rank 1, and suppose that the partial sums

∑ j
i=1 αi

for j ∈ N are pairwise distinct. The identity w = v over alphabet � is satisfied in
UTn(S) if and only if for every u ∈ �+ with 1 ≤ |u| ≤ n− 1 the polynomials f w

u and
f v
u are functionally equivalent.
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3 The identities of unitriangular matrices

Say that the scattered multiplicity of u ∈ �+ in w ∈ �+ is the number of distinct
ways in which u occurs as a scattered subword of w, and denote this bymw

u ∈ N0. For
m ∈ N0 write �m�S := ∑m

j=1 1S .

Theorem 3.1 Let S be a commutative semiring. The identity w = v over alphabet �

is satisfied in the unitriangular monoid Un(S) if and only if �mw
u �S = �mv

u�S for each
word u ∈ �+ of length at most n − 1.

Proof (In the case where S is trivial, Un(S) is the trivial group, whilst each of the
multiplicities �mw

u �S is equal to 0S . Thus the result holds trivially.)
Let φ : �+ → Un(S) be a morphism. Since every element of the image of φ has

all diagonal entries equal to 1S it follows from Lemma 2.1 and the definition of the
polynomials f w

u,ρ that for all 1 ≤ i < j ≤ n, we have

φ(w)i, j =
∑

u∈�+,
|u|≤n−1

∑

ρ∈[n]|u|
i, j

⎛

⎝
|u|∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ · �mw
u �S,

where mw
u denotes the scattered multiplicity of u in w. Since these multiplicities

account for the only part of the formula which directly depends upon w, it is then
clear that if each of the equalities �mw

u �S = �mv
u�S holds, then we must have w = v

in Un(S).
Now suppose w = v is satisfied in Un(S) and let u be a word of length l < n with

scattered multiplicities mw
u and mv

u in w and v respectively. Consider the morphism
φ: :�+ → Un(S) defined by

φ(s)p,p = 1S, for all p ∈ [n] and s ∈ �; and

φ(s)p,q =
{
1S if s = ui , p = i, q = i + 1,

0S otherwise.

Notice that Lemma 2.1 then yields �mw
u �S = φ(w)1,l+1 = φ(v)1,l+1 = �mv

u�S . ��
Proposition 3.2 Let S and T be commutative semirings. The the unitriangularmonoids
Un(S) and Un(T ) generate the same variety of semigroups if and only if 1S and 1T
generate isomorphic semirings.

Proof If 1S and 1T generate isomorphic semirings, then for all j, k ∈ N0 we have
� j�S = �k�S if and only if � j�T = �k�T . It then follows immediately from Theorem
3.1 that Un(S) and Un(T ) satisfy exactly the same semigroup identities.

Conversely, if Un(S) and Un(T ) satisfy the same identities, it follows that for all
words w, v, u ∈ �+ we must have �mw

u �S = �mv
u�S if and only if �mw

u �T = �mv
u�T .

Consideration of all pairs of words w = a j , v = ak with respect to the fixed word
u = a of length 1 allows us to determine all relations of the form � j�R = �k�R for
j, k ∈ N and R = S, T . Since the same set of relations holds for R = S and R = T ,
it follows that 1S and 1T generate isomorphic semirings. ��
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Corollary 3.3 Let S be a non-trivial idempotent semiring. The identity w = v over
alphabet � is satisfied in the unitriangular monoid Un(S) if and only ifw and v admit
the same set of scattered subwords of length at most n − 1.

Proof If S is idempotent then it is easy to see that

�mv
u�S =

{
1S if u is a scattered subword of w,

0S otherwise.
��

The previous results generalise a result of Volkov [18], who proved that w = v

is a semigroup identity for Un(B) if and only if w and v have the same scattered
subwords of length at most n − 1. Since the results of that paper also show that the
unitriangular Boolean matricesUn(B), the monoid Rn of reflexive binary relations on
a set of cardinality n, and the Catalan monoid Cn all satisfy exactly the same set of
identities, we get the following immediate corollary.

