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Abstract For any commutative semigroup S and any positive integer m, the power
function f : S → S defined by f (x) = xm is an endomorphism of S. In this paper we
characterize finite cyclic semigroups as those finite commutative semigroups whose
endomorphisms are power functions. We also prove that if S is a finite commutative
semigroup with 1 �= 0, then every endomorphism of S preserving 1 and 0 is equal to a
power function if and only if either S is a finite cyclic group with zero adjoined or S is
a cyclic nilsemigroup with identity adjoined. Immediate consequences of the results
are, on the one hand, a characterization of commutative rings whose multiplicative
endomorphisms are power functions given by Greg Oman in the paper (Semigroup
Forum, 86 (2013), 272–278), and on the other hand, a partial solution of Problem 1
posed by Oman in the same paper.

Keywords Cyclic semigroup · Semigroup endomorphism · Power function · Ring
semigroup

1 Introduction

Let S be a commutative semigroup. A function f : S → S is called a power function
if there exists a positive integer m such that f (x) = xm for all x ∈ S. It is easily seen
that any power function is an endomorphism of the semigroup S.

In [4] Greg Oman studied commutative rings R with unity for which every endo-
morphism of the multiplicative semigroup (R, ·) is equal to a power function (see [4,
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Introduction] for motivations for those studies). He proved in [4, Theorem 1] that ev-
ery endomorphism of the semigroup (R, ·) is a power function if and only if the ring
R is a finite field. He also posed the natural problem [4, Problem 1] of characterizing
the commutative semigroups S (with or without 0 or 1) with the property that every
endomorphism of S is equal to a power function.

In this paper we solve the problem for finite semigroups. Namely, we prove that
among finite commutative semigroups, cyclic semigroups are exactly those semi-
groups whose endomorphisms are power functions (see Theorem 2.2), extending to
finite commutative semigroups a well-known characterization of finite cyclic groups
via power functions. We also prove that for any finite commutative semigroup S with
1 �= 0, every endomorphism of S preserving 1 and 0 is equal to a power function if
and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemi-
group with identity adjoined (see Theorem 3.1). As an immediate consequence of
the result we obtain Oman’s aforementioned characterization of commutative rings
whose multiplicative endomorphisms are power functions.

In this paper, in Sect. 2 semigroups are not assumed to have zero or identity,
whereas in Sect. 3 we consider semigroups with zero 0 and identity 1. The set of
positive integers is denoted by N. If S is a semigroup and t ∈ S, then 〈t〉 denotes the
subsemigroup of S generated by t , that is, 〈t〉 = {tn | n ∈ N}, and tS1 denotes the right
ideal of S generated by t , that is, tS1 = {t}∪ tS, where tS = {ts | s ∈ S}. A semigroup
S is called a cyclic semigroup if S is generated by a single element, that is, S = 〈t〉
for some t ∈ S. An element s of a semigroup S with zero 0 is said to be nilpotent if
sn = 0 for some n ∈ N, and a semigroup with zero is called a nilsemigroup if all its
elements are nilpotent. If T is a nonempty subset of a semigroup S and k ∈ N, then
T k denotes the set of all products t1t2 · · · tk , where t1, t2, . . . , tk ∈ T .

2 A characterization of finite cyclic semigroups

As the following result shows, finite cyclic groups are precisely those abelian groups
whose endomorphisms are power functions.

Lemma 2.1 ([4, Lemma 1]) Let G be an abelian group. Then G is a finite cyclic
group if and only if every endomorphism f : G → G has the form f (x) = xm for
some positive integer m.

In Theorem 2.2 below we extend the above result to finite commutative semi-
groups, characterizing finite cyclic semigroups as those finite commutative semi-
groups whose endomorphisms are power functions. As we will see in Example 2.3,
this characterization is no longer true for infinite commutative semigroups.

Theorem 2.2 Let S be a finite commutative semigroup. Then S is a cyclic semigroup
if and only if every endomorphism of S is equal to a power function.

