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Abstract
Congruences on an ample semigroup S are investigated. For any admissible congru-
ence ρ on S, the minimum σρ (the maximum μρ) admissible congruence on S whose
restriction to E(S) is the trace of ρ is obtained. An expression for a congruence which
is contained in (contains) any admissible congruence of the same kernel is given. The
concept of congruence pairs for S is introduced. It is shown that for any admissible
congruence ρ of S; (tr ρ, ker ρ) is a congruence pair for S. Conversely, the congru-
ence of S which contains (is contained in) any admissible congruence associated with
a given congruence pair for S is formulated.

Keywords Abundant semigroups · Ample semigroups · Admissible congruences ·
Trace · Kernel · Congruence pair

1 Introduction

An ample semigroup is an adequate semigroup S in which e S1 ∩ a S1 = eaS1 and
S1e ∩ S1a = S1ae for any a ∈ and e2 = e in S. A semigroup S is adequate if
each L ∗-class and each R∗-class in S contains an idempotent and the idempotents
commute. Here two elements a, b of a semigroup S are L∗-related (respectively R∗-
related) if and only if they are related by the Green’s relation L (respectivelyR) in an
oversemigroup of S, and H∗ = L∗ ∩ R∗.

The class of ample (formerly typeA) semigroups was first studied by Fountain [10].
This class of semigroups contains inverse semigroups, full subsemigroups of an inverse
semigroup, and semilattices of cancellative monoids. Fountain [10], Armostrong [1]
and Lawson [18] extended some basic properties of inverse semigroups to ample
semigroups. Fountain [9] initiated a study of one sided ample semigroups. For an
extended abstract of the subject, the reader may look at [11] and [13]. Further, several
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608 A. El-Qallali

authors (see for example; [3,4,6–8] and [19]) have made use of ample semigroups in
characterizing classes of abundant semigroups in a way analogous to that in which
inverse semigroups are used in characterizing the corresponding classes of regular
semigroups.

There is now a class more general than the class of abundant (such as semiabun-
dant) semigroups where results emerging from the studies of both inverse and ample
semigroups are accumulated (see [12]). For a survey, the reader may consult Hollings
[16]. Congruences play an important role in the investigation of properties of inverse
semigroups and there are now deep and well developed theories for congruences on
inverse semigroups. For a survey, we refer the reader to [2,17,20] or [22]. It seems nat-
ural, therefore, to extend the results concerning congruences on inverse semigroups
to ample semigroups. The present paper is devoted to this task. In particular, we
extend the results of Green [14], Petrich [21] and Reilly and Scheiblich [24] to ample
semigroups. It has been proven that the trace and kernel approach is successful in
studying congruences on inverse semigroups (see [21], [23] and [25]) We shall adopt
this approach in investigating congruences on ample semigroups.

We start in Sect. 2 by giving the definition and basic properties of ample semigroups
S and describing the maximum congruence μ included inH∗ on S and the minimum
cancellative congruence σ on S. We state necessary and sufficient condition for a
semigroup to be a full subdirect product of a cancellative monoid and a fundamental
ample semigroup. Normal congruences on the semilattice E of an ample semigroup S
form the subject of Sect. 3. We obtain expressions for the minimum and the maximum
admissible congruences on S whose restriction to E is a given normal congruence
on E . The former has been introduced earlier in [13]. For any congruence ρ on S,
the trace of ρ is the restriction of ρ on E . In Sect. 4 we characterize the relationship
between two admissible congruences on S having the same trace. We draw several
interesting consequences of this characterization. In Sect. 5 we determine the kernels
of the minimum and the maximum admissible congruences on S having the same
trace. This leads to a specific description of the kernels of σ and μ. The concept
of a normal subsemigroup of an ample semigroup S is introduced in Sect. 6. The
kernels of admissible congruences on S are normal subsemigroups of S. Themaximum
congruence on S whose kernel is a given normal subsemigroup is determined, as well
as the least congruence whose kernel is a given normal subsemigroup N . The concept
of congruence pairs for ample semigroups is the subject of the last section where
we see the trace and the kernel of admissible congruence on an ample semigroup S
form a congruence pair for S, but a congruence pair of S does not determine a unique
admissible congruence. However, a description is given of those congruences on an
ample semigroup whose trace and kernel form a given congruence pair.

Any undefined notion and terminology can be in [10] or [17].

2 Ample semigroups

In this section we review briefly the basic facts and concepts connected to ample semi-
groups. For more details we refer the reader to [1,10,13] and [18]. We denote the set
of idempotents in any semigroup S by E(S). If E(S) is a commutative subsemigroup
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Congruences on ample semigroups 609

of S, then S is said to be an E-semigroup. An ample semigroup S is an E-semigroup
equipped with unary operations * and † such that the following conditions hold:

(i) For all elements a of S; aa∗ = a and a†a = a,
(ii) For all elements a of S and x, y ∈ S1,

ax = ay �⇒ a∗x = a∗y and xa = ya �⇒ xa† = ya†,

(iii) For all elements a and idempotents e of S,

ea = a(ea)∗ and ae = (ae)†a.

This definition of ample semigroups is equivalent to that stated in the introduction
(see [10]). It follows that the elements a∗, a† are idempotents for any a in S and that
e∗ = e = e† for any idempotent e. In fact, a∗ (respectively a†) is the unique idempotent
in the L∗-class (respectivelyR∗-class) of a, where, as we recall, two elements a, b of
S are L∗-related (respectively R∗-related) if and only if they are related by Green’s
relation L (respectively, R) in some oversemigroup of S. The intersection L∗ ∩ R∗
is denoted by H∗. From now on, S will denote an ample semigroup with semilattice
and E(S) = E of idempotents.

At this stage we remind the reader of some elementary properties of ample semi-
groups which will be used frequently.

Lemma 2.1 Let a, b be elements of an adequate semigroup S. Then:

(i) aL∗b if and only if a∗ = b∗ and aR∗b if and only if a† = b†.
(ii) (ab)∗ = (a∗b)∗ and (ab)† = (ab†)†;
(iii) (ab)∗b∗ = (ab)∗ and a†(ab)† = (ab)†.

An admissible congruence on the adequate semigroup S is a semigroup congruence
ρ which satisfies the implications;

a x ρ a y �⇒ a∗x ρ a∗y and x a ρ y a �⇒ x a† ρ y a†

for all elements a of S and x, y ∈ S1 [5].

Lemma 2.2 If ρ is an admissible congruence on the adequate semigroup S and if a, b
are elements of S such that a ρ b, then a∗ ρ b∗ and a† ρ b†.

Proof Since ρ is a congruence, we have a a∗ ρ b a∗, that is, a ρ b a∗ and hence
b ρ b a∗ whence b∗ ρ b∗ a∗ since ρ is admissible. Similary, a∗ ρ a∗ b∗ and as
a∗ b∗ = b∗ a∗ we have a∗ ρ b∗ as required. The argument for a† ρ b† is similar. ��

It is noteworthy that the conditions in Lemma 2.2 are not strong enough to imply
admissibility. For example, the admissible congruences on a cancellative monoid C
are precisely the cancellative congruences on C . But when we take a∗ = 1 = a† for
all a in C , then any congruence on C satisfies the conditions of Lemma 2.2.
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610 A. El-Qallali

We remark that if ρ is an admissible congruence on the ample semigroup S, then
S/ρ is an ample semigroup when ∗ and † are defined on S/ρ by putting

(a ρ)∗ = a∗ ρ and (a ρ)† = a† ρ

Moreover, (see [5]), if xρ is an idempotent in S/ρ,then there exists an idempotent e
in S such that (x, e) ∈ ρ.

The natural homomorphism from S onto S/ρ is an admissible homomorphism in
the following sense.

A homomorphism θ : S −→ T of adequate semigroups is admissible if

a L∗(S) b implies a θ L∗(T ) b θ and aR∗(S) b implies a θ R∗(T ) b θ.

