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Abstract A right chain ordered semigroup is an ordered semigroupwhose right ideals
form a chain. In this paper we study the ideal theory of right chain ordered semigroups
in terms of prime ideals, completely prime ideals and prime segments, extending to
these semigroups results on right chain semigroups proved in Ferrero et al. (J Algebra
292:574–584, 2005).
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1 Introduction and preliminaries

Problems studied in this paper have their roots in the theory of chain rings. Recall
that a ring R with unity is said to be a right (respectively left) chain ring if its right
(respectively left) ideals form a chain, i.e., are totally ordered by set inclusion. If R

Communicated by Mikhail Volkov.

B Ryszard Mazurek
r.mazurek@pb.edu.pl

Thawhat Changphas
thacha@kku.ac.th

Panuwat Luangchaisri
desparadoskku@hotmail.com

1 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002,
Thailand

2 Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A,
15–351 Białystok, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00233-017-9896-z&domain=pdf


524 T. Changphas et al.

is a right and left chain ring, then R is called a chain ring. These rings are natural
generalizations of commutative valuation rings to the noncommutative case and they
have been extensively studied in many papers.

In 1976, Brungs and Törner proved in [6, Theorem 3.6] that a semi-invariant chain
ring is invariant provided it satisfies d.c.c. for prime ideals. This result indicated the
importance of the structure of the lattice of prime ideals of a chain ring. In [1, Theorem
3.5], Bessenrodt, Brungs andTörner noted that in a right chain ring, a prime idealwhich
is not completely prime is always pairing with a unique completely prime ideal, and
this result drew attention to the structure of the lattice of completely prime ideals of
a right chain ring. As noted in [7], essential for the understanding of the ideal theory
of right chain rings R is the understanding of the ideals between two neighbouring
completely prime ideals P1 ⊃ P2 of R; such a pair (P1, P2) is called a prime segment
of R. In [7, Theorem 2.2], Brungs and Törner proved that a prime segment of a right
chain ring falls in exactly one of three classes: it is either archimedean, or simple, or
exceptional. An analogous classification for prime segments of Dubrovin valuation
rings was obtained by Brungs et al. [2], and for so called semiprime segments of any
ring by Törner and the third author in [13]. Further results on prime segments can be
found in, e.g., [3–5,12].

A natural generalization of right chain rings are right chain semigroups, i.e., semi-
groups with unity whose right ideals form a chain. Examples of right chain semigroups
include the cones of left ordered groups and the multiplicative semigroups of right
chain rings. In [8] Brungs and Törner extended the ideal theory of right chain rings
in terms of prime ideals, completely prime ideals and prime segments to right cones,
that is to right chain semigroups with a left cancellation law. In particular, in [8,
Theorem 1.14] Brungs and Törner classified prime segments of a right cone as either
archimedean, or simple, or exceptional. An analogous classification of prime segments
P1 ⊃ P2 for right P1-comparable semigroups was obtained byHalimi in [11, Theorem
4.8]. In [9], Ferrero, Sant’Ana, and the third author generalized the ideal theory of
right cones to right chain semigroups, but in this case it was necessary to add to the
three known types of prime segments (archimedean, simple, exceptional) another one,
which was named “supplementary”.

In this paper we do a next step, namelywe introduce right chain ordered semigroups
and extend to them the ideal theory of right chain semigroups developed in [9]. Below
in this section we explain why the new class of semigroups is a generalization of right
chain semigroups.

Recall (see, e.g., [10]) that an ordered semigroup (S, ·,≤) is a semigroup (S, ·)
together with a partial order ≤ that is compatible with the semigroup operation, i.e.,
for any x, y, z ∈ S we have

x ≤ y ⇒ xz ≤ yz and zx ≤ zy.

For nonempty subsets A, B of S we define

(A] = {s ∈ S : s ≤ a for some a ∈ A} and AB = {ab : a ∈ A, b ∈ B}.
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A nonempty subset I of an ordered semigroup (S, ·,≤) is called a right (respec-
tively, left) ideal of S if it satisfies the following conditions:

(1) I S ⊆ I (respectively, SI ⊆ I );
(2) I = (I ], that is, for any s ∈ S and a ∈ I , s ≤ a implies s ∈ I .

If I is both a left and a right ideal of S, then I is called a two-sided ideal of S, or
simply an ideal of S.

Definition 1.1 An ordered semigroup (S, ·,≤) is called a right chain ordered semi-
group if the right ideals of S form a chain, i.e., for any right ideals I, J of S we have
I ⊆ J or J ⊆ I . Left chain semigroups are defined analogously, and S is a chain
ordered semigroup if it is a right and left chain ordered semigroup.