Proof To prove the “only if” part, assume that every endomorphism of S is equal to a
power function. Since the semigroup S is finite, there exists an idempotent e = e2 ∈ S.
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Obviously, the function f : S → S defined by f (x) = e is an endomorphism of S.
Hence f is a power function and thus there exists n ∈ N such that

xn = e for any x ∈ S. (2.1)

Note that a consequence of (2.1) is the following property of S:

for any x ∈ S,x ∈ xS implies x ∈ eS. (2.2)

Indeed, if x ∈ xS, then for some y ∈ S we have x = xy, so x = xy = (xy)y = xy2 =
(xy)y2 = xy3, and continuing in this way we obtain x = xyn. Hence (2.1) implies
x = xe ∈ eS, as desired.

It is clear from (2.1) that e is the only idempotent of S. Furthermore, e is an identity
of the subsemigroup eS of S and (2.1) shows that all elements of eS are invertible.
Hence eS is a group. Moreover, if f : eS → eS is any endomorphism of the group
eS, then the map ̂f : S → S defined by ̂f (x) = f (ex) is an endomorphism of the
semigroup S, and thus ̂f is a power function on S. Hence f is a power function on
eS, which shows that all endomorphisms of the group eS are power functions. Thus
Lemma 2.1 implies that eS is a finite cyclic group. Therefore, if S = eS, then S is a
cyclic semigroup.

We are left with the case where eS � S. We show that S2
� S in this case. First,

we claim that

for any x ∈ S2 \ eS there exists y ∈ S \ eS such that xS1
� yS1. (2.3)

Indeed, since x ∈ S2, for some y ∈ S we have x ∈ yS. Clearly xS1 ⊆ yS1, and since
x /∈ eS, also y /∈ eS. If y ∈ xS1, then from x ∈ yS it follows that x ∈ xS and (2.2)
implies x ∈ eS, a contradiction. Hence xS1

� yS1, which proves our claim (2.3).
Now, if S = S2, then starting from any element x ∈ S \ eS and using (2.3) repeatedly,
we get an infinite strictly increasing chain xS1

� x1S
1

� x2S
1

� . . . of subsets of S,
which contradicts S being finite. Hence S2

� S.
Since eS ⊆ S2

� S, it follows from (2.1) that there exists a smallest positive inte-
ger k such that ak /∈ eS and ak+1 ∈ eS for some a ∈ S \ S2. We will show that such
an element a generates S. We first show that the following function g : S → S is an
endomorphism of S:

g(x) =
{

ak if x = a

exk if x �= a.
(2.4)

Note that since a /∈ S2, for any x, y ∈ S we have xy �= a and thus g(xy) = e(xy)k .
Hence to show that g is an endomorphism of S, it suffices to show that g(x)g(y) =
e(xy)k for any x, y ∈ S. Since 2k ≥ k + 1 and ak+1 ∈ eS, a2k ∈ eS and thus a2k =
ea2k . Hence, if x = y = a, then g(x)g(y) = g(a)g(a) = a2k = ea2k = e(aa)k =
g(xy). The remaining cases (where x �= a or y �= a) are easy to verify.

Since g is an endomorphism of S, g is a power function and thus there exists m ∈ N

such that g(x) = xm for any x ∈ S. If k < m, then ak = g(a) = am = akam−k ∈
akS, and from (2.2) we obtain ak ∈ eS, a contradiction. If k > m, then am = ak =
amak−m ∈ amS, so ak = am ∈ eS by (2.2), again a contradiction. Hence, it must be
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that k = m and thus xk = g(x) for any x ∈ S. Now we infer from the definition of g

that xk ∈ eS for every x ∈ S \ {a}, and consequently it follows from our choice of k

that

S \ {a} ⊆ S2. (2.5)

The observation (2.5) will help us to prove that the element a generates the semi-
group S, i.e., S = 〈a〉. We first show that

S \ eS ⊆ 〈a〉. (2.6)