Corollary 3.4 Let S beanon-trivial idempotent semiring. The theunitriangularmonoid
Un(S) satisfies exactly the same semigroup identities as the semigroup of reflexive
relations Rn or the Catalan monoid Cn.

Ashikhmin et al. [1] have subsequently shown that a certain family of the Hecke–
Kiselman monoids introduced by Ganyushkin and Mazorchuk [10]—including the
Kiselman monoid Kn and the Catalan monoid Cn—all satisfy the same identities. In
Sect. 5 we shall see that another family ofJ -trivial monoids of combinatorial interest,
the gossip monoids Gn , satisfy the same identities as the Catalan monoids Cn .

The monoid Un(S) can be viewed as an oversemigroup of Un(B) allowing for
entries over the idempotent semiring S, and so it is natural to ask if there are anal-
ogous extensions of Rn and Cn . We note that there is an obvious Boolean matrix
representation of Rn , formed by sending a relation R to the Boolean matrix whose
(i, j)th entry is 1 if and only if i and j are related by R. In the following section
we shall consider a natural analogue of Rn consisting of matrices over a semiring S
with diagonal entries all equal to the multiplicative identity of S. It is clear that, in
general, the set of all such matrices need not form a semigroup (e.g. over the tropical
semiring suchmatrices are not closed under multiplication).We shall therefore restrict
our attention to a particular class of idempotent semirings.

4 Generalised reflexivemonoids

Lemma 4.1 Let S be an idempotent semiring, and let V be a subsemigroup of Mn(S)

with the property that every element of V has all diagonal entries equal to 1S.

(i) If A = U (1)X(1)U (2) . . .U (L)X(L)U (L+1) and B = X(1) . . . X(L) for some
U (i), X(i) ∈ V , then B � A.

(ii) For all A ∈ V we have

In � A � A2 � A2 � · · · � An � · · ·
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Identities in unitriangular and gossip monoids 347

where In denotes the identity matrix of Mn(S).
(In particular, V is J -trivial and so every regular element of V is idempotent.)

Proof (i) Suppose that A = U (1)X(1)U (2) . . .U (L)X(L)U (L + 1) and B =
X(1) . . . X(L). Since every element of V has only ones on its diagonal, for all
i, j ∈ [n] this gives

Ai, j =
∑

U (1)ρ0,ρ1X(1)ρ1,ρ2U (2)ρ2,ρ3 . . . X(L)ρ2L−1,ρ2LU (L + 1)ρ2L ,ρ2L+1

where the sum ranges over all choices of ρi ∈ [n], with ρ0 = i and ρ2L+1 = j .
Since a+b ≥ a, b for all a, b ∈ S, it follows that by restricting the choices for the
ρi we will obtain a partial sum that must be less than or equal to Ai, j . In particular,
we have

Ai, j ≥
∑

U (1)ρ0,ρ0X(1)ρ0,ρ1U (2)ρ1,ρ1 . . . X(L)ρL−1,ρLU (L + 1)ρL ,ρL

where the sum ranges over all choices of ρi ∈ [n], with ρ0 = i and ρL = j . Since
all diagonal entries of elements of V are equal to 1S , this gives

Ai, j ≥
∑

X(1)ρ0,ρ1 . . . X(L)ρL−1,ρL ,

where the sum ranges over all choices of ρi ∈ [n], with ρ0 = i and ρL = j .
By the definition of matrix multiplication, the latter is equal to Bi, j . Thus for all
i, j ∈ [n] we have Ai, j ≥ Bi, j , and hence B � A.

(ii) It follows immediately from part (i) that the powers are non-decreasing. In par-
ticular, if AJ B in V then there exist P, Q, X ,Y ∈ V with A = PBQ and
B = X AY . Now by part (i) this gives A � B and B � A, and hence A = B.
Recalling that an element A ∈ V is regular if and only if it is D-related to an
idempotent, it follows immediately that A is regular if and only if it is idempotent.

��
From now on let S be a non-trivial interval semiring (see Sect. 1) and define

Rn(S) = {A ∈ Mn(S) : Ai,i = 1S}.