Note that any semigroup (S, ·) is an ordered semigroup with respect to the trivial
order ≤ on S (i.e., the order defined by x ≤ y ⇔ x = y). Furthermore, if ≤ is
the trivial order on S, then a subset A ⊆ S is a right ideal of the ordered semigroup
(S, ·,≤) if and only if A is a right ideal of the semigroup (S, ·). Hence right chain
semigroups are exactly right chain ordered semigroups with respect to the trivial order.
Therefore, the notion of a right chain ordered semigroup generalizes the notion of a
right chain semigroup. It is also obvious that any general result on right chain ordered
semigroups (S, ·,≤), when applied to the trivial order ≤ on S, gives its counterpart
for the right chain semigroup (S, ·).

An element e of an ordered semigroup (S, ·,≤) is called an identity element of S
if ex = x = xe for any x ∈ S. An element 0 of S is called a zero element of S if
0x = 0 = 0x for any x ∈ S. In this paper we assume that each ordered semigroup is
with identity element e, and with zero element 0, and e �= 0.

The following example shows that a right chain ordered semigroup need not be a
right chain semigroup.

Example 1.2 The set T = {a, b} with the multiplication xy = x for any x, y ∈ T is
a semigroup (without zero and identity). Let S be the semigroup obtained from T by
adjoining zero and unity elements, i.e., S = {0, e, a, b} and the multiplication in S is
defined as follows:

xy =
{
x if x �= e and y �= 0,
y if x = e or y = 0.

Then {0, a} and {0, b} are incomparable right ideals of the semigroup (S, ·) and thus
S is not a right chain semigroup. On the other hand, S (with the above multiplication)
is an ordered semigroup with respect to the order

x ≤ y ⇔ x = y or (x, y) = (a, b),

and the only right ideals of the ordered semigroup (S, ·,≤) are

{0} ⊂ {0, a} ⊂ {0, a, b} ⊂ S.

Hence (S, ·,≤) is a right chain ordered semigroup.
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The paper is organized as follows. In Sect. 2 we study relationships between prime,
semiprime, completely prime, and completely semiprime right ideals of an ordered
semigroup (S, ·,≤), and we provide some methods for constructing such right ideals.
In Sect. 3 we show that if furthermore (S, ·,≤) is a right chain ordered semigroup,
then for any right ideal of S, being semiprime is equivalent to being prime, and being
completely semiprime is the same as being completely prime. Moreover, in Sect. 3 we
use powers of an ideal and powers of an element to construct completely prime right
ideals. In Sect. 4 we focus on prime segments of right chain ordered semigroups, prov-
ing that any prime segment falls into one of four categories: it has to be archimedean,
or simple, or exceptional, or supplementary.

In the paper the symbol ⊂ denotes proper inclusion of sets. The set of positive
integers is denoted by N.

2 Prime, semiprime, completely prime and completely semiprime ideals
of ordered semigroups

Let (S, ·,≤) be an ordered semigroup and let A and B be nonempty subsets of S.
Recall that AB denotes the set of all products ab, where a ∈ A and b ∈ B. If s ∈ S,
then we write s A (respectively, As) instead of {s}A (respectively, A{s}). If n ∈ N,
then An denotes the set of all products a1a2 · · · an , where a1, a2, . . . , an ∈ A. The
symbol (A] denotes the set of all elements s ∈ S such that s ≤ a for some a ∈ A.
In the following proposition we record some basic properties of these sets. We will
freely use this proposition in the paper; its easy proof is left to the reader.

Proposition 2.1 Let (S, ·,≤) be an ordered semigroup.

(1) For any nonempty subsets A, B of S, the following hold:
(a) A ⊆ (A] and ((A]] = (A],
(b) If A ⊆ B, then (A] ⊆ (B],
(c) ((A](B]] = ((A]B] = (A(B]] = (AB]. Consequently, (A](B] ⊆ (AB],

(A]B ⊆ (AB], and A(B] ⊆ (AB],
(d) ((Am]n] = (Amn] for any m, n ∈ N,
(e) If x, y ∈ S and x ≤ y, then (x A] ⊆ (yA] and (Ax] ⊆ (Ay].

(2) If {Ak}k∈K is a family of nonempty subsets of S, then (
⋃

k∈K Ak] = ⋃
k∈K (Ak]

and (
⋂

k∈K Ak] ⊆ ⋂
k∈K (Ak].

It is easy to see that if I and J are right (respectively, two-sided) ideals of S,
then (I J ] is a right (respectively, two-sided) ideal of S. Furthermore, directly from
Proposition 2.1(2) we obtain the following corollary.

