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Abstract

The Up-and-Coming-Scientist section of the current issue of the Journal of Membrane Biology features the invited essay by
Dr. Mercedes Alfonso-Prieto, Assistant Professor at the Forschungszentrum Jiilich (FZJ), Germany, and the Heinrich-Heine
University Diisseldorf, Vogt Institute for Brain Research.Dr. Alfonso-Prieto completed her doctoral degree in chemistry at
the Barcelona Science Park, Spain, in 2009, pursued post-doctoral research in computational molecular sciences at Temple
University, USA, and then, as a Marie Curie post-doctoral fellow at the University of Barcelona, worked on computations of
enzyme reactions and modeling of photoswitchable ligands targeting neuronal receptors. In 2016, she joined the Institute for
Advanced Science and the Institute for Computational Biomedicine at the FZJ, where she pursues research on modeling and
simulation of chemical senses.The invited essay by Dr. Alfonso-Prieto discusses state-of-the-art modeling of molecular recep-
tors involved in chemical sensing — the senses of taste and smell. These receptors, and computational methods to study them,
are the focus of Dr. Alfonso-Prieto’s research. Recently, Dr. Alfonso-Prieto and colleagues have presented a new methodology
to predict ligand binding poses for GPCRs, and extensive computations that deciphered the ligand selectivity determinants
of bitter taste receptors. These developments inform our current understanding of how taste occurs at the molecular level.
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Introduction

In contrast with vision or hearing, the senses of taste
and smell (or olfaction) involve the detection of chemi-
cals present in the environment and thus are considered
as “chemical senses”. They inform about the aroma and
flavor of food and beverages and act as warning system
for toxic substances. Hence, these two chemical senses
strongly affect human well-being, food acceptance and
intake (Tepper et al. 2020; Boesveldt and Parma 2021), as
well as drug compliance (Pawar and Kumar 2002; Menella
et al. 2013), especially in children. In addition, taste and
smell impact key brain processes (Sullivan et al. 2015;
Boesveldt and de Graaf 2017; Sabiniewicz et al. 2021),
such as memory, emotional responses or behavior.

Taste and olfaction impairments strongly affect the
quality of life, social interactions and dietary habits (Main-
land et al. 2020). Moreover, the loss of taste and smell
is a common symptom of Parkinson’s and Alzheimer’s
diseases (Robert et al. 2016; Tarakad and Jankovic 2017;
Oppo et al. 2020) and has been recently shown to be one of
the symptoms of COVID-19 infection (Parma et al. 2020;
Gerkin et al. 2021; Pierron et al. 2020). Therefore, taste
and olfaction are also clinically relevant.

The molecules responsible for taste and smell (tastants
and odorants, respectively) are extremely chemically
diverse (Malnic et al. 1999; Meyerhof et al. 2010). Con-
sequently, the human genome contains a large number of
membrane proteins dedicated to recognize them (Buck and
Axel 1991; Adler et al. 2000; Chandrashekar et al. 2006).
In particular, the two largest chemosensory families cor-
respond to olfactory receptors (ORs) and taste 2 (or bitter
taste) receptors (TAS2Rs). Although originally identified
in nose and mouth, these receptors have been later shown
to be expressed also in other parts of the body (Behrens
and Meyerhof 2011; Massberg and Hatt 2018; Dalesio
et al. 2018; Behrens and Meyerhof 2019). This extraoral
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and extranasal expression indicates that ORs and TAS2Rs
can also play a role in other physiological and pathological
processes, besides bitter taste and smell perception, and
thus opens the way for new therapeutical interventions
(Lee et al. 2019; Di Pizio et al. 2019).

Both TAS2Rs and ORs are G-protein coupled recep-
tors (GPCRs). The GPCR superfamily is the largest in the
human genome, with approx. 800 genes, of which half
correspond to chemosensory receptors (Venter et al., 2001;
Alexander et al., 2019). Within the class A-D system (Fre-
driksson et al. 2003; Schioth and Fredriksson 2005; Lager-
strom and Schioth 2008), ORs are part of class A, whereas
the classification of TAS2Rs is still under debate (as either
class A, or class F or a new class T) (Nordstrom et al.,
2011; de March et al. 2015; Di Pizio et al. 2016; Munk
et al., 2016a). Regardless of their classification, TAS2Rs
and ORs share the same topology, with a seven transmem-
brane (TM) helix bundle (see Fig. 1). Bitter tastants and
odorants are recognized by their corresponding receptor
by binding in a cavity located in the extracellular part of
the TM bundle. Ligand binding triggers a conformational
change of the receptor that promotes binding of the associ-
ated G-protein in the intracellular part. This, in turn, acti-
vates the G-protein, which acts as a transducer, initiating
an intracellular signaling cascade that results in a cellular
response (Alexander et al., 2019).

