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Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound 
cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different 
theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in 
diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent 
transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion trans-
porter and its signaling function is not explored.
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Introduction

SGTL2 inhibitors were initially developed to lower 
plasma glucose in patients with type 2 diabetic mellitus 
(T2DM). More available data from completed clinical trials 

show profound cardiorenal protection in diabetic and non-
diabetic chronic kidney disease (CKD) patients, which can-
not be directly explained by improved glucose control. More 
and more insightful theories are proposed to explain the "off-
target" but incredible effects of SGLT2 inhibitors other than 
the designed glucose-lowering property initially, as reviewed 
in more detail elsewhere. The molecular mechanism(s) to 
delineate the cardiorenal protection of SGLT2 inhibitors 
are still not fully understood. Based on clinical trials and 
experimental findings, the proposed theories include, but not 
limited to, the SGLT2 inhibitor-mediated regulations of (1) 
blood pressure through glomerular filtration rate, tubuloglo-
merular feedback, sodium/hydrogen (Na+/H+) exchangers, 
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natriuresis/osmotic diuresis; (2) oxidative stress by oxygen 
consumption/inflammatory cytokines, as well as (3) meta-
bolic profile alteration, growth factors, fibrotic mediators, 
nutrient deprivation, weight loss, ketogenesis, artery stiff-
ness, sympathetic nervous system, and others. However, the 
protection of SGLT2 inhibitors could not be fully explained 
by a single mechanism since different clinic treatment 
strategies targeting different conditions are short of the 
overall effect of the SGLT2 inhibitors. The effects of the 
SGLT inhibitors are more likely related to their renal effects 
(Bertero et al. 2017; Gerich, 2010; Nikolic et al. 2021; Patel 
et al. 2021; Santos et al. 2020; Sen and Heerspink, 2021; 
Thomson and Vallon 2019), and an interplay of modest ben-
eficial effects from different systems. Besides more available 
data from clinical trials, experiments of molecular mecha-
nisms are much more desired. With mounting evidence of 
mechanisms and theories, the involvement of the Na/K-
ATPase is only described as an active Na+/K+ transporter to 
maintain the Na+ gradient across the membrane, functioning 
as a driving force for Na+ and glucose reabsorption. The 
Na/K-ATPase also acts as a signaling transducer (coupling 
with tyrosine kinase c-Src) to execute different functions. 
This review explores the possible role of Na/K-ATPase and 
its signaling function that might affect SGLT2 and SGLT2 
inhibitors.

The Biology of the Na/K‑ATPase

The Na/K-ATPase belongs to the P-type ATPase family 
and consists of two non-covalently linked α and β subu-
nits. Several α and β isoforms, expressed in a tissue-specific 
manner, have been identified and functionally characterized 
(Blanco and Mercer 1998; Kaplan 2002; Sanchez et al. 2006; 
Sweadner 1989). Since J.C. Skou’s discovery in 1957 (Skou 
1957), the energy-transducing Na/K-ATPase has been exten-
sively studied for its ion pumping function and, later on, 
its signaling role (Aizman and Aperia 2003; Shapiro and 
Tian 2011; Xie and Cai 2003; Zhang et al. 2019a). Cardiot-
onic steroids (CTS, also known as digitalis-like substances) 
are specific Na/K-ATPase inhibitors and ligands. CTS has 
been used to treat heart failure for over 200 years through 
its inotropic effect due to partial inhibition of Na/K-ATPase 
induced intracellular Na+ change coupled with increases in 
intracellular calcium (Ca2+) through Na+/Ca2+ exchanger 
(NCX). CTS also stimulates the signaling function of the 
Na/K-ATPase, which has been contributed to cardiac hyper-
trophy and fibrosis, Na+ reabsorption in renal proximal 
tubule cells (RPTs), systemic oxidative stress, and release 
of inflammatory cytokines. "The third factor" or "natriuretic 
factor", other than glomerular filtration rate and aldoster-
one, was postulated to regulate renal Na+ handling through 
Na/K-ATPase (Bricker 1967; Dahl et al. 1969; de Wardener 

and MacGregor 1980). Identification of ouabain-like sub-
stance in human plasma and in vivo studies with geneti-
cally modified mouse models (humanized ouabain-sensitive 
Na/K-ATPase α1) have unequivocally demonstrated that 
endogenous CTS regulates renal Na+ excretion and blood 
pressure through the Na/K-ATPase (Dostanic-Larson et al. 
2005; Dostanic et al. 2005; Hamlyn et al. 1991; Loreaux 
et al. 2008).

CTS has been classified as a new class of hormones, mak-
ing Na/K-ATPase a potential therapeutic target for cardiac 
and renal diseases (Aperia 2007; Bagrov and Shapiro, 2008; 
Bagrov et al. 2009; Schoner 2002; Yatime et al. 2009). CTS 
includes plant-derived glycosides such as digoxin and oua-
bain and vertebrate-derived aglycones such as bufalin and 
marinobufagenin. The production and secretion of ouabain 
and marinobufagenin can be regulated by multiple stimuli, 
including angiotensin II and adrenocorticotropic hormone 
(ACTH) (Bagrov et al. 2009; Hamlyn et al. 1991; Laredo 
et al. 1997; Schoner 2002; Schoner and Scheiner-Bobis 
2007a, b, 2008). Endogenous CTS are present in measur-
able amounts under normal physiological conditions and are 
markedly increased under several pathological conditions 
such as Na+ imbalance, chronic renal failure, hyperaldo-
steronism, hypertension, congestive heart failure, plasma 
volume, blood pressure, and salt sensitivity (Blaustein 
1993; Fedorova et al. 1998, 2001,2002; Gottlieb et al. 1992; 
Hamlyn et al. 1991, 1998; Hasegawa et al. 1987; Komiyama 
et al. 2005; Manunta et al. 2006a,1999; Rossi et al. 1995). 
studies have also revealed many extra-cardiac actions, such 
as in response to salt loading and hypertensions (Fedorova 
et al. 2005; Ferrari et al. 2006; Haddy and Pamnani 1998; 
Kaunitz 2006; Manunta et al. 2006b). Also, low doses of 
CTS induced hypertension in rats and caused significant 
cardiovascular (CV) remodeling independent of their effect 
on blood pressure (Ferrandi et al. 2004; Jiang et al. 2007; 
Kennedy et al. 2006; Skoumal et al. 2007).

