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John Macintosh Howie: work and legacy 3

John M. Howie (1936–2011) was one of the founding fathers of semigroup theory
as we know it today. His active research life spanned almost half a century. During
this time he published around 80 research articles, on topics such as amalgamated
products, transformation semigroups, generators, products of idempotents and others.
Generations of future researchers in semigroup theory learned the basics of their trade
from the two editions of John’s seminal monograph [56,67]. John was a much loved and
respected teacher, and his mastery is reflected in the undergraduate texts on automata
[66], real analysis [68], complex analysis [69] and Galois theory [70]. John worked
with a large number of collaborators, and supervised twelve Ph.D. students, including
the present authors. In this article we will attempt to give the barest of sketches of
John’s life and the main themes running through John’s research work, and to indicate
how it has shaped research in semigroups to the present day.

John was born in Chryston, near Glasgow in Scotland, where his father was a
Church of Scotland minister. In 1937 the family moved to Keith in North Scotland.
John received secondary and higher education in Aberdeen, graduating in 1958. He
was immediately appointed assistant at the University of Aberdeen, and in 1959 he
enrolled for D.Phil. at Balliol College, University of Oxford. His official supervisor
was G. Higman, but John ended up interacting with G. Preston who was in Oxford at
the time. Higman and Preston obviously influenced the key components of John’s early
research— amalgamation and semigroups. In 1960 John married Dorothy, who was to
remain his lifelong companion, and with whom he would have two daughters. In 1961
he was awarded D.Phil. from Oxford, returned to Scotland, to positions in Glasgow
(1961), and then in the newly founded University of Stirling (1967). In 1970 John
was appointed Regius Professor of Mathematics at the University of St Andrews—a
Crown appointment at the oldest University in Scotland, and third oldest in the English
speaking world. John held this position until retirement in 1997, and remained in St
Andrews as an Emeritus Professor until his death in 2011.

St Andrews years witnessed the zenith of John’s career. He opened several new
research areas, published the first edition of his celebrated monograph, hosted a series
of distinguished visitors, and started supervising Ph.D. students. John was a long-
standing Head of Pure Mathematics in St Andrews, and also served as the Dean of
Science (1976–79). He was a member of the London Mathematical Society, where he
held several positions of responsibility, most notably that of Vice-President (1986–88,
1990–92); John also served as the President of the Edinburgh Mathematical Society
(1973–74). John was elected to the Royal Society of Edinburgh in 1971, and awarded
their Keith Prize. He was also editor for several international mathematical journals:
Semigroup Forum (1976–1998), Executive Editor of Semigroup Forum (1990–94),
Proceedings of the Royal Society of Edinburgh Series A (1988–91, 1997–2000), Com-
munications in Algebra (1994–99), and Portugaliae Mathematica (1987–2001). John
was a very respected figure in the educational circles in Scotland. In 1990–92 he
chaired a committee set up to review the final years in Scottish secondary schools;
the committee’s report Upper Secondary Education in Scotland, proposed radical
changes to the Scottish school curriculum, but the proposals were not implemented.
In 1993 John was honoured with a Commander of the British Empire ‘for services to
education’.

123



4 G. M. S. Gomes, N. Ruškuc

In the course of his professional life John had the opportunity to travel a great deal.
His early research visits to the United States—6 weeks at Pennsylvania State University
in 1963 and ten months at Tulane University in 1964–65—were certainly formative.
But it is fair to say that of all the foreign countries it was Portugal, which he visited on
numerous occasions between 1980 and 2009, that John felt the strongest attachment
to. It is therefore particularly fitting that five of his Ph.D. students were Portuguese.
The final visit in 2009 was to participate in the workshop in memory of another
Scottish giant of semigroup theory, Douglas Munn, with whom John maintained a
close professional relationship and personal friendship. A workshop in memory of
John himself was also held in Lisbon in May 2012.

In addition to dedication to his family and mathematics, John had many other
interests and hobbies. The most absorbing of these was certainly music. John was an
accomplished organist and singer. In fact, his first trip to Portugal in 1980 was with
the St Andrews Renaissance Group, an occasion that John loved to recount. For many
years John was the Church Organist and Choir Master at the Hope Park Parish Church
in St Andrews. He was also a member of St Andrews Chorus with whom he had many
public appearances, and he gave a series of solo Lunchtime Concerts.