The relation μ on the ample semigroup S is defined by the following rule:

(a, b) ∈ μ if and only if (e a)∗ = (e b)∗ and (a e)† = (b e)† for all e ∈ E .

In [10] it is shown that μ is the maximum congruence contained in H∗. From [5]
we conclude that μ is an admissible congruence on any ample semigroup. It follows
from Sect. 3 of this paper that μ is the maximum idempotent-separating admissible
congruence on S. The ample semigroup S is said to be fundamental if μ is the identity
relation on S. For further details on admissible congruences, we may refer the reader
to [15].

The relation σ on the ample semigroup S is defined by the following rule:

(a, b) ∈ σ if and only if a e = b e for some e ∈ E .

In [18] it is shown that σ is the minimum cancellative congruence on S. As S is
an ample semigroup, e a = a (e a)∗ and a e = (a e)†a for any a ∈ S, e ∈ E ,
then—alternatively—σ can be given as:

(a, b) ∈ σ if and only if f a = f b for some f ∈ E .

We conclude this section by the structure of an ample semigroup on which the inter-
section of σ ∩ μ is the identity relation. This can be considered as a generalization of
Theorem 4.5 of [18].

Theorem 2.3 A semigroup P is a full subdirect product of a cancellative monoid and
a fundamental ample semigroup if and only if P is an ample semigroup on which
σ ∩ μ = i .

Proof Let P be a full subdirect product of a cancellative monoid M and a fundamental
ample semigroup T . Denote the identity element of M by 1. Clearly, P is ample and

E(P) = {(1, e) ∈ M × T : e ∈ E(T )}.
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Congruences on ample semigroups 611

Notice that for any (m, t) ∈ P ,

(m, t)∗ = (1, t∗) and (m, t)† = (1, t†).

For any (m, t), (n, s) in P such that ((m, t), (n, s)) ∈ σ ∩ μ, that is, for any (1, e) ∈
E(P), and thus for any idempotent e in T ;

(m, t) (1, e) = (n, s) (1, e),

[(1, e) (m, t)]∗ = [(1, e) (n, s)]∗ and

[(m, t) (1, e)]† = [(n, s) (1, e)]†.

It follows that:

m = n, (1, (e t)∗) = (1, (e s)∗) and (1, (t e)†) = (1, (s e)†).

Therefore m = n and (t, s) ∈ μ(T ). As by the hypothesis, T is fundamental, so
μ(T ) = i and t = s. Hence (m, t) = (n, s) and σ ∩ μ = i on P .

Conversely, let P be an ample semigroup. Recall that P/σ is a cancellative monoid
and P/μ is fundamental, so that the mapping: ψ : P −→ P/σ × P/μ defined by
x ψ = (x σ, x μ) is a semigroup homomorphism. If a μ is an idempotent of P/μ,
then by the admissibility of μ, there exists e ∈ E(P) such that (e, a) ∈ μ. But also
e σ is the identity element of P/σ . Therefore, eψ = (e σ, a μ) and thus imψ is a
full subdirect product of P/σ × P/μ. Further, if σ ∩ μ = i , then ψ is one-to-one
and P ∼= imψ in this case. ��

3 Normal congruences

For any congruence ρ on S, we have the restriction ρ|E of ρ on E which is called the
trace of ρ, denoted by tr ρ. Clearly tr ρ is a congruence on E . Further, if e, f ∈ E
with e ρ f and a ∈ S, then (e a, f a) ∈ ρ and (a e, a f ) ∈ ρ. If ρ is admissible,
then by Lemma 2.2, we get

(e a)∗ ρ ( f a)∗ and (a e)† ρ (a f )†.

Accordingly, a congruence π on E is said to be normal if for any e, f ∈ E and
a ∈ S;

e π f implies(e a)∗ π ( f a)∗ and (a e)† π (a f )†.

We give in this section; expressions for the minimum and the maximum admissible
congruence on S whose restriction to E is a given normal congruence π on E . Before
we begin with the expression for the former, we start with the following Lemma.

Lemma 3.1 If π is a normal congruence on E, then for any elements a, b in S, the
following two statements are equivalent:
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612 A. El-Qallali

(1) a∗ π b∗, a e = b e for some e ∈ E, e π a∗;
(2) a† π b†, f a = f b for some f ∈ E, f π a†.

Proof Let a, b ∈ S and suppose (1) holds, then as S is ample;

a e = b e implies (a e)†a = (b e)†b and (a e)† = (b e)†.

From the normality of π ,

e π a∗ implies (a e)† π (a a∗)†, that is, (a e)† π a† and

e π b∗ implies (b e)†π (b b∗)†, that is, (b e)†π b†.

As (a e)† = (b e)†, then a† π b† and (2) holds. The argument for (2) implies (1) is
similar. ��

We use one of the statements of Lemma 3.1 to define the required congruence as
the following Theorem demonstrates:

Theorem 3.2 For any normal congruence π on E , the relation:

σπ = {(a, b) ∈ S × S : a∗π b∗, a e = b e for some e ∈ E, e π a∗}

is the minimum congruence on S whose restriction to E is π . Further, σπ is an admis-
sible congruence.

Proof Clearly σπ is an equivalence relation. Let a, b, c ∈ S such that (a, b) ∈ σπ ,
then in particular a∗π b∗, a e = b e for some e ∈ E, e π a∗and, c a e = c b e.
Thus (c a)∗ e = (c b)∗ e, (c a)∗ e π (c a)∗ a∗, (c a)∗ a∗ = (c a)∗, (c b)∗
e π (c b)∗ b∗, (c b)∗ b∗ = (c b)∗.
Therefore, (c a)∗ π (c b)∗ and (c a) (c a)∗e = (c b) (c b)∗e = (c b) (c a)∗e, where
(c a)∗e π (c a)∗. Hence, (c a, c b) ∈ σπ .

On the other side,

a e = b e �⇒ a e c = b e c �⇒ a c (e c)∗ = b c (e c)∗.

By the normality of π ,

e π a∗ implies (e c)∗π (a∗ c)∗; (a∗ c)∗ = (a c)∗, so that (e c)∗π (a c)∗.

Similarly, (e c)∗π (b c)∗ and therefore ;(a c)∗π(b c)∗. As a c (e c)∗ = b c (e c)∗ and
(e c)∗π(a c)∗, we obtain (a c, b c) ∈ σπ . Hence σπ is congruence.

It is easy to see that e π f if and only if (e, f ) ∈ σπ and tr σπ = π . Now suppose
τ is a congruence on S such that tr τ = π , and (a, b) ∈ σπ for some a, b ∈ S;
then—in particular—we have a∗π b∗ and a e = b e for some e ∈ E, e π a∗ and thus
(a∗, e) ∈ τ, (b∗, e) ∈ τ . Therefore,

a τ = a a∗τ = a τa∗τ = a τe τ = (a e) τ = (b e) τ

= b τe τ = b τb∗ τ = b b∗ τ = b τ ;
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Congruences on ample semigroups 613

that is, (a, b) ∈ τ. Hence σπ ⊆ τ and σπ is the minimum congruence on S whose
restriction to E is π . To prove that σπ is admissible.

Let a ∈ S, s, t ∈ S1 such that (a s, a t) ∈ σπ . Then

(a s)∗π(a t)∗ and a s e = a t e for some e ∈ E, (a s)∗π e.

That is, (a∗s)∗π (a∗t)∗ and a∗s e = a∗t e, e π(a∗s)∗. Therefore (a∗s, a∗t) ∈ σπ .

On the other side, suppose (s a, t a) ∈ σπ ; that is,

(s a)†π(t a)†, f s a = f t a, and f π (s a)† for some f ∈ E (by Lemma 3.1)

Notice that f s a = f t a, implies f s a† = f t a† where f π (s a†)†, f π (t a†)†.
Therefore,

(s a†)† π (t a†)†, f s a† = f t a†, f π (s a†)†.