The Biology of SGLTs

The kidney is involved in regulating glucose homeostasis 
(Bergman and Drury 1938) and is critical in developing 
and managing diabetes mellitus, including gluconeogenesis 
to release glucose, glucose uptake for energy supply, and 
glucose reabsorption (Gerich 2010). The glucose reabsorp-
tion from glomerular filtrate in RPTs is an energy‐requiring 
process that reabsorbs ~ 180 g per day through SGLTs. The 
SGLTs belong to a structural class of membrane proteins 
(Bell et al. 1990; Wright et al. 2011). In RPTs, SGLTs at 
the apical membrane mediate the entry of glucose, and 
glucose transporters (GLUTs) at the basolateral membrane 
mediate the extrusion of glucose into the circulation. The 
driving force is the energy-dependent Na/K-ATPase which 
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also extrudes reabsorbed Na+ into circulation. SGLT2 is a 
high‐capacity, low‐affinity transporter (co-transport Na+ 
and glucose at 1:1 stoichiometry) located on the S1 and S2 
segments, reabsorbing ~ 90% filtered glucose. SGLT1 is a 
high‐affinity, low‐capacity transporter (co-transport Na+ and 
glucose at 2:1 stoichiometry) located on the S3 segment, 
reabsorbing the ~ 10% filtered glucose (unabsorbed glucose 
by SGLT2) (Brown 2000; Hediger and Rhoads 1994; Lee 
et al. 2007; Wright et al. 2007,2011). In healthy individu-
als with normal kidney function, urine is essentially free of 
glucose since all glomerular filtrated glucose is reabsorbed. 
Changes in glucose or Na+ filtered rate modulates the glu-
cose transporter’s (SGLT1/2 and GLUT1/2) gene expres-
sion (Vestri et al. 2001). Compared with healthy individuals, 
T2DM patients show significantly higher SGLT2 expression 
and activity, glucose reabsorption, and a higher threshold for 
glucosuria (Rahmoune et al. 2005; Tentolouris et al. 2019).

Protection Effects of SGLT2 Inhibitor 
on Renal Disease

Data from CV outcome trials showed that SGLT2 inhibi-
tors slow the progression of kidney function decline and 
reduce the risks of kidney outcomes in T2DM patients with 
preserved kidney function (Mosenzon et al. 2019; Neal 
et al. 2017a; Wiviott et al. 2018; Zinman et al. 2015a). In 
three outcome trials assessing the SGLT2 inhibitors in CKD 
patients with diabetic and non-diabetic CKD (CREDENCE 
trial with canagliflozin, DAPA-CKD trial with dapagli-
flozin, and SCORED trial with sotagliflozin), significant 
renal-protective outcomes were observed (Bhatt et al. 2020; 
Heerspink et al. 2020; Mosenzon et al. 2019; Neal et al. 
2017a; Perkovic et al. 2019; Wiviott et al. 2018; Zinman 
et al. 2015a). Canagliflozin and dapagliflozin significantly 
reduced the risk of kidney failure and CV events. However, 
there is no significant effect in the SCORED trial, probably 
because of the trial’s early ending. Notably, the DAPA-CKD 
trial demonstrated that dapagliflozin reduces the risks of 
major adverse kidney and CV events and all-cause mortal-
ity in diabetic and non-diabetic CKD patients with or with-
out T2DM (Heerspink et al. 2020; Wheeler et al. 2021). 
In the CREDENCE trial, canagliflozin treatment reduces 
the risk of anemia, an independent predictor of renal and 
CV outcomes (Oshima et al. 2020). Furthermore, canagli-
flozin reduces CV events in patients with T2DM and dia-
betic kidney disease (DKD) and slows DKD progression. 
SGLT2 inhibitors also reduce the risk of new-onset diabetic 
nephropathy, slow the rate of kidney function decline, and 
reduced the risk of major kidney events (Heerspink et al. 
2020; Neal et al. 2017a; Wanner et al. 2016). In patients with 
heart failure and reduced ejection fraction with and without 
T2DM, the DAPA-HF trial (Dapagliflozin and Prevention 

of Adverse Outcomes in Heart Failure) demonstrated that 
the SGLT2 inhibitor reduces the risk of heart failure hospi-
talizations or CV death and slow the progression of kidney 
function decline (Jhund et al. 2021; Packer et al. 2020). In 
the DAPA-HF trial, the SGLT2 inhibitor-mediated decrease 
in eGFR and increase in hematocrit are more likely inde-
pendent of glycemia in people with and without diabetes 
(Lopaschuk and Verma 2020). SGLT2 inhibitor mediated 
a modest increase in hematocrit that can be explained by 
volume depletion and increased erythropoietin production 
(Mazer et al. 2020; Zinman et al. 2015b).

SGLT2 inhibitors usually cause weight loss in diabetic 
patients, mainly due to increased natriuretic/osmotic diure-
sis in the early treatment. However, the permanent loss of 
extracellular water does not occur under SGLT2 inhibition. 
In the long term, it mainly involves the glycosuria-caused-
negative caloric balance mediated reduction of visceral/sub-
cutaneous fat and epicardial fat mass accompanying reduced 
inflammatory cytokine production (Filippatos et al. 2019; 
Vallon and Thomson 2017). Furthermore, SGLT2 inhibi-
tion also has hepatoprotective effects by reducing fatty liver 
content and improve liver biology in patients with T2DM 
and non-alcoholic fatty liver disease (Scheen 2019; Schork 
et al. 2019). A metabolic shift might contribute to improving 
the cardiometabolic risks in T2DM patients.

Hypertension is a significant risk factor for progressive 
kidney function loss. SGLT2 inhibitors exert antihyperten-
sive effects on both systolic and diastolic blood pressure 
without inducing a compensatory increase in heart rate 
(Shaikh 2017; Tikkanen et al. 2016). This phenomenon is 
attributed to a decrease of 30% to 60% in Na+ reabsorption 
in PRTs, improved natriuresis and diuresis, weight loss, and 
improved vascular function (Lopaschuk and Verma 2020; 
Nikolic et al. 2021). Again, the blood-pressure-lowering 
effects of SGLT2 inhibition are modest and cannot fully 
explain the beneficial CV and kidney effects.