A slightly less known hobby of John’s was gardening. As Dorothy recalls, for many
years John kept the household supplied with fresh fruit and vegetables. Just as, one
might say, for many years he fed all of us around him with his mathematical knowledge
and ideas.

1 Amalgamation

John’s early research work was devoted to the problems of amalgamation in semi-
groups, the topic of his D.Phil. dissertation in Oxford under the supervision of Gra-
ham Higman and Gordon Preston. The dissertation was entitled “Some problems in
the theory of semigroups”, and its main findings were published in [47].

An amalgam [U ; Si ;φi (i ∈ I )] consists of a pairwise disjoint family of semigroups
U , Si (i ∈ I ), and a family of embeddings φi : U → Si (i ∈ I ). The ‘common
subsemigroup’ U is called the core of the amalgam. The amalgam is embeddable into
a semigroup T if there exist monomorphisms λ : U → T and λi : Si → T such that
we have

(A1) φiλi = λ for all i ∈ I ;
(A2) Siλi ∩ S jλ j = Uλ for all distinct i, j ∈ I .

Intuitively, this means that all Si embed into T , and any two such embeddings intersect
precisely in the designated copy of U .

At the time John was working on his D.Phil. dissertation, it was known that every
group amalgam embeds into a group, specifically the group amalgamated free product∏∗

U Si , and the importance of these free products was beginning to emerge through
the work of mathematicians such as A.G. Kurosh, B.H. Neumann and G. Higman. It
was also known that semigroup amalgams do not always embed [89], and that this
depends on whether or not they embed into the semigroup amalgamated free product
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defined by the presentation

∏∗
U Si = 〈Ai | Ri , uφi = uφ j (u ∈ U, i, j ∈ I )〉,

where 〈Ai | Ri 〉 are presentations for Si (i ∈ I ). John’s oeuvre on amalgamation was
devoted to understanding the intricacies of when and why semigroup amalgams do
embed, and was, due to the above observation, predominantly word-combinatorial in
nature.

In [47], John generalises the emergent notion of unitary subsemigroups: a subsemi-
group U ≤ S is unitary if it satisfies:

(∀s ∈ S)(∀u ∈ U )(su ∈ U or us ∈ U ⇒ s ∈ U ).

John defines an almost unitary subsemigroup to be one for which there exist two
mappings λ, ρ : S → S, λ acting on the left, ρ on the right, satisfying the following
properties:

• λ2 = λ, ρ2 = ρ, λρ = ρλ;
• λ|U = ρ|U = 1U , the identity mapping;
• λ(st) = (λs)t , (st)ρ = s(tρ), s(λt) = (sρ)t for all s, t ∈ S;
• U is unitary in λSρ.

If U is unitary then it is almost unitary, by choosing λ and ρ to be the identity mappings.
The main result of [47] asserts:

Theorem 1 ([47, Theorem 3.3]) Let {Si : i ∈ I } be a family of semigroups, and
suppose that there exists a semigroup U and a monomorphism φi : U → Si for each
i in I . Suppose also that, for each i in I , the subsemigroup Uφi is almost unitary in
Si . Then the embedding [U ; Si ;φi (i ∈ I )] is possible.

Subsequent papers developed these results further; for instance:

• a cancellative semigroup amalgam with a group core is embeddable into a cancella-
tive semigroup [48];

• a commutative semigroup amalgam, where the core is regular or totally ordered by
division, is embeddable [53];

• any amalgam with an inverse core is embeddable [55].

Following John’s pioneering work, amalgamation has rightfully taken a position
of importance within semigroup theory, with a steady stream of articles continuing to
appear. A very good introduction into the subject is given in the last chapter of John’s
iconic monograph on semigroup theory [67].

John worked on a couple of topics related in various ways to amalgamation. In
combinatorial group theory, HNN extensions are often investigated side by side with
amalgamated free products. John explored this angle for semigroups in [49]. It was not
until 1997 and the work of Yamamura [112] that HNN extensions were revisited, but
since then there has been a steady interest in them, e.g. see [25,29,114]. In 1967 John
and Isbell [72] applied Isbell’s general theory of dominions [85] to semigroups. They
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6 G. M. S. Gomes, N. Ruškuc

proved a variant of Isbell’s celebrated zigzag theorem [85] for commutative semi-
groups, and derived a number of corollaries for commutative and other semigroups.
John’s pioneering work on amalgamation and zig-zags is a precursor to the categor-
ical theory of monoid actions, which developed rapidly in 1980s and 1990s; for an
overview see [88]. John supervised Renshaw’s [103] Ph.D. studies on this topic, with
the resulting thesis and several papers [104–106]. He returned to the topic of semigroup
presentations once more with Ruškuc in [80], where they gave ‘natural’ presentations
for a number of basic semigroup constructions. This generated considerable further
work, see for example [3,26,87,92].