Corollary 2.2 If {Ik}k∈K is a family of right (resp. left, two-sided) ideals of an ordered
semigroup (S, ·,≤), then

⋃
k∈K Ik and

⋂
k∈K Ik are right (resp. left, two-sided) ideals

of S.

Let (S, ·,≤) be an ordered semigroup. A right ideal I of S is said to be

– prime if I is proper and for any right ideals A, B of S, AB ⊆ I implies A ⊆ I or
B ⊆ I ;
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– completely prime if I is proper and for any elements a, b of S, ab ∈ I implies
a ∈ I or b ∈ I ;

– semiprime if I is proper and for any right ideal A of S, A2 ⊆ I implies A ⊆ I ;
– completely semiprime if I is proper and for any element a of S, a2 ∈ I implies
a ∈ I .

From the above definitions we obtain immediately the following implication chart
for the considered types of right ideals:

prime ⇒ semiprime

⇑ ⇑ (2.1)

completely prime ⇒ completely semiprime

Below we prove another interrelation between considered types of ideals.

Proposition 2.3 Let I be an ideal of an ordered semigroup (S, ·,≤). Then I is com-
pletely prime if and only if I is prime and completely semiprime.

Proof Obviously if I is completely prime, then I is prime and completely semiprime.
To prove the converse implication, assume that I is prime and completely semiprime.
To show that I is completely prime, consider any a, b ∈ S such that ab ∈ I . Then

(bSa]2 = (bSa](bSa] ⊆ (bSabSa] ⊆ (I ] = I,

and since I is completely semiprime, we obtain (bSa] ⊆ I and thus bSa ⊆ I . Hence

(bS](aS] ⊆ (bSaS] ⊆ (I ] = I, (2.2)

and since I is prime, it follows from (2.2) that (bS] ⊆ I or (aS] ⊆ I . Thus b ∈ I or
a ∈ I , which shows that I is completely prime. ��

The following concept will be useful in constructing semiprime ideals of an ordered
semigroup (S, ·,≤). For any proper right ideal A of S we define the Hoehnke ideal of
S associated with A to be the set

HA(S) = {h ∈ S : s /∈ (shS] f or all s ∈ S\A}.

If the order ≤ is trivial and A is an ideal of S, then the Hoehnke ideal coincides with
the set HA(S) = {h ∈ S : s /∈ shS f or all s ∈ S\A}, which was defined and studied
in [9] (for information why Hoehnke’s name appears in this context, the interested
reader is referred to [9]). Below we extend [9, Proposition 2] to ordered semigroups,
showing in particular that indeed HA(S) is an ideal of S.

Theorem 2.4 Let A be a proper right ideal of an ordered semigroup (S, ·,≤). Then

(1) HA(S) is a semiprime ideal of S.
(2) For any right ideal I of S, I ⊆ HA(S) if and only if s /∈ (s I ] for all s ∈ S\A.
(3) If A is an ideal of S, then A ⊆ HA(S).
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Proof We show first that HA(S) is an ideal of S. Since 0 ∈ A, (s0S] = (0] ⊆ (A] = A
for any s ∈ S. Thus s /∈ (s0S] for all s ∈ S\A, which shows that 0 ∈ HA(S). Hence the
set HA(S) is nonempty. To show that HA(S) is closed under multiplication (from both
the left and the right) by elements of S, suppose for a contradiction that t1ht2 /∈ HA(S)
for some h ∈ HA(S) and t1, t2 ∈ S. Then there exists s ∈ S\A such that

s ∈ (st1ht2S]. (2.3)

From (2.3) we get st1 ∈ (st1ht2S]S ⊆ (st1ht2S] ⊆ (st1hS], and since h ∈ HA(S),
it follows that st1 ∈ A. Thus (st1ht2S] ⊆ (A] = A, so (2.3) implies s ∈ A, a
contradiction.Hence SHA(S)S ⊆ HA(S). To complete the proof that HA(S) is an ideal
of S, it suffices to show that (HA(S)] ⊆ HA(S). For this, consider any y ∈ (HA(S)].
Then y ≤ h for some h ∈ HA(S). Since for any s ∈ S\A we have sy ≤ sh, we get
(syS] ⊆ (shS]. Now h ∈ HA(S) implies s /∈ (shS], so also s /∈ (syS], and y ∈ HA(S)
follows. Hence (HA(S)] ⊆ HA(S), as desired.