Suppose towards a contradiction that there exists x ∈ S \ eS such that x /∈ 〈a〉. Then
x �= a and by (2.5) we have x = b1b2 ∈ S2 for some b1, b2 ∈ S. Since x /∈ 〈a〉, it
follows that b1 �= a or b2 �= a. Hence (2.5) implies that b1 ∈ S2 or b2 ∈ S2, and
thus x ∈ S3. Consequently, x = c1c2c3 for some c1, c2, c3 ∈ S. Since x /∈ 〈a〉, for
some i ∈ {1,2,3} we have ci �= a, which, together with (2.5), implies that x ∈ S4.
Continuing in this manner, we see that x ∈ Sd for any d ∈ N. Now take d = nc,
where n satisfies (2.1) and c is the cardinality of S. Then in any product y1y2 · · ·yd

of d elements of S, at least n of the elements y1, y2, . . . , yd have to be equal, and (2.1)
implies that y1y2 · · ·yd ∈ eS. Hence Sd ⊆ eS, but this is impossible because x ∈ Sd

and x /∈ eS. This contradiction establishes the containment (2.6).
We continue with the proof that S = 〈a〉. Suppose, to derive a contradiction, that

S �= 〈a〉. Then (2.6) implies eS � 〈a〉. Since eS is a cyclic group, we can choose a
generator q of this group, and since eS � 〈a〉, it follows that q /∈ 〈a〉. We claim that

for any positive integer j, aj = e implies qj = e. (2.7)

To prove (2.7), assume that aj = e and consider the following function h : S → S:

h(x) =
{

x if x ∈ 〈a〉
xj+1 if x /∈ 〈a〉.

Since S is commutative, to verify that h is an endomorphism of S, it suffices to
consider the following three cases. When considering these cases, let us remember
that xj = e for any x ∈ 〈a〉 (which is a consequence of aj = e) and that x = ex for
any x /∈ 〈a〉 (which is a consequence of (2.6)).

Case 1: x, y ∈ 〈a〉. Then xy ∈ 〈a〉, so h(xy) = xy = h(x)h(y).
Case 2: x ∈ 〈a〉, y /∈ 〈a〉. Then xy /∈ 〈a〉. Indeed, otherwise xy = ai for some i ∈

N. Since x ∈ 〈a〉, we have x = ap for some p ∈ N and using that aj = e, we get
xal = e for some l ∈ N. Hence ey = xaly = (xy)al = aial = ai+l . But y /∈ 〈a〉 and
thus y = ey. Hence we obtain y = ai+l ∈ 〈a〉, and this contradiction shows that xy /∈
〈a〉. Thus h(xy) = (xy)j+1 = xjxyj+1 = exyj+1 = x(ey)j+1 = xyj+1 = h(x)h(y).

Case 3: x /∈ 〈a〉, y /∈ 〈a〉. If xy ∈ 〈a〉, then (xy)j = e and since x = ex, we obtain
h(xy) = xy = exy = (xy)j xy = xj+1yj+1 = h(x)h(y). If xy /∈ 〈a〉, then h(xy) =
(xy)j+1 = xj+1yj+1 = h(x)h(y).

We have shown that h is an endomorphism of S. Hence h is a power function, and
thus there exists m ∈ N such that h(x) = xm for any x ∈ S. If m ≥ 2, then a = h(a) =
am ∈ aS and thus a ∈ eS by (2.2), a contradiction with our choice of a. Hence m = 1
and since q /∈ 〈a〉, we obtain qj+1 = h(q) = q , which implies qj = e, proving (2.7).
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We now come to the required contradiction. Let t be the smallest positive integer
such that at = ar for some positive integer r < t , and let w = t − r . Then

G = {

ar, ar+1, ar+2, . . . , ar+w−1}

is a group of order w. Since e is the unique idempotent of S, it follows that e is
the identity element of G and thus G is a subgroup of the group eS. Since e is the
identity element of G, we have au = e for some u ∈ {r, r +2, . . . , r +w−1} and from
at = ar it follows that also au+w = e. Hence (2.7) implies that qu = e and qu+w = e,
and thus qw = qu+wq−u = e. Since q is a generator of the group eS, and qw = e,
and w is the order of the group G, it follows that eS = G. But obviously G ⊆ 〈a〉, so
we obtain eS ⊆ 〈a〉 and this contradiction completes the proof of the “only if” part of
the theorem.