2 Products of idempotents

In 1966 John published a paper [51] on a topic completely unrelated to his work
thus far, and outlined succinctly in the opening sentences: “The full transformation
semigroup on a set X is defined to consist of all mappings of X into itself, the semigroup
operation being composition of mappings. It is well-known […] that this semigroup
(which we shall denote by TX ) is regular, and that the idempotents of TX do not form
a subsemigroup if X has more than two elements. The principal object of this paper is
to identify the subsemigroup of TX generated by the idempotents.” The paper has two
sections, dealing with situations where X is finite or infinite respectively, and each
contains one main theorem.

Theorem 2 ([51, Theorem I]) If X is a finite set, then the subsemigroup of TX gener-
ated by the idempotents of non-zero defect is TX \SX . In fact, every element of TX \SX

is a product of idempotents of defect 1.

Here SX stands for the symmetric group on X , while the defect of a mapping is
defined as the size of the complement of the image:

Z(α) = X\Xα, def(α) = |Z(α)|.

In order to present the result for infinite X , John introduces two further parameters:

S(α) = {x ∈ X : xα �= x}, sh(α) = |S(α)|,
C(α) =

⋃
{tα−1 : t ∈ Xα, |tα−1| � 2}, c(α) = |C(α)|,

called the shift and the collapse respectively.

Theorem 3 ([51, Theorem III]) Let TX be the full transformation semigroup on an
infinite set X. The subsemigroup of TX generated by the idempotents of non-zero
defect consists of all elements of finite shift and finite non-zero defect together with
those elements α of infinite shift for which |S(α)| = |Z(α)| = |C(α)|.

From these two theorems it follows, as was shown also in [51], that any (finite)
semigroup can be embedded into a (finite) regular idempotent generated semigroup.
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John Macintosh Howie: work and legacy 7

This paper set the scene for what was to become a life-long fascination with gen-
erators and idempotents. Subsequent development can usefully be viewed under the
following three strands, although it has to be remembered that in reality these strands
are intertwined throughout John’s work:

(I1) Given a semigroup S, identify the subsemigroup generated by the idempotents
of S.

(I2) If S is idempotent-generated (or semiband, as John termed such semigroups),
what is the smallest number of idempotents needed to generate it?

(I3) If S is a semiband, what is the minimal length of products of idempotents needed
to generate the whole of S?

For a totally ordered set X , a map α ∈ T (X) is said to be order preserving if x � y
implies xα � yα. In [54], the semigroup OX of all such maps is considered. When
X = {1 < 2 < · · · < n}, we denote OX by On . It is proved that On is idempotent-
generated (this was actually proved earlier by Aı̆zenštat [1], unbeknownst to John)
and |On| and |E(On)| are computed. These results have inspired similar questions
in many other classes of transformation semigroups, and have often been cited, see
[2,5,15,90,93,115]. In the infinite case the answer of course depends on the order
type of X , and some progress was made in [54] for the case X = {1 < 2 < . . . }.
But these results were significantly strengthened in a follow-on paper [74] joint with
B.M. Schein. They consider an arbitrary well-ordered set (i.e. an ordinal), and obtain
a complete description of the elements α ∈ OX that are products of idempotents. The
same authors also consider another interesting semigroup of mappings in [76], namely
the semigroup S of all endomorphisms of a finite Boolean algebra (B,∨,∧, ′, 0, 1),
and prove that there is a morphism from S onto TA, where A is the set of atoms of B,
and an anti-morphism from End(B,∨, 0) onto the semigroup BA of all binary relations
on A. As a consequence, they show that, as in TX , all singular endomorphisms are
generated by the idempotents, and describe the elements generated by the idempotents
in End(B,∨,∧).

The results for the full transformation semigroup have their natural analogues for
endomorphisms of vector spaces; this was established by Erdös [19]. In turn, they
have common generalisations to the semigroup of all singular endomorphisms of a
connected independence algebra of finite rank; this was first proved in [24] and later
in [4].