Before showing that the ideal HA(S) is semiprime, we prove for any right ideal I
of S the equivalence stated in (2). We proceed by contraposition. If I � HA(S), then
there exist i ∈ I and s ∈ S\A such that s ∈ (si S], and s ∈ (s I ] follows, which proves
the implication “⇐” in (2). To prove the opposite implication, suppose that s ∈ (s I ]
for some s ∈ S\A. Then for some i ∈ I we have s ≤ si = sie ∈ si S, and thus
s ∈ (si S], which implies that i /∈ HA(S). Hence I � HA(S) and the proof of (2) is
complete.

To establish (1), it remains to show that the ideal HA(S) is semiprime. Since e /∈
HA(S), the ideal HA(S) is proper. Let I be a right ideal of S such that I 2 ⊆ HA(S). If
I � HA(S), then by (2) there exists s ∈ S\A such that s ∈ (s I ]. Hence s I ⊆ (s I ]I ⊆
(s I 2], so (s I ] ⊆ (s I 2], and thus

s ∈ (s I ] ⊆ (s I 2] ⊆ (sHA(S)],

which is a contradiction by (2). Thus I ⊆ HA(S) and therefore HA(S) is a semiprime
ideal of S. The prove of (1) is complete.

To prove (3), assume that A is an ideal of S. Then (s A] ⊆ (A] = A for any s ∈ S,
and thus s /∈ (s A] for all s ∈ S\A. Hence (2) implies A ⊆ HA(S), as desired. ��

For any proper right ideal A of an ordered semigroup (S, ·,≤) we define the asso-
ciated prime right ideal of A to be the set

Pr (A) = {p ∈ S : sp ∈ A f or some s ∈ S\A}.

This concept is an analogue of the notion introduced in [9, Definition 12]. Below we
extend [9, Lemma 13(i)] to ordered semigroups.

Proposition 2.5 Let A be a proper right ideal of an ordered semigroup (S, ·,≤). Then
Pr (A) is a completely prime right ideal of S containing A.

Proof By assumption, A is a proper right ideal of S. Hence e /∈ A, and since for any
a ∈ A we have ea = a ∈ A, it follows that A ⊆ Pr (A). Now we show that Pr (A) is a
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On right chain ordered semigroups 529

right ideal of S. For this, let us consider any s ∈ S and p ∈ Pr (A). Since p ∈ Pr (A),
for some x ∈ S\A we have xp ∈ A, and since A is a right ideal of S, we obtain
x(ps) = (xp)s ∈ A and thus ps ∈ Pr (A). Hence Pr (A)S ⊆ Pr (A). To complete
the proof that Pr (A) is a right ideal of S, it suffices to show that (Pr (A)] ⊆ Pr (A).
For this, consider any q ∈ (Pr (A)]. Then there exists p ∈ S such that q ≤ p and
xp ∈ A for some x ∈ S\A. Since xq ≤ xp and xp ∈ A, it follows that xq ∈ (A] = A
and thus q ∈ Pr (A), as desired. Since obviously e /∈ Pr (A), it follows that Pr (A) is
a proper right ideal of S. To show that this right ideal is completely prime, consider
any a, b ∈ S with ab ∈ Pr (A). Then there exists x ∈ S\A such that xab ∈ A. If
xa ∈ A, then we have a ∈ Pr (A). Otherwise xa ∈ S\A, and since (xa)b = xab ∈ A,
b ∈ Pr (A) follows. ��

3 Prime and completely prime ideals of right chain ordered semigroups

The following result shows that for any right chain ordered semigroup the horizontal
implications on the chart (2.1) are in fact equivalences. The result is a generalization
of [9, Lemma 8].

Proposition 3.1 If (S, ·,≤) is a right chain ordered semigroup, then

(1) A right ideal I of S is semiprime if and only if I is prime.
(2) An ideal I of S is completely semiprime if and only if I is completely prime.

Proof (1) Assume that I is a semiprime right ideal of S. Let A, B be right ideals of S
such that AB ⊆ I . Since S is a right chain ordered semigroup, we must have A ⊆ B
or B ⊆ A. If A ⊆ B, then A2 ⊆ AB ⊆ I and A ⊆ I follows. Similarly B ⊆ A
implies B ⊆ I . Thus I is prime. The converse statement is obvious.

(2) If an ideal I is completely semiprime, then (1) implies that I is prime, and thus
I is completely prime by Proposition 2.3. The converse statement is clear. ��

Let A be an ideal of an ordered semigroup (S, ·,≤).We adopt from [9] the following
two useful notions. An ideal I of S is said to be A-nilpotent if I n ⊆ A for some n ∈ N.
An element t of S is said to be A-nilpotent if tn ∈ A for some n ∈ N.

