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Abstract
A smallest generating set of a semigroup is a generating set of the smallest cardinality.
Similarly, an irredundant generating set X is a generating set such that no proper subset
of X is also a generating set. A semigroup S is ubiquitous if every irredundant generat-
ing set of S is of the same cardinality. We are motivated by a naïve algorithm to find a
small generating set for a semigroup, which in practice often outputs a smallest gener-
ating set.Wegive a sufficient condition for a transformation semigroup to be ubiquitous
and show that a transformation semigroup generated by k randomly chosen transfor-
mations asymptotically satisfies the sufficient condition. Finally, we show that under
this condition the output of the previously mentioned naïve algorithm is irredundant.

Keywords Computational semigroup theory · Transformation monoids · Asymptotic
behavior

1 Introduction

A generating set X of a semigroup S is a smallest generating set, also known as
minimum generating set, if every subset of S with cardinality strictly smaller than |X |
does not generate S. The size of a smallest generating set is known as the rank of S.
Similarly, an irredundant generating set for S is a generating set X such that no proper
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subset of X is a generating set for S. Of course, the notions of a smallest generating
set, irredundant generating set, and the rank have a natural interpretation for groups
and other algebraic objects. The question of finding a smallest generating set or a rank
is a classical one, see for example [1,13] in the case of quasigroups and [7–9] in the
case of semigroups. However, from a computational perspective this is, in general, not
an easy problem. In particular, there is no known efficient algorithm to find the rank
of a given S, besides examining most of its subsets. As such, fast naïve algorithms
are sometimes used to obtain small, but not necessarily smallest, generating sets. The
simplest of them is Algorithm 1.

Algorithm 1: Greedy
Input : A list S of all the elements of a semigroup
Output: A generating set X

1 X ←− ∅;
2 while |〈X〉| �= |S| do
3 for s ∈ S do
4 if s /∈ 〈X〉 then
5 X ←− X ∪ {s} ;

The algorithm applies to both groups and semigroups. The advantages of theGreedy
algorithm are its speed and that it requires no a priori knowledge about the object.
The latter might be seen as a drawback if some structural information is known. For
semigroups this algorithmcanbe improved by taking into account itsJ -class structure.

In order to define the next algorithm,we require somenotation. Let S be a semigroup
and let 1 be a symbol which is not in S. Define S1 = S ∪ {1} to be a semigroup such
that for all x, y ∈ S the product x · y in S1 is the same as the product in S, and
x · 1 = 1 · x = x for all x ∈ S1. It is routine to verify that the operation [·] on S1 is
associative. If A, B ⊆ S1 define Ax = {a · x : a ∈ A} and similarly define x A and
AxB. Define a relation on S by

x ≤ y if and only if S1xS1 ⊆ S1yS1.

Then ≤ is reflexive and transitive, however it might fail to be antisymmetric. In other
words, ≤ is a preorder on S. Clearly, the relation

aJ b if and only if a ≥ b and a ≤ b

is an equivalence relation on S and the preorder ≤ induces a partial order on the
equivalence classes ofJ , whichwewill also denote by≤ if the distinction is clear from
the context. We say that the list s1,1, . . . , s1,n1 , s2,1, . . . , s2,n2 . . . sk,nk of all elements
of S is ordered according to the preorder ≤ if {si,1, . . . , si,ni } is an equivalence class
of J for all i and if si,k ≥ s j,m then i ≤ j . Using this idea we can state Algorithm 2.

If S is a group, then S1xS1 = S for every x ∈ S. Hence there is a single J -class
in S and so any permutation of elements of S is ordered according to the preorder ≤,
and so the SmallGeneratingSet algorithm does not perform any better than Greedy.
For proper semigroups the algorithm is particularly useful if the J -class structure is
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Random ubiquitous transformation semigroups 657

Algorithm 2: SmallGeneratingSet, (implemented in Semigroups [12] for GAP
[14])
Input : A semigroup S
Output: A generating set X

1 L ←− order elements of S according to the preorder ≤;
2 X ←− Greedy(L);

Table 1 Subsemigroups of T3 Rank Size of the output

1 2 3 4 5 6 7

1 7 3 1 0 0 0 0

2 – 32 25 11 3 1 0

3 – – 38 50 23 9 2

4 – – – 23 28 6 6

5 – – – – 5 7 2

known in advance, for example if the semigroup was enumerated using the Froidure–
Pin algorithm [6,11] or algorithms appearing in [5]. It is easy to comeupwith examples
for which SmallGeneratingSet might return a generating set which is not a smallest
generating set or even an irredundant generating set, for example any non-trivial finite
group G. Even though the algorithm is naïve, it performs surprisingly well in practice.
For instance, we ran the SmallGeneratingSet algorithm on all 836 021 semigroups (up
to (anti-)isomorphism) of size 7, available in SmallSemi [4]. In all cases the generating
set found was a smallest generating set.

Let n ∈ N and let Tn be the transformation monoid on n points, that is the set
of all functions from {1, . . . , n} to itself. The set Tn forms a semigroup under the
composition of functions. In the following table, we consider every subgroup of T3 up
to conjugation. Observe that—for most of them—the size of the generating set output
by SmallGeneratingSet is equal to the rank or is one greater (Table 1).

The main motivation for this paper is to provide mathematical justification as to
why SmallGeneratingSet algorithms often returns a smallest generating set. In order
to do so, we consider properties of transformation semigroups picked at random, in a
certain way. We say that a semigroup S is ubiquitous if every irredundant generating
of S is also a smallest generating set. Alternatively, if r is the rank of S, then S is
ubiquitous if every irredundant generating set is of size r .

First we will provide a sufficient condition for a transformation semigroup to be
ubiquitous.

Theorem 1.1 Let S ≤ Tn and suppose that X is a generating set for S such that
rank(xyz) < rank(y) for all x, y, z ∈ X. Then S is ubiquitous.

Even though we restrict our attention to transformation semigroups in this paper,
Theorem 1.1 can be generalised to include semigroups of partial bijections as well.We
follow the approach of Cameron [2] of choosing a random transformation semigroup.
That is for some k ≥ 1we choose k transformations of degree nwith uniform probabil-
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ity and consider the semigroup generated by them. We show that most transformation
semigroups are ubiquitous.

Theorem 1.2 Let k ≥ 1, and let Pk(n) be the probability that for x1, . . . , xk ∈ Tn,
chosen with uniform probability, the semigroup 〈x1, . . . , xk〉 is ubiquitous. Then
Pk(n) → 1 as n → ∞ exponentially fast.

Even though SmallGeneratingSet does not return an irredundant generating set in
general, we show that under the assumptions of Theorem 1.1 the output is irredundant.
Hence the final result of the paper is as follows.

Theorem 1.3 Let k ≥ 1, and let Wk(n) be the probability that for x1, . . . , xk ∈ Tn,
chosen with uniform probability, SmallGeneratingSet returns a smallest generating
set for a semigroup 〈x1, . . . , xk〉. Then Wk(n) → 1 as n → ∞ exponentially fast.