Implicit in these early papers is the question of (idempotent) generation of com-
pletely 0-simple semigroups—after all, to generate Singn = Tn \ Sn by idempotents
of rank n − 1 one must generate the top J -class too. This is the likely motivation for
[57], where the subsemigroup 〈E〉 generated by the idempotents E of a completely
0-simple semigroup expressed as a Rees matrix semigroup S = M0[G; I,�; P) is
described in a very neat way. John defines a bipartite graph on the set I ∪̇� by letting
(i, λ) be an edge if and only if pλi �= 0 in the structure matrix P . The connectivity
relation on this graph is denoted by ∼. Furthermore, for each i ∈ I , λ ∈ �, a subset
Vi,λ of G × {i} × {λ} is defined.

Theorem 4 ([57, Theorem 1]) Let S = M0[G; I,�; P] be a completely 0-simple
semigroup. Let E be the set of idempotents in S and 〈E〉 the subsemigroup of S
generated by the idempotents. Then
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8 G. M. S. Gomes, N. Ruškuc

〈E〉 = {(a, i, λ) : i ∼ λ, and a ∈ Vi,λ} ∪ {0}.

In the case of completely simple semigroups, the matrix P may be taken to be nor-
malised, i.e. to have a row and a column consisting entirely of 1s, and then the following
holds:

Theorem 5 ([57, Theorem 4]) Let S = M[G; I,�; P] be a completely simple semi-
group in which P is normal. Then 〈E〉 = V × I × �, where V is the subgroup of G
generated by the entries of P. The semigroup S is idempotent-generated if and only if
V = G.

Recently, these results have been used in [41] to study a homological finiteness
property in completely simple semigroups.

An interesting variation on the theme of idempotent generation in the setting of
semigroups with zero is provided by considering the nilpotent elements as generators.
A nonzero element a is nilpotent if it has a zero power and its index is the largest integer
n such that an is not zero. In [65] John proves that any semigroup [regular, orthodox,
inverse] embeds into a nilpotent generated [regular, orthodox, inverse] semigroup, the
same happening for monoids that are [0-] simple, completely simple or bisimple. In
[33] with Gomes, John considers the symmetric inverse semigroup I(X), consisting of
all partial bijections on X = {1, . . . , n}, and the subsemigroup S Pn = I(X)\S(X) of
all proper partial bijections. They prove that S Pn is generated by its set of nilpotents
if and only if n is even. Some citations of these results appear in [28,91,109]. In
[77] with Marques-Smith, John presents another interesting example of a 2-nilpotent
generated semigroup, i.e. a semigroup generated by the nilpotents of index 2, this
time by considering special transformations on a set X whose cardinal is infinite and
regular [102]. For X of infinite cardinality m, the Baer–Levi semigroup is defined by

B = {α ∈ I(X) : |X\Xα| = m}.

In [75], again with Marques-Smith, John shows that the inverse subsemigroup of I(X)

generated by B−1 B is 2-nilpotent generated. A certain quotient of this semigroup is
given as an example of a congruence-free 0-bisimple 2-nilpotent generated inverse
semigroup. In [94] and [97] we find generalisations of these results, the first for inde-
pendence algebras and so for vector spaces, and the second for certain linear versions
of Baer–Levi semigroups.

3 Ranks

The question 2 above is most naturally viewed in the more general context of minimal
generating sets. For a semigroup S, define its rank to be the smallest cardinality of a
generating set of S:

rank(S) = min{|A| : 〈A〉 = S}.

If we specialise to idempotent [nilpotent] generating sets we obtain the notion of the
idempotent [nilpotent] rank denoted irank(S) [nrank(S)]. It took some time to arrive
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John Macintosh Howie: work and legacy 9

at this general setting: the idempotent rank was first considered in the 1978 paper
[58], the term idempotent rank was introduced in 1987 in a joint paper with Gomes
[32], while the general rank and the notation were introduced in 1990 jointly with
McFadden [79]. It should be pointed out that elsewhere in Algebra, and particularly
in Group Theory, it is more common to use the notation d(S) for the smallest number
of generators.

The 1978 paper prefigures, in relative simplicity, the subsequent work, so a brief
outline is appropriate. An idempotent ε of defect 1 in Tn fixes its image of size n − 1,

and maps the remaining point i to some j ∈ im(ε); let us denote such an ε by

(
i

j

)

.