ORs and TAS2Rs can identify a wide range of ligands
and thus are considered promiscuous receptors. In humans,
the approx. 400 ORs can recognize up to one trillion differ-
ent odorants (Bushdid et al. 2014), whereas the 25 TAS2Rs
detect around 1000 bitter tastants (Behrens and Meyerhof
2018; Dagan-Wiener et al. 2019). One receptor may be able
to bind several molecules and the same ligand can be recog-
nized by multiple receptors (Malnic et al., 1999; Krautwurst
2008; Meyerhof et al. 2010; Ji et al., 2014; Dunkel et al.
2014; Di Pizio and Niv 2015). This complex combinatorial
code is still not fully understood, hindering identification of
new ligands and receptor deorphanization.

The GPCR superfamily is highly pharmacologically
relevant, with approx. 110 GPCRs being targeted by one
third of all the FDA-approved drugs (Hauser et al. 2017,
2018). Similarly, ORs and TAS2Rs appear to be promising
candidates for future drug design efforts (Lee et al. 2019;
Di Pizio et al. 2019; Ahmad et al. 2020). Some examples
include bronchodilators targeting TAS2Rs expressed in the
airways (Nayak et al. 2019) or the sandalwood odorant used
as hair loss therapy by stimulating OR2AT4 expressed in
human hair follicles (Cheret 2018). Nonetheless, further
therapeutical applications will require a more comprehen-
sive characterization of the extranasal and extraoral roles
of these receptors, as well as better understanding of the
binding determinants of chemosensory receptors (Lee et al.
2019; Di Pizio et al. 2019; Ahmad et al. 2020).
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Fig.1 Computational model of TAS2R46 in complex with the bitter
tastant strychnine, showing the two-site architecture explored in the
simulations. The ligand pose in the vestibular site is colored in red,
whereas the pose in the orthosteric site is in blue. Data were taken
from reference (Sandal et al. 2015) (Color figure online)

Another common feature between GPCRs and ORs/
TAS2Rs is the presence of genetic variants across the human
population. In the case of GPCR drug targets, these vari-
ants can affect the pharmacological response of the recep-
tor (Hauser et al. 2018). For chemosensory receptors, they
have been mostly studied in the context of bitter taste/smell
sensitivity, but they can also affect health status and pro-
pensity to certain diseases (Shaw et al. 2011; Mainland
et al. 2014; Logan 2014; Chakraborty et al. 2019; Risso
et al. 2021). One of the most well characterized examples is
TAS2R38. After the serendipitous discovery of differences
in the individual sensitivity to phenylthiocarbamide (PTC, a
TAS2R38 ligand) (Fox 1932; Blakeslee 1932), a large-scale
study (Blakeslee and Fox 1932) showed two main catego-
ries in the population, non-tasters and super-tasters. Later, a
genome-wide linkage analysis (Kim et al. 2003) confirmed
that sequence variants in the TAS2R38 gene have a direct
influence in the observed PTC taste sensitivity. In addition
to affecting food preferences (Robino et al. 2014), TAS2R38
polymorphisms have been recently shown to influence

respiratory innate immunity mechanisms and susceptibility
to chronic rhinosinusitis ((Jeruzal-Swiatecka et al. 2020) and
references within).

Computational Structural Methods

Understanding the molecular determinants of odorant or bit-
ter tastant binding to their corresponding receptor requires
structural information (Di Pizio and Niv 2014; de March
et al. 2015; Fierro et al. 2017; Behrens et al. 2018a, b;
Alfonso-Prieto et al. 2019a, b). X-ray or cryo-EM structures
have been solved for only ~ 10% of human GPCRs (Munk
et al. 2019; Bender et al. 2020; Kooistra et al. 2021) and,
in particular, experimental structures of human ORs and
TAS2Rs are still missing (https:// gpcrdb.org/structure/sta-
tistics; version 2021-01-27). Hence, computational methods
have been used to fill the structural gap for chemosensory
receptors, in particular homology modeling, molecular dock-
ing and molecular dynamics (MD) simulations (Di Pizio
and Niv 2014; de March et al. 2015; Behrens et al. 2018a,
b; Alfonso-Prieto et al. 2019a, b).