It is easily verified that Rn(S) is a semigroup satisfying the conditions of Lemma 4.1.
Let Z be the element of Rn(S) given by Zi, j = 1S for all i and j . Then it is easy to see
that In � A � Z for all A ∈ Rn(S), with AZ = Z = Z A. In the case where S = B,
it is clear that Rn(B) is isomorphic to the monoid Rn of reflexive binary relations on
a set of cardinality n.

Let ρ:=(ρ0, . . . , ρL) be an L + 1-tuple of elements from [n]. We shall say that ρ

is a block chain of length L + 1 if ρ has the form:

ρ:=(i0, . . . , i0, i1, . . . , i1, . . . , ik . . . , ik),

where i0, . . . , ik are distinct elements of [n] and thus, k ≤ n − 1.
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Lemma 4.2 Let S be an interval semiring.

(i) If A = X(1) . . . X(L) in Rn(S), then for all i, j ∈ [n] we have

Ai, j =
∑

X(1)ρ0,ρ1X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL ,

where the sum ranges over all block chains ρ:=(ρ0, . . . , ρL) with ρ0 = i and
ρL = j .

(ii) For all A ∈ Rn(S) and all N ≥ n − 1 we have AN = An−1.
(In particular, An−1 is idempotent and Rn(S) is aperiodic.)

Proof (i) Let A = X(1) . . . X(L) in Rn(S). Then, by the definition of matrix multi-
plication,

Ai, j =
∑

X(1)ρ0,ρ1X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL ,

where the sum ranges over all L + 1-tuples ρ:=(ρ0, . . . , ρL), with ρk ∈ [n] and
ρ0 = i, ρL = j . Let ρ be such a tuple, and suppose that ρ is not a block chain.
Then for some s, t with s + 1 < t we must have ρs �= ρs+1 and ρs = ρt . Consider
the tuple ρ′:=(ρ′

0, . . . , ρ
′
L) obtained from ρ by replacing each ρk with s < k < t

by ρs . Since each diagonal entry is equal to 1S and 1S ≥ a for all a ∈ S, it is easy
to see that:

X(1)ρ′
0,ρ

′
1
X(2)ρ′

1,ρ
′
2
. . . X(L)ρ′

L−1,ρ
′
L

≥ X(1)ρ0,ρ1X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL .

By repeated application of the above argument, it is clear that

X(1)σ0,σ1X(2)σ1,σ2 . . . X(L)σL−1,σL ≥ X(1)ρ0,ρ1X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL ,

for some block chain σ . Since a ≤ b in S if and only if a + b = b, it follows from
the previous observation that taking the sum over all block chains must give the
same result as taking the sum over all tuples. Thus

Ai, j =
∑

X(1)ρ0,ρ1X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL ,

where the sum ranges over all block chains ρ:=(ρ0, . . . , ρL) with ρ0 = i and
ρL = j .

(ii) Let A ∈ Rn(S) and N ∈ N. Then by part (i)

(AN )i, j =
∑

Aρ0,ρ1 Aρ1,ρ2 . . . AρN−1,ρN ,

where the sum ranges over all N + 1-tuples of the form

ρ:=(i, . . . , i, i1, . . . , i1, . . . , ik . . . , ik, j . . . , j),
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where i, i1, . . . , ik, j are distinct elements of [n]. Moreover, for such an N + 1-
tuple ρ, the fact that the diagonal entries of A are all equal to 1S means that the
corresponding term of the summation is equal to

Ai,i1 Ai1,i2 . . . Aik−1,ik Aik , j .

Thus for each N ≥ n − 1 we see that every term occurring in the summation
above also occurs as a term in the corresponding summation for An−1, and hence
AN � An−1. On the other hand, by Lemma 4.1, we know that An−1 � AN for
all N ≥ n − 1. Thus we may conclude that An−1 = AN for all N ≥ n − 1. In
particular,

An−1An−1 = A2n−2 = An−1.