For a set I of idempotents of defect 1, define a digraph �(I ) with vertices {1, . . . , n}
and a directed edge i → j for every

(
i

j

)

∈ I . We say that �(I ) is strong if it is

strongly connected, and complete if for all distinct i, j ∈ I at least one of i → j or
j → i is an edge.

Theorem 6 ([58, Theorem 1]) Let X = {1, 2, . . . , n} (n ≥ 3) and let S = T (X) \
S(X) be the semigroup of all singular mappings of X into itself. A set I of idempotents
of defect 1 in S is a generating set if and only if the associated digraph �(I ) is strong
and complete.

As a consequence the following is derived:

Theorem 7 ([58, Theorem 2]) If M is a minimal set of idempotent generators of the
semigroup S = T (X) \ S(X), where |X | = n ≥ 3, then |M | = n(n − 1)/2. The
number of distinct sets M is

2n−2
n−2∏

r=2

(2r − 1).

To this should be added [58, Theorem 2.1] where it is shown that rank(S) =
irank(S). The salient features emerging from this are:

• the rank of S is equal to the rank of the principal factor P corresponding to the
unique maximal ideal of S;

• the computation of rank(P) depends on a certain graph-theoretic/combinatorial
argument, and the rank turns out to be the number of R-classes in P (which is
greater than the number of L-classes);

• the rank and the idempotent rank (of both S and P) are equal.

It is important to note that, certainly, none of these properties hold generally, they
just happen to be true in this particular instance. But what is more remarkable is that
they seem to hold in many more naturally occurring settings, as the subsequent work
demonstrates. For instance, in [32] Gomes and John consider the singular part S Pn

of the symmetric inverse semigroup In , and prove that its rank is n + 1, the same
as the rank of the top principal factor. Of course, in this instance idempotent rank is
undefined, as the only idempotent-generated inverse semigroups are the semilattices.
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10 G. M. S. Gomes, N. Ruškuc

In [79] John and McFadden turn to the ideals of Tn , namely

K (n, r) = {α ∈ Tn : | im(α)| ≤ r} (r = 1, . . . , n − 1).

They prove that rank(K (n, r)) = irank(K (n, r)) = S(n, r), the Stirling number of the
second kind, which is equal to the rank of the top principal factor, and to the number of
R-classes in this factor. Analogous results for the endomorphism semigroups of vector
spaces and independence algebras were proved by other authors, see [7,14,24,38],
and for order preserving transformations of finite chains by Gomes and John [34].
Variations on the theme of order preserving transformations of a finite chain have
been studied by Fernandes and collaborators in a series of papers, see for example
[20–22].

The question of rank of an abstract completely 0-simple semigroup was treated for
the first time in [107] by the second author of the present article, who was John’s Ph.D.
student at the time. John devised the original question, provided several key ideas, and
much overall support, so should have rightfully been a co-author of this article. The
paper does not resolve the question fully, but gives the formula

rank(M0[G; I, J ; P]) = max(|I |, |J |, rank(G : H))

when the bipartite graph associated with P described in Sect. 2 is connected. Here H
is a certain subgroup of G arising from the matrix P , and rank(G : H) denotes the
relative rank of H inside G, the number of elements that need to be added to H to
generate the whole of G. The general formula was established by Gray and Ruškuc
[39], while Gray [40] provided a combinatorial framework for explaining the equality
of the rank and idempotent rank.

John ‘played’ with and around the notions of rank for finite semigroups in several
other pieces of work:

• [31] with Giraldes: semigroups of high rank, meaning rank(S) = |S| or rank(S) =
|S| − 1, and christened in a typically humorous fashion royal and noble;

• [81,82] with Ribeiro: relations between rank and various other numerical charac-
teristics of a semigroup S to do with the existence of generating and/or independent
sets;

• [33] with Gomes: nilpotent ranks in the singular part S Pn of In ;
• [6] with Ayık, Ayık, Ünlü (John’s last research article): generating sets of Singn

consisting of (m, r)-path cycles.