The following result extends [9, Proposition 9] to right chain ordered semigroups.

Proposition 3.2 Let A be a proper ideal of a right chain ordered semigroup (S, ·,≤ ).

(1) If I is an ideal of S such that I ⊆ HA(S) and I is not A-nilpotent, then
⋂

n∈N(I n]
is a completely prime ideal of S.

(2) If t ∈ S is such that t ∈ HA(S) and t is not A-nilpotent, then
⋂

n∈N(tn S] is a
prime right ideal of S.

Proof (1) Assume that I is an ideal of S such that I ⊆ HA(S) and I is not A-
nilpotent. Since HA(S) is a proper ideal of S by Theorem 2.4(1), so is I and thus
Corollary 2.2 implies that

⋂
n∈N(I n] is a proper ideal of S. By Proposition 3.1(2),

to complete the proof of (1), it suffices to show that for any a ∈ S, a2 ∈ ⋂
n∈N(I n]

implies a ∈ ⋂
n∈N(I n]. For a contradiction, assume that there exists a ∈ S such that
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a2 ∈ ⋂
n∈N(I n] but a /∈ ⋂

n∈N(I n]. Then a /∈ (Im] for somem ∈ N. Since S is a right
chain ordered semigroup, we must have (Im] ⊆ (aS]. Hence

a2 ∈ (I 2m+1] = (Im Im+1] ⊆ ((aS]Im+1]
⊆ (aIm+1] ⊆ (aIm I ] ⊆ (a(aS]I ] ⊆ (a2 I ], (3.1)

and Theorem 2.4(2) implies a2 ∈ A. Thus from (3.1) we obtain

I 2m+1 ⊆ (I 2m+1] ⊆ (a2 I ] ⊆ (A] = A,

so I is A-nilpotent. This contradiction completes the proof of (1).
(2) Assume t ∈ HA(S) and t is not A-nilpotent. Since t ∈ HA(S), it follows

from Theorem 2.4(1) that
⋂

n∈N(tn S] ⊆ HA(S) and thus Corollary 2.2 implies that⋂
n∈N(tn S] is a proper right ideal of S. By Proposition 3.1(1), to complete the proof of

(2), it is enough to show for any right ideal J of S that J 2 ⊆ ⋂
n∈N(tn S] implies J ⊆⋂

n∈N(tn S]. Suppose for a contradiction that J 2 ⊆ ⋂
n∈N(tn S] but J �

⋂
n∈N(tn S].

Then J � (tm S] for some m ∈ N, and since S is a right chain ordered semigroup, we
have (tm S] ⊆ J . Hence

t2m ∈ (tm S](tm S] ⊆ J 2 ⊆ (t2m+1S] = (t2mt S] ⊆ (t2m(t S]]

and thus t2m ∈ A by Theorem 2.4(2). But this is a contradiction, since t is not A-
nilpotent. ��

Example 10 in [9] shows that in Proposition 3.2 the assumptions I ⊆ HA(S) in
part (1) and t ∈ HA(S) in part (2) are both necessary.

The following corollary generalizes [9, Corollary 11].

Corollary 3.3 Let I be an ideal of a right chain ordered semigroup (S, ·,≤) such that
(I n] �= (I n+1] for any n ∈ N. Then

⋂
n∈N(I n] is a completely prime ideal of S.

Proof By Corollary 2.2, A = ⋂
n∈N(I n] is an ideal of S. By Proposition 3.2(1), to

prove that the ideal A is completely prime it suffices to show that the ideal A is proper,
I ⊆ HA(S) and I is not A-nilpotent. If A = S, then for any n ∈ N we have (I n] = S,
hence (I n] = (I n+1], and this contradiction shows that the ideal A is proper. Let
s ∈ S\A. Then s /∈ (Im] for somem ∈ N. If s ∈ (s I ], then (s I ] ⊆ ((s I ]I ] ⊆ (s I 2], so
s ∈ (s I 2] and continuing this waywe obtain s ∈ (s Im] ⊆ (Im], a contradiction. Hence
s /∈ (s I ], and thus I ⊆ HA(S) by Theorem 2.4(2). To show that I is not A-nilpotent,
suppose for a contradiction that I k ⊆ A for some k ∈ N. Then (I k] ⊆ (A] = A, and
thus (I k] ⊆ A ⊆ (I k+1] ⊆ (I k], which implies (I k] = (I k+1], a contradiction. Thus
I is not A-nilpotent. ��

Later on we will need the following generalization of [9, Lemma 13(ii)].