Here we only look at the asymptotic behaviour of transformation semigroups, how-
ever the same question can be investigated for any other infinite family of semigroups,
for example symmetric inverse monoids on {1, . . . , n}, or binary relations on n points.

2 Preliminaries

In this section we give the definitions and notation needed in the remainder of the
paper.

Definition 2.1 Let S be a semigroup and let x, y ∈ S. The Green’s relations L,R, J ,
and D are the following equivalence relations on S:

xLy if and only if S1x = S1y

xRy if and only if xS1 = yS1

xJ y if and only if S1xS1 = S1yS1

and D is the smallest equivalence relation containing both L and R.

Let x ∈ S. Then Lx , Rx , and Dx denote the equivalences classes of L, R, and D,
respectively, containing x . If S is finite, then D = J , for a proof see [10]. Since we
are only interested in finite semigroups we will not make any distinction between the
D and J relations.

Throughout the paper, we write elements of Tn on the right of their argument and
we write functions from a subset of R

n to R on the left. This is done in agreement
with two different notations prevalent in algebra and analysis.

Let f ∈ Tn , and let A ⊆ {1, . . . , n}. Then

(A) f = {(a) f : a ∈ A}

and the image of f is the set im( f ) = ({1, . . . , n}) f . A transversal of f is a set
T ⊆ {1, . . . , n} such that f is injective on T and (T) f = im( f ). The rank of f is
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Random ubiquitous transformation semigroups 659

rank( f ) = | im( f )| = |T|, where T is a transversal of f . The kernel of f , denoted by
ker( f ), is the equivalence relation defined by

(x, y) ∈ ker( f ) if and only if (x) f = (y) f .

Hence a kernel class of f containing x ∈ {1, . . . , n} is the set

{y ∈ {1, . . . , n} : (y) f = (x) f }.

Using the above definition we can state a classical result describing Green’s classes
of transformation semigroups. The proof is easy and thus omitted.

Lemma 2.2 Let S ≤ Tn, and let f , g ∈ S. Then

(i) if f Lg then im( f ) = im(g);
(ii) if fRg then ker( f ) = ker(g);
(iii) if fDg then rank( f ) = rank(g).

3 Sufficient condition for ubiquitous semigroups

In this section we prove Theorem 1.1. We will do so in a series of lemmas. The first of
which is the following easy observation about products in the D-classes. Recall that
if x, y ∈ S, then by Dx we denote the D-class containing x and x ≤ y if and only if
S1xS1 ⊆ S1yS1.

Lemma 3.1 Let S be a semigroup, and let z1 · · · zm ∈ Dx where x, z1, . . . , zm ∈ S.
Then x ≤ zi · · · z j under the preorder on S for all i, j ∈ {1, . . . ,m} with i ≤ j .

Proof Let x, z1, . . . , zm ∈ S be such that z1 · · · zm ∈ Dx . Then

S1xS1 = S1z1 · · · zm S1 ⊆ S1zi · · · z j S1,

and so x ≤ zi · · · z j by definition for all i, j ∈ {1, . . . ,m} with i ≤ j . �

Next we give a condition for a semigroup S which restricts allowed products in a
given D-class.

Lemma 3.2 Let S ≤ Tn, let X be a generating set for S, and let x ∈ X be such that
rank(y1xy2) < rank(x) for all y1, y2 ∈ X where y1, y2 ≥ x. Then only the following
products

x, y1 · · · ym, xy1 · · · ym, or y1 · · · ymx

where m ≥ 1, y1, . . . , ym ∈ X\{x} and y1, . . . , ym ≥ x can be in Dx .
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Proof First observe that if x2 ∈ Dx , then both x and x2 have the same rank by
Lemma 2.2, in other words |im(x)| = |im(x2)|. However, since x is a finite degree
transformation and im(x2) ⊆ im(x), it follows that im(x) = im(x2), and so x acts as
a bijection on im(x). Hence rank(x3) = rank(x), contradicting the hypothesis of the
lemma. Therefore x2 /∈ Dx , and since S1x2S1 ⊆ S1xS1, it follows that x2 < x under
the preorder on S. Similarly, for every y1, y2 ∈ X such that y1, y2 ≥ x , it follows from
Lemma 2.2 that y1xy2 < x , since rank(y1xy2) < rank(x) and S1y1xy2S1 ⊆ S1xS1.

Let z1, . . . , zm ∈ X be such that z1 · · · zm ∈ Dx . Then x ≤ zi for all i byLemma3.1.
Hence there are k ∈ N, n1, . . . , nk,m2, . . . ,mk ≥ 1, and m1,mk+1 ≥ 0 such that

z1 · · · zm = y1,1 · · · y1,m1x
n1 y2,1 · · · yk,mk x

nk yk+1,1 · · · yk+1,mk+1

where yi, j ∈ X\{x} and yi, j ≥ x for all i and j . Here we are assuming that

m =
k∑

i=1

ni +
k+1∑

i=1

mi ,

z1 = y1,1, z2 = y1,2, and so on. Again by Lemma 3.1, if z = zi · · · z j is a subproduct
of z1 · · · zm , then x ≤ z. However x2 < x , and thus x2 is not a subproduct of z1 · · · zm .
That is, ni = 1 for all i ∈ {1, . . . , k}. Hence

z1 · · · zm = y1,1 · · · y1,m1xy2,1 · · · xyk+1,1 · · · yk+1,mk+1 .

In a similar fashion, if yi,mi , yi+1,1 ∈ X\{x} for yi,mi , yi+1,1 ≥ x , then as observed
above yi,mi xyi+1,1 < x , and so yi,mi xyi+1,1 is not a subproduct of z1 · · · zm . Hence
z1 · · · zm is one of the following products

x, y1 · · · yl , xy1 · · · yl , y1 · · · yl x, or xy1 · · · yl x

where m ≥ 1, y1, . . . , yl ∈ X\{x} and y1, . . . , yl ≥ x . Hence it remains to show that
xy1 · · · yl x /∈ Dx .

Suppose that xy1 · · · yl x ∈ Dx for some l ≥ 1, y1, . . . , yl ∈ X\{x} such that
y1, . . . , yl ≥ x . Then there are a, b ∈ S1 such that axy1 · · · yl xb = x . Note that
unless a = b = 1, the product axy1 · · · yl xb is not in one of the above forms, and
so cannot be in Dx . Hence a = b = 1, and thus xy1 · · · yml = x . Which is only
possible if y1 . . . yl acts bijectively on im(x). Thus y1 acts bijectively on im(x). If
im(yl x) = im(x), then it follows that

rank(yl xy1) = |im(yl xy1)| = |im(yl x)| = |im(x)| = rank(x),

which contradicts the hypothesis of the lemma. Hence im(yl x) � im(x). However, it
then follows that

rank(xy1 · · · yl x) ≤ | im(yl x)| < rank(x),
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contradicting xy1 · · · yl x = x . Therefore xy1 · · · yl x /∈ Dx for all l ≥ 1 and all
y1, . . . , yl ∈ X\{x} such that y1, . . . yl ≥ x , as required. �
Corollary 3.3 Let S ≤ Tn, let X be a generating set for S, and let x ∈ X be such that
rank(z1xz2) < rank(x) for all z1, z2 ∈ X where z1, z2 ≥ x. Then pxuys /∈ Dx for
all p, u, s ∈ S1 and any y ∈ X such that xDy.