For infinite semigroups the notion of rank has only a limited interest, as many
natural semigroups are not finitely generated (e.g. because they are uncountable). In
this setting the notion of relative rank, which made its first appearance in the study
of ranks of finite Rees matrix semigroups, has provided a perhaps surprisingly fertile
ground for investigation. The first in a series of papers with Higgins and Ruškuc, and
later Mitchell, appeared in 1998 [84]. There, the relative ranks of some distinguished
subsemigroups of the full transformation semigroup T (X) on an infinite set X are
considered. For instance, in the case of a symmetric group SX , we have
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John Macintosh Howie: work and legacy 11

rank(T (X) : S(X)) = 2.

Furthermore, a new parameter K (α) associated with a mapping α ∈ T (X) is intro-
duced, called the infinite contraction index:

K (α) = {x ∈ X : |xα−1| = |X |}, k(α) = |K (α)|.

With this notation:

Theorem 8 ([84, Theorem 4.1]) Let X be an infinite set of regular cardinality, and
let μ, ν ∈ TX . Then the set SX ∪ {μ, ν} generates TX if and only if one of the two
mappings, say μ, is an injection of defect |X |, and the other is a surjection of infinite
contraction index |X |.

The key momentum for this area was generated when the authors (re)discovered an
old result of Sierpiński [108]: Every countable subset of T (X) (X infinite) is contained
in a two-generated subsemigroup of T (X). An immediate corollary of this is that the
relative rank of any subsemigroup of T (X) is 0, 1, 2 or uncountable. In [44] it is
proved that the semigroup B(X) of all binary relations on X (infinite) has the same
properties. It should be remarked that the analogous properties for the symmetric group
were proved by Galvin [27]. Relative ranks of several distinguished subsemigroups of
B(X) are computed, e.g.

rank(B(X) : T (X)) = rank(B(X) : I(X)) = 1, rank(B(X) : S(X)) = 2.

By way of contrast, the semigroup of all contractions on N (i.e. all mappings α satisfy-
ing |xα − yα| ≤ |x − y| for all x, y ∈ N) has an uncountable relative rank in TN. The
work begun in these two papers has been taken much further by Mitchell in collabo-
ration with his Ph.D. student Péresse and others (see for example [12,46,99,100]), as
well as by a number of other authors (e.g. [9,17,18,98]). Péresse’s Ph.D. Thesis [101]
gives a good introduction into this area.

As a spin-off from the relative ranks work, John, Higgins, and Ruškuc published
some combinatorial insights into set products in T (X) in two articles. The factorization
of T (X) = G E , for X finite, where G = S(X) and E is the set of idempotents of
T (X), is the starting point of [43]. The elements of G E = EG in an arbitrary T (X)

are described as the ones such that c(α) = def(α). More generally, for X finite, the
subsets A of T (X) such that T (X) = AG or T (X) = G A are also described. For X
infinite, T (X) �= G E = EG = 〈G ∪ E〉. Various products are studied, for example
SI , surjections times injections, that gives the J -class of all transformations of rank
|X |. In [45], the authors study further products in T (X), namely the product of an L-
(R-, H-) class by E . Problems of this type appear in much wider contexts, see for
example [13] regarding continuous maps on a metric space.

4 Lengths of products and depth

If a semigroup S is generated by a set A, then of course S can be written as S =⋃∞
i=1 Ai . If this union is in fact finite, i.e. S = ⋃n

i=1 Ai , then the smallest such n is
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12 G. M. S. Gomes, N. Ruškuc

called the depth of S (with respect to A) and is denoted by 
(S, A). If the generating
set is clear from the context (e.g. the set of all idempotents) we will write just 
(S).
The depth is clearly equal to the maximum length of elements of S with respect to A,
where the length of an element s is the length of a shortest product of elements of A
equal to s.

In his work John frequently returned to the questions of depth and length, predom-
inantly in the context of idempotent generators in finite or infinite full transformation
semigroups. In the case of Tn , the complete information is provided by John’s elegant
gravity formula:

Theorem 9 ([59, Theorem 3.1]) Let S denote the semigroup of singular mappings
from X into X, where X is the finite set {1, . . . , n}, and let E denote the set of idem-
potents of rank n − 1 in S. For each α in S the least k for which α ∈ Ek is k = g(α),
where g(α) is the gravity of α.

Here, the gravity of α, is defined as

g(α) = n + corb(α) − fix(α),

where corb(α) is the number of cyclic orbits of α and fix (α) is the number of points
fixed by α. The orbits are the equivalence classes of the relation ω on X = {1, . . . , n}
given as follows

xωy ⇔ xαl = yαm, for some l, m � 0.