(Recall that a semigroup V is aperiodic if for every a ∈ V there exists a positive
integer m such that am+1 = am .) ��

Wenote that in the casewhere Rn(S) is finite, the fact that Rn(S) is aperiodic follows
directly from Lemma 4.1, since every finite H-trivial semigroup is aperiodic. For
infinite semigroups, J -triviality is not sufficient to deduce aperiodicity (for example,
the semigroup of natural numbers under addition is an infinite J -trivial semigroup
which is clearly not aperiodic).

Theorem 4.3 Let S be a non-trivial interval semiring. The identity w = v over alpha-
bet � is satisfied in Rn(S) if and only if w and v have the same scattered subwords of
length at most n − 1.

Proof Noting that Un(S) ⊆ Rn(S), it suffices to show that if w and v have the same
scattered subwords of length at most n − 1, then w = v holds in Rn(S).

Let φ : �+ → Rn(S) be a morphism and let w = w1 . . . wq ∈ �+. By Lemma 4.2
for each i, j ∈ [n] we have

φ(w)i, j = (φ(w1) . . . φ(wq))i, j

=
∑

φ(w1)ρ0,ρ1 . . . φ(wq)ρq−1,ρq ,

where the sum ranges over all block chains ρ of total length q + 1, with first entry i
and last entry j . To each choice of t = (t0, t1, . . . , tp, tp+1) with 0 = t0 < t1 < · · · <

tp < tp+1 = q + 1 and p ≤ n − 1 we may associate the set Bi, j
t of all block chains

of the form:

(i0, . . . , i0︸ ︷︷ ︸
t1−t0

, i1, . . . , i1︸ ︷︷ ︸
t2−t1

, i2, . . . , i2︸ ︷︷ ︸
t3−t2

. . . , i p−1, . . . , i p−1︸ ︷︷ ︸
tp−tp−1

i p, . . . , i p︸ ︷︷ ︸
tp+1−tp

)

with i0 = i , i p = j . It is easy to see that the set of all block chains of total length

q + 1 with first entry i and last entry j is the disjoint union of the sets Bi, j
t . Thus
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the summation above can be viewed as summing over all block chains in Bi, j
t for all

choices 0 = t0 < t1 < · · · < tp < tp+1 = q + 1.
Fix t and consider the term of the summation corresponding to the block chain

(i0, . . . , i0︸ ︷︷ ︸
t1−t0

, i1, . . . , i1︸ ︷︷ ︸
t2−t1

, i2, . . . , i2︸ ︷︷ ︸
t3−t2

. . . , i p−1, . . . , i p−1︸ ︷︷ ︸
tp−tp−1

i p, . . . , i p︸ ︷︷ ︸
tp+1−tp

).

The fact that all diagonal entries are equal to 1S means that the corresponding term is
equal to

φ(wt1)i0,i1φ(wt2)i1,i2 . . . φ(wtp )i p−1,i p .

It is then clear that the above expression depends only upon the choice of scattered
subword u = wt1 . . . wtp of w of length p ≤ n − 1, and the intermediate vertices
i1, . . . , i p−1. Since addition in S is idempotent, we may therefore conclude that

φ(w)i, j =
∑

φ(u1)i0,i1φ(u2)i1,i2 . . . φ(u p)i p−1,i p ,

where the sum ranges over all scattered subwords u of w of length at most n − 1, and
over all choices of distinct i0, . . . , i p ∈ [n] with i0 = i and i p = j . It then follows
that if w and v contain the same scattered subwords of length at most n − 1 then
φ(w) = φ(v). ��

5 Catalanmonoids and gossip

The Catalan monoid Cn [16] is the monoid given by the presentation with generators
e1, . . . , en−1 and relations

ei ei = ei , ei e j = e j ei ei ei+1ei = ei+1ei ei+1 = ei ei+1 (2)

for all appropriate i, j with |i − j | > 1. The name comes from the fact that |Cn| =
1

n+1

(2n
n

)
is the nth Catalan number.