Proof If x, y ∈ X , xDy, and pxuys ∈ Dx = Dy for some p, u, s ∈ S1, then there are
a, b, c, d ∈ S1 such that

axsyb = x and cxsyd = y.

Hence axscxsydb = x ∈ Dx , but x occurs twice in the product, which is a contradiction
according to Lemma 3.2. �

Finally, we prove Theorem 1.1. Observe that if a transformation semigroup S ≤
Tn is such that all irredundant generating sets have the same cardinality, then every
irredundant generating set is a smallest generating set.

Theorem 1.1 Let S ≤ Tn and suppose that X is a generating set for S such that
rank(xyz) < rank(y) for all x, y, z ∈ X . Then S is ubiquitous.

Proof Let X ′ ⊆ X be irredundant. Then rank(xyz) < rank(y) for all x, y, z ∈ X ′. It
is sufficient to show that every irredundant generating set is of the same cardinality.
Moreover, without loss of generality we may assume that X is irredundant and show
that every irredundant generating set is of size |X |.

Let Y be an irredundant generating set for S. Let ≤d be a total order defined on
D-classes of S such that if D and D′ areD-classes of S and D ≤ D′ under the partial
order of D-classes, then D ≤d D′. Let {D1, . . . , Dd} be the set of all D-classes of S,
indexed so that Dd <d . . . <d D1. For k ∈ {1, . . . , d}, define

Xk = X ∩
(

k⋃

i=1

Di

)
and Yk = Y ∩

(
k⋃

i=1

Di

)
.

Let k ≥ 1 and let z ∈ Dk . By Lemma 3.1 if x1 · · · xm ∈ Dk where x1, . . . , xm ∈ X ,
then z ≤ xi , and so there is j ≤ k so that xi ∈ Dj for all i ∈ {1, . . . ,m}. In other
words,

x1 · · · xm ∈ Dk where x1, . . . , xm ∈ X �⇒ xi ∈ Xk for all i ∈ {1, . . . ,m}. (1)

The same argument applies to Y , and so

Dk ⊆ 〈Xk〉 and Dk ⊆ 〈Yk〉 (2)

for all k ≥ 1.
By the definition of the total order ≤d , the D-class D1 is maximal, and so both X

and Y intersect D1 non-trivially. For any i ≥ 2 and x1, . . . , xi ∈ X1, it follows from
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Corollary 3.3 that x1 · · · xi /∈ Dx1 = D1, and so D1 = X1. The same argument shows
that D1 = Y1, and so X1 = Y1 = D1.

For k ≥ 1, suppose that |Xk | = |Yk | and 〈Xk〉 = 〈Yk〉. If X ∩ Dk+1 = ∅, then
Dk+1 ⊆ 〈Xk〉 = 〈Yk〉. Hence Xk+1 = Xk and Yk+1 = Yk , and thus |Xk+1| = |Yk+1|
and 〈Xk+1〉 = 〈Yk+1〉.

Suppose that X ∩ Dk+1 �= ∅. Then Dk+1 � 〈Xk〉 = 〈Yk〉, and so Y ∩ Dk+1 �= ∅.
Suppose that t ≥ 0 is largest integer such that there is X ′ ⊆ X ∩ Dk+1 and Y ′ ⊆
Y ∩ Dk+1 with |X ′| = |Y ′| = t and 〈Xk, X ′〉 = 〈Yk,Y ′〉. If t = |Y ∩ Dk+1| and
x ∈ X ∩ Dk+1\X ′, then

x ∈ Dk+1 ⊆ 〈Yk+1〉 = 〈Yk,Y ′〉 = 〈Xk, X
′〉,

by (2). However, this is impossible, since X is irredundant and x /∈ Xk ∪ X ′ ⊆ X .
Hence if t = |Y ∩ Dk+1| then X ′ = X ∩ Dk+1, or in other words Xk+1 = Xk ∪ X ′
and Yk+1 = Yk ∪ Y ′. Therefore, |Xk+1| = |Xk | + t = |Yk | + t = |Yk+1| and
〈Xk+1〉 = 〈Yk+1〉. We will now show that t = |Y ∩ Dk+1|.

Suppose that t < |Y ∩ Dk+1|. Then there is y ∈ Y ∩ Dk+1\Y ′ and y is equal to a
product of elements of Xk+1 by (2). It follows from Corollary 3.3 that if x1 · · · xm ∈
Dk+1 where x1, . . . , xm ∈ X then there is at most one i ∈ {1, . . . ,m} such that
xi ∈ X ∩ Dk+1, otherwise some subword of x1 · · · xm would not be an element of
Dk+1. Since y /∈ Yk ∪Y ′, the irredundancy of Y implies that y /∈ 〈Yk,Y ′〉 = 〈Xk, X ′〉.
It follows that y = p1 · · · pmxs1 · · · sl for some x ∈ X ∩ Dk+1\X ′, m, l ≥ 0 and
si , pi ∈ Xk . Hence y ∈ 〈x, Xk〉. Since x, y ∈ Dk+1, it follows that there are a, b ∈ S1

such that

ap1 · · · pmxs1 · · · slb = ayb = x .

It follows from (1) and the discussion above that a, b ∈ 〈Xk〉1, and so x ∈ 〈y, Xk〉.
Moreover

x ∈ 〈y, Xk, X
′〉 and y ∈ 〈x, Xk, X

′〉.

Therefore 〈x, Xk, X ′〉 = 〈y, Xk, X ′〉 = 〈y,Yk,Y ′〉, since 〈Xk, X ′〉 = 〈Yk,Y ′〉. How-
ever |X ′ ∪ {x}| = |Y ′ ∪ {y}| = t+1, which contradicts the maximality of t . Therefore
t = |Y ∩ Dk+1| and by the previous paragraph 〈Xk+1〉 = 〈Yk+1〉 and |Xk+1| = |Yk+1|.

By induction it follows that 〈Xk〉 = 〈Yk〉 and |Xk | = |Yk | for all k ∈ {1, . . . , d}. In
particular, Xd = X and Yd = Y , and thus |X | = |Y |, as required. �

4 SmallGeneratingSet

In this section we return to the motivating question about the algorithm SmallGener-
atingSet. First, we note that SmallGeneratingSet might return a generating set which
is not irredundant. For example, if the semigroup under investigation is a group of size
at least 2, the algorithm can first pick an identity and so return a generating set which
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Random ubiquitous transformation semigroups 663

includes an identity. However, we show that under the assumptions of Theorem 1.1
the generating set returned by SmallGeneratingSet is irredundant.