Building a high-resolution receptor homology model
requires the identification of a template with sequence
identity above 35% (Chothia and Lesk, 1986; Olivella et al.
2013; Piccoli et al. 2013). This is often not straightforward
for the large and heterogeneous GPCR superfamily: only
10% of the GPCRs of unknown experimental structure have
a closely related template with sequence identity above the
35% threshold (Zhang et al. 2006; Bender et al. 2020). In
the case of ORs and TAS2Rs, their sequence identity with
any of the available templates is unfortunately lower (<20%)
and thus the resulting homology models are low resolution
(Fierro et al. 2017). Nonetheless, several computational
approaches have been proposed to overcome this limitation,
including homology modeling based on multiple templates
or generation of an ensemble of models (Biarnés et al. 2010;
de March et al. 2015; Di Pizio et al. 2017; Dagan-Wiener
et al. 2019; Nowak et al. 2018; Bushdid et al. 2019; Spag-
giari et al. 2020).

Molecular docking is then used in combination with
these homology models to predict the binding mode of
known ligands and, in some cases, identify new com-
pounds. However, the accuracy of the docking results is
limited by the low quality of the initial receptor models. In
particular, the receptor-ligand interactions depend on the
orientation of the amino acid side chains, which is uncer-
tain in such low resolution models (Fierro et al. 2017).
Hence, strategies aiming at enhancing the sampling of the
conformational space of the receptor-ligand complex have
been applied to overcome this limitation. These include
flexible docking approaches and experimental data-driven
model refinement (Di Pizio et al. 2017; Nowak et al. 2018;
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Bushdid et al. 2018; Bushdid et al. 2019; Di Pizio et al.
2020a, b), as well as molecular dynamics (MD) simu-
lations (Gelis et al. 2012; Charlier et al. 2012; Charlier
et al. 2013; Topin et al. 2014; Marchiori et al. 2013; San-
dal et al. 2015; Li et al. 2016; Fierro et al. 2017; Ahmed
et al. 2018; Fierro et al. 2019; Alfonso-Prieto et al. 2019a,
2019b; Haag et al., 2020; Schneider et al. 2020).

The thus-generated receptor-ligand complex models
are validated by comparison with experimental data. Site-
directed mutagenesis combined with functional experiments
can be used to verify the predicted receptor binding resi-
dues (Munk et al. 2016b). In addition, the predicted ligand
binding mode(s) can be compared against structure—activity
relationship data (Vaas et al. 2018). Therefore, the interplay
between computational and experimental data is crucial to
obtain an accurate molecular picture of bitter taste and olfac-
tion (Behrens et al. 2018a, b; Alfonso-Prieto et al. 2019a;
Spaggiari et al. 2020).

The above described computational molecular modeling
approaches have offered crucial insights into the ligand
promiscuity of chemosensory receptors. Both TAS2Rs
and ORs can recognize a broad range of ligands, yet they
are selective. Based on mutagenesis data on TAS2Rs, it
was proposed that such discriminating promiscuity could
be achieved by a so-called “access control” that is able to
dismiss the wrong compounds (Brockhoff et al. 2010). The
molecular basis of such mechanism has been revealed using
MD. Simulations showed that bitter tastants or odorants
can explore not only one but two binding pockets in the
corresponding chemosensory receptor (Sandal et al. 2015;
Bushdid et al. 2019). This two-site architecture (Fig. 1) acts
as a two-step verification system: the vestibular site (located
close to the extracellular loops) filters out the receptor
cognate ligands, which can then move downwards to the
orthosteric site (situated inside the seven TM helix bundle),
in order to trigger receptor activation. The interplay of the
two binding sites is further validated by the observation
that mutations of residues identified in either site affect the
receptor response to its ligands. Moreover, the position of
the orthosteric site in TAS2Rs and ORs coincides with that
observed in experimental structures of other class A GPCRs
in complex with their ligands (Venkatakrishnan et al. 2013;
Latorraca et al. 2017). Similarly, the vestibular site overlaps
with the extracellular allosteric site of other class A GPCRs
(Thal et al. 2018; Latorraca et al. 2017). Further compu-
tational and experimental studies on other chemosensory
receptors are needed to confirm whether this two-site archi-
tecture is conserved across the TAS2R and OR families.