In the CREDENCE trial, SGLT2 inhibitor canagliflo-
zin reduces blood pressure independent of starting blood 
pressure levels and other concomitant blood pressure-low-
ering agents in patients with T2DM and CKD (Ye et al. 
2021). In the DAPASALT Trial with standardized sodium 
diet control in T2DM patients and preserved kidney func-
tion, dapagliflozin reduced blood pressure without apparent 
changes in urinary Na+ excretion, natriuresis, and plasma 
volume within the period of the 2-week treatment. Interest-
ingly, a significant increase in fractional lithium excretion 
was observed, indicating an increase in RPTs-mediated Na+ 
excretion that could be counteracted by a downstream com-
pensatory mechanism (Scholtes et al. 2021).
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Protection Effects of SGLT2 Inhibitor 
on Cardiovascular Disease (CVD)

Inhibition of SGLT2 has been shown to improve CV out-
comes in patients with diabetic kidney disease and patients 
without diabetics. The EMPA-REG OUTCOME study 
(Zinman et al. 2015c) was the first clinical trial to mark 
success for secondary and tertiary CVD prevention with 
an SGLT2 inhibitor. The study found that empagliflozin 
was associated with a significant reduction in mortality, 
heart failure hospitalization, and kidney disease progres-
sion. It was found no significant difference in the risk of 
stroke with empagliflozin versus placebo. Results from the 
CANVAS trial further substantiated the preventive effect 
of SGLT2 inhibitors in CV outcomes. The CANVAS study 
included about 10,000 patients treated with canagliflozin 
or placebo and followed for 3.6 years. The result showed 
that canagliflozin treatment resulted in a lower incidence 
of CV death, nonfatal myocardial infarction, nonfatal 
stroke, and HF hospitalization (Neal et al. 2017b). The 
CVD-REAL study was a large multinational program to 
study patients with T2DM who did not have preexisting 
CVD (Kosiborod et al. 2017). The study showed a 51% 
lower risk of death and a 39% lower risk of hospitalization 
for HF in patients treated with empagliflozin compared 
to other categories of glucose-lowering drugs. It is noted 
that the CVD-REAL study is an observational rather than 
a randomize-controlled clinical trial. Several other clinical 
studies have shown that SGLT2 inhibitors decrease blood 
pressure (Baker et al. 2014; Kario et al. 2018; Vasilakou 
et al. 2013). In a recent meta-analysis using data from 27 
clinical studies with over 7000 patients with diabetes or 
chronic kidney disease, SGLT2 inhibitors were found to 
reduce the risk of the composite CV outcome, hospitalized 
or fatal heart failure, and myocardial infarction. However, 
the analysis showed no apparent effect on stroke or CV 
death. It was also found that the overall risk of genital 
infections was increased by SGLT2 inhibition (Toyama 
et al. 2019). Since SGLT2 is dominantly expressed in the 
kidney proximal tubules, the beneficial effect of SGLT2 
inhibitors on CV outcomes was mostly considered as a 
secondary effect of the renal function improvement and 
systematic glucose-lowering effect. The preserved effects 
of SGLT2 inhibitors on natriuresis and blood pressure may 
be a pivotal pathway to CV complications, especially heart 
failure (List and Whaley 2011; Sattar and McGuire 2018). 
SGLT2 inhibitors also improve renal hemodynamics and 
reduce the preload and afterload in heart failure patients 
(Cherney et al. 2014a, b; Hung et al. 2014). The metabolic 
effects such as lowering glycated hemoglobin, lipid pro-
file change, and weight loss may also help reduce the CV 
risks (Desouza et al. 2015; Stark Casagrande et al. 2013; 

Wilding et al. 2013; Zinman et al. 2015c). However, due 
to the mild and inconsistent results in glucose-lowering 
by SGLT2 inhibitors, the glycemic control seems not the 
primary driving force for reducing CV events (Duckworth 
et al. 2009; Toyama et al. 2019).

Mechanistic Perception of SGLT2 Inhibitor 
and Na/K‑ATPase

The heart and kidney are inextricably and functionally 
linked, referred to as the cardiorenal syndrome (Ronco 
et al. 2008). For example, about 60% of HF patients have 
co-morbid CKD (Heywood et  al. 2007; Hillege et  al. 
2006). Dapagliflozin causes volume depletion without 
an increase in the risk of hypoglycemia in non-diabetic 
patients, indicating the beneficial effects of SGLT2 inhibi-
tors extend well beyond patients with T2DM. Secondary 
analyses of the EMPA-REG OUTCOME trial (Empagliflo-
zin Cardiovascular Outcome Event Trial in Type 2 Diabe-
tes Mellitus Patients) indicate that CV and kidney function 
benefits are unlikely mediated by the glucose-lowering 
properties of the SGLT2 inhibitors (Inzucchi et al. 2018). 
The cardiorenal syndrome is critical in HF management, 
which could be directly addressed by SGLT2-inhibitors 
(Fathi et al. 2020). As discussed above, the outcomes of 
different clinic trials show the co-existence of CV and 
renal protection, indicating the involvement of other non-
glycemic pathways by SGLT2 inhibition (Bell and Yellon 
2018).

Interestingly, both in vitro and in vivo mechanistic stud-
ies demonstrated some SGLT2 inhibitor-induced beneficial 
effects are independent of SGLT2 inhibition. Furthermore, 
the Na/K-ATPase and its signaling share some of the regu-
latory pathways by SGLT2 inhibitors, such as natriuresis, 
blood pressure, oxidative stress, inflammation.