Lemma 4.1 Let S ≤ Tn and suppose that X is a generating set for S such that
rank(xyz) < rank(y) for all x, y, z ∈ X. Then SmallGeneratingSet returns an irre-
dundant generating set.

Proof Let X = {x1, . . . , xm} be the output of the algorithm, and assume that the
elements were selected in the order they are listed. Suppose that I ⊆ X is irredundant
and let xi ∈ X\I . Since xi was selected by the algorithm, it means that

xi /∈ 〈x1, . . . , xi−1〉,

and so there exists x j ∈ I such that xiDx j and j > i , otherwise xi /∈ 〈I 〉. Without
loss of generality, we can assume that i is the largest integer such that xi ∈ X\I and
xiDx j . Then there are a1, . . . , aka , b1, . . . , bkb ∈ I such that

a1 · · · aka xi b1 · · · bkb = x j .

Since x j /∈ 〈x1, . . . , xi 〉, it follows that at least one of the a1, . . . , aka , b1, . . . , bkb is
xk for some k > i . It follows from Lemma 3.1 that xk ≥ x j , and since k > i implies
that xk �> xi , we have that xkDxi .

Finally, there are c1, . . . , ckc , d1, . . . , dkd ∈ I such that

c1 · · · ckc x j d1 · · · dkd = xi ,

and so

a1 · · · aka c1 · · · ckc x j d1 · · · dkd b1 · · · bkb = x j .

Which contradicts Corollary 3.3 as at least one of a1, . . . , aka , b1, . . . , bkb is xk . There-
fore, X = I . �

The following result is then immediate from Theorem 1.1.

Corollary 4.2 Let S ≤ Tn and suppose that X is a generating set for S such that
rank(xyz) < rank(y) for all x, y, z ∈ X. Then SmallGeneratingSet returns a smallest
generating set.

5 Asymptotics

The main aim of this section is to show that if for some fixed k ≥ 1 we choose
x1, . . . , xk ∈ Tn with uniform probability, then the probability Pk(n) that 〈x1, . . . , xk〉
is ubiquitous and the probability Wk(n) that SmallGeneratingSet returns a smallest
generating set for 〈x1, . . . , xk〉 both tend to 1 as n increases.
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664 J. Jonušas, S. Troscheit

Lemma 5.1 Let X ⊆ Tn be such that rank(xyz) = rank(y) for some x, y, z ∈ X.
Then one of the following holds:

(i) there is x ∈ X such that 〈x〉 is a group;
(ii) there are distinct x, y ∈ X such that rank(xyx) = rank(y);
(iii) there are mutually distinct x, y, z ∈ X such that rank(xyz) = rank(y).

Proof Suppose that rank(xyz) = rank(y) for some x, y, z ∈ X and suppose that not
all x , y, and z are distinct. If x = y = z, then rank(x3) = rank(x), which is only
possible if x acts bijectively on im(x). However, in that case 〈x〉 is a group. Hence we
only need to consider the case that where exactly two of x , y, and z are equal.

Suppose that x = y. Then rank(y2z) = rank(y), and since

rank(y) ≤ rank(y2) ≤ rank(y2z) = rank(y),

it follows that rank(y2) = rank(y). Hence by an argument similar to above 〈y〉 is a
group. The case y = z can be dealt with in an almost identical fashion. Therefore,
there are distinct x, y ∈ X such that rank(xyx) = rank(y). �

In order to show that Pk(n) → 1 as n → ∞, for every n ∈ N, we define three
probabilities:

Gn is the probability that 〈x〉 is a groupwhere x ∈ Tn is chosen
randomly with uniform probability

Tn is the probability that rank(xyx) = rank(y)where x, y ∈ Tn are
chosen randomly with uniform probability

Vn is the probability that rank(xyz) = rank(z)where x, y, z ∈ Tn
are chosen randomly with uniform probability.

For a fixed k ≥ 1, if x1, . . . , xk ∈ Tn are chosen randomly with uniform probability,
it follows from Lemma 5.1 that the probability that there are x, y, z ∈ {x1, . . . , xk}
such that rank(xyz) = rank(y) is bounded from above by

kGn + k(k − 1)Tn + k(k − 1)(k − 2)Vn .

Hence by Theorem 1.1

Pk(n) ≥ 1 − kGn − k(k − 1)Tn − k(k − 1)(k − 2)Vn,

and the same lower bound hold for Wk(n) by Corollary 4.2. Hence in order to prove
Theorems 1.2 and 1.3it suffices to show that Gn → 0, Tn → 0, and Vn → 0 as
n → ∞. We will do so in the remaining three subsections of the paper.
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5.1 Preliminary counting results

For n, r ∈ N such that r ≤ n, define A(n, r) to be the set of partitions of {1, . . . , n}
into r non-empty components.

Lemma 5.2 Let n, r ∈ N such that r ≤ n. Then

∑

{A1,...,Ar }∈A(n,r)

r∏

i=1

|Ai | =
(
n

r

)
rn−r .

Proof A function f ∈ Tn is called idempotent if f 2 = f . We prove the lemma by
finding the number of idempotent transformation of Tn of rank r in two ways. Denote
this number by N . It can be shown that f is an idempotent if and only if (x) f = x
for all x ∈ im( f ).

If f ∈ Tn is an idempotent of rank r , then there are
(n
r

)
choices for the im( f ) and

for every point in {1, . . . , n}\ im( f ) there are r choices in im( f ) to map to. Hence

N =
(
n

r

)
rn−r .

On the other hand, the sets A1, . . . , Ar are the kernel classes of f ∈ Tn if and only
if {A1, . . . , Ar } ∈ A(n, r). If f is an idempotent and A1, . . . , Ar are kernel classes
of f then (Ai ) f ∈ Ai for all i ∈ {1, . . . , r}, and so there are

∏r
i=1 |Ai | choices for

the im( f ). Hence

N =
∑

{A1,...,Ar }∈A(n,r)

r∏

i=1

|Ai |,

as required. �

Since |A(n, r)| =
{
n
r

}
, the following easy upper bound for the Stirling numbers

is an immediate consequence of Lemma 5.2.

Corollary 5.3 Let n, r ∈ N be such that r ≤ n. Then

{
n
r

}
≤

(
n

r

)
rn−r .

We will make use of Stirling’s approximation formula

√
2πnn+ 1

2 e−n ≤ n! ≤ √
2πnn+ 1

2 e−n+ 1
2n .

If F : R → R, then we say that G ∈ O(F) if there are c > 0 and x0 ∈ R such that
|G(x)| ≤ c|F(x)| for all x ≥ x0. Then Stirling’s formula can be written as follows

log n! = n log n − n + O(log(n)).
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666 J. Jonušas, S. Troscheit

Let R
+ = {x ∈ R : x > 0}. The final notion required in this paper is the function

W : R
+ → R

+ defined so that

x = W (x)eW (x)

for all x ∈ R
+. Since the function x �→ xex is strictly increasing onR

+, it follows that
W (x) is a well-defined function on R

+. In the literatureW (x) is known as Lambert W
function or product logarithm, see e.g. [3]. The value� = W (1) is known as the omega
constant and it satisfies �e� = 1, with the numerical value � = 0.5671439 . . . .