Several FDA-approved drugs taste bitter (Dagan-Wiener
et al. 2017; Di Pizio et al. 2019) and others affect olfactory
perception (Lotsch et al. 2012). Moreover, TAS2Rs and ORs
are also expressed in other parts of the body outside of the
tongue and the nose, respectively, where they are involved in

@ Springer

(yet not fully characterized) physiological and pathological
processes (Lee et al. 2019; Di Pizio et al. 2019; Ahmad et al.
2020). Taken together, this suggests that bitter taste and odor
molecules may be potential drug candidates (Di Pizio et al.
2019). A few computational molecular modeling studies
have been carried out to explore the pharmacological poten-
tial of TAS2Rs and ORs (Tong et al. 2017; Nowak et al.
2018; Di Pizio et al. 2020a, b). Besides generating structural
models of the receptor/ligand pairs already known (Levit
et al. 2014; Tong et al. 2017; Nowak et al. 2018), compu-
tational approaches can also be used to design chemical
modifications to improve ligand-receptor affinity and other
drug-like properties (Di Pizio et al. 2020a, b). For instance,
TAS2R14 has been recently studied as potential drug tar-
get against respiratory infections (Di Pizio et al. 2020a, b)
due to its association with innate immune responses (Hariri
et al. 2017) and its ability to bind clinical drugs that taste
bitter, such as flufenamic acid (Levit et al. 2014; Behrens
et al. 2018a, b). By integrating experimental mutagenesis
data, homology modeling and molecular docking, an initial
structural model of TAS2R14 in complex with flufenamic
acid was generated (Levit et al. 2014; Nowak et al. 2018).
Then, a combinatorial library of flufenamic acid derivatives
was virtually screened against this model and the best candi-
date compounds were selected based on their docking score
and visual inspection. These ligands, as well as additional
analogs designed using medicinal chemistry concepts, were
synthesized and subsequently tested with in vitro functional
assays, resulting in the identification of new TAS2R 14 ago-
nists with nanomolar potency. Moreover, these experimental
data were further used to refine the initial TAS2R 14 model
and obtain a better molecular description of the ligand bind-
ing modes (Di Pizio et al. 2020a, b). Altogether, this success
story shows the potential of integrated experimental-compu-
tational approaches for ligand design for TAS2Rs and even-
tually ORs and opens the way to exploit the largely untapped
pharmacological potential of these chemosensory receptors.

In addition, computational molecular modeling has been
useful to understand the effect of genetic variants of TASR2s
and ORs on ligand sensitivity (Biarnés et al. 2010; Mar-
chiori et al. 2013; Geithe et al. 2017; March et al., 2015;
Cierco-Jiménez et al. 2021). In the aforementioned case of
TAS2R38, an ensemble of receptor homology models was
generated, followed by molecular docking of PTC and fur-
ther refinement with multiscale MD simulations (Biarnés
et al. 2010; Marchiori et al. 2013). The resulting TAS2R38/
PTC complex models allowed the identification of the
residues putatively involved in binding, which were subse-
quently validated using mutagenesis and functional assays.
Moreover, such models showed that amino acid 296, which
varies between super-taster and non-taster variants, is not
involved in ligand binding. Instead, residue 296 (located
in TM7 at position 7.52 in the Ballesteros and Weinstein
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(1995) numbering scheme) faces F255 in the adjacent TM6,
a helix which moves significantly during GPCR activation
(Tehan et al. 2014; Venkatakrishnan et al. 2016; Weis and
Kobilka 2018; Filipek 2019). Therefore, the interaction
between these residues 296 and 255 (or lack thereof) can
have an effect on receptor activation (Biarnés et al. 2010).
The TAS2R38 variant present in the super-taster haplotype
contains Val at position 296 and thus a hydrophobic inter-
action V296-F255 can be formed. This correlates with the
in vitro activity measurements and the higher PTC sensi-
tivity phenotype. On the contrary, the TAS2R38 variant
present in the non-taster haplotypes contains Ile at position
296, a bulkier amino acid that will disrupt such interaction.
This is in agreement with the lack of or reduced activity
of the I1e296-containing TAS2R38 mutants and the lower
PTC sensitivity phenotype. This hypothesis was further
confirmed by creating a double swap-mutant F255V/V296F,
which shows normal activity, consistent with the recovery of
the proposed interaction (Biarnés et al. 2010). Interestingly,
a subsequent bioinformatics analysis showed that, besides
Val296 in TAS2R38, a hydrophobic residue at the equiva-
lent position 7.52 is conserved for most TAS2Rs, as well
as class A GPCRs. Additional comparisons against active-
inactive pairs of experimental structures for class A GPCRs,
together with mutagenesis data, further suggest that this
position might be a not-yet-characterized activation micro-
switch for class A GPCRs (Fierro et al. 2017).