Na + Reabsorption and Natriuresis

Natriuresis leads to volume contraction and decrease 
in blood pressure glomerular hyperfiltration. SGLT2 is 
responsible for ≈5% of Na+ reabsorption in RPTs under 
normal conditions. Chronic hyperglycemia increases the 
expression and activity of SGLT2, leading to increased 
plasma volume and blood pressure. SGLT2 inhibition 
cause volume contraction, decreased blood pressure, and 
reduces glomerular pressure (Lytvyn et al. 2017). SGLT2 
inhibition-mediated natriuresis is likely a major factor 
leading to cardiorenal protective effects observed with 
empagliflozin and canagliflozin, which appear to extend 
across CKD stages (Petrykiv et al. 2017).
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SGLT2 inhibitor has been shown to cause natriuresis, 
volume contraction, and blood pressure lowering. RPTs 
osmotically reabsorb ~ 60–70% of filtered Na+ back to 
circulation. This process includes the Na+ entry through 
NHE3, SGLTs, and other Na+-dependent transporters 
located on the apical membrane, and the Na+ extrusion 
through energy (ATP)-dependent Na/K-ATPase located 
on the basolateral membrane. The activity of NHE1 and 
NHE3 is upregulated in the settings of heart failure and 
T2DM (Packer 2017). SGLT2 and NHE3 are co-localized 
on the apical membrane of RPTs and functionally affect-
ing each other. While SGLT2 inhibitor inhibits NHE3 
activity, tubular-specific NHE3 knockout mice showed 
reduced SGLT2 expression and reduced natriuretic effect 
by SGLT2 inhibitor (Thomson and Vallon 2019). Empa-
gliflozin causes volume contraction by increasing urinary 
excretion of Na+ and bicarbonate in wild-type littermates, 
but not in non-diabetic mice with tubular-specific NHE3 
knockdown. Moreover, in type 1 diabetic Akita mice, 
chronic empagliflozin treatment inhibits NHE3 activity by 
enhanced phosphorylation of NHE3 (S552/S605), indicat-
ing that NHE3 is a determinant of the natriuretic effect 
of empagliflozin (Onishi et al. 2020). When the type 1 
diabetic Akita mice were compared with the type 1 dia-
betic Akita mice with tubular-specific NHE3 knockout, the 
NHE3 knockout mice show a battery of changes, which 
indicate that the absence of tubular NHE3 likely shifted 
Na+ and glucose reabsorption from SGLT2 to SGLT1 that 
is likely associated with a pro-inflammatory renal signal 
(Onishi et al. 2019).

Glomerular hyperfiltration is a common pathway of 
kidney injury both in diabetic and non-diabetic settings 
and is associated with the progression of kidney function 
decline (Helal et al. 2012). Under hyperglycemic condi-
tions, increased RPT reabsorption of glucose and Na+ 
causes decreased distal Na+ delivery, leading to the acti-
vation of tubuloglomerular feedback (TGF) and glomeru-
lar hyperfiltration. SGLT2 inhibitors  reduce hyperfiltra-
tion by inhibiting Na+ reabsorption in RPTs (Cherney et al. 
2014b; Heerspink et al. 2016; Wanner et al. 2018). In Akita 
mice (a T1DM model), SGTL2 inhibition decreases glo-
merular hyperfiltration (Heerspink et al. 2016; Kidokoro 
et al. 2019). In T2DM patients, SGLT2 inhibition reduces 
the estimated glomerular filtration rate (eGFR) associated 
with the preservation of long-term kidney function (Wanner 
et al. 2018). In both T1DM and T2DM patients with normal 
kidney function, dapagliflozin causes an acute fall in GFR 
accompanied by a reduction in renal blood flow and reno-
vascular resistance (van Bommel et al. 2020).

Mesangial Cells

Diabetic kidney disease is the most common cause of 
chronic kidney disease and end-stage renal failure. Mesan-
gial cells (MCs) play an important role in regulating glomer-
ular filtration and in the development of diabetic nephropa-
thy (Schena and Gesualdo 2005). Damage of MCs leads to 
mesangial expansion and contributes to glomerulosclerosis 
(Abrass 1995; Mason and Wahab 2003), and reduced con-
tractile response of MCs is a known cause of hyperfiltra-
tion (Donnelly et al. 1996; Gnudi et al. 2007; Kreisberg, 
1982). Expression of the Na/K-ATPase, NHEs, and SGLTs 
was demonstrated in the membrane of MCs, and SGLT2 
may function as a normal physiological glucose sensor and 
regulate cellular contractility because of its high sensitivity 
to short-term high glucose exposure (Kuriyama et al. 1992; 
Maki et al. 2019b; Wakisaka and Nagao 2017; Wakisaka 
et al. 2016). Exposure of MCs to high glucose significantly 
increased SGLT2 expression that was attenuated by Cana-
gliflozin or ipragliflozin. Treatment with canagliflozin and 
phlorizin inhibited high-glucose-induced activation of PKC-
NAD(P)H oxidase pathway and PKC- TGF-β pathway to 
increase ROS and Type IV collagen production (Donnelly 
et al. 1996; Maki et al. 2019b). SGLT2 in MCs has a direct 
protective effect on podocytes and MCs (Maki et al. 2019b). 
Notably, a low dose of canagliflozin improved albuminuria 
and mesangial expansion in type 2 db/db mice without low-
ering the blood glucose level (Maki et al. 2019b). Further-
more, the mesangial expansion in T1D Akita mice was sig-
nificantly improved by canagliflozin than by insulin (Miyata 
et al. 2020).

The Na/K‑ATPase Signaling Prevented 
Hyperglycemia‑Induced Apoptosis

In primary cultures, a moderate increase in glucose con-
centration (10–15 mM, compared with normal physiologi-
cal 5 mM) causes an SGLT-dependent apoptotic response 
in SGLT-expressing RPTs and MCs that was abolished by 
administration of SGLT inhibitor or knockdown of SGLT2 
in RPTs, but not in podocytes that lack SGLTs (Nilsson et al. 
2019). Most interestingly, treatment with a low concentra-
tion of a specific ligand/inhibitor of the Na/K-ATPase, oua-
bain (at 5 nM), prevented not only high glucose-induced 
apoptosis and changes in expression of Bax and Bcl-xL in 
RPTs and MCs, but also prevented high glucose-induced 
mitochondrial depolarization and increased ROS forma-
tion in RPTs (Nilsson et al. 2019). Ouabain (5 nM), which 
does not affect intracellular Na+ concentration, triggers a 
calcium-NF-κB signal that protects kidney development 
from the adverse effects of malnutrition (Li et al. 2010). 
Furthermore, exposure of rat RPTs to high glucose increased 
Na/K-ATPase activity and Na/K-ATPase-dependent energy 
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consumption (Körner et al. 1994). These observations fur-
ther emphasize the importance of the Na/K-ATPase and its 
signaling function. While ouabain (5 nM) rescued RPTs 
from apoptosis in animal models of proteinuric disease (Bur-
laka et al. 2016) and hemolytic uremic syndrome (Burlaka 
et al. 2013), ouabain also rescued both RPTs and MCs from 
high glucose-triggered apoptosis (Nilsson et al. 2019). The 
underlying mechanism of a low dose of ouabain is the rebal-
ance of the apoptotic factor Bax and antiapoptotic factor Bcl-
xL, mainly through ouabain-stimulated Na/K-ATPase/IP3R/
NF-κB pathway. It will be of great interest to investigate the 
specific response of different types of cells from different 
organs since SGLT inhibitors execute various effects under 
different conditions.

