Skip to main content
Log in

Evaluation of Cardiotonic Steroid Modulation of Cellular Cholesterol and Phospholipid

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breuza L, Corby S, Arsanto JP, Delgrossi MH, Scheiffele P, Le Bivic A (2002) The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. J Cell Sci 115:4457–4467

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Wang H, Chen Y, Liu L, Gunning WT, Quintas LE, Xie ZJ (2008) Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. J Cell Biol 182:1153–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campia I, Gazzano E, Pescarmona G, Ghigo D, Bosia A, Riganti C (2009) Digoxin and ouabain increase the synthesis of cholesterol in human liver cells. Cell Mol Life Sci 66:1580–1594

    Article  CAS  PubMed  Google Scholar 

  • Campia I, Sala V, Kopecka J, Leo C, Mitro N, Costamagna C, Caruso D, Pescarmona G, Crepaldi T, Ghigo D, Bosia A, Riganti C (2012) Digoxin and ouabain induce the efflux of cholesterol via liver X receptor signalling and the synthesis of ATP in cardiomyocytes. Biochem J 447:301–311

    Article  CAS  PubMed  Google Scholar 

  • Carozzi AJ, Ikonen E, Lindsay MR, Parton RG (2000) Role of cholesterol in developing T-tubules: analogous mechanisms for T-tubule and caveolae biogenesis. Traffic 1:326–341

    Article  CAS  PubMed  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Chen JQ, Contreras RG, Wang R, Fernandez SV, Shoshani L, Russo IH, Cereijido M, Russo J (2006) Sodium/potassium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: a new paradigm for development of anti-breast cancer drugs? Breast Cancer Res Treat 96:1–15

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cai T, Wang H, Li Z, Loreaux E, Lingrel JB, Xie Z (2009) Regulation of intracellular cholesterol distribution by Na/K-ATPase. J Biol Chem 284:14881–14890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Li X, Ye Q, Tian J, Jing R, Xie Z (2011) Regulation of alpha1 Na/K-ATPase expression by cholesterol. J Biol Chem 286:15517–15524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras FX, Ernst AM, Wieland F, Brugger B (2011) Specificity of intramembrane protein-lipid interactions. Cold Spring Harb Perspect Biol 3

  • Cornelius F (2001) Modulation of Na, K-ATPase and Na-ATPase activity by phospholipids and cholesterol I. Steady-state kinetics. Biochemistry 40:8842–8851

    Article  CAS  PubMed  Google Scholar 

  • Cornelius F, Turner N, Christensen HR (2003) Modulation of Na, K-ATPase by phospholipids and cholesterol II. Steady-state and presteady-state kinetics. Biochemistry 42:8541–8549

    Article  CAS  PubMed  Google Scholar 

  • Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2015) General and specific lipid-protein interactions in Na,K-ATPase. Biochim Biophys Acta 1848:1729–1743

    Article  CAS  PubMed  Google Scholar 

  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  CAS  PubMed  Google Scholar 

  • de Souza WF, Barbosa LA, Liu L, de Araujo WM, de-Freitas-Junior, JC, Fortunato-Miranda, N, Fontes, CF, Morgado-Diaz, JA, (2014) Ouabain-induced alterations of the apical junctional complex involve alpha1 and beta1 Na, K-ATPase downregulation and ERK1/2 activation independent of caveolae in colorectal cancer cells. J Membr Biol 247:23–33

    Article  PubMed  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  CAS  PubMed  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG (1995) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A 92:8655–8659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank GP, Cheung MWC, Pavlides S, Llaverias G, Park DS, Michael PL (2006) Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol 291(2):667–686

    Article  Google Scholar 

  • Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D (2004) Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem 279:14140–14146

    Article  CAS  PubMed  Google Scholar 

  • Garcia IJ, Kinoshita PF, Scavone C, Mignaco JA, Barbosa LA, Santos Hde L (2015) Ouabain modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation. J Membr Biol 248:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Garcia IJP, Kinoshita PF, de Oliveira Braga I, Parreira GM, Mignaco JA, Scavone C, Barbosa LA, de Lima Santos H (2018) Ouabain attenuates the oxidative stress induced by lipopolysaccharides in the cerebellum of rats. J Cell Biochem 119:2156–2167

    Article  CAS  PubMed  Google Scholar 

  • Garcia IJP, Kinoshita PF, Silva L, De Souza Busch M, Atella GC, Scavone C, Cortes VF, Barbosa LA, De Lima Santos H (2019) Ouabain attenuates oxidative stress and modulates lipid composition in hippocampus of rats in lipopolysaccharide-induced hypocampal neuroinflammation in rats. J Cell Biochem 120:4081–4091