Say that a matrix A ∈ Mn(B) is convex if:

(1) Ai,l = Ai,r = 1 with l ≤ r implies Ai,k = 1 for all l ≤ k ≤ r ,
(2) Au, j = Ad, j = 1 with u ≤ d implies Ak, j = 1 for all u ≤ k ≤ d, and
(3) Ai,i = 1 for all i .

By [11, Proposition 3] the set Convn of all convex Boolean matrices is a submonoid
of Rn . Let CU

n = Convn ∩ Un denote the monoid of all convex upper unitriangular
matrices, and for 1 ≤ i ≤ n − 1 let D(i) ∈ CU

n be the matrix with 1’s on the diagonal
and a single off-diagonal 1 in position (i, i + 1).

Lemma 5.1 The matrices D(1), . . . , D(n − 1) generate the monoid CU
n of all convex

upper unitriangular Boolean matrices. Moreover, CU
n

∼= Cn.
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Proof Since each D(i) is a convex upper unitriangular matrix, these matrices clearly
generate a submonoid ofCU

n . Suppose then that A ∈ CU
n . Letmi = max{ j : Ai, j = 1}.

Since Ai,i = 1 we note that mi ≥ i . Convexity of A yields that mi ≤ m j whenever
i ≤ j . Define

F(i) =
{
In if mi = i,

D(i) . . . D(mi − 1) if mi > i .

It is straightforward to verify that if F(i)i, j = 1 if and only if i ≤ j ≤ mi , and
similarly for all k > i , we have F(k)i, j = 1 if and only if i = j . Thus the (i, j)th
coordinate of B:=F(n − 1) . . . F(i) is non-zero if and only if i ≤ j ≤ mi . Let
M = BF(i − 1) . . . F(1). We claim A = M . Since M � B, it is clear from the
observations above that Mi, j ≥ Bi, j = 1 for all i ≤ j ≤ mi . Since M is clearly
upper triangular, it remains to show that Mi, j = 0 for all j > mi . To see this, notice
that the right action of D(k) on any Boolean matrix X results in the matrix obtained
from X by taking the Boolean sum of columns k and k + 1. By definition, all factors
D(k) occurring in F( j) satisfy j ≤ k ≤ m j − 1. For j < i the only factors D(k)
occurring in F( j) therefore satisfy j ≤ k ≤ m j − 1 ≤ mi − 1. This means that M
is obtained from the matrix B by the right action of some collection of matrices D(k)
with k ≤ mi − 1, and hence columns j > mi of M and B agree.

It is straightforward to verify that the matrices D(i) satisfy the relations (2). Since
the elements of CU

n are in one to one correspondence with the Dyck paths from (0, 0)
to (n, n), we see that |CU

n | = |Cn|, and so these two monoids must be isomorphic.
��

Let E(i) denote the product D(i)D(i)T ∈ Convn . The double Catalan monoid
DCn of Mazorchuk and Steinberg [11] is the submonoid of Convn generated by the
matrices E1, . . . , En−1. Define U : DCn → CU

n to be the map sending a matrix to its
upper profile, namely U(A)i, j = Ai, j if i ≤ j and U(A)i, j = 0 otherwise.

Lemma 5.2 The map U : DCn → CU
n is a surjective monoid homomorphism.

Proof Let A, B ∈ DCn . By definition U(AB)i, j = (AB)i, j if i ≤ j and 0 otherwise.
Thus the non-zero entries occur in positions i ≤ j for which there exists k with
Ai,k = Bk, j = 1. Note that if there exists such a k with k < i , then by the convexity
of B we must have Ai,i = Bi, j = 1, whilst if there exists such a k with k > j ,
then by the convexity of A we must have Ai, j = Bj, j = 1. The non-zero entries of
U(AB) therefore occur in positions (i, j) for which there exists k with i ≤ k ≤ j and
Ai,k = Bk, j = 1, and it is easy to see that these coincide with the non-zero entries of
U(A)U(B).