The Na/K‑ATPase Signaling Stimulated Natriuresis

From the proposed theories, the Na/K-ATPase ion trans-
porter and signaling function of the Na/K-ATPase may pre-
sent some similar effects of SGLT2 inhibitors. Under normal 
condition, the proximal tubular Na/K-ATPase is the driving 
force to reabsorb ~ 65% of filtered Na+ (Boron and Boulpaep 
2012; Curthoys and Moe, 2014) (~ 5% by SGLT2), ~ 100% 
of filtered glucose (~ 90% by SGLT2 and ~ 10% by SGLT1). 
NHE3 is believed to be the rate-limiting step of total RPT 
Na+ reabsorption as well as a critical regulator of acid–base 
equilibrium through the link between NHE3-mediated H+ 
secretion to HCO3

− reabsorption by Na+/HCO3
− co-trans-

porter (Alpern 1990; Amemiya et al. 1995; Aronson 1983; 
Biemesderfer et al. 1993; Hamm et al. 2015). Activation 
of the Na/K-ATPase signaling function induces coordinated 
endocytosis of the Na/K-ATPase and NHE3 that leads to 
reduced Na+ reabsorption and natriuresis to cause volume 
contraction and blood pressure-lowering (Cai et al. 2008; 
Liu et al. 2004, 2005, 2011; Liu and Shapiro 2007; Peri-
yasamy et al. 2005). This reduced Na+ reabsorption also 
reduced glomerular hyperfiltration, mimicking SGLT2 
inhibitor-induced reduction of glomerular hyperfiltration by 
inhibiting Na+ reabsorption in RPTs (Cherney et al. 2014b; 
Heerspink et al. 2016; Wanner et al. 2018). These reflect 
SGLT2 inhibitor’s effects on NHE3, Na+ homeostasis, and 
glomerular hyperfiltration. However, it is not clear whether 
and how the Na/K-ATPase signaling function affects glu-
cose uptake through SGLTs. On the other hand, SGLT2 
inhibitors reduce SGLT2-mediated Na+ uptake into RPTs, 
which favors an E2(P) conformation of the Na/K-ATPase 
that tends to activate the signaling function. It worth noting 
that ouabain-induced trafficking of the Na/K-ATPase and 
NHE3 is independent of intracellular Na+ change (Cai et al. 
2008), but ouabain binding induces the E2(P) conformation 
to inhibit Na/K-ATPase activity. A culprit is that the Na/K-
ATPase signaling may increase ROS generation, whereas 

the SGLT2 inhibitor reduces oxidative stress. Since the 
Na/K-ATPase signaling is redox-sensitive (Liu et al. 2020), 
overstimulated signaling may chronically desensitize the 
signaling function and reduce Na/K-ATPase ion-transport 
capability by stimulating Na/K-ATPase/c-Src endocytosis. 
In clinical trials with antioxidant supplements, on the other 
side, the beneficial effect is controversial and not seen in 
most of the trials (Huang et al. 2006; Munzel et al. 2010; 
Touyz 2004). No matter what it may be, it seems like the 
balance of the redox status within a physiological range may 
be critical to maintaining beneficial ROS signaling. This 
disagreement worth futural investigation.

The Na/K‑ATPase Signaling Stimulated Oxidative 
Stress

Other than reduced SGLT2-mediated Na+ uptake, both oua-
bain and glucose oxidase cause direct protein carbonylation 
of Pro222 and Thr224 residues of the Na/K-ATPase α1 subunit 
in porcine proximal tubule LLC-PK1 cells (Yan et al. 2013). 
The Pro222 and Thr224 are located in peptide 211VDNSSLT-
GESEPQTR225 [UniProtKB/Swiss-Prot No P05024 (AT1A1_
PIG)], which is 100% identical amongst human, pig, rat, and 
mouse. The Pro222 andThr224 are located in the actuator (A) 
domain, highly exposed and facing the nucleotide-binding 
(N) domain. Upon ouabain binding, Na/K-ATPase under-
goes E1(P) to E2(P) conformational change, which affects 
the binding of the α1 subunit to signaling molecules such 
as c-Src and PI3K (Yatime et al. 2011). Protein carbonyla-
tion is reversible (decarbonylation) that may function as a 
regulatory mechanism of cell signaling (Wong et al. 2008, 
2010). An undefined decarbonylation process of the Na/K-
ATPase was also observed (Yan et al. 2013) as seen in the 
reversed Na/K-ATPase ion-pumping activity after removing 
ouabain from culture medium (Liu et al. 2004). It is possible 
that carbonylation modification might stabilize the Na/K-
ATPase in a certain conformational status favoring ouabain 
binding to the Na/K-ATPase α1 subunit and thus ouabain-
Na/K-ATPase signaling.

A feed-forward, redox-sensitive Na/K-ATPase signaling-
mediated oxidant amplification loop, stimulated either by 
CTS or ROS (Pratt et al. 2018). The Na/K-ATPase signal-
ing and its amplification loop play an essential role in the 
regulation of cardiac hypertrophy, salt-sensitive hyperten-
sion in both Dahl salt-sensitive rats and polygenic obese 
TALLYHO/JngJ mice (a mouse model mimics the state of 
obesity in humans with a polygenic background of type 2 
diabetes), RPT Na+ reabsorption, systemic redox status, 
experimental CKD-induced cardiomyopathy (including left 
ventricle hypertrophy and cardiac/renal fibrosis) and anemia 
(Liu et al. 2020, 2016a, 2011,2016b; Pratt et al. 2018; Sodhi 
et al. 2020; Wang and Shapiro 2019; Yan et al. 2019). How-
ever, it worth noting that this positive feedback mechanism 
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might chronically desensitize the signaling function and 
reduce Na/K-ATPase ion-transport capability by stimulat-
ing Na/K-ATPase/c-Src endocytosis (Cai et al. 2008; Liu 
et al. 2004, 2005). Compared with Dahl salt-resistant rats, 
Dahl salt-sensitive rats have a higher oxidative background 
in RPTs, and a high salt diet was unable to stimulate the 
Na/K-ATPase signaling, natriuresis, and endocytosis of the 
Na/K-ATPase and NHE3 (Liu et al. 2011).