Proposition 3.4 Let A be a prime right ideal of a right chain ordered semigroup
(S, ·,≤). Then for any ideal I of S we have I ⊆ A or Pr (A) ⊆ I .
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Proof Let I be an ideal of S such that Pr (A) � I . Then there exists p ∈ Pr (A)\I .
Since p ∈ Pr (A), for some x ∈ S\A we have xp ∈ A, and since S is a right chain
ordered semigroup and p /∈ I , it follows that I ⊆ (pS]. Hence

(xS]I ⊆ (xSI ] ⊆ (x I ] ⊆ (x(pS]] ⊆ (xpS] ⊆ (AS] ⊆ (A] = A,

and since A is prime and x /∈ A, it follows that I ⊆ A. ��
The following lemma generalizes [9, Lemma 16].

Lemma 3.5 If A is a proper ideal of a right chain ordered semigroup (S, ·,≤) such
that A = (A2], then A = (sn A] for any s ∈ S\A and n ∈ N.

Proof Let s ∈ S\A. Since S is a right chain ordered semigroup, we have A ⊆ (sS]
and thus

A = (A2] = (AA] ⊆ ((sS]A] ⊆ (s A] ⊆ (A] = A.

Hence A = (s A]. Suppose that for some n ∈ N we have already proved that A =
(sn A]. Then

A = (sn A] = (sn(s A]] = (sns A] = (sn+1A].

Thus the result follows by induction. ��
The following two notions are obvious analogues of the concepts defined in [9, p.

580].

Definition 3.6 Let (S, ·,≤) be an ordered semigroup. An ideal Q of S is called an
exceptional prime ideal of S if Q is prime but not completely prime. If I ⊂ J are
ideals of S such that there are no further ideals properly between I and J , then we say
that J is minimal over I .

We close this section with the following generalization of [9, Lemmas 15 and 17].

Proposition 3.7 Let (S, ·,≤) be a right chain ordered semigroup, and let Q be an
exceptional prime ideal of S. Then there exists a unique ideal D of S such that Q ⊂ D
and D is minimal over Q. Furthermore, D = (D2] and there exists an element
a ∈ D\Q such that Q ⊂ ⋂

n∈N(anS]. In particular, there exist elements in D\Q that
are not Q-nilpotent.

Proof Let D denote the intersection of all ideals I of S such that Q ⊂ I . Proposition
3.4 implies that for any such an ideal I we have Pr (Q) ⊆ I and thus Pr (Q) ⊆ D. By
Proposition 2.5, Pr (Q) is a completely prime right ideal of S containing Q, and since
Q is an exceptional prime ideal, it follows that Q ⊂ Pr (Q). Hence Q ⊂ D and now
the definition of D and Corollary 2.2 imply that the ideal D is minimal over Q, and
obviously D is a unique ideal of S with this property. If D �= (D2], then (D2] ⊂ D,
and the minimality of D over Q implies (D2] ⊆ Q. Hence D2 ⊆ (D2] ⊆ Q, and
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since Q is prime, we get D ⊆ Q. This contradiction shows that D = (D2]. We now
prove that there exists a ∈ D\Q such that Q ⊂ ⋂

n∈N(anS]. Set

C = {c ∈ S :
⋂
n∈N

(cnD] ⊆ Q}.

Note that Q ⊆ C and thus the set C is nonempty. We claim that C ⊆ D. Indeed,
if s ∈ S\D, then Lemma 3.5 implies that

⋂
n∈N(snD] = D, and since D � Q, it

follows that s /∈ C , which proves our claim.
Since Q is an exceptional prime ideal of S, by Proposition 3.1(2) for some b ∈ S\Q

wehaveb2 ∈ Q. Ifb ∈ (CbD], thenb ∈ (cbD] for some c ∈ C .Hence (bD] ⊆ (cbD],
and thus

(bD] ⊆ (cbD] ⊆ (c(bD]] ⊆ (c(cbD]] ⊆ (c2(bD]] ⊆ (c2(cbD]] ⊆ (c3(bD]] ⊆ · · · ,

and continuing this way, we obtain for any n ∈ N that (bD] ⊆ (cnbD] ⊆ (cnD].
Hence, since c ∈ C , we obtain

(bS]D ⊆ (bSD] ⊆ (bD] ⊆
⋂
n∈N

(cnD] ⊆ Q,

and since Q is prime, b ∈ Q or D ⊆ Q, a contradiction. Hence b /∈ (CbD], and since
S is a right chain ordered semigroup, we must have (CbD] ⊆ (bS]. If C = D, then
(DbD] ⊆ (bS] and thus

((bS]D]2 ⊆ (bD]2 = (bD](bD] ⊆ (bDbD] = (b(DbD]] ⊆ (b(bS]] ⊆ (b2S] ⊆ Q.