Again by Lemma 3.1 we have, (s a†, t a†) ∈ σπ . Hence σπ is an admissible congru-
ence and we have σπ as required. ��

Lemma 3.1 offers an alternative expression for σπ of Theorem 3.2 which can be
stated in the following corollary:

Corollary 3.3 The congruence σπ of Theorem 3.2 has also the following form:

σπ = {(a, b) ∈ S × S : a†π b†, f a = f b; where f π a†, f ∈ E}.

If the congruence ρ is admissible on S, then, as we recall, π = ρ|E is a normal
congruence on E and σπ of Theorem 3.2 (and Corollary 3.3) coincides with ρmin

described in [ [13], Proposition 9.2].
Let the congruenceπ be normal on E . Asσπ is theminimumadmissible congruence

on S whose trace is π , we are in a position to generalize Lemma 3.1 (1) of [23] as
follows:

Proposition 3.4 Let ρ be an admissible congruence on S whose trace is π . Then S/ρ

is an idempotent-separating homomorphic image of S/σπ .

Proof The mapping φ : S/σπ −→ S/ρ defined by (s σπ) φ = s ρ is a homomor-
phism of S/σπ onto S/ρ. From [6], we conclude that,

E(S/σπ) = {e σπ : e ∈ E}.

Let e σπ , f σπ be two idempotents in S/σπ (e, f ∈ E)

(e σπ) φ = ( f σπ) φ �⇒ e ρ = f ρ

�⇒ (e, f ) ∈ ρ

�⇒ (e, f ) ∈ π (tr ρ = π)

�⇒ e σπ = f σπ
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614 A. El-Qallali

Therefore, φ is idempotent-separating. ��
To turn to the second objective of this section, let π be a normal congruence on E .

Define μπ on S by the following rule:

(a, b) ∈ μπ if and only if (e a)∗π (e b)∗ and (a e)†π (b e)† for any e ∈ E .

The following Lemma gives an alternative description of μπ .

Lemma 3.5 Let π be a normal congruence on E. Then for any elements a, b of S, the
following statements are equivalent:

(i) (a, b) ∈ μπ.

(ii) (e a)∗ π ( f b)∗ and (a e)† π (b f )† for any e, f ∈ E with e π f .
(iii) (a σπ , b σπ) ∈ μ(S/σπ).

Proof (i) ⇐⇒ (ii) For any b ∈ S, e, f ∈ E with e π f we have (e b)∗ π ( f b)∗.
If (a, b) ∈ μπ, then (e a)∗ π(e b)∗ so that (e a)∗ π( f b)∗. Similarly, (a e)†π(b f )†.
Hence (ii) follows from (i).
It is clear that (i) is an immediate consequence of (ii).
(i) ⇐⇒ (iii) For any a, b ∈ S, we have;

(a, b) ∈ μπ ⇐⇒ (e a)∗ π (e b)∗ and (a e)†π (b e)†; for all e ∈ E

⇐⇒ (e a)∗σπ = (e b)∗σπ and (a e)†σπ = (b e)†σπ ; for all e ∈ E

⇐⇒ (eσπ aσπ)∗ = (e σπ bσπ)∗ and

(aσπ eσπ)† = (bσπ eσπ)†; for all e ∈ E (σπ is admissible)

⇐⇒ (aσπ , bσπ) ∈ μ(S/σπ).

��
Now the second main result of the section follows;

Theorem 3.6 The relation μπ is the maximum admissible congruence on S whose
restriction to E is π .

Proof It is clear that μπ is an equivalence relation. Let a, b, c ∈ S with (a, b) ∈ μπ

and e ∈ E . Then (e a)∗ π (e b)∗ and by the normality of π , it follows that:

((e a)∗c)∗ π ((e b)∗c)∗, that is; (e a c)∗ π (e b c)∗.

Since (e c)† ∈ E , we have, (a (c e)†)† π (b (c e)†)†, that is; (a c e)† π (b c e)†.
Therefore, (a c, b c) ∈ μπ . Similarly, (c a, c b) ∈ μπ .
Hence, μπ is congruence.
It is obvious that π ⊆ μπ . Let f , g ∈ E with f μπ g. Then for any e ∈ E , e f πeg.
Take in turn e = f and e = g to get f π f g and g f π g.
As f g = g f . So f π g. Thus trμπ = π .
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Congruences on ample semigroups 615

To prove that μπ is admissible, let a ∈ S and s, t ∈ S1. Then;

(a s, a t) ∈ μπ �⇒ (a sσπ , a tσπ) ∈ μ(S/σπ) (Lemma 3.5)

�⇒ (a∗ sσπ , a∗ tσπ) ∈ μ(S/σπ)

(μ(S/σπ), and σπ are admissble)

�⇒ (a∗ s, a∗ t) ∈ μπ. (Lemma 3.5)

Similarly, (s a, t a) ∈ μπ implies that (s a†, t a†) ∈ μπ.

Therefore, μπ is admissible.
It remains to prove thatμπ contains any admissible congruence on S whose restric-

tion to E isπ . Letρ be an admissble congruence on S such thatρ|E = π and (a, b) ∈ ρ

for some a, b ∈ S. Then for any e ∈ E , (e a, e b) ∈ ρ and (a e, b e) ∈ ρ. In particular,
we have, (Lemma 2.2)

((e a)∗, (e b)∗) ∈ ρ, ((a e)†, (b e)†) ∈ ρ.

Thus
(e a)∗ π (e b)∗, (a e)† π (b e)†.

and (a, b) ∈ μπ .
Hence the result holds. ��

4 Congruences with the same trace

The objective of this section is to characterize the relationship between two admissi-
ble congruences, ρ and τ on S having the same trace. The proof of the main result
is obtained by adopting Petrich’s proof [21] of the corresponding result for inverse
semigroups.

It follows from the results of Sect. 3, that for any admissible congruence ρ on S;
trρ is a normal congruence on E and σtr ρ , μtr ρ are respectively the minimum and the
maximum admissible congruence on S such that:

tr σtr ρ = tr ρ = tr μtr ρ

where

σtr ρ = {(a, b) ∈ S × S; a∗ρ b∗, a e = b e for some e ∈ a∗ρ ∩ E}.

or equivalently

σtr ρ = {(a, b) ∈ S × S; a†ρ b†, f a = f b for some f ∈ a†ρ ∩ E}.

and

μtr ρ = {(a, b) ∈ S × S; (e a)∗ρ (e b)∗, and (a e)†ρ (b e)† for all e ∈ E}.
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616 A. El-Qallali

We may denote σtr ρ and μtrρ by σρ and μρ respectively.
From Theorems 3.2 and 3.6 we conclude the following Corollary:

Corollary 4.1 For any admissible congruence ρ on S,

σρ ⊆ ρ ⊆ μρ and tr σρ = tr ρ = tr μρ.

If i andω are respectively, the equality and the universal relations on S, then clearly,
μi = μ, the maximum congruence contained in H∗. That is, to say (Theorem 3.6),
μ is the maximum admissible congruence whose trace is the identity relation on E .
Therefore,μ is the maximum idempotent-separating admissible congruence on S, and
σω = σ , the minimum cancellative congruence on S.

Recall that for any congruences ρ and τ on S with τ ⊆ ρ, the congruence ρ/τ is
defined on S/τ by the rule:

a τ ρ/τ b τ if and only if a ρ b; (a, b ∈ S) (see [2], or [17]).

Theorem 4.2 The following statements concerning admissible congruences ρ and τ

on the ample semigroup S are equivalent:

(i) tr ρ = tr τ .
(ii) ρ ⊆ μτ ; μτ/ρ = μ(S/ρ).
(iii) a ρ μ(S/ρ) b ρ ⇐⇒ a τ μ(S/τ) b τ, (a, b ∈ S).
(iv) a ρ H∗(S/ρ) b ρ ⇐⇒ a τ H∗(S/τ) b τ, (a, b ∈ S).
(v) ρ ∩ τ |e ρ and ρ ∩ τ |e τ are cancellative congruences, (e ∈ E).
(vi) ρ/ρ ∩ τ and τ/ρ ∩ τ are congruences contained in H∗(S/ρ ∩ τ).