5.2 GGGn tends to zero

We begin by obtain an expression for Gn in terms of n.

Lemma 5.4 Let n ∈ N. Then

Gn = n!
nn

n−1∑

k=0

(n − k)k

k! .

Proof First observe that for any x ∈ Tn , the semigroup 〈x〉 is a group if and only if x
acts as a bijection on im(x). There are

n∑

r=1

(
n

r

)
rn−r r !

transformations x such that x acts bijectively on im(x). That is, if | im(x)| = r , then
there are

(n
r

)
choices for im(x), r ! ways of bijectively mapping im(x) to itself, and

rn−r ways to map every point from {1, . . . , n}\ im(x) to im(x). Since |Tn| = nn , the
probability of randomly choosing x ∈ Tn such that 〈x〉 is a group is

Gn = 1

nn

n∑

r=1

(
n

r

)
rn−r r ! = n!

nn

n∑

r=1

rn−r

(n − r)! .

Finally, rewriting the equation using k = n − r we obtain

n!
nn

n∑

r=1

rn−r

(n − r)! = n!
nn

n−1∑

k=0

(n − k)k

k! ,

as required. �
In order to prove thatGn → 0 as n → ∞we use an auxiliary function for which we

prove some analytical properties. Also recall that � ∈ R is a unique constant which
satisfies �e� = 1.

Lemma 5.5 Let F : (0, 1) → R be given by F(x) = x log(x−1 − 1) + x. Then F has
a unique maximum at α = �

1+�
∈ (0, 1) and F(α) = � < 1.
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Proof First observe that F(x) is continuous on (0, 1), and F(x) → 0 as x → 0 and
F(x) → −∞ as x → 1. The first and second derivative are continuous and given by

dF(x)

dx
= 1 − 1

1 − x
+ log(x−1 − 1) and

d2F(x)

dx2
= − 1

(x − 1)2x
.

Clearly, d2F(x)
dx2

< 0 for all x ∈ (0, 1), but dF(x)
dx → ∞ as x → 0 and so the derivative

is positive in a neighbourhood of 0. But F(x) → −∞ as x → 1 and thus F has a
unique maximum at α implicitly given by

1 − 1

1 − α
+ log

(
1 − α

α

)
= 0,

or in other words

α

1 − α
= log

(
1 − α

α

)
.

It then follows that α
1−α

= �, by the definition of �. Hence α = �
1+�

and

F(α) = α log

(
1 − α

α

)
+ α = α

(
1 + α

1 − α

)
= α

1 − α
= �.

�
Finally, we conclude this section by describing the asymptotic behaviour of Gn .

Proposition 5.6 The probability Gn, that 〈x〉 is a group where x ∈ Tn is chosen with
uniform distribution, tends to 0 exponentially at the rate less than 1 − �.

Proof By Lemma 5.4

Gn = n!
nn

n−1∑

k=0

(n − k)k

k! .

We use the Stirling approximation log n! = n log n − n + O(log(n)). Then

logGn

n
= n−1O(log(n)) − 1 + n−1 log

n−1∑

k=0

(n − k)k

k! .

Note that the last term can be bounded from above and below in the following way

log

(
max

k∈{0,...,n−1}
(n − k)k

k!
)

≤ log
n−1∑

k=0

(n − k)k

k! ≤ log

(
n max
k∈{0,...,n−1}

(n − k)k

k!
)

.
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Hence

log
n−1∑

k=0

(n − k)k

k! = log

(
max

k∈{0,...,n−1}
(n − k)k

k!
)

+ O(log n),

and so

lim
n→∞

logGn

n
= −1 + lim

n→∞ n−1 log

(
max

k∈{0,...,n−1}
(n − k)k

k!
)

.

Considering the second term in the above equation, noting that for n ≥ 3 themaximum
does not occur at k = 0, it follows that

n−1 log

(
max

k∈{0,...,n−1}
(n − k)k

k!
)

= max
k∈{1,...,n−1} n

−1 log

(
(n − k)k

k!
)

= max
k∈{1,...,n−1} n

−1(k log(n − k) − k log k + k

− O(log k)
)

= max
x∈Mn

(
x log(x−1 − 1) + x

)
− n−1O (log n) ,

where Mn = { 1n , 2
n , . . . , n−1

n }. Since F is continuous on (0, 1) we conclude that
maxx∈Mn F(x) → maxx∈(0,1) F(x) as n → ∞. Therefore

lim
n→∞

logGn

n
= −1 + lim

n→∞ n−1 log

(
max

k∈{0,...,n−1}
(n − k)k

k!
)

=F(α)−1 = �−1<0,

by Lemma 5.5 as required. �

5.3 TTTn tends to zero

Recall that for n, r ∈ N such that r ≤ n, A(n, r) denotes the set of partitions of
{1, . . . , n} into r non-empty components. Similarly, define B(n, r) to be the set of
subsets of {1, . . . , n} of cardinality r . Then |B(n, r)| = (n

r

)
.

Lemma 5.7 Let n ∈ N. Then the probability that rank(xyx) = rank(y), where x, y ∈
Tn are chosen with uniform probability, is

Tn = 1

n2n

n∑

r=1

(
n

r

)
r !

r∑

k=1

{
r
k

}
k!kn−r

∑

{A1,...,Ar }∈A(n,r)

∑

B∈B(r ,k)

∏

i∈B
|Ai |.

Proof Let x, y ∈ Tn be such that rank(xyx) = rank(y). We first show that im(xy) is
contained in a transversal of x . Let T be a transversal of xyx . Then xyx is injective on
T by definition, and so x is injective on (T)xy. Hence im(xy) = (T)xy is contained
in a transversal of x .
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Suppose that rank(x) = r , rank(y) = k, and {A1, . . . , Ar } ∈ A(n, r) are the kernel
classes of x . Then there are

(n
r

)
r ! choices for x . Since

rank(y) ≥ rank(xy) ≥ rank(xyx) = rank(y),

it follows that rank(xy) = rank(y) = k, and also im(y) = im(xy). Since x is injective
on im(xy), there are

∑

B∈B(r ,k)

∏

i∈B
|Ai |

choices for im(y) = im(xy). That is, im(xy) contains at most one point from any

kernel class of x . Since (im(x))y = im(xy) = im(y), there are

{
r
k

}
k! ways for y to

map im(x) to im(y). Finally, ({1, . . . , n})\ im(x))y ⊆ im(y), and so there kn−r for y
to map ({1, . . . , n})\ im(x)) to im(y). Hence there are in total

{
r
k

}
k!kn−r

∑

B∈B(r ,k)

∏

i∈B
|Ai |

choices for y. Therefore

Tn = 1

n2n

n∑

r=1

r∑

k=1

∑

{A1,...,Ar }∈A(n,r)

(
n

r

)
r !