Now we prove the “if” part. Let S be a cyclic semigroup, let z be a generator of
S, and let f : S → S be any endomorphism of the semigroup S. Then f (z) = zm

for some positive integer m. Now, if x is any element of S, then x = zi for some
i ∈ N and thus f (x) = f (zi) = f (z)i = (zm)i = (zi)m = xm. Hence f is a power
function. �

As we have just proved in Theorem 2.2, every finite commutative semigroup S

whose endomorphisms are power functions must be cyclic, that is, S is generated by a
single element x subject to a defining relation of the form xi = xj with i �= j ∈ N. The
example below shows that Theorem 2.2 cannot be extended to infinite commutative
semigroups.

Example 2.3 Let S be the multiplicative semigroup consisting of the numbers

22,23,24,25, . . . ,

that is, S = {2n | n ∈ N, n ≥ 2}. Clearly, the semigroup S is not cyclic.
We show that every endomorphism of the semigroup S is equal to a power func-

tion. Let f : S → S be any endomorphism of S. Then f (22) = 2k and f (23) = 2n for
some k,n ∈ N. Since f (26) = f (22)3 = 23k and f (26) = f (23)2 = 22n, it follows
that 3k = 2n, and consequently k = 2m and n = 3m for some m ∈ N. Hence for any
i ∈ N we have f (22i ) = f (22)i = (2k)i = (22m)i = (22i )m and thus f (x) = xm for
all numbers in S of the form 2t with t even. Furthermore f (23) = (23)m and thus
for any i ∈ N we have f (23+2i ) = f (23)f (22i ) = (23)m(22i )m = (23+2i )m, which
shows that also f (x) = xm for all numbers in S of the form 2t with t odd. Hence f

is a power function.

3 A characterization of finite commutative semigroups with 1 �= 0 whose
endomorphisms preserving 0 and 1 are power functions

As we mentioned in the Introduction, the main motivation for this paper was Oman’s
problem of characterizing the commutative semigroups (with or without 0 or 1)
whose endomorphisms are power functions. In Theorem 2.2 we solved the problem
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for finite commutative semigroups S, with no assumptions about the existence 0 or 1
in S. It is also clear from the proof of Theorem 2.2 that if S is a finite commutative
semigroup, then

– if S has an identity 1, then all endomorphisms of S are power functions if and only
if S is a cyclic group;

– if S has a zero 0, then all endomorphisms of S are power functions if and only if S

is a cyclic nilsemigroup.

To give a complete solution of Oman’s problem for finite commutative semigroups,
in this section we consider the remaining case where the semigroups have both an
identity 1 and a zero 0. In fact, just commutative semigroups with 1 and 0 are closest
to the context of Oman’s paper [4], where multiplicative semigroups of commutative
rings with unity were studied (obviously, every such multiplicative semigroup has 1
and 0).

To state the main result of this section, which solves Oman’s problem for finite
commutative semigroups with 1 and 0, we introduce the following terminology. If S is
a semigroup with identity 1 and zero 0, then we say that an endomorphism f : S → S

of S preserves 0 and 1 if f satisfies the conditions f (0) = 0 and f (1) = 1. We say
that a semigroup S is a cyclic group with zero adjoined if S is the result of adjoining
a zero to a cyclic group. In other words, S is a cyclic group with zero adjoined if S

is a semigroup with zero 0 and S \ {0} is a cyclic group. A semigroup S is called a
cyclic nilsemigroup with identity adjoined if S is the result of adjoining an identity
to a cyclic nilsemigroup. Hence, a semigroup S is a cyclic nilsemigroup with identity
adjoined if S has an identity 1 and S \ {1} is a cyclic nilsemigroup.

Theorem 3.1 Let S be a finite commutative semigroup with 1 �= 0. Then every endo-
morphism of S preserving 0 and 1 is equal to a power function if and only if either S

is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity
adjoined.

Proof Throughout the proof U will denote the group of invertible elements of the
semigroup S.