Proof (i) �⇒ (ii) First note that μρ = μτ so that ρ ⊆ μτ .
For any a, b ∈ S we have,

a ρ μτ /ρ b ρ ⇐⇒ a ρ μρ/ρ b ρ

⇐⇒ a μρ b

⇐⇒ (e a)∗ ρ (e b)∗ and (a e)† ρ (b e)†; for any e ∈ E

⇐⇒ (a ρ, b ρ) ∈ μ(S/ρ).

(ii) �⇒ (i) Observe that tr ρ ⊆ tr μτ ⊆ tr τ . Further, for any e, f ∈ E ,
we have,

e τ f �⇒ eμτ f �⇒ e ρ μτ /ρ f ρ �⇒ e ρ μ(S/ρ) f ρ �⇒ e ρ = f ρ

�⇒ e ρ f .

and thus also tr τ ⊆ tr ρ.

123



Congruences on ample semigroups 617

(i) �⇒ (iii) For any a, b ∈ S we have,

a ρ μ(S/ρ) b ρ ⇐⇒ (e a)∗ρ = (e b)∗ρ, (a e)† ρ = (b e)†ρ; for any e ∈ E

⇐⇒ (e a)∗τ = (e b)∗τ, (a e)† τ = (b e)†τ ; for any e ∈ E

⇐⇒ a τ μ(S/τ) b τ.

(iii) �⇒ (i) For any e, f ∈ E , we obtain;

e ρ f ⇐⇒ e ρ = f ρ

⇐⇒ e ρ μ(S/ρ) f ρ

⇐⇒ e τ μ(S/τ) f τ

⇐⇒ e τ = f τ

⇐⇒ e τ f .

(i) �⇒ (iv) Let a, b ∈ S and assume a ρ H∗(S/ρ) b ρ.
Thus a∗ρ = b∗ρ and a†ρ = b†ρ.
The hypothesis implies a∗τ = b∗τ and a†τ = b†τ , which evidently imply
a τ H∗(S/τ) b τ .
By symmetry, a τ H∗(S/τ) b τ implies a ρ H∗(S/ρ) b ρ.
(iv) �⇒ (i) Let e, f ∈ E and assume e ρ f , then e ρ H∗(S/ρ) f ρ so that by
hypothesis, e τ H∗(S/τ) f τ and hence e τ f . Symmetrically, e τ f implies e ρ f .
(i) �⇒ (v) Observe that e ρ is an ample semigroup (e ∈ E). Let a, b, c ∈ e ρ.
If (a b, a c) ∈ ρ ∩ τ , and since ρ, τ are admissible congruences, then (a∗b, a∗c) ∈
ρ ∩ τ . Notice that a∗, b† ∈ e ρ and so (b†, a∗) ∈ ρ ∩ τ (by the hypothesis), then
(b, a∗b) ∈ ρ∩τ . Also, (a∗, c†) ∈ ρ∩τ so that (a∗c, c) ∈ ρ∩τ . Hence (b, c) ∈ ρ∩τ .
Similarly, (b a, c a) ∈ ρ ∩ τ implies (b, c) ∈ ρ ∩ τ .
Therefore, ρ ∩ τ |e ρ is cancellative congruence.
Similarly; e τ is an ample semigroup (e ∈ E), and ρ ∩ τ |e τ is cancellative congruence.

(v) �⇒ (i) Let g, h ∈ e ρ ∩ E . As g.g h = g.h where g, g h, h ∈ e ρ

so (g. g h, g h) ∈ ρ ∩ τ, then by the hypothesis, (g h, h) ∈ ρ ∩ τ.

Symmetrically, (h g, g) ∈ ρ ∩ τ.

But gh = hg, then (g, h) ∈ ρ ∩ τ.

In particular, for any e, f ∈ E .

e ρ f �⇒ f ∈ e ρ �⇒ (e, f ) ∈ ρ ∩ τ �⇒ (e, f ) ∈ τ �⇒ e τ f .

Similarly e τ f �⇒ e ρ f .
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(i) �⇒ (vi) For any a, b ∈ S, we have,

a(ρ ∩ τ) ρ/ρ ∩ τ b(ρ ∩ τ) �⇒ a ρ b �⇒ a∗ρ b∗ and a†ρ b†

�⇒ a∗(ρ ∩ τ) ρ/ρ ∩ τ b∗(ρ ∩ τ) and

a†(ρ ∩ τ) ρ/ρ ∩ τ b†(ρ ∩ τ)

�⇒ a (ρ ∩ τ) L∗(S/ρ ∩ τ ) b (ρ ∩ τ) and

a (ρ ∩ τ) R∗(S/ρ ∩ τ ) b (ρ ∩ τ)

�⇒ a (ρ ∩ τ) H∗(S/ρ ∩ τ ) b (ρ ∩ τ).

Therefore, ρ/ρ ∩ τ ⊆ H∗(S/ρ ∩ τ ). Similarly, τ/ρ ∩ τ ⊆ H∗(S/ρ ∩ τ ).

(vi) �⇒ (i) For any e, f ∈ E, we have;

e ρ f �⇒ e(ρ ∩ τ) ρ/ρ∩τ f (ρ ∩ τ)

�⇒ e (ρ ∩ τ) H∗(S/ρ∩τ ) f (ρ ∩ τ)

�⇒ e (ρ ∩ τ) = f (ρ ∩ τ)

�⇒ e τ f

and similarly, e τ f implies e ρ f . ��
Corollary 4.3 An admissible congruence ρ on S is equal to μρ if and only if S/ρ is
fundamental.

Proof Using the equivalence of (i) and (ii) of Theorem 4.2, we obtain;

ρ = μρ ⇐⇒ μρ/ρ = i ⇐⇒ μ(S/ρ) = i ⇐⇒ S/ρ is fundamental .

��
Corollary 4.4 If ρ is an admissible congruence on S, then for any e ∈ E, σρ |e ρ is the
minimum cancellative congruence on e ρ.

Proof Clearly, σρ ⊆ ρ so thatρ∩σρ = σρ . Since tr ρ = tr σρ , then by the equivalence
of (i) and (v) in Theorem 4.2; σρ |e ρ is a cancellative congruence on e ρ for any e ∈ E .
Since e ρ is an ample semigroup, then the minimum cancellative congruence on e ρ

can be defined by the rule:

a σ b if and only if a f = b f for some f ∈ eρ ∩ E .

For any a, b ∈ e ρ, we have a∗ρ = e ρ, and σρ b ⇐⇒ a f = b f for some f ∈
a∗ρ ∩ E . Therefore, a σρ b ⇐⇒ a f = b f for some f ∈ eρ ∩ E . Thus, σρ |e ρ ⊆
σ. But σρ |e ρ itself is a cancellative congruence on eρ. Hence, σρ |e ρ = σ on e ρ.

��
Proposition 4.5 Let ρ and τ be two admissible congruences on S such that τ ⊆ ρ and
for every e ∈ E; τ |eρ is the minimum cancellative congruence on e ρ. Then e τ = e σρ

for any e ∈ E.
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Proof Let e, f ∈ E such that e ρ f . Then in particular, e, f ∈ eρ and e. e f =
f . e f , e f ∈ eρ ∩ E . Thus e τ f and tr ρ ⊆ tr τ . By the hypothesis tr τ ⊆ tr ρ.
Therefore, tr τ = tr ρ so that σρ ⊆ τ and e σρ ⊆ e τ for any e ∈ E .

Conversely, for any a,∈ S, e ∈ E , since τ ⊆ ρ and ρ is an admissible congruence,
we have a ∈ e τ implies a ∈ e ρ and e ρ a∗, e f ρ (a f )∗. As τ |eρ = σ is the minimum
cancellative congruence on e ρ, so also a ∈ e τ implies a f = e f for some f ∈
e ρ ∩ E , that is, whenever a ∈ e τ , we have a∗ρ e, a f = e f for some f ∈ e ρ ∩ E .
Thus we obtain a ∈ e σρ . Therefore, e τ ⊆ e σρ . Hence e τ = e σρ. ��

Recall that for any congruence ρ on S, the kernel of ρ is denoted by ker ρ, thus

ker ρ = {a ∈ S : (e, a) ∈ ρ for some e ∈ E}.

