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Abstract Bacterial resistance to biocides used as antisep-

tics, dyes, and disinfectants is a growing concern in food

preparation, agricultural, consumer manufacturing, and

health care industries, particularly among Gram-negative

Enterobacteriaceae, some of the most common community

and healthcare-acquired bacterial pathogens. Biocide

resistance is frequently associated with antimicrobial cross-

resistance leading to reduced activity and efficacy of both

antimicrobials and antiseptics. Multidrug resistant efflux

pumps represent an important biocide resistance mecha-

nism in Enterobacteriaceae. An assortment of structurally

diverse efflux pumps frequently co-exist in these species

and confer both unique and overlapping biocide and

antimicrobial selectivity. TolC-dependent multicomponent

systems that span both the plasma and outer membranes

have been shown to confer clinically significant resistance

to most antimicrobials including many biocides, however,

a growing number of single component TolC-independent

multidrug resistant efflux pumps are specifically associated

with biocide resistance: small multidrug resistance (SMR),

major facilitator superfamily (MFS), multidrug and toxin

extruder (MATE), cation diffusion facilitator (CDF), and

proteobacterial antimicrobial compound efflux (PACE)

families. These efflux systems are a growing concern as

they are rapidly spread between members of Enterobacte-

riaceae on conjugative plasmids and mobile genetic ele-