An orbit of the form {x, xα, . . . , xαr−1} with r ≥ 2, for some x ∈ X , is called cyclic.

From this the depth of Singn can be computed, and turns out to be to be
⌈

3(n−1)
2

⌉
, see

[60].
Later, in [64], John considers the problem of writing an arbitrary α ∈ Singn not just

as a product of idempotents of rank n−1 but of arbitrary idempotents, showing that the
least number k(α) of idempotents required satisfies k(α) � ran (α)+orb (α)−fix (α),
where orb (α) is the number of non-singleton orbits of α. Clearly, k(α) � g(α) and
g(α) � n

[ 1
2 (ran α − 2)

]
. A sharper upper bound for k(α) in terms of the orbits of α,

and a lower bound k(α) ≥ sh(α)/def(α) are also obtained. Precise characterisations
of elements that can be written as products of 2 or 3 idempotents are given in a joint
paper with Robertson and Schein [78], and this thread of research has been followed
further by other authors, see for example [23]. Further results concerning the gravity
and the decomposition of elements in Singn appear in [86].

Elements in Singn of minimum gravity 1 are simply idempotents of rank n − 1;
however, elements of maximum gravity are much more elaborate. With Lusk and
McFadden [83], using computational tools to investigate examples, John calculated the
number of elements α with maximum gravity. In particular, an interesting observation
is made that when n is odd there are no elements with maximal gravity outside the
group H-classes. The question of embedding finite semigroups into semibands whilst
minimising the depth was investigated with Giraldes [30].

Questions of depth for infinite transformation semigroups were first considered in
[61]. Recall that by Theorem 3, for an infinite set X , the subsemigroup generated by
the idempotents in T (X) can be written as
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〈E〉 = F ∪ (
⋃

ℵ0≤m≤|X |
Qm),

where

F = {α : sh(α) < ℵ0, 0 < def(α) < ℵ0},
Qm = {α : sh(α) = def(α) = c(α) = m}.

The elements of Qm are called balanced mappings of weight m.

Theorem 10 ([61, Theorem 3.2]) Let X be an infinite set and let F be the subsemi-
group of T (X) consisting of all elements with finite shift and non-zero defect. Then F
is a regular idempotent-generated semigroup and 
(F) = ∞.

Theorem 11 ([61, Theorem 3.7]) Let X be an infinite set, let m be a cardinal number
such that ℵ0 ≤ m ≤ |X | and let Qm be the subsemigroup of T (X) consisting of
all the balanced mappings of weight m. Then Qm is a regular idempotent-generated
semigroup and 
(Qm) = 4.

This second theorem can be viewed as a distant intimation of what was to become
known as Bergman Property in the 2000s, motivated by the result of Bergman [8]
asserting that the infinite symmetric group S(X) has finite depth with respect to any
generating set. This theme was brought back to semigroup theory by three of John’s
academic offspring in [95].

Meanwhile, questions of depth and lengths of products in infinite semigroups fea-
tured in further papers of John’s with various collaborators. Given a set X with regular
infinite cardinal m, the set of stable elements of T (X) is

Sm = {α ∈ T (X) : ran(α) = def(α) = c(α) = m and ∀y ∈ im α, |yα−1| < m}.

In [62], John shows that this is an idempotent-generated regular subsemigroup of
T (X) of depth 4, and that it admits a quotient which is congruence-free (has no proper
congruences), bisimple (has a unique D-class), also idempotent-generated of depth 4,
and contains a copy of every semigroup of cardinality less than m. In a similar vein, in
[63], given another infinite cardinal n < m, John constructs another congruence-free
bisimple semigroup, this time inverse, which is a homomorphic image of

{α ∈ I(X) : sh(α) ≤ def(α) = def(α−1) = n}.

Further related results include:

• with Schein [74]: a beautiful calculation of the length of any idempotent-generated
endomorphism of an arbitrary well-ordered set (ordinal);

• with Gomes [35]: a description of the elements of the endomorphism monoid of
a connected independence algebra that can be written as products of k singular
idempotents, generalizing a result of Ballantine for vector spaces [7].
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Finally, it is worth mentioning an attempt to bring the two strands of research
represented by rank and depth closer together in a work with Cherubini and Piochi
[11]. They define the status of a semigroup S to be the minimum value of |A|
(S, A)

over all generating sets A for S. The authors then provide upper bounds for the status
of certain groups, rectangular bands, monogenic semigroups and compute the exact
value for the aperiodic Brandt semigroup.