Directly, from Lemma 2.2 we have:

Proposition 4.6 If ρ is admissible congruence on S and a ∈ ker ρ, then (a†, a∗) ∈
tr ρ.

Proposition 4.7 For any admissible congruence ρ on S and any e ∈ E, we have
e ρ = eμρ ∩ ker ρ.

Proof Let a ∈ S such that a ∈ eμρ ∩ ker ρ. Then a μρ e and a ρ f for some f ∈ E
so that a∗μρ e and a∗ρ f . We have that tr ρ = trμρ , then a∗μρ f and thus eμρ f .
Therefore, e ρ f and a ρ e, that is, a ∈ e ρ.

Conversely, if a ∈ e ρ, then a ∈ ker ρ, and since ρ ⊆ μρ , (a, e) ∈ μρ , that is,
a ∈ eμρ . Hence a ∈ eμρ ∩ ker ρ. ��

5 The kernels of �� and ��

It follows from Sect. 2, that the congruences σ and μ are respectively, the minimum
cancellative congruence on S and the maximum congruence contained in H∗ on S.
From Sect. 4, σ is σω and μ is μi where ω and i are respectively, the universal and the
equality relations on S, that is, σ is the minimum admissible congruence on S whose
trace in the universal relation on E andμ is the maximum admissible congruence on S
whose trace is the equality relation on E . In this section we determine the kernels of σρ

and μρ , where these congruences as defined in Sect. 4 for any admissible congruence
ρ on S. The kernels of σ and μ will follow. We begin with the kernel of σρ .

Proposition 5.1 For any admissible congruence ρ on S, the following subsets of S are
equal:

(1) K1 = ker σρ .
(2) K2 = {a ∈ S : ae = e for some e ∈ a∗ρ ∩ E}.
(3) K3 = {a ∈ S : ea = e for some e ∈ a†ρ ∩ E}.
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Proof For any a ∈ S; we notice that;

a ∈ K1 �⇒ a σρ f for some f ∈ E

�⇒ a∗ρ f , ae = f e for some e ∈ a∗ρ ∩ E

�⇒ ae f = e f , e f ∈ a∗ρ ∩ E

�⇒ a ∈ K2.

Therefore, K1 ⊆ K2. Suppose a ∈ K2, that is, a ∈ S and ae = e for some
e ∈ a∗ρ ∩ E . As ae = (a e)†a, then e a = e and (a e, a) ∈ ρ, so that
(e, a) ∈ ρ and, in particular. (e, a†) ∈ ρ. Therefore, a ∈ K3. Thus K2 ⊆ K3.
Now, let a ∈ K3, that is, a ∈ S; e a = e for some e ∈ a†ρ ∩ E . It fol-
lows as e ρ a† so e = ea ρ a†a. Then as ρ preserves ∗ (Lemma 2.2), a∗ρ e∗ = e.
But (a∗)† = a∗ and a∗ρ e ρ a† so we get:

a†ρ(a∗)†, e a = e a∗ where e ρ a†, e ∈ E .

By Corollary 3.3 (a, a∗) ∈ σρ and a ∈ K1. Therefore, K3 ⊆ K1. Hence the result
holds. ��

As a direct consequence of proposition 5.1 we have the following Corollary:

Corollary 5.2 For any normal congruenceπ on E, the following subsets of S are equal:

(1) ker σπ .
(2) {a ∈ S : a e = e for some e ∈ E, e π a∗}.
(3) {a ∈ S : e a = e for some e ∈ E, e π a†}.
The determination of the kernel of μρ follows:

Proposition 5.3 Let ρ be an admissible congruence on S. Then the following subsets
of S are equal:

(1) K1 = ker μρ .
(2) K2 = {a ∈ S : e a ρ a e, for all e ∈ E}.
(3) K3 = {a ∈ S : (e a)∗ ρ e a∗, for all e ∈ E}.
(4) K4 = {a ∈ S : (a e)† ρ a†e, for all e ∈ E}.
Proof To prove K1 = K2, let a ∈ K1, then a μρ f for some f ∈ E . In particular,
(e a)∗ ρ e f , for any e ∈ E which implies a (e a)∗ ρ a e f . Since S is ample,
e a ρ a e f . Further, as μρ is admissible congruence, a∗ μρ f and a∗ ρ f , that is,
a ρ a f . Therefore; a e ρ a f e, a f e = a e f and a e f ρ e a. Hence a e ρ e a and
a ∈ K2; K1 ⊆ K2.

Assume that a ∈ K2, that is, a ∈ S and a e ρ e a for any e ∈ E . Take in turn
e = a∗ and e = a† to get a ρ a∗a and a a† ρ a so that

a† ρ a∗a† and a∗a† ρ a∗

Thus a∗ ρ a†.
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For any e ∈ E , a e ρ e a implies (a e)∗ ρ (e a)∗ and (a e)† ρ (e a)†.

Notice that

(a e)∗ = a∗e = (e a∗)∗

(e a)† = e a†, e a† ρ e a∗, e a∗ = (a∗e)†.

Therefore, a e ρ e a implies (e a)∗ ρ (e a∗)∗ and (a e)† ρ (a∗ e)† so that, a μρ a∗
and a ∈ K1, K2 ⊆ K1.

Hence K1 = K2.
To prove K2 = K3, let a ∈ K2, that is, a ∈ S such that ea ρ ae for any e ∈ E .

Then (e a)∗ρ (a e)∗. But, (a e)∗ = a∗e = e a∗.
Hence (e a)∗ ρ e a∗ and a ∈ K3. Thus K2 ⊆ K3.

Let a ∈ K3, then a ∈ S, (e a)∗ ρ e a∗ for any e ∈ E , so that

a (e a)∗ ρ a e a∗.

Notice that

e a = a (e a)∗, e a ρ a e and a ∈ K2, K3 ⊆ K2.

Hence K2 = K3.
To prove K2 = K4, let a ∈ K2, that is, a ∈ S, ea ρ ae for any e ∈ E . Then

(e a)† ρ (a e)† and (e a)† = e a† = a†e. Therefore; (a e)† ρ a†e, a ∈ K4 and
K2 ⊆ K4. For any element a ∈ K4, that is, a ∈ S, (a e)† ρ a†e for any e ∈ E , we
have:

(a e)† a ρ a†e a and a e ρ e a, a ∈ K2.

Therefore; K4 ⊆ K2 and thus K2 = K4. Hence the result. ��
The following Corollary follows as proposition 5.3:

Corollary 5.4 For any normal congruence π on E. The following subsets of S are
equal:

(1) ker μπ .
(2) {a ∈ S : (e a)∗ π e a∗, f or any e ∈ E}.
(3) {a ∈ S : (a e)† π a†e, f or any e ∈ E}.
Recall that σω = σ and μi = μ on S, The following Corollary is direct application

of Corollary 5.2, Proposition 5.3 and Corollary 5.4.

Corollary 5.5 (a) ker σ = {a ∈ S : a e = e, for some e ∈ E}.
(b) The following subsets of S are equal

(1) ker μ.
(2) {a ∈ S : a e = e a, for any e ∈ E}.
(3) {a ∈ S : (e a)∗ = e a∗, for any e ∈ E}.
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(4) {a ∈ S : (a e)† = a†e, for any e ∈ E}.
A natural partial order ≤ on S can be defined for any a, b ∈ S by the rule:

a ≤ b if and only if a = b e for some e ∈ E

or equivalently

a ≤ b if and only if a = b a∗.