    Article  CAS  PubMed  Google Scholar 

  • Gargalovic P, Dory L (2003) Cellular apoptosis is associated with increased caveolin-1 expression in macrophages. J Lipid Res 44:1622–1632

    Article  CAS  PubMed  Google Scholar 

  • Gasper R, Vandenbussche G, Goormaghtigh E (2011) Ouabain-induced modifications of prostate cancer cell lipidome investigated with mass spectrometry and FTIR spectroscopy. Biochim Biophys Acta 1808:597–605

    Article  CAS  PubMed  Google Scholar 

  • Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA (2007) Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 177:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habeck M, Haviv H, Katz A, Kapri-Pardes E, Ayciriex S, Shevchenko A, Ogawa H, Toyoshima C, Karlish SJ (2015) Stimulation, inhibition, or stabilization of Na, K-ATPase caused by specific lipid interactions at distinct sites. J Biol Chem 290:4829–4842

    Article  CAS  PubMed  Google Scholar 

  • Habeck M, Kapri-Pardes E, Sharon M, Karlish SJ (2017) Specific phospholipid binding to Na, K-ATPase at two distinct sites. Proc Natl Acad Sci USA 114:2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hailstones D, Sleer LS, Parton RG, Stanley KK (1998) Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 39:369–379

    Article  CAS  PubMed  Google Scholar 

  • Han F, Zhang L, Zhou Y, Yi X (2015) Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells. Int J Clin Exp Pathol 8:8937–8947

    PubMed  PubMed Central  Google Scholar 

  • Higgins JA (1987) Separation and analysis of membrane lipid components. In: Findlay JBC, Evans WH (eds) Biological membranes: a practical approach. IRL Press, Oxford, pp 103–137

    Google Scholar 

  • Hirama T, Das R, Yang Y, Ferguson C, Won A, Yip CM, Kay JG, Grinstein S, Parton RG, Fairn GD (2017) Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. J Biol Chem 292:14292–14307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J, Manel N, Ciofani M, Kim SV, Cuesta A, Santori FR, Lafaille JJ, Xu HE, Gin DY, Rastinejad F, Littman DR (2011) Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaś K, Sałkowska A, Walczak-Drzewiecka A, Ryba K, Dastych J, Bachorz RA, Ratajewski M (2018) The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors. Toxicol Lett 295:314–324

    Article  PubMed  Google Scholar 

  • Karaś K, Sałkowska A, Dastych J, Bachorz RA, Ratajewski M (2020) Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed Pharmacother 127:110106

    Article  PubMed  Google Scholar 

  • Liang M, Tian J, Liu L, Pierre S, Liu J, Shapiro J, Xie ZJ (2007) Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem 282:10585–10593

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ivanov AV, Gable ME, Jolivel F, Morrill GA, Askari A (2011) Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry 50:8664–8673

    Article  CAS  PubMed  Google Scholar 

  • Manna SK, Sreenivasan Y, Sarkar A (2006) Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J Cell Physiol 207:195–207

    Article  CAS  PubMed  Google Scholar 

  • Marquardt D, Geier B, Pabst G (2015) Asymmetric lipid membranes: towards more realistic model systems. Membranes (Basel) 5:180–196

    Article  CAS  Google Scholar 

  • Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A 92:10339–10343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls D, Kanfer J, Titus E (1962) The effect of ouabain on the incorporation of inorganic P32 into phospholipid. J Biol Chem 237:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL (2014) The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Wehinger S, Ortiz RJ, Diaz N, Diaz J, Lobos-Gonzalez L, Quest AF (2014) Caveolin-1 in cell migration and metastasis. Curr Mol Med 14:255–274

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112

    Article  CAS  PubMed  Google Scholar 

  • Pessôa MTC, Alves SLG, Taranto AG, Villar JAFP, Blanco G, Barbosa LA (2018) Selectivity analyses of γ-benzylidene digoxin derivatives to different Na, K-ATPase α isoforms: a molecular docking approach. J Enzyme Inhib Med Chem 33:85–97

    Article  PubMed  Google Scholar 

  • Quintas LE, Pierre SV, Liu L, Bai Y, Liu X, Xie ZJ (2010) Alterations of Na+/K+-ATPase function in caveolin-1 knockout cardiac fibroblasts. J Mol Cell Cardiol 49:525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra PB, Sreenivasan Y, Manna SK (2007) Oleandrin induces apoptosis in human, but not in murine cells: dephosphorylation of Akt, expression of FasL, and alteration of membrane fluidity. Mol Immunol 44:2292–2302

    Article  CAS  PubMed  Google Scholar 

  • Rocha SC, Pessoa MT, Neves LD, Alves SL, Silva LM, Santos HL, Oliveira SM, Taranto AG, Comar M, Gomes IV, Santos FV, Paixao N, Quintas LE, Noel F, Pereira AF, Tessis AC, Gomes NL, Moreira OC, Rincon-Heredia R, Varotti FP, Blanco G, Villar JA, Contreras RG, Barbosa LA (2014) 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na, K-ATPase and epithelial tight junctions. PLoS ONE 9:e108776