{
r
k

}
k!kn−r

∑

B∈B(r ,k)

∏

i∈B
|Ai |,

since |Tn| = nn . �
Next, we simplify the expression for Tn .

Lemma 5.8 Let n, r , k ∈ N such that k ≤ r ≤ n. Then

∑

{A1,...,Ar }∈A(n,r)

∑

B∈B(r ,k)

∏

i∈B
|Ai | =

n+k−r∑

s=k

(
n

s

) {
n − s
r − k

}(
s

k

)
ks−k .

Proof Let B ∈ B(r , k) and {A1, . . . , Ar } ∈ A(n, r) be fixed and denote the number
| ⋃{Ab : b ∈ B}| by s. Note that every Ai is non-empty, so k ≤ s ≤ n − (r − k).
Now suppose that only B is fixed, then for every value of s ∈ {k, . . . , n+ k−r}, there
are

(n
s

)
choices for

⋃{Ab : b ∈ B}, and there are

{
n − s
r − k

}
many choices to choose

{Ab : b /∈ B}. Hence we can write

∑

{A1,...,Ar }∈A(n,r)

∑

B∈B(r ,k)

∏

i∈B
|Ai | =

n+k−r∑

s=k

(
n

s

){
n − s
r − k

} ∑

{A1,...,Ak }∈A(s,k)

k∏

i=1

|Ai |.

The result follows by Lemma 5.2. �
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Finally, we prove the main lemma of this section.

Lemma 5.9 There exist r ∈ (0, 1) and c > 0 such that Tn ≤ cn7/2rn.

Proof Note that by Stirling’s approximation there are constants a, b > 0 such that

anne−n ≤ n! ≤ bnn+ 1
2 e−n for all n ∈ N.

It follows from Lemmas 5.3, 5.7, and 5.8 that

n2nTn =
n∑

r=1

(
n

r

)
r !

r∑

k=1

{
r
k

}
k! kn−r

n+k−r∑

s=k

(
n

s

){
n − s
r − k

} (
s

k

)
ks−k

≤
n∑

r=1

(
n

r

)
r !

r∑

k=1

(
r

k

)
kn−kk!

n+k−r∑

s=k

(
n

s

)(
s

k

)(
n − s

r − k

)
(r − k)n−s−r+kks−k .

Observe that

(
n

s

)(
s

k

)
=

(
n

k

)(
n − k

n − s

)
and

(
n − k

n − s

)(
n − s

r − k

)
=

(
n − k

r − k

)(
n − r

s − k

)
. (3)

Hence

n2nTn ≤
n∑

r=1

(
n

r

)
r !

r∑

k=1

(
r

k

)
kn−kk!

n+k−r∑

s=k

(
n

k

)(
n − k

r − k

)(
n − r

s − k

)
(r − k)n−s−r+kks−k

=
n∑

r=1

(
n

r

)
r !

r∑

k=1

(
r

k

)
kn−kk!

(
n

k

)(
n − k

r − k

) n−r∑

i=0

(
n − r

i

)
(r − k)n−r−i ki

=
n∑

r=1

(
n

r

)
r !

r∑

k=1

(
r

k

)
kn−kk!

(
n

k

)(
n − k

r − k

)
rn−r .

It can also be show that

(
n

k

)(
n − k

r − k

)
=

(
n

r

)(
r

k

)
, (4)

and so

n2nTn ≤
n∑

r=1

(
n

r

)2
r !

r∑

k=1

(
r

k

)2
k! kn−krn−r =

n∑

r=1

n!2
(n − r)!2

r∑

k=1

r !
k!(r − k)!2 k

n−krn−r .

Hence using Stirling’s formula there is a constant c > 0 such that

n2nTn ≤ c
n∑

r=1

n2n+1e−2n

(n − r)2(n−r)e−2(n−r)

r∑

k=1

rr+ 1
2 e−r

e−kkke−2(r−k)(r − k)2(r−k)
kn−krn−r ,
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which can be simplified to

Tn ≤ c
n∑

r=1

r∑

k=1

nrn+ 1
2 kn−2k

er+k(n − r)2(n−r)(r − k)2(r−k)

≤ cn2 max
1≤r≤n
1≤k≤r

{
nrn+ 1

2 kn−2k

er+k(n − r)2(n−r)(r − k)2(r−k)

}
.

Let x, y ∈ [0, 1] be such that r = xn and k = yr = xyn. Then

Tn ≤ cn2 max
1≤r≤n
1≤k≤r

{
n

3
2

xn+ 1
2 (xy)n−2k

er+k(1 − x)2(n−r)(x − xy)2(r−k)

}

≤ cn
7
2 sup

(x,y)∈[0,1]2

{
x2(n−xn)+ 1

2 yn−2xyn

exn+xyn(1 − x)2(n−xn)(1 − y)2(xn−xyn)

}

≤ cn
7
2

(
sup

(x,y)∈[0,1]2

{
x2(1−x)y1−2xy

ex(1+y)(1 − x)2(1−x)(1 − y)2x(1−y)

})n

.

It only remains to show that the supremum in the above equation is less than 1. In
order to do so, define F : [0, 1]2 → R by

F(x, y) = x2(1−x)y1−2xy

ex(1+y)(1 − x)2(1−x)(1 − y)2x(1−y)
.

Note that F is continuous on a compact set [0, 1]2, and so has a maximum. Hence we
only need to consider the boundary of the domain and stationary points of F , that is
points in [0, 1]2 where ∂F/∂x = 0 = ∂F/∂ y. However, while it can be immediately
be deduced from plots, using any mathematical software, that the maximum of F
is strictly less than 1, we show it here analytically. To this end, define the functions
F1, F3 : [0, 1] → R and F2 : [0, 1]2 → R by

F1(x) = x2(1−x)

(1 − x)2(1−x)
, F2(x, y) = y1−2xy

ex(1+y)(1 − y)2x(1−y)
,

and

F3(y) = −1 − y − 2(1 − y) log(1 − y) − 2y log y.

Then F(x, y) = F1(x)F2(x, y), and it can be shown that ∂F2(x, y)/∂x =
F2(x, y)F3(y). Also note that that F1, F2, and F3 are all continuous.

Since F1(x) is continuous on a compact set, we can perform standard analysis of
stationary points. Then
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dF1(x)

dx
= F1(x)(1 + x log(1 − x) − x log x).

and F1(x) > 0 for all x ∈ (0, 1]. Thus the stationary points of F1 are either 0, 1, or
x0, which is given by the equation

(1 + x0 log(1 − x0) − x0 log x0) = 0,

or in otherwords, x0 = 1/(1+W (e−1))whereW is theLambert-W function. It follows
that F1 is bounded from above by max{F1(0), F1(1), F(x0)}. A simple algebraic
manipulation gives

F1(x0) = W (e−1)
− 2

1+W (e−1)−1 < 1.75.