CKD patients tend to have increased circulating CTS 
(Kolmakova et al. 2011; Komiyama et al. 2005). In addition, 
in experimental animal models of 5/6th partial nephrectomy 
(PNx) and marinobufagenin (MBG, one of the cardiotonic 
steroids) infusion, similar uremic cardiomyopathy pheno-
types, such as elevated circulating MBG in PNx, cardiac 
hypertrophy, impaired cardiac function, and cardiac fibrosis, 
were observed (Elkareh et al. 2007; Kennedy et al. 2003, 
2006; Zhang et al. 2019b).

The Na/K-ATPase/Src/ROS feed-forward oxidant ampli-
fication loop was also demonstrated in vivo in the devel-
opment of uremic cardiomyopathy and anemia in a pole 
ligation PNx mouse model (AuWang et al. 2017; Liu et al. 
2016a), which showed renal dysfunction with cardiac hyper-
trophy, cardiac fibrosis, and increase protein carbonylation. 
Administration of pNaKtide, an antagonist of Na/K-ATPase/
Src signaling that binds to c-Src kinase domain (Li et al. 
2009, 2011; Li and Xie 2009), attenuated the induced ure-
mic cardiomyopathy. It indicates that the oxidant ampli-
fication loop is critical for the development of uremic 
cardiomyopathy.

Oxidative Stress and Inflammation

Oxidative stress is a well-recognized contributor in the 
development and progressions of diabetes/diabetic nephrop-
athy, as well as in initiation and deterioration of cardiac 
structural changes and HF diabetic complications (Asmat 
et al. 2016; Bonventre 2012; Fine and Norman 2008; van 
der Pol et al. 2019). The Na/K-ATPase creates and maintains 
the Na+ gradient across the membrane, accounts for most of 
the kidney’s oxygen consumption for reabsorption of filtered 
Na+ in RPTs (Hansell et al. 2013). The increase in corti-
cal tubular Na/K-ATPase-related oxygen consumption in 
diabetic rats can be abolished by administering phlorizin, a 
non-selective inhibitor of SGLT 1 and 2 (Körner et al. 1994).

Oxidative stress and inflammation are essential contribu-
tors to heart failure and renal failure, and diabetic cardiac 
remodeling is redox-sensitive (Nikolic et al. 2021; Pickering 
et al. 2018; Wilson et al. 2018). A low dose of SGLT2 inhib-
itor canagliflozin has a renal-protective effect independent 
of its glucose-lowering effect but may involve inhibition of 
high-glucose-induced DAG-PKC activation and ROS over-
production (Maki et al. 2019a).

Upregulation of pro-inflammatory cytokines contributes 
to ROS generation and cardiac/renal fibrosis in DM and HF 
settings. In different animal models with T2DM, prediabetic 
metabolic syndrome, and induced diabetic cardiomyopathy, 
Dapagliflozin and Empagliflozin ameliorate cardiac fibrosis/
remodeling and cardiac function by its anti-inflammatory, 
anti-ROS, and anti-fibrotic effects (Arow et al. 2020; Kusaka 
et al. 2016; Lin et al. 2014; Ye et al. 2017). NADPH oxi-
dases family is one of the major mediators of ROS produc-
tion. In a rabbit model of HF, antioxidant N-acetylcysteine 
reduces NF-κB activity and cardiomyocyte apoptosis (Wu 
et al. 2014). SGLT2 inhibitor Empagliflozin has been shown 
to inhibit NOX4 expression and activity, attenuate myocar-
dial and renal oxidative stress/inflammation and fibrosis, 
decrease renal gene expression of inflammation and oxida-
tive stress in diabetic mice and a transgenic rat model of 
prediabetic metabolic syndrome(Kusaka et al. 2016; Li et al. 
2019; Terami et al. 2014).

SGLT2 inhibitors also improve the inflammatory and oxi-
dative stress status in RPTs (Hatanaka et al. 2016; Panchapa-
kesan et al. 2013; Shirakawa and Sano 2020). SGLT2 inhibi-
tors reduce nuclear factor kappa B (NF-κB), interleukin-6 
(IL-6), monocyte chemoattractant protein-1 (MCP-1), and 
other inflammatory factors implicated in DKD pathogenesis 
in experimental models of diabetes and in T2DM patients 
(Dekkers et al. 2018; Mancini et al. 2018). Under equal gly-
cemic control with canagliflozin and glimepiride, only cana-
gliflozin reduced pro-inflammatory mediators, suggesting a 
direct anti-inflammatory effect (Heerspink et al. 2019).

The Na/K-ATPase/Src/ROS feed-forward oxidant ampli-
fication loop has also been demonstrated to increase oxida-
tive stress and pro-inflammatory cytokines in other types 
of animal models, including Western diet, obesity, aging, 
steatohepatitis, atherosclerosis, and adipogenesis (Pratt et al. 
2019; Sodhi et al. 2017, 2018), which could be attenuated by 
administration of pNaKtide.

Ca2+ and Na+ Handling

Heart failure is associated with impaired Ca2+ and Na+ han-
dling in failing cardiac myocytes that involves NHE1 and 
Na+/Ca2+ exchanger (NCX) that are linked to the Na/K-
ATPase (Armoundas et al. 2003; Baartscheer et al. 2003a, 
b, 2005; Bers and Despa 2006; Müller-Ehmsen et al. 2003; 
Swift et al. 2008). Cardiac SGLT1 expression is upregulated 
to increase Na + influx and glucose uptake both in animal 
models of type 2 diabetes and in cardiac tissue harvested 
from patients with diabetic cardiomyopathy, and its activity 
contributes to the increase in intracellular Na+ (Banerjee 
et al. 2009; Lambert et al. 2015). An increase in intracel-
lular Na+ has been shown to increase ROS generation and 
related hypertrophy and fibrosis (Kohlhaas et al. 2010; Mur-
doch et al. 2006; Seddon et al. 2007). In isolated ventricular 
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myocytes from rabbits and rats, Empagliflozin reduced intra-
cellular Na+ and Ca2+ by directly inhibiting NHE, which is 
independent of SGLT2 activity (Baartscheer et al. 2017).