We refer the reader to [18] for its properties.
Corollary 5.5 shows that the kernel of σ is the closure Eω of E in S relative to the

natural partial order ≤ on S and that the kernel of μ is the centralizer Eξ of E in S.
Consequently we have,

Corollary 5.6 For any x ∈ S, if x ∈ Eξ , then

x∗ = x† and x H∗x†.

Proof For any x ∈ S, if x ∈ E ξ , then e x = x e for all e ∈ E . In particular,

x = x†x = x x† and thus x∗ = x∗ x†

and x = x x∗ = x∗x and thus x† = x∗ x†.
Hence x† = x∗ = e and x H∗e.

��

6 Congruences with the same kernel

Green [14] introduces the concept of normal subsemigroups in the class of inverse
semigroups. We extend this concept to the class of ample semigroups and define a
normal subsemigroup of the ample semigroup S to be a full subsemigroup N of S
which satisfies the following two conditions:

(1) for any x, y ∈ S, n ∈ N , x y ∈ N together imply x n y ∈ N and
(2) for any x, y ∈ S, n ∈ N , x n y ∈ N together imply; x n†y ∈ N , x n∗y ∈ N .

As the semilattice E of S is a full subsemigroup satisfying condition (2) and if S is
commutative, condition (1) holds for any subsemigroup of S, then if S is commutative,
E is normal. However, there exist full subsemigroups of commutative ample monoids
which do not satisfy condition (2). Recall that the set of numbers; Z,Q and R are
commutative ample monoids under the usual multiplication, so easy to see the set of
non-negative integers is a normal subsemigroup of Z andQ is a normal subsemigroup
of R. While the set of real numbers represented by the interval [− 1, 1] is a full
subsemigroup of R which is not normal as well as Z is not normal subsemigroup of
Q (condition (2) is not satisfied). The last statement indicates that condition (1) is not
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sufficient for N to be normal in S. This is in contrast to the inverse case, for, if S is an
inverse semigroup and N is a full inverse subsemigroup of S which satisfies condition
(1), then for any x, y ∈ S, n ∈ N such that x n y ∈ N , as n−1 ∈ N , we get - by (1) -
x n n−1 y ∈ N and x n−1 n y ∈ N . Therefore, condition (2) holds for N in S.

For more justification to the definition, we notice the condition (1) reduces to that
of normal subgroups when both N and S are groups. In such case it is clear that for
any x, y ∈ S, n ∈ N ;

x y ∈ N implies x n y ∈ N if and only if N is normal.

It follows that every non-normal subgroup does not satisfy condition (1). But there
exist non-normal subgroups in which condition (2) holds. For example, consider the
following two sets of matrices:

S =
{[

x 0
0 y

]
: x, y ∈ R, xy �= 0

}
and T =

{[
0 x
y 0

]
: x, y ∈ R, xy �= 0

}
.

PutG = S∪T . G is a group (so it is an ample monoid) under the matrix multiplication

where H =
{[

1 0
0 x

]
: 0 �= x ∈ R

}
is a subgroup. Since for any α =

[
0 a
b 0

]
in T ,

α−1 =
[

0 b−1

a−1 0

]
and if we take γ =

[
1 0
0 x

]
in H provided that x �= 1 we find

α γ α−1 /∈ H . Then H is not normal. Let α, β ∈ G, γ ∈ H

(
γ † =

[
1 0
0 1

]
= γ ∗

)
.

Notice that:
when α, β ∈ S and α γ β ∈ H , then α β ∈ H ,
when α ∈ S and β ∈ T , then α γ β /∈ H ,
when α ∈ T and β ∈ S, then α γ β /∈ H ,

when α, β ∈ T , then α γ β ∈ H if γ =
[
1 0
0 1

]
and a d = 1, where α =

[
0 a
b 0

]
and

β =
[
0 c
d 0

]
, and in this case α β ∈ H . Therefore, whenever α, β ∈ G and γ ∈ H

such that α γ β ∈ H , we get α β ∈ H . Hence H satisfies condition (2).
In conclusion, conditions (1) and (2) are independent.
Similar verification of [14] shows that this definition is reasonable. Moreover, it is a
direct extension of the cited one. Further, it is based on the following observation:

Proposition 6.1 The kernel of any admissible congruence γ on S is a normal subsemi-
group of S.

Proof It is evident that ker γ is a full subsemigroup of S. Let x, y be in S, and n be in
ker γ . Then (n, e) ∈ γ for some e ∈ E . Thus (x n y, x e y) ∈ γ . if x y ∈ ker γ , then

x e y = x y (e y)∗ ∈ ker γ and x n y ∈ ker γ.
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Further, since γ is admissible, (n, e) ∈ γ , then (n∗, e) ∈ γ and (n, n∗) ∈
γ. Thus we have (x n y, x n∗y) ∈ γ and, clearly, x n y ∈ ker γ �⇒ x n∗y ∈
ker γ . Similarly, x n y ∈ ker γ implies that x n†y ∈ ker γ . Hence the result holds. ��

For any subset N of a semigroup S, the well known syntactic congruence ηN of N
on S is defined as follows:

ηN = {(a, b) ∈ S × S; for any x, y ∈ S1; x a y ∈ N ⇐⇒ x b y ∈ N }.

It iswell known that ηN is a congruence and it is themaximumcongruence forwhich
N is union of ηN -classes. If E(S) ⊆ N , it follows immediately that ker ηN ⊆ N ; the
other inclusion will follow if S is ample and N is normal. So we have the maximum
congruence on S whose kernel is N . However, we will argue in a direct way to prove
the result in the following Proposition:

Proposition 6.2 Let N be a normal subsemigroup of the ample semigroup S. Then the
relation ηN is the maximum congruence on S whose kernel is N .

Proof Clearly ηN is congruence. Let a ∈ S.

a ∈ ker ηN �⇒ (a, e) ∈ ηN for some e ∈ E

�⇒ x a y ∈ N if and only if x e y ∈ N (x, y ∈ S1)

Since a†e a∗ ∈ E ⊆ N , then a†a a∗ ∈ N and a ∈ N . On the other hand, let n ∈ N .
For any x, y ∈ S1,

x n y ∈ N �⇒ x n∗y ∈ N (N is normal)

�⇒ x n n∗y ∈ N

�⇒ x n y ∈ N .

Therefore, (n, n∗) ∈ ηN and n ∈ ker ηN . Hence ker ηN = N . Finally, let ρ be a
congruence on S whose kernel is N and for a, b ∈ S, let (a, b) ∈ ρ, then for any
x, y ∈ S1; (x a y, x b y) ∈ ρ. Therefore,

x a y ∈ ker ρ ⇐⇒ x b y ∈ ker ρ.

So that x a y ∈ N ⇐⇒ x b y ∈ N and (a, b) ∈ ηN .

Hence the result holds. ��
The following example shows that the syntactic congruence is not in general admis-

sible congruence on an ample semigroup.

Example 6.3 Consider the ample monoid of integers Z with its normal subsemigroup
N = {−1, 0, 1}. For syntactic congruence ηN of N in Z we can see that for any
a, b ∈ Z\N ;

x a y ∈ N ⇐⇒ x = 0 or y = 0 ⇐⇒ x b y ∈ N ; x, y ∈ Z
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Therefore, (a, b) ∈ ηN for any a, b ∈ Z\N .
But (1, a) /∈ ηN if a ∈ Z\N and (0, x) /∈ ηN for any x �= 0 in Z

The equivalence classes of ηN are:

0 ηN = {0}, 1 ηN = {−1, 1}, a ηN = Z\N (a ∈ Z\N )

Let F be three element band {u, i, e}where u is its zero element and i is its identity
element. Let ψ be the map from Z/ηN onto F define by:

(0 ηN )ψ = u, (1 ηN )ψ = i, (a ηN )ψ = e.

It is routine matter to check that ψ is a semigroup isomorphism. Notice that for
any a ∈ Z\N , we have (1, a) ∈ L∗(Z). But (1 ηN )ψ = i , (a ηN )ψ = e where
(i, e) /∈ L(F), so that (1 ηN , a ηN ) /∈ L∗(Z/ηN ).