Since F1(0) = 0 and F1(1) = 1, it follows that F1(x) ≤ 1.75 for all x ∈ [0, 1]. We
also note here, that dF1(x)/dx is positive for all x ∈ [0, x0).

Next we show that ∂F2(x, y)/∂x ≤ 0 for all xy ∈ [0, 1]. First, observe that
F2(x, y) ≥ 0 over [0, 1]2. Since ∂F2(x, y)/∂x = F2(x, y)F3(y), we are left to show
that F3(y) ≤ 0 for y ∈ [0, 1]. Note that F3(0) = −1, F3(1) = −2, and

dF3(y)

dy
= −1 + 2 log(1 − y) − 2 log y and

d2F3(y)

dy2
= 2

(y − 1)y
.

Since d2F3(y)/dy2 < 0 for all y ∈ (0, 1), F3 has a unique maximum at (1+ √
e)−1,

and

F3

(
1

1 + √
e

)
= 2 log(1 + √

e) − 2 < 0.

Hence ∂F2(x, y)/∂x ≤ 0 for all x, y ∈ [0, 1], and so F2(x, y) ≤ F2(0, y) = y and
in particular F2(x, y) ≤ 1.

For the last step of the proof consider

F2

(
1

2
, y

)
= e− y+1

2

(
y

1 − y

)1−y

.

Then

dF2
( 1
2 , y

)

dy
= F2

(
1

2
, y

) (
y−1 − 1

2
+ log

(
y−1 − 1

))

and the derivative has a single root at y0 = 1/(1 + W (e−1/2)). Hence if x ∈ [1/2, 1]
and y ∈ [0, 1], then

F2(x, y) ≤ F2(1/2, y) ≤ max {F2(1/2, 0), F2(1/2, 1), F2(1/2, y0)} < 0.56,
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and so F(x, y) ≤ 1.75 · 0.56 = 0.98. Since F(x, y) continuous on [0, 1]2 there is
ε > 0 and β < 1 such that F(x, y) ≤ β for all x ∈ [1/2 − ε, 1] and all y ∈ [0, 1].

Finally, recall that x0 = 1/(1+W (e−1)) > 0.78 and F1(x) is increasing on [0, x0).
We observe that if x ∈ [0, 1/2 − ε] ⊆ [0, x0) then 0 = F1(0) ≤ F1(x) ≤ F1(1/2 −
ε) < F1(1/2) = 1. Since F2(x, y) ≤ 1, it follows that F(x, y) ≤ F1(1/2−ε) < 1 for
all x ∈ [0, 1/2−ε] and all y ∈ [0, 1]. Therefore F(x, y) ≤ max{β, F1(1/2−ε)} < 1
for all x, y ∈ [0, 1], as required. �

The following is an immediate corollary of Lemmas 5.7 and 5.9.

Corollary 5.10 The probability Tn, that rank(xyx) = rank(y) where x, y ∈ Tn are
chosen with uniform distribution, tends to 0 as n → ∞ exponentially fast.

5.4 VVVn tends to zero

We start by finding an expression for Vn in terms of n. The argument is similar to the
proof of Lemma 5.7.

Lemma 5.11 Let n ∈ N. Then the probability that rank(xyz) = rank(y), where
x, y, z ∈ Tn are chosen with uniform probability, is

Vn = 1

n3n

n∑

r=1

r∑

k=1

min(r ,k)∑

t=1

{
n
r

}(
n

r

)
r !

(
n

k

)
k!

{
r
t

}
t !tn−r

n+t−k∑

s=t

(
n

s

)(
n − s

r − k

)(
s

t

)
ts−t .

Proof If x, y, z ∈ Tn are such that rank(xyz) = rank(y). We first show that im(xy) is
contained in a transversal of z. Let T be a transversal of xyz. Then xyz is injective on
T by definition, and so z is injective on (T)xy. Hence im(xy) = (T)xy is contained
in a transversal of z.

Suppose that rank(x) = r , rank(z) = k, rank(y) = t , and {A1, . . . , Ak} ∈ A(n, k)

are the kernel classes of z. Note that t ≤ r and t ≤ k. Then there are
(n
r

) {
n
r

}
r !

choices for x and
(n
k

)
k! choices for z. Since

rank(y) ≥ rank(xy) ≥ rank(xyz) = rank(y),

it follows that rank(xy) = rank(y) = t , and also im(y) = im(xy). Since z is injective
on im(xy), there are

∑

B∈B(r ,t)

∏

i∈B
|Ai |

choices for im(y) = im(xy). That is, im(xy) contains at most one point from any

kernel class of z. Since (im(x))y = im(xy) = im(y), there are

{
r
t

}
t ! ways for y to

map im(x) to im(y). Finally, ({1, . . . , n})\ im(x))y ⊆ im(y), and so there tn−r ways
for y to map ({1, . . . , n})\ im(x)) to im(y). Hence there are in total
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{
r
t

}
t !tn−r

∑

B∈B(r ,t)

∏

i∈B
|Ai |

choices for y. Therefore

Vn = 1

n3n

n∑

r=1

r∑

k=1

min(r ,k)∑

t=1

∑

{A1,...,Ak }∈A(n,k)

(
n

r

)
r !

(
n

k

)
k!

{
n
r

} {
r
t

}
t !tn−r

∑

B∈B(r ,t)

∏

i∈B
|Ai |,

since |Tn| = nn . It follows from Lemma 5.8 that

Vn = 1

n3n

n∑

r=1

r∑

k=1

min(r ,k)∑

t=1

{
n
r

} (
n

r

)
r !

(
n

k

)
k!

{
r
t

}
t !tn−r

n+t−k∑

s=t

(
n

s

)(
n − s

r − k

)(
s

t

)
ts−t ,

as required. �
Finally, we prove the main two lemmas of this section. This is an analogue of

Lemma 5.9.

Lemma 5.12 There exist c > 0 such that

Vn ≤ cn5

⎛

⎝ max
x,y,z∈(0,1]
z≤min(x,y)

G(x, y, z)

⎞

⎠
n

,

where

G(x, y, z) = x1−x y1−yz1−2z

ex+y+z(1 − x)2(1−x)(1 − y)2(1−y)(x − z)x−z(y − z)y−z
.

Proof We begin by applying the same strategy as in Lemma 5.9. That is we use
Lemma 5.3 to give an upper bound without Stirling numbers of the second kind and
then use Eqs. (3) and (4). It follows that

n3nVn =
n∑

r=1

r∑

k=1

min(r ,k)∑

t=1

{
n
r

}(
n

r

)
r !

(
n

k

)
k!

{
r
t

}
t !tn−r

n+t−k∑

s=t

(
n

s

)(
n − s

r − k

)(
s

t

)
t s−t

≤
n∑

r=1

n∑

k=1

min(r ,k)∑

t=1

(
n!

(n − r)!
)2 (

n!
(n − k)!

)2 tn−t rn−r kn−k

(r − t)!(k − t)!t !