SGLT2 inhibitors shift metabolism from carbohydrates 
towards lipolysis, thus promoting mild ketogenesis, which 
may provide an alternative energy substrate to myocardial 
cells in the setting of ischemic stress (Ferrannini et al. 2016). 
SGLT2 inhibitors block NHE1, which is upregulated in heart 
failure. Long-term suppression of NHE1 in animals has been 
demonstrated to reduce oxidative stress and thus, myocar-
dial fibrosis and left ventricular remodeling (Prasad et al. 
2013). Empagliflozin was reported to block NHE1-induced 
cell death, hypertrophy, and tissue damage in heart (Sakata 
et al. 2000). In addition, although SGLT2 is not expressed in 
heart tissue, SGLT1 is present in lower levels in the myocar-
dium (Kashiwagi et al. 2015). Some SGLT2 inhibitors could 
block both SGLT2 and SGLT1 in ex-vivo experiments (Lim 
et al. 2019), suggesting that SGLT2 inhibitors may benefit 
from the inhibition of SGLT1 in cardiac tissue.

NHE1 is the main NHE isoform expressed in myocar-
dial tissue in the heart, regulating pH and volume in cardio-
myocytes (Wakabayashi et al. 2013). The NHE1 activity is 
upregulated in the settings of HF and T2DM (Packer 2017) 
that is contributed to intracellular Na+ and Ca2+ overload 
through coupling with the Na/K-ATPase, and NHE1 inhibi-
tion decreases cardiac remodeling, necrosis, and hypertro-
phy. All three SGLT2 inhibitors directly suppress the NHE1 
activity in isolated cardiomyocytes (from mouse, rat, and 
rabbit) (Baartscheer et al. 2017; Uthman et al. 2018a), prob-
ably through direct binding to the Na+-binding site of NHE1 
since SGLT2 is not found in heart up to now. In isolated car-
diomyocytes from diabetic cardiomyopathy and diabetic ani-
mal models, Dapagliflozin and Empagliflozin reduce expres-
sion of NHE1 and NCX, and improve Ca2+ handling (Arow 
et al. 2020; Hammoudi et al. 2017; Joubert et al. 2017). 
Moreover, Empagliflozin maintains cell viability and ATP 
content following hypoxia/reoxygenation in cardiomyocytes 
and endothelial cells (Uthman et al. 2018b).

In cardiac-specific human NADPH oxidase 4 (Nox4) 
transgenic mice, an increase in NOX4 protein expression 
leads to an increase in ROS generation with cardiac inter-
stitial fibrosis through activation of protein kinase B-mecha-
nistic target of rapamycin (Akt-mTOR) and NF-κB signaling 
pathways (Zhao et al. 2015). The attenuation of cardiac oxi-
dative stress and inflammation leads to weight loss, reduced 
subcutaneous fat mass, and visceral adipocyte size (Kusaka 
et al. 2016). Since there is no evidence of SGLT2 expression 
in the heart and SGLT1 is widely expressed in the myocar-
dium, it further supports the idea that the cardio-protective 
effects of SGLT2 inhibitors might be stemmed from their 
renal-protective effects.

In the coupling of the function of SGLT1 and SGLT2, two 
other proteins, the Na/K-ATPase and glucose transporter, are 

important to remove the increased Na+ and glucose to main-
tain the homeostasis. However, the functional interaction 
between Na/K-ATPase and SGLT proteins in renal and CV 
diseases has not been extensively studied. The Na/K-ATPase 
has been known to play an essential role in both renal and 
CV diseases. Human hearts express three alpha isoforms 
(α1, α2, α3) of Na/K-ATPase (Gilmore-Hebert et al. 1989; 
Lucchesi and Sweadner 1991; Shamraj et al. 1991). Na/K-
ATPase has been extensively studied for its ion transporting 
function since it was discovered in the 1950s. It was until the 
early 2000s, the signaling function of Na/K-ATPase started 
to be appreciated (Aizman and Aperia 2003; Shapiro and 
Tian 2011; Xie and Cai 2003; Zhang et al. 2019a).

Recent studies demonstrated that overstimulation of 
Na/K-ATPase signaling by increased endogenous CTS 
causes elevation of oxidative stress, which may play an 
important role in the uremic cardiomyopathy, including 
cardiac hypertrophy and cardiac fibrosis (Liu et al. 2020; 
Sodhi et al. 2020; Wang et al. 2020). In addition, low doses 
of CTS induced hypertension in rats and caused significant 
CV remodeling independent of their effect on blood pressure 
(Ferrandi et al. 2004; Jiang et al. 2007; Kennedy et al. 2006; 
Skoumal et al. 2007). Dilated cardiomyopathy patients tend 
to have decreased cardiac Na/K-ATPase expression (Nor-
gaard et al. 1988; Schwinger et al. 2003). In isolated rat 
(neonatal and adult) cardiac myocytes, both ouabain and 
exogenously added glucose oxidase (or a bolus of H2O2) 
activate Na/K-ATPase signaling that leads to hypertrophy 
of cardiac myocytes (Liu et al. 2000, 2006; Tian et al. 2003; 
Xie et al. 1999). The Na/K-ATPase signaling is independent 
of intracellular Ca2+ and Na+ concentrations (Liu et al. 2000; 
Xie et al. 1999).