Since Q is prime and ((bS]D]2 ⊆ Q, we get (bS]D ⊆ Q, so b ∈ Q or D ⊆ Q, a
contradiction. Hence wemust haveC ⊂ D. To complete the proof, take any a ∈ D\C .
Then

⋂
n∈N(anD] � Q, and since S is a right chain ordered semigroup, we obtain

Q ⊂ ⋂
n∈N(anD] ⊆ ⋂

n∈N(anS]. ��

4 Prime segments of right chain ordered semigroups

Following [9], we define a prime segment of a right chain ordered semigroup (S, ·,≤)

to be a pair P2 ⊂ P1 of completely prime ideals of S such that no further completely
prime ideal of S exists between P2 and P1. In the following theorem we extend to
right chain ordered semigroups the classification of prime segments of right chain
semigroups given in [9, Theorem 18].

Theorem 4.1 Let (S, ·,≤) be a right chain ordered semigroup, and let P2 ⊂ P1 be a
prime segment of S. Then one of the following possibilities occurs:

(a) There are no further ideals of S between P2 and P1; the prime segment is called
simple in this case.
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(b) For every a ∈ P1\P2 there exists an ideal I ⊆ P1 of S such that a ∈ I and⋂
n∈N(I n] = P2; the prime segment is called archimedean in this case.

(c) There exists a prime ideal Q of S with P2 ⊂ Q ⊂ P1; the prime segment is called
exceptional in this case.

(d) There exists an ideal D of S such that P2 ⊂ D ⊂ P1 and D is minimal over P2;
the prime segment is called supplementary in this case.

Possibilities (a), (b), (c) are mutually exclusive, and possibilities (a), (b), (d) are mutu-
ally exclusive.

Proof Assume that the prime segment P2 ⊂ P1 is not simple, i.e., case (a) does not
hold. Then there exists an ideal I of S such that P2 ⊂ I ⊂ P1. If P1 � HI (S),
then since S is a right chain ordered semigroup, we must have HI (S) ⊂ P1, and by
combining Theorem 2.4(1,3) with Proposition 3.1(1) we can see that HI (S) is a prime
ideal of S lying properly between P2 and P1. Thus the prime segment P2 ⊂ P1 is
exceptional in this case. Hence to the end of the proof we assume that

there exists an ideal I of S with P2 ⊂ I ⊂ P1 and for any such an ideal I

we have P1 ⊆ HI (S). (4.1)

Let us first consider the case where the prime segment P2 ⊂ P1 contains an ideal
I of S such that (Im] = (Im+1] for some m ∈ N. Then

(Im+1] = (Im I ] = ((Im]I ] = ((Im+1]I ] = (Im+2]

and thus (Im] = (Im+1] = (Im+2]. Continuing this way we obtain

(Im] = (Im+k] for any k ∈ N.

Thus for the ideal D = (Im] and any n ∈ Nwe have D = (Im] = (Imn] = ((Im]n] =
(Dn] and D ⊆ I ⊂ P1. If we would have D = (Im] ⊆ P2, then since P2 is completely
prime, we would get I ⊆ P2 ⊂ I , a contradiction. Hence, since S is a right chain
ordered semigroup, we must have P2 ⊂ D. We show that furthermore D is minimal
over P2. If not, then there exists an ideal A of S such that P2 ⊂ A ⊂ D. Then
P2 ⊂ A ⊂ P1 and by (4.1) we have D ⊂ P1 ⊆ HA(S). Hence by Proposition 3.2(1),⋂

n∈N(Dn] = D is a completely prime ideal of S, which however is impossible, since
P2 ⊂ P1 is a prime segment. Hence D is minimal over P2 and thus the prime segment
P2 ⊂ P1 is supplementary in this case.

We are left with the case where there exists an ideal I of S such that P2 ⊂ I ⊂ P1
and for any such an ideal I we have (I n] �= (I n+1] for all n ∈ N. Let I be the set of all
ideals I of S such that P2 ⊂ I ⊂ P1. Since S is a right chain ordered semigroup and
the ideal P2 is completely prime, for any I ∈ I and n ∈ N we have P2 ⊆ (I n], and
thus P2 ⊆ ⋂

n∈N(I n] ⊂ P1. Since by Corollary 3.3 the ideal
⋂

n∈N(I n] is completely
prime, it follows that
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⋂
n∈N

(I n] = P2 f or any I ∈ I. (4.2)

Let Q = ⋃{I : I ∈ I}. By Corollary 2.2, Q is an ideal of S. If Q = P1, then (4.2)
implies that the prime segment P2 ⊂ P1 is archimedean. Assume that Q �= P1. Then
Q ⊂ P1. We consider two cases:

Case1 : (P2
1] ⊂ P1. Then P2 ⊂ (P2

1 ] ⊂ P1 and thus (P2
1 ] ∈ I. Hence⋂

n∈N(P2n
1 ] = ⋂

n∈N((P2
1 ]n] = P2 by (4.2) and thus

P2 ⊆
⋂
n∈N

(Pn
1 ] ⊆

⋂
n∈N

(P2n
1 ] ⊆ P2.