Now let A ∈ DCn . By definition we may write A = Ei1 . . . Eim for some 1 ≤
i1, . . . , im ≤ n. Applying the morphism U then yields

U(A) = U(Ei1) . . .U(Eim ) = Di1 . . . Dim ,

and the result follows from Lemma 5.1. ��
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Now let D(i, j)denote then×nBooleanmatrixwith 1’s on the diagonal and a single
off-diagonal 1 in position (i, j), and let E(i, j) = D(i, j)D( j, i). The gossip monoid
[5,9] is the submonoid of Mn(B) generated by the set {E(i, j) : 1 ≤ i < j ≤ n}. The
one directional gossip monoid Gn is the submonoid of Mn(B) generated by the set
{D(i, j) : 1 ≤ i �= j ≤ n}. It is clear from the definition that Gn is a submonoid of
Gn . Moreover, since E(i) = E(i, i + 1) we see that the double Catalan monoid is a
submonoid of Gn . The names ‘one-directional gossip monoid’ and ‘gossip monoid’
come from the following interpretation of the matrices D(i, j) and E(i, j). Consider
a group of n people, each with a unique piece of information or ‘gossip’ they would
like to spread. It is clear that we can record the state of knowledge amongst the n
people at any given time by means of a Boolean matrix, putting a 1 in the (i, j)th
position if and only if person j has learned the piece of gossip originally known only
to person i . The right action of the matrix D(i, j) on Mn(B) then corresponds to a
one-way communication from person i to person j , in which person i recounts to
person j all of the gossip that they know. The right action of the matrix E(i, j) on
Mn(B) corresponds to a two-way communication between person i and person j , at
the end of which both parties have learned the sum total of gossip known to either i
or j . The double Catalan monoid can therefore be thought of as an algebraic model of
gossip in a network in which person i can communicate only with the person’s nearest
neighbours, i − 1 and i + 1.

Proposition 5.3 Let n ∈ N. The gossip monoid Gn, the one-directional gossip monoid
Ḡn, and the double Catalan monoid DCn, all satisfy the same set of identities as the
reflexive monoid Rn.

Proof It is clear from the above definitions that DCn ⊆ Gn ⊆ Gn ⊆ Rn . Thus
Id(DCn) ⊇ Id(Gn) ⊇ Id(Gn) ⊇ Id(Rn). By Lemma 5.2, there is a surjective monoid
homomorphism fromU : DCn → CU

n , fromwhich it follows that Id(CU
n ) ⊇ Id(DCn).

The result then follows from the fact that Rn and Cn satisfy the same identities [18].
��

Now let S be a non-trivial interval semiring and for each s ∈ S define: D(i, j; s)
to be the matrix with 1’s on the diagonal and a single off-diagonal entry s in position
(i, j); and E(i, j; s) = D(i, j; s)D( j, i; s). Then we may define monoids:

CU
n (S) := 〈D(i, i + 1; s) : 1 ≤ i ≤ n − 1, s ∈ S〉

DCn(S) := 〈E(i, i + 1; s) : 1 ≤ i ≤ n − 1, s ∈ S〉
Gn(S) := 〈E(i, j; s) : 1 ≤ i, j ≤ n − 1, s ∈ S〉
Gn(S) := 〈D(i, j; s) : 1 ≤ i, j ≤ n − 1, s ∈ S〉

Since S is an interval semiring, we note that each is a submonoid of Rn(S).

Proposition 5.4 Let S be a (non-trivial) interval semiring. The monoids CU
n (S),

DCn(S), Gn(S) and Gn(S) satisfy the same identities as the monoid Rn(S).

Proof It is clear from the definitions that

DCn ⊆ DCn(S) ⊆ Gn(S) ⊆ Gn(S) ⊆ Rn(S)
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and

CU
n ⊆ CU

n (S) ⊆ Rn(S).

Thus by Proposition 5.3 and Theorem 4.3 we deduce that each of these monoids
satisfies the same set of identities. ��

In the case where S is the subsemiring [0,+∞] of the (min-plus) tropical semiring,
it is straightforward to verify that the monoid Gn(S) is precisely the lossy gossip
monoid Gn of [5].
Corollary 5.5 The lossy gossip monoid is finitely based for n ≤ 4 and non-finitely
based otherwise.
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