Data Science Approaches

Given the wide chemical space covered by odorants and bit-
ter tastants, as well as the large number of ORs and TAS2Rs,
it is not surprising that several online resources have been
developed to compile the vast amount of data associated to
these chemosensory receptors. Moreover, the combinatorial
nature of bitter taste and olfaction is perfectly suited for the
application of data-driven approaches, in particular machine
learning (Lotsch et al., 2019).

For TAS2Rs, BitterDB contains information about
approx. 1000 molecules that have been reported as bit-
ter in humans, as well as other species (Wiener et al.
2012; Dagan-Wiener et al. 2019). Moreover, the data-
base lists, if available, which TAS2Rs bind these bitter
compounds, along with mutations that can affect receptor
response and frequently present genetic variants (Wie-
ner et al. 2012; Dagan-Wiener et al. 2019). Furthermore,
already precomputed homology models for TAS2Rs are
provided, facilitating future structure-based computa-
tional studies (Dagan-Wiener et al. 2019; Di Pizio et al.
2020a, b). Ligand-based studies have already been car-
ried out. Chemoinformatics analysis have been applied
to the list of bitter compounds in BitterDB to investigate

the promiscuity, toxicity or drug-like properties of bitter
compounds (Di Pizio and Niv 2015; Nissim et al. 2017;
Di Pizio et al. 2020a, b). In addition, machine learning
algorithms have been trained to predict bitterness (Dagan-
Wiener et al. 2017; Zheng et al. 2018; Banerjee and Pre-
issner 2018; Margulis et al., 2020).

For ORs, the amount of the data is significantly larger
(especially when considering not only the ~400 human ORs,
but also ORs from mouse and other species) and is distrib-
uted among several databases (Marenco et al. 2016; Di Pizio
et al. 2020a, b). For instance, ORDB (Crastro et al. 2002),
OlfactionDB (Modena et al. 2011), OdorDB (Marenco et al.
2013) and the Leibniz-LSB @TUM Odorant Database (Dun-
kel et al. 2014; Kreissl et al. 2019) contain information about
odorant molecules and/or their cognate olfactory receptors.
Complementarily, HORDE (Olender et al. 2013) is dedi-
cated to olfactory receptor SNPs and haplotypes and their
frequency in the population, whereas hORMdb (Cierco-
Jiménez et al. 2021) additionally maps the sequence vari-
ants onto known topological positions of class A GPCRs to
predict the functional impact of such mutations. As in the
case of bitter tastants, machine learning approaches have
also been developed for odorants (Lotsch et al. 2019). These
algorithms aim at predicting either new ligand-receptor pairs
(Liu et al. 2011; Audouze et al. 2014; Bushdid et al. 2018,;
Caballero-Vidal et al. 2020; Cong et al. 2020) or smells (Kel-
ler et al. 2017; Poivet et al. 2018; Nozaki and Nakamoto
2018; Chacko et al. 2020; Sharma et al. 2021), based on
chemical features of the odorants.

Future Directions

The interplay of experimental and computational approaches
has enabled a deeper molecular characterization of bitter
taste and olfaction. However, the lack of experimental struc-
tures of bitter taste and olfactory receptors is still a hurdle
that limits the accuracy of the computational structural mod-
els that can be generated. Moreover, a more extensive char-
acterization of the physiological and pathological roles of
extraoral TAS2Rs and extranasal ORs is required to exploit
their potential as novel drug targets. In addition to computa-
tional molecular modeling and data science approaches, sys-
tems biology is expected to contribute to further understand
the connection between ligand-receptor recognition and the
subcellular response of the corresponding type II taste cell
or olfactory sensory neuron.
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