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz JI, Ochoa B (1997) Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. J Lipid Res 38:1482–1489

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Wandelmer J, Dávalos A, Herrera E, Giera M, Cano S, de la Peña G, Lasunción MA, Busto R (2009) Inhibition of cholesterol biosynthesis disrupts lipid raft/caveolae and affects insulin receptor activation in 3T3-L1 preadipocytes. Biochim Biophys Acta 1788(9):1731–1739

    Article  PubMed  Google Scholar 

  • Silva LND, Pessoa MTC, Alves SLG, Venugopal J, Cortes VF, Santos HL, Villar J, Barbosa LA (2017) Differences of lipid membrane modulation and oxidative stress by digoxin and 21-benzylidene digoxin. Exp Cell Res 359:291–298

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Smart EJ, Ying Y, Donzell WC, Anderson RG (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271:29427–29435

    Article  CAS  PubMed  Google Scholar 

  • Stucky MA, Goldberger ZD (2015) Digoxin: its role in contemporary medicine. Postgrad Med J 91:514–518

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, Kang HS, Lih FB, Jiang H, Blaner WS, Jetten AM (2014) Retinoid acid-related orphan receptor γ, RORγ, participates in diurnal transcriptional regulation of lipid metabolic genes. Nucleic Acids Res 42:10448–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas R, Gray P, Andrews J (1990) Digitalis: its mode of action, receptor, and structure-activity relationships. In: Testa B (ed) Advances in drug research. Academic Press, Philadelphia, pp 311–562

    Google Scholar 

  • Torres VA, Tapia JC, Rodriguez DA, Parraga M, Lisboa P, Montoya M, Leyton L, Quest AF (2006) Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci 119:1812–1823

    Article  CAS  PubMed  Google Scholar 

  • Urlep Ž, Lorbek G, Perše M, Jeruc J, Juvan P, Matz-Soja M, Gebhardt R, Björkhem I, Hall JA, Bonneau R, Littman DR, Rozman D (2017) Disrupting hepatocyte Cyp51 from cholesterol synthesis leads to progressive liver injury in the developing mouse and decreases RORC signalling. Sci Rep 7:40775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel U, Sandvig K, van Deurs B (1998) Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J Cell Sci 111(Pt 6):825–832

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhou C, Chen W, Xie A, Li J, Wang S, Ye P, Wang W, Xia J (2013) Digoxin attenuates acute cardiac allograft rejection by antagonizing RORγt activity. Transplantation 95:434–441

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Askari A (2002) Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem 269:2434–2439

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Nukada T, Fujisawa H (1961) Effect of ouabain on ion transport and metabolic turnover of phospholipid of brain slices. Biochim Biophys Acta 48:614–615

    Article  CAS  PubMed  Google Scholar 

  • Zegarlinska J, Piascik M, Sikorski AF, Czogalla A (2018) Phosphatidic acid: a simple phospholipid with multiple faces. Acta Biochim Pol 65:163–171

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li X, Yu H, Larre I, Dube P, Kennedy DJ, Tang WHW, Westfall K, Pierre SV, Xie Z, Chen Y (2020) Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism. Am J Physiol Cell Physiol 319:1107

    Article  Google Scholar 

  • Zou H, Yang N, Zhang X, Chen HW (2021) RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 9:114725

    Google Scholar 

Download references

Acknowledgements

This work was funded by FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais) APQ-00290-16, PPM-00307-18, APQ-00855-19; CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) Finance Code 01, and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) 305173/2018-9, 409436/2016-0.

Author information

Authors and Affiliations

Authors

Contributions

LNDS, IJPG wrote the main manuscript text. LNDS and IJPG performed the lipids and filipin experiments, JMMV and MMT performed the caveolae blotting, MTCP performed MTT experiments, MVM performed the 21-BD synthesis, MSB and IR performed the quantification of phospholipids. JAFPV, GCA, VFC, HLS, and LAB reviewed all the experiments, mentored the students, and reviewed the manuscript. GCA and LAB supported the paper with grants.

Corresponding authors

Correspondence to Vanessa F. Cortes or Leandro A. Barbosa.

Ethics declarations

Conflict of interest

No conflicts of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.N.D., Garcia, I.J.P., Valadares, J.M.M. et al. Evaluation of Cardiotonic Steroid Modulation of Cellular Cholesterol and Phospholipid. J Membrane Biol 254, 499–512 (2021). https://doi.org/10.1007/s00232-021-00203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00203-z

Keywords

Navigation