From clinical data and animal studies, it has been dem-
onstrated that decrease of Na/K-ATPase is an important 
risk factor for cardiac decompensation and dysfunction 
(Drummond et al. 2016, 2014; Ishino et al. 1999; Liu et al. 
2012; Moseley et al. 2004; Norgaard et al. 1988; Schmidt 
et al. 1993; Semb et al. 1998). It has been reported that 
Na/K-ATPase concentration and activity were reduced 
in patients with heart failure, and cardiac ejection frac-
tion was correlated with the amount of Na/K-ATPase 
protein level in heart tissue (Ishino et al. 1999; Moseley 
et al. 2004; Norgaard et al. 1988; Schmidt et al. 1993). 
Using the weighted gene co-expression network analy-
sis (WGCNA) based on data from a large cohort of heart 
transplant patients and their donors (GEO141910), we 
identified the gene that includes Na/K-ATPase was sig-
nificantly associated with the phenotype of dilated car-
diomyopathy. More importantly, the Na/K-ATPase expres-
sion level in this cohort strongly correlates with the left 
ventricle ejection fraction (LVEF), consistent with the 
previous findings in heart transplant patients (Ishino et al. 
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1999; Norgaard et al. 1988; Schmidt et al. 1993). More 
recently, it was demonstrated that reduction of α1 isoform 
of Na/K-ATPase causes tissue fibrosis and cardiac cell 
apoptosis in response to Na/K-ATPase ligand treatment 
and in the animal model of CKD (Drummond et al. 2014; 
Liu et al. 2012). It was also found that CKD induces acti-
vation of Na/K-ATPase-mediated Src and its downstream 
target NFκB, which results in a reduction of miR-29b-3p 
expression and cardiac tissue fibrosis (Drummond et al. 
2016, 2018). Disrupting the Na/K-ATPase-related signal-
ing and inhibition of Src activation by pNaKtide increased 
miR-29b-3p expression in heart tissue and thus attenu-
ated cardiac fibrosis in these animals (Drummond et al. 
2018). In LLC-PK1 cells, high-glucose treatment at the 
basolateral side alone or basolateral plus apical sides, but 
not in the apical side alone, upregulates SGLT2 expres-
sion and activity via activation of the GLUT2/importin-α1/
HNF-1α pathway (Umino et al. 2018). Interestingly, in 
cultured human proximal tubule cells, H2O2 but not high-
glucose causes upregulation of SGLT2 protein expression 
and activity via ROS generation (Nakamura et al. 2015). 
SGLT2 deficiency causes glucosuria without volume 
depletion (Vallon et al. 2011). Proximal tubule-specific 
NHE3 knockout upregulates SGLT2 expression and low-
ers blood pressure by increasing the pressure natriuresis 
(Li et al. 2018). Model-based clinical data analysis indi-
cates that NHE3 inhibition is a required mechanism for the 
gliflozin-induced natriuretic effect (Hallow et al. 2018). 
Exposure of rat proximal tubules to high glucose results 
in increased Na/K-ATPase activity and Na/K-ATPase-
dependent energy consumption (Körner et  al. 1994). 
Diabetic rats also showed significantly higher GFR, renal 
oxygen metabolism, and Na+ reabsorption than the con-
trol rats, as well as higher Na/K-ATPase activity in corti-
cal tubular but not glomerular tissue. These changes were 
blocked by Phlorizin treatment(Körner et al. 1994). Diabe-
tes is associated with increased renal oxygen metabolism 
secondary to the increase in coupled Na+ reabsorption via 
the SGLTs and Na/K-ATPase, which might contribute to 
the hyperperfusion and hyperfiltration in the diabetic kid-
ney. Damage of tubular cells causes interstitial fibrosis 
and glomerular tubular dissociation that can be abolished 
by catalase overexpression (Brezniceanu et  al. 2008). 
Apoptosis is associated with increased secretion of trans-
forming growth factor-β (TGF-β) and other proinflamma-
tory cytokines that drive the fibrotic process (Meng et al. 
2016; Ramesh et al. 2009), it was proposed that apoptotic 
responses of RPTs to hyperglycemia are a major cause of 
the progressive interstitial fibrosis in DKD (Nilsson et al. 
2019). On the other hand, activation of the Na/K-ATPase-
Src signaling pathways also increased ROS generation and 
fibrosis in kidney and heart in 5/6th PNx mouse/rat model 

and Dahl salt-sensitive hypertensive rat model (Haller 
et al. 2012; Liu et al. 2016a; Zhang et al. 2019b), which 
might be contributed to the activation of TGF-β, mamma-
lian target of rapamycin (mTOR), and PLC/PKC-δ path-
way, which induced phosphorylation and degradation of 
transcription factor Friend leukemia integration-1 (Fli-1, 
a negative regulator of collagen synthesis) (Elkareh et al. 
2007, 2009; Haller et al. 2016; Zhang et al. 2019b). In 
these models, fibrotic responses to PNx surgery and high 
salt diet challenge were significantly attenuated by admin-
istration of pNaKtide (a specific peptide to block Na/K-
ATPase-Src signaling) or monoclonal antibody against 
MBG (Fig. 1).

Conclusion

Other than the glucose-lowering property as initially 
designed, SGLT2 inhibitors show profound "off-target" but 
beneficial cardiorenal-protective effects, promoting mecha-
nism investigations and theories. The Na/K-ATPase is the 
driving force for the reabsorption of Na+ and glucose as the 
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Fig. 1   Schematic illustration of possible interactions between SGLT2 
and Na/K-ATPase. (1) SGLT2 inhibitors inhibit apical Na+ entry 
through both SGLT2 and NHE3 that may account for up to ~ 70% of 
Na+ entry in RPTs, leading to lower intracellular Na+ concentration, 
and thus the Na/K-ATPase activity. This situation favors the Na/K-
ATPase in an E2(P) status that favors activation of the Na/K-ATPase 
signaling. (2) On the other side, increases in CTS or ROS cause inhi-
bition of the Na/K-ATPase activity that increases intracellular Na+ 
concentration, leading to inhibition of SGLT2 and NHE3. CTS or 
ROS also stimulates Na/K-ATPase signaling and subsequent endocy-
tosis of the Na/K-ATPase and NHE3 and fibrotic response. (3) While 
activation of the Na/K-ATPase signaling increases oxidative stress 
and fibrosis, SGLT2 inhibitors reduce oxidative stress to counterbal-
ance the fibrotic response. It is worth noting that a low dose of oua-
bain prevents hyperglycemia-induced apoptosis and ROS generation
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primary ion transporter, also affects other cellular processes 
as a signal transducer. Compared with SGLT2 inhibitor’s 
beneficial effects, the Na/K-ATPase and its signaling func-
tion exert some similar effects mainly through the kidney, 
such as natriuresis, blood pressure-lowering, and through the 
heart, such as reduction of cardiac hypertrophy and fibrosis. 
Even though the Na/K-ATPase signaling-mediated oxidant 
amplification loop was established in RPTs, the similar-
ity of the Na/K-ATPase signaling cascades in both cardiac 
myocytes and renal proximal tubule cells suggests that this 
amplification loop might be shared in both cell types. For 
example, Ouabain-induced endocytosis of the Na/K-ATPase 
was first observed in HeLa cells, chick embryo heart cells, 
and Girardi heart cells (Aiton et al. 1981; Algharably et al. 
1986; Cook 1982; Lamb and McCall 1971; Lamb and Ogden 
1982). Since the signaling function of the Na/K-ATPase is 
redox-sensitive, a balanced ROS environment would be 
more beneficial. The possibility that the Na/K-ATPase and 
its signaling affect SGLT2 function, and vice versa, worth 
exploring.
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