To prove the “only if” part of the theorem, assume that every endomorphism of
S preserving 0 and 1 is equal to a power function. Let T = S \ U , i.e., T is the
subsemigroup of S consisting of all noninvertible elements of S. The function f :
S → S defined by

f (x) =
{

1 if x ∈ U,

0 if x ∈ T ,

is easily seen to be an endomorphism of S preserving 0 and 1, and thus there exists a
positive integer n such that

xn = 0 for any x ∈ T . (3.1)

Hence, since T is finite and commutative, T d = {0} for some positive integer d (e.g.
for d = nc, where n satisfies (3.1) and c is the cardinality of T ).
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If T = T 2, then T = T 2 = T 3 = · · · = T d = {0} and thus S = U ∪ {0}. Further-
more, if f : U → U is an arbitrary endomorphism of the group U , then the map
̂f : S → S defined by ̂f (x) = f (x) for x ∈ U and ̂f (0) = 0, is an endomorphism of
the semigroup S preserving 0 and 1. Hence ̂f is a power function of S, and conse-
quently f is a power function of U . Thus every endomorphism of the group U is a
power function, so Lemma 2.1 implies that U is a finite cyclic group. Therefore, in
this case S = U ∪ {0} is a finite cyclic group with zero adjoined.

Now we consider the remaining case where T �= T 2, that is, T 2
� T . Since xn = 0

for any x ∈ T , there exists a smallest positive integer k such that ak �= 0 and ak+1 = 0
for some a ∈ T \T 2. For this a and any positive integer i we set aiU = {aiu : u ∈ U}.
We claim that

for any positive integers i, j, if ai �= 0, aj �= 0 and i �= j, then aiU ∩ ajU = ∅.

(3.2)
To see this, assume that ai �= 0, aj �= 0 and i �= j , but aiU ∩ ajU �= ∅. Then aiu =
ajv for some u,v ∈ U . Without loss of generality we may assume that i < j . Then
ai = ajvu−1 = ait with t = aj−ivu−1, and an easy induction argument shows that
ai = ait l for any l ∈ N. Since by (3.1) the element t is nilpotent, we obtain ai = 0
and this contradiction completes the proof of (3.2).

Set C = T \ aU and define g : S → S as follows:

g(x) =
⎧

⎨

⎩

1 if x ∈ U,

ak if x ∈ aU,

0 if x ∈ C = T \ aU.

It is clear that the sets U , aU and C = T \ aU are pairwise disjoint and S = U ∪
aU ∪ C, so g is well defined. It is also clear that g(1) = 1. To show that g is an
endomorphism of S, we first observe that

T 2 ⊆ C. (3.3)

Indeed, if T 2
� C, then since T 2 ⊆ T , there exist t1, t2 ∈ T with t1t2 ∈ aU , that is,

t1t2 = au for some u ∈ U . Hence a = t1(t2u
−1) ∈ T 2, and this contradiction proves

(3.3). Note that (3.3) implies also that g(0) = 0.
We are now ready to show that g(xy) = g(x)g(y) for any x, y ∈ S. For this, since

S is commutative, it suffices to consider the following four cases.
Case 1: x, y ∈ T . Then xy ∈ C by (3.3), and thus g(xy) = 0. On the other hand,

from the definition of g it follows that g(x), g(y) ∈ {0, ak}, and since ak+1 = 0, we
obtain g(x)g(y) = 0 = g(xy) in this case.

Case 2: x, y ∈ U . Then xy ∈ U , so g(xy) = 1 = 1 · 1 = g(x)g(y).
Case 3: x ∈ U,y ∈ aU . Then xy ∈ aU , so g(xy) = ak = 1 · ak = g(x)g(y).
Case 4: x ∈ U,y ∈ C. Then xy ∈ C, so g(xy) = 0 = 1 · 0 = g(x)g(y).
As we have just shown, g is an endomorphism of S preserving 0 and 1, and thus

there exists a positive integer m such that g(x) = xm for every x ∈ S. In particular,
ak = g(a) = am, and since ak �= 0, (3.2) implies that k = m. Hence we conclude from
the definition of g that xk = 0 for every x ∈ C, and consequently it follows from our
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choice of k that C ⊆ T 2. Combining this with (3.3), we obtain T 2 = C = T \ aU and
thus

T \ T 2 = aU. (3.4)

Now it is clear that

T p \ T p+1 ⊆ apU for any positive integer p. (3.5)