Therefore P2 = ⋂
n∈N(Pn

1 ] and the prime segment P2 ⊂ P1 is archimedean in this
case.

Case2 : (P2
1] = P1.We show that the ideal Q is prime in this case. By Proposition

3.1(1), it suffices to show that Q is semiprime. For this, consider any right ideal A
of S such that A2 ⊆ Q. Then A2 ⊆ P1, and since P1 is completely prime, A ⊆ P1
follows. If A = P1, then P1 = (P2

1 ] = (A2] ⊆ (Q] = Q ⊂ P1, a contradiction.
Hence A ⊂ P1 and thus A ⊆ Q by the definition of Q. Therefore Q is prime and the
prime segment P2 ⊂ P1 is exceptional in this case.

It is easy to see that possibilities (a), (b), (c) are mutually exclusive. It is also
clear that (a) and (d) are mutually exclusive. To complete the proof, assume that the
possibility (d) occurs and D is minimal over P2. Then D = (D2], and Lemma 3.5
implies that for any a ∈ P1\D we have P2 ⊂ D = ⋂

n∈N(anD] ⊆ ⋂
n∈N(anS].

Hence (b) and (d) cannot happen simultaneously. ��
Example 19 from [9] shows that possibilities (c) and (d) of Theorem 4.1 can occur

simultaneously.
We close the paper with the following characterization of archimedean prime seg-

ments of right chain ordered semigroups. The result is a generalization of [9, Corollary
20].

Corollary 4.2 Let P2 ⊂ P1 be a prime segment of a right chain ordered semigroup
(S, ·,≤). Then the following conditions are equivalent.

(i) The prime segment P2 ⊂ P1 is archimedean.
(ii) For any a ∈ P1\P2, ⋂n∈N(anS] = P2.
(iii) For any a ∈ P1\P2, (P1aS] ⊂ (aS].
Proof (i)⇒ (ii) follows directly from the definition of an archimedean prime segment.

(ii) ⇒ (iii) Let a ∈ P1\P2. Suppose that (aS] ⊆ (P1aS]. Then a ≤ pas for some
p ∈ P1 and s ∈ S. If p ∈ P2, then a ∈ (P2aS] ⊆ (P2] = P2, a contradiction. Hence
p ∈ P1\P2. Furthermore, a ≤ pas implies

a ≤ pas ≤ p(pas)s = p2as2 ≤ p2(pas)s2 = p3as3 ≤ p3(pas)s3 = p4as4 ≤ ...

and thus for any n ∈ N we have a ≤ pnasn , and a ∈ (pnS] follows. Hence by (ii),
a ∈ ⋂

n∈N(pnS] = P2, which is a contradiction. Thus (aS] � (P1aS], and since S is
a right chain ordered semigroup, we obtain (P1aS] ⊂ (aS], as desired.
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(iii) ⇒ (i) Assume (iii). Then for any a ∈ P1\P2 we have P2 ⊂ (P1aS] ⊂
(aS] ⊆ P1 and thus the prime segment P2 ⊂ P1 is not simple. Suppose the prime
segment P2 ⊂ P1 is exceptional, i.e., there exists a prime ideal Q of S such that
P2 ⊂ Q ⊂ P1. Then by Proposition 3.7 there exists an ideal D of S which is minimal
over Q. This however is impossible, since (iii) implies that for any a ∈ D\Q we
have Q ⊂ (P1aS] ⊂ (aS] ⊆ D. Finally, suppose the prime segment P2 ⊂ P1 is
supplementary. Then there exists an ideal D′ of S such that P2 ⊂ D′ ⊂ P1 and
D′ is minimal over P2. Then by (iii), for any a ∈ D′\P2 we have P2 ⊆ (P1aS] ⊂
(aS] ⊆ D′, a contradiction. Hence the prime segment P2 ⊂ P1 is neither simple, nor
exceptional, nor supplementary, and thus by Theorem 4.1 it must be archimedean. ��
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