Replacing the sums with n times their maximal value we obtain after some algebraic
manipulation

n3nVn ≤ n3 max
1≤r≤n
1≤k≤n

1≤t≤min(r ,k)

{
(n!)4kn−krn−r tn−t

((n − r)!(n − k)!)2(r − t)!(k − t)!t !
}
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Using Stirling’s approximation Vn can be bounded by

n3nVn ≤ cn3 max
1≤r≤n
1≤k≤n

1≤t≤min(r ,k)

{
n4n+2kn−krn−r tn−2t

(n − r)2(n−r)(n − k)2(n−k)(r − t)r−t (k − t)k−t er+k+t

}

for some c > 0. Let x = r/n, y = k/n, and z = t/n. The above equation can be
rearranged to obtain

Vn ≤ cn5

⎛

⎜⎝ max
x,y,z∈(0,1]
z≤min(x,y)

{
x1−x y1−y z1−2z

ex+y+z(1 − x)2(1−x)(1 − y)2(1−y)(x − z)x−z(y − z)y−z

}⎞

⎟⎠

n

.

Hence

Vn ≤ cn5

⎛

⎝ max
x,y,z∈(0,1]
z≤min(x,y)

G(x, y, z)

⎞

⎠
n

,

as required. �
By inspection we see that G is continuous and bounded on

X =
{
(x, y, z) ∈ R

3 | 0 < x, y < 1 and 0 < z < min(x, y)
}

.

We can further extend the definition of G to the closure X . It remains to find the
maximum of G, which we do in the last lemma of this section.

Lemma 5.13 There exists r ∈ (0, 1) such that G(x, y, z) ≤ r for all x, y, z ∈ [0, 1]
such that z ≤ min(x, y).

Proof First we establish the value ofG on the boundary X\X . Clearly for either x = 0,
y = 0 or z = 0 we have G(x, y, z) = 0. If x = 1

G(1, y, z) = y1−yz1−2z

e1+y+z(1 − y)2(1−y)(1 − z)1−z(y − z)y−z
.

By considering the derivative of x−x , we can show that x−x ≤ ee
−1

for all x ∈ [0, 1].
Hence

G(1, y, z) = e7e
−1−1 · yz

ey+z
.

Also note that x → xe−x is increasing on [0, 1], and so xe−x ≤ e−1. Therefore

G(1, y, z) ≤ e7e
−1−3 ≤ 0.7.
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By symmetry this also holds for y = 1.
Let x = z. Then

G(x, y, x) = x2−3x y1−y

e2x+y(1 − x)2(1−x)(1 − y)2(1−y)(y − x)y−x
.

Similarly,

G(x, y, x) ≤ e3e
−1

(
x1−x

ex (1 − x)1−x

)2

· y1−y

ey(1 − y)1−y
.

By considering the derivatives of x → x1−x

ex (1−x)1−x , we can show that the function has

a unique maximum at x0 = 1
1+�

. Hence after some algebraic manipulations we get

x1−x0
0

ex0(1 − x0)1−x0
= e− 1

1+� · �− �
1+� = e�−1,

and so

G(x, y, x) ≤ e3(e
−1+�−1) < 1.

By symmetry the same holds for y = z.
The partial derivatives of G are as follows

∂G(x, y, z)

∂x
=

(
log

(
(1 − x)2

x2 − xz

)
+ 1 − x

x

)
G(x, y, z),

∂G(x, y, z)

∂ y
=

(
log

(
(1 − y)2

y2 − yz

)
+ 1 − y

y

)
G(x, y, z),

∂G(x, y, z)

∂z
=

(
log

(
(x − z)(y − z)

z2

)
+ 1 − z

z

)
G(x, y, z).

Suppose that (α, β, γ ) ∈ (0, 1]3 is a stationary point of G(x, y, z). Note that
G(x, y, z) > 0 if x, y, z �= 0, and so

log

(
(1 − α)2

α2 − αγ

)
+ 1 − α

α
= 0 and log

(
(1 − β)2

β2 − βγ

)
+ 1 − β

β
= 0

Hence

γ = α − eα−1
(1 − α)2

eα
= β − eβ−1

(1 − β)2

eβ
(5)

However, the function x → x − ex
−1

(x−1)2

ex is increasing and thus injective, implying
that α = β. Hence all stationary points of G(x, y, z) are of the form (α, α, γ ).
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Substituting α = β into ∂G(x, y, z)/∂z = 0 and rearranging we obtain that

1

γ
+ 2 log

(
α − γ

γ

)
= 1.

Combining the above equation with (5) we get that α satisfies

eα

eα2 − eα−1
(1 − α)2

+ 2 log

(
eα−1

(1 − α)2

eα2 − eα−1
(1 − α)2

)
= 1. (6)

It can be shown that the derivative of the function given by the left hand side of the
above equation is

D(x) = −
e
(
ex3(x + 3) − ex

−1
(1 − x)2(x2 + 2x − 1)

)

(1 − x)
(
ex2 − ex−1

(1 − x)2
)2 .

Note that since the function in (5) is increasing, and so if α ≤ 0.587, then

γ ≤ 0.587 − e0.587
−1

(1 − 0.587)2

e · 0.587 < 0,

which contradicts γ ∈ (0, 1]. Hence α > 0.587. It is easy to see that x → ex
−1

(1−x)2

is decreasing for x ∈ (0, 1) and that x → x2 +2x −1 is increasing for x ≥ −1. Thus

ex
−1

(1 − x)2(x2 + 2x − 1) ≤ 2e0.587
−1

(1 − 0.587)2 < 1.88

for x ∈ [0.587, 1]. On the other hand, x → ex3(x + 3) is increasing, and so for
x ≥ 0.587

ex3(x + 3) ≥ e · 0.5873(0.587 + 3) > 1.97.

Therefore

ex3(x + 3) − ex
−1

(1 − x)2(x2 + 2x − 1) > 0

for x > 0.587, and thus D(x) < 0, implying that the left hand side of (6) is strictly
decreasing. Hence there is a unique value α satisfying the (6). Moreover, we can see
by inspection that 0.68152 < α < 0.68153. Since (5) is strictly increasing, it also
follows that 0.44403 < γ < 0.44407. Finally

G(α, α, γ ) = α2(1−α)γ 1−2γ

e2α+γ (1 − α)4(1−α)(α − γ )2(α−γ )

≤ 0.681532(1−0.68153)0.444071−2·0.44407

(1 − 0.68153)4(1−0.68152)(0.68152 − 0.44407)2(0.68153−0.44403)e2·0.68152+0.44403

< 0.999.
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Therefor there exists r ∈ (0, 1) such that G(x, y, z) ≤ r for all x, y, z ∈ [0, 1] such
that z ≤ min(x, y). �

The following is an immediate corollary of Lemmas 5.12 and 5.13,which concludes
the proof of Theorems 1.2 and 1.3.

Corollary 5.14 The probability Vn, that rank(xyz) = rank(y) where x, y, z ∈ Tn are
chosen with uniform distribution, tends to 0 as n → ∞ exponentially fast.
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