5 Algebraic and structure theory

Although John’s most enduring love was for transformations and generation, from
time to time throughout his career he would venture into more classical, structural
areas of semigroup theory.

In 1964–66, John published two papers [50,71] on the subject of congruences on
an arbitrary semigroup. Contrary to what happens in group theory, for semigroups
this is a non-trivial matter and continues to be an open field. The first paper deals
with new descriptions of the maximum idempotent-separating congruence μ and the
minimum group congruence σ on an inverse semigroup S, by means of the centralizer
and the closure of E(S) respectively. A recent citation appears in [42] in connection
with the study of decompositions of semiheaps, a certain type of ternary algebra. In
[71], jointly with Lallement, John discusses a collection of congruences on a regular
semigroup, namely the least group congruence, the least band congruence, the least
semilattice congruence, the least E-unitary band of groups congruence, and the least
E-unitary Clifford congruence. Special attention is given to these congruences when
S is orthodox and E-unitary. This is cited by various authors, e.g. [96,111]. Worth
noting is an “innocent-looking” small lemma (2) in this paper, which tells how to
obtain an inverse of a product of two idempotents in a regular semigroup, which is in
fact a precursor of a now standard technique of finding inverses of products using the
sandwich set [67, Theorem 2.5.4].

Given John’s work on idempotent generation, it seems rather natural that his struc-
tural work would also be organised around idempotents. In [52] the bands for which
the natural partial order is compatible with multiplication are characterised as strong
semilattices of rectangular bands, this is in fact the case when every local subband is
a semilattice. In [73] John and Schein consider anti-uniform semilattices E , i.e. semi-
lattices for which no two principal ideals are isomorphic. They prove that a semilattice
E is anti-uniform if and only if every inverse semigroup with set of idempotents E
is a Clifford semigroup (union of groups). In an interesting convergence of themes,
Yamamura [113] showed that these are the semilattices such that each locally full
HNN extension (in a sense different from John’s original) is a Clifford semigroup.

In [36], following a different line of research, Gomes and John prove an analogue of
McAlister’s P-theorem, which characterises E-unitary inverse semigroups, in terms
of groups acting by order-automorphisms on partially ordered sets. The notion of E-
unitarity never applies to inverse semigroups with zero. For this reason, the authors
modify this notion to that of an E∗-unitary strongly categorical inverse semigroup.
In this setting the role of the group is played by a Brandt semigroup, i.e. a com-
pletely 0-simple inverse semigroup, and the action is by partial maps. This descrip-
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tion is extended to a wider class of E∗-unitary inverse semigroups in [10], while
E∗-semigroups that are inverse have been subject of further study, see for example
[16,110].

John and the first author continued their interest in structural results and treated an
even more general situation in [37] where they considered semigroups with zero whose
idempotents form a subsemigroup, i.e. E-semigroups, and which are E∗-dense and
E∗-unitary as well as (strongly) categorical. Their structure is described in terms of a
special quiver (a category without identities) acted upon by an inverse semigroup with
zero that is primitive, i.e. in which every non zero idempotent is minimal with respect
to the natural partial order. In this paper, E∗-unitary covers of E∗-dense categorical
E-semigroups with zero are also constructed. In this volume we can find a paper
by Fountain and Hayes on E∗-dense E-semigroups, their structure is discussed and
strongly E∗-unitary covers are constructed.

6 Conclusion

As we have seen, John worked on a wide range of topics within semigroup theory, and
his contributions have influenced the development of the field in many profound ways.
However, the main qualities of John’s work are impossible to convey in an article like
this. Yet, it is sufficient to pick any single one of John’s publications, to get a sense
of what really mattered to him. John’s writings reveal his instinctive commitment to
communicating mathematics; uncompromisingly clear, and expressed with apparent
lightness, they are invariably turned towards the reader as an open invitation to share in
John’s mathematical world. And pervading this is John’s enduring love of mathematics
and generosity in sharing his thoughts with collaborators and students. For those of
us who have had the privilege to know John, learn from him and work with him, it is
these qualities that will stay forever and constitute our memory of the great man.
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12. Cichoń, J., Mitchell, J.D., Morayne, M.: Generating continuous mappings with Lipschitz mappings.
Trans. Am. Math. Soc. 359, 2059–2074 (2007)
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