In particular, T k+1 \ T k+2 ⊆ ak+1U = {0} and thus T k+1 = T k+2. Hence T k+1 = T l

for any l ∈ N such that l ≥ k + 1, and since T d = {0}, it follows that T k+1 = {0} =
ak+1U . This and (3.5) show that

T 2 \T 3 ⊆ a2U,T 3 \T 4 ⊆ a3U, . . . , T k \T k+1 ⊆ akU,T k+1 = ak+1U = {0}. (3.6)

Combining (3.6) with (3.4) we conclude that T = aU ∪ a2U ∪ a3U ∪ · · · ∪ akU ∪
ak+1U . Now we define the following function h on S:

h(x) =
{

1 if x ∈ U,

ai if x ∈ aiU for some positive integer i ≤ k + 1.

From (3.2) it follows that the sets U,aU,a2U,a3U, . . . , akU,ak+1U are pairwise
disjoint and thus h is well-defined. Since obviously h is an endomorphism of S pre-
serving 0 and 1, there exists a positive integer m such that h(x) = xm for every x ∈ S.
In particular, am = h(a) = a, so (3.2) implies that m = 1. Hence it follows from the
definition of h that U = {1}, and thus

S = U ∪ aU ∪ a2U ∪ · · · ∪ akU ∪ ak+1U = {1} ∪ {

a, a2, a3, . . . , ak, ak+1},

where ak+1 = 0. Therefore, S is a cyclic nilsemigroup with identity adjoined.
Now we prove the “if” part of the theorem. We first consider the case where the

semigroup S is a finite cyclic group with zero adjoined, that is, U = S \ {0} and the
group U is finite and cyclic. If f : S → S is an endomorphism of the semigroup S

preserving 0 and 1, then f (1) = 1 �= 0, which implies that f (U) ⊆ U . Hence the
restriction f̄ of f to U is an endomorphism of the group U , and thus it follows from
Lemma 2.1 that f̄ is a power function of U . Therefore, f is a power function of S,
as desired.

We are left with the case where S is a cyclic nilsemigroup with identity adjoined.
Then there exists a nilpotent element a ∈ S such that all elements of S \ {1} are of the
form ai , where i is a positive integer. Let f : S → S be an arbitrary endomorphism of
S preserving 0 and 1. Since a is nilpotent and f (0) = 0 �= 1, it follows that f (a) �= 1
and thus f (a) = am for some positive integer m. Hence if x ∈ S \ {1}, then x = ai

for some i ∈ N, and thus

f (x) = f
(

ai
) = f (a)i = (

am
)i = (

ai
)m = xm.

Since furthermore f (1) = 1 = 1m, f is a power function. �

Recall that a semigroup (S, ·) is said to be a ring semigroup provided that there
exists an addition + on S such that (S,+, ·) is a ring. Such semigroups are well
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studied in the literature. We refer the reader to [1–3] and [5] for sampling of what
is known on ring semigroups. In particular, it is well known that every cyclic ring
semigroup (with 1 �= 0) is isomorphic to the multiplicative semigroup of a finite field,
i.e., to a multiplicative semigroup of the form Fpn , where p is a prime number and n is
a positive integer (e.g. see [1, Corollary 1.2]). It is also known that every commutative
ring semigroup (with 1 �= 0) whose endomorphisms are power functions has to be
finite (see [4, Proposition 1]). Hence as an immediate consequence of Theorem 3.1
we obtain the following result of Oman.

Corollary 3.2 ([4, Theorem 2]) Let S be a commutative ring semigroup with 1 �= 0.
Then every endomorphism of S preserving 0 and 1 is equal to a power function if and
only if S is a cyclic group with zero adjoined of order pn for some prime number p

and positive integer n.

By applying Corollary 3.2 to the multiplicative semigroup (R, ·) of a commutative
ring R we obtain the main result of [4].

Corollary 3.3 ([4, Theorem 1]) Let R be a commutative ring with unity 1 �= 0. Then
every multiplicative endomorphism f : R → R has the form f (x) = xm for some
positive integer m if and only if R is a finite field.
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