Hence, ηN is not admissible.

Let S be the ample semigroup and N be a normal subsemigroup of S. To give an
expression for a congruence whose kernel is N and is contained in any admissible
congruence on S whose kernel is N , we will depend on the following Lemma.

Lemma 6.4 Let N be a normal subsemigroup of S and τN be the relation on S defined
by:

τN = {(x n1 y, x n2 y) : x, y ∈ S1; n1, n2 ∈ N ; n†1 = n†2}.
Then

(1) τN is reflexive, symmetric and compatible relation on S.
(2) N = {a ∈ S : (a, e) ∈ τN f or some e ∈ E}.
(3) τN is contained in any admissible congruence on S whose kernel is N.

Proof Clearly, (1) holds; To establish (2), let a ∈ N . As; a = a†a a∗, a†a∗ = a†a†a∗,
then (a, a†a∗) ∈ τN and (a, e) ∈ τN for some e ∈ E .
Conversely, suppose, there exists f ∈ E such that (a, f ) ∈ τN (a ∈ S), then;

a = x n1 y, f = x n2 y; n†1 = n†2; n1, n2 ∈ N

As f ∈ N (E ⊆ N ),

f ∈ N �⇒ x n2 y ∈ N �⇒ x n†2y ∈ N (N is normal)

�⇒ x n†1n1y ∈ N �⇒ x n1 y ∈ N �⇒ a ∈ N ,

and (2) holds.
If ρ is an admissible congruence on S whose kernel is N , then for any a, b ∈ S;

(a, b) ∈ τN �⇒ a = x n1y, b = x n2y where x, y ∈ S, n1, n2 ∈ N , n†1 = n†2.
since N = ker ρ, then there exists e, f ∈ E such that; (n1, e) ∈ ρ, (n2, f ) ∈ ρ.
by the admissibility of ρ we get; (n†1, e) ∈ ρ and (n†2, f ) ∈ ρ so that (e, f ) ∈ ρ

and (x e y, x f y) ∈ ρ. But also; (x n1 y, x e y) ∈ ρ, (x n2 y, x f y) ∈ ρ. Hence
(a, b) ∈ ρ and (3) holds. ��
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Proposition 6.5 Let λN be the transitive closure of τN (λN = τ tN ). Then λN is a
congruence on S whose kernel is N and it is contained in any admissible congruence
on S whose kernel is N .

Proof It is evident that λN is congruence on S. If n ∈ N , then as in the proof of
Lemma 6.4, (n, e) ∈ τN and thus (n, e) ∈ λN for some e ∈ E , and N ⊆ ker λN .
On the other hand, if a ∈ ker λN , then (a, f ) ∈ λN for some f ∈ E , and there exists;
a1, a2, . . . , an ∈ S such that
(a, a1) ∈ τN , (a1, a2) ∈ τN , . . . , (an−1, an) ∈ τN , (an, f ) ∈ τN . Notice that
(an, f ) ∈ τN �⇒ an = x n1 y, f = x n2 y; n†1 = n†2; n1, n2 ∈ N , f ∈ N

x n2 y ∈ N �⇒ x n†2y ∈ N �⇒ x n†1n1y ∈ N �⇒ x n1 y ∈ N �⇒ an ∈ N

Similarly, we get all the elements; an−1, an−2, . . . , a1, a ∈ N and ker λN ⊆ N .

Hence ker λN = N .

If ρ is an admissible congruence on S whose kernel is N , then by Lemma 6.4,
τN ⊆ ρ. Hence λN ⊆ ρ. ��
Combine Propositions 6.2 and 6.5 to get:

Corollary 6.6 If ρ is an admissible congruence on S and N = ker ρ, then λN ⊆ ρ ⊆
ηN and ker λN = ker ρ = ker ηN .

The proof of the following Proposition is omitted since it is similar to the one of
Lemma 3.1(2) of [23].

Proposition 6.7 Let ρ be an admissible congruence on S whose kernel is N . If λN is
admissible on S, then S/ρ is idempotent-pure homomorphic image of S/λN .

7 Congruence pairs

We extend in this section the concept of congruence pairs directly from inverse semi-
groups (see [14] or [21]) to ample semigourps and investigate to what extend this
idea is useful in the study of congruences on ample semigroups. Certainly, there is
a congruence pair associated with each admissible congruence ρ on the ample semi-
group S, namely (tr ρ, ker ρ). We give an example to show that it is possible to have
two distinct admissible congruences on an ample semigroup associated with the same
congruence pair. Indeed we use in our example; cancellative congruences on a can-
cellative monoid. However, given a congruence pair, there is a congruence associated
with that pair which contains (is contained in) any admissible congruence associated
with it.

We facilitate the necessary and sufficient conditions of the existence of a congruence
ρ on an inverse semigroup S′ whose kernel is a given normal subsemigroup of S′ and
whose trace is a given normal congruence on E(S′) ( [14], Proposition 3.9) to consider
a definition of a congruence pair as follows:

Definition 7.1 Let N be a normal subsemigroup of the ample semigroup S and π be
a normal congruence on E ; (π, N )is a congruence pair for S if:
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Congruences on ample semigroups 627

(1) for any n ∈ N ; n†π n∗.
(2) for any x, y ∈ S, and any e, f ∈ E ; x e y ∈ N and e π f together imply

x f y ∈ N .

To justify our assertion, we state the following Lemma:

Lemma 7.2 If ρ is an admissible congruence on S, then (tr ρ, ker ρ) is a congruence
pair for S.

Proof It follows from Sect. 3 that tr ρ is a normal congruence on E and from Propo-
sition 6.1; ker ρ is a normal subsemigroup of S. In order to prove that (tr ρ, ker ρ)

are congruence pair, let n ∈ ker ρ. Then by Proposition 4.6, (n†, n∗) ∈ tr ρ. Now let
x, y ∈ S, e, f ∈ E . It is clear that,

(e, f ) ∈ tr ρ �⇒ (e, f ) ∈ ρ �⇒ (x e y, x f y) ∈ ρ.

Therefore,

x e y ∈ ker ρ if and only if x f y ∈ ker ρ.

Hence (tr ρ, ker ρ) is a congruence pair for S. ��
Let N be a normal subsemigroup of S, andπ be a normal congruence on E such that

(π, N ) is a congruence pair for S.We useμπ of Theorem3.6 and ηN of Proposition 6.2
to establish a congruence on S associated with the congruence pair (π, N ).

Proposition 7.3 The relation μπ ∩ ηN is a congruence on S associated with the
congruence pair (π, N ).

Proof Put ρ = μπ ∩ ηN . It is obvious that ρ is a congruence on S, and

ker ρ ⊆ ker ηN , ker ηN = N .

Let n ∈ N . Then for any e ∈ E (E ⊆ N ), e n ∈ N , (e n)†π (e n)∗.
Notice that;(e n∗)∗ = e n∗, e n∗ πe n†, e n† = (e n)†, (e n)† π(e n)∗.
Similarly; (n e)† π(n e)∗, (n e)∗ = n∗e, n∗e = (n∗e)† Therefore; (n, n∗) ∈ μπ .
Recall from the proof of Proposition 6.2 that also (n, n∗) ∈ ηN . Hence (n, n∗) ∈ ρ

and n ∈ ker ρ; that is, N ⊆ ker ρ, and, ker ρ = N .
To show that tr ρ = π , let e, f ∈ E with e π f . Then from the definition of

the congruence pair (π, N ), we have x e y ∈ N if and only if x f y ∈ N ; for all
x, y ∈ S. Therefore (e, f ) ∈ ηN . But also (e, f ) ∈ μπ . Thus (e, f ) ∈ ρ and
π ⊆ tr ρ. Conversely, since ρ ⊆ μπ , then for any e, f ∈ E , (e, f ) ∈ ρ implies
(e, f ) ∈ μπ and thus e π f . Hence tr ρ = π and the proof is complete. ��

If ρ is an admissible congruence on S such that ker ρ = N , tr ρ = π , then by
Theorem 3.6, ρ ⊆ μπ and by Proposition 6.2, ρ ⊆ ηN (ρ need not to be admissible
in this case). Therefore, ρ ⊆ μπ ∩ ηN and we have:
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628 A. El-Qallali

Corollary 7.4 If ρ is an admissible congruence on S such that ker ρ = N, tr ρ = π ,
then ρ ⊆ μπ ∩ ηN .

To establish an analogue of Proposition 7.3, let N be a normal subsemigroup of S
and π be a normal congruence on E such that (π, N ) is a congruence pair for S. We
recall σπ of Theorem 3.2 and λN of Proposition 6.5 to form σπ ∨ λN .

Proposition 7.5 The relation σπ ∨ λN is a congruence on S associated with the con-
gruence pair (π, N ).

Proof Put α = σπ ∨ λN . It is well known (see [2] or [17]) that

α =
⋂

{ρ : ρ is a congruence on S, σπ ⊆ ρ, λN ⊆ ρ}

and for any a, b ∈ S,

(a, b) ∈ α if and only if there exist a1, a2, . . . , an ∈ S such that

(a, a1) ∈ λN , (a1, a2) ∈ σπ , (a2, a3) ∈ λN , . . . , (an−1, an) ∈ σπ , (an, b) ∈ λN .

and α is a congruence on S, that is, the minimum congruence containing both σπ and
λN .

Let a ∈ ker α. Then there exists e ∈ E, (a, e) ∈ α so that for

a1, a2, . . . , an ∈ S

(a, a1) ∈ λN , (a1, a2) ∈ σπ , (a2, a3) ∈ λN , . . . , (an−1, an) ∈ σπ , (an, e) ∈ λN .

As (an, e) ∈ λN ; by Proposition 6.5, an ∈ N , (an−1, an) ∈ σπ .
By definition of σπ (Theorem 3.2)

a∗
n−1 π a∗

n , an−1 e = an e for some e ∈ E, e π a∗
n−1.

As N is normal, an ∈ N , then an e ∈ N and thus an−1 e ∈ N , that is

an−1 e a∗
n−1 ∈ N , e π a∗

n−1.

By the definition of congruence pair, we get:

an−1 = an−1 a∗
n−1 a∗

n−1 ∈ N

so that an−1 ∈ N , (an−2, an−1) ∈ λN .
Then by the same argument as in the proof of Proposition 6.5, we conclude that
an−2 ∈ N . The present step is an−2 ∈ N ; (an−3, an−2) ∈ σπ . So as the argument of
the above, we get an−3 ∈ N .
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The process will continue until we reach a ∈ N . Hence ker α ⊆ N . On the other
hand,

n ∈ N �⇒ n ∈ ker λN . (Proposition6.5)

�⇒ (n, e) ∈ λN for some e ∈ E

�⇒ (n, e) ∈ α for some e ∈ E

�⇒ n ∈ ker α

Therefore; N ⊆ ker α. Hence ker α = N .
To show that tr α = π , let e, f ∈ E .
Notice that,

(e, f ) ∈ π �⇒ (e, f ) ∈ σπ �⇒ (e, f ) ∈ α

and π ⊆ tr α.
For the other inclusion, let e, f ∈ E such that (e, f ) ∈ tr α, that is,

(e, f ) ∈ α. Then for some elements a1, a2, . . . , an ∈ S; (e, a1) ∈ λN , (a1, a2) ∈
σπ , (a2, a3) ∈ λN , . . . , (an−1, an) ∈ σπ , (an, f ) ∈ λN .

But, (e, a1) ∈ λN implies (e, b1) ∈ τN , (b1, b2) ∈ τN , . . . , (bk−1, bk) ∈
τN , (bk, a1) ∈ τN . where b1, b2, . . . , bn ∈ S and τN of Lemma 6.4. Notice that,
(e, b1) ∈ τN implies for some x, y ∈ S, n1, n2 ∈ N ;

e = x n1 y, b1 = x n2 y; n†1 = n†2

Since for any n ∈ N , n∗π n†, and then for any x, y ∈ S, n y† ∈ N and
(n y†)†π(n y†)∗;

(n y)† = (n y†)†, thus (n y)†π (n y†)∗

By the normality of π ,

(x (n y)†)†π (x (n y†)∗)†.

That is, (x n y)†π (x (n y†)∗)†. In particular, we have

(x n1 y)
†π (x (n1 y

†)∗)† and (x n2 y)
†π (x (n2 y

†)∗)†.

Since n∗
1π n†1, n†1 = n†2 and n†2π n∗

2. Then n∗
1π n∗

2 and n∗
1y

†π n∗
2y

† so that
(n1 y†)∗ π(n2 y†)∗. Again, by normality of π , (x (n1 y†)∗)†π(x (n2 y†)∗)†. There-
fore, (x n1 y)†π (x n2 y)† and e π b†1. Also,

(b1, b2) ∈ τN , b1 = x1 n3 y1 and b2 = x1 n4 y1 where n
†
3 = n†4.
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By similar argument to the above, we get b†1 π b†2 and so, b†2 π b†3, . . . , b†k π a†1 .

Hence e π a†1 . As (a1, a2) ∈ σπ , then a†1 π a†2 and (a2, a3) ∈ λN . By the same

procedure as before, we get a†2 π a†3 . Thus a
†
3 π a†4, a

†
4 π a†5, . . . , a†n−1 π a†n, a

†
n π f .

Therefore; e π f and tr α ⊆ π . Hence tr α = π . And we conclude that, α is a
congruence associated with the congruence pair (π, N ).

Let ρ be an admissible congruence on S. If N is the kernel of ρ and π is the trace
of ρ. Then by Theorem 3.2, σπ ⊆ ρ (ρ need not to be admissible in this case) and by
Proposition 6.5 λN ⊆ ρ. Hence σπ ∨ λN ⊆ ρ.

Corollary 7.6 If ρ is an admissible congruence on S such that; ker ρ = N , tr ρ = π ,
then σπ ∨ λN ⊆ ρ.

Considering Lemma 7.2, we may combine Propositions 7.3 and 7.5 and Corollar-
ies 7.4 and 7.6 to have the following result:

Theorem 7.7 If ρ is an admissible congruence on S whose kernel is N and trace is
π , then μπ ∩ ηN and σπ ∨ λN are congruences associated with the congruence pair
(π, N ). Moreover;

σπ ∨ λN ⊆ ρ ⊆ μπ ∩ ηN .

Theorem 7.7 can be compared with ( [14] Theorem 3.8) in the case of inverse semi-
groups where we have the equality of the two congruences, σπ ∨λN and μπ ∩ ηN and
thus a characterization of the congruence associated with a congruence pair (π, N ).
We did not hope to have the equality of the two congruences in the case of ample
semigroups. The congruences constructed in Propositions 7.3 and 7.5 may not be
admissible congruences. Moreover, even if those congruences which are associated
with a given congruence pair were admissible congruences, we can not hope for a
characterization of admissible congruences in this way. Distinct admissible congru-
ences may have the same trace and kernel and be associated with the same congruence
pair. The next example where the congruences involved are cancellative congruences
on a cancellative monoid demonstrates this fact:

Example 7.8 Let M = {a, b}∗ be the free monoid on the elements a and b. Let π be
the universal relation and N = {1}. Consider the congruence pair (π, N ) for M . Let
T = {c}∗ be the free monoid on the element c. Let φ : M → T be the admissible
homomorphism determined by; a φ = c = b φ and put ρ1 = φ ◦ φ−1. Then ρ1 is
admissible congruence, tr ρ1 = π and ker ρ1 = N . Letψ : M → T be the admissible
homomorphism determined by; a ψ = c, bψ = c2 and put ρ2 = ψ ◦ ψ−1. Then ρ2
is admissible congruence, tr ρ2 = π and ker ρ2 = N . So we can have two different
admissible congruences on M associated with the same congruence pair (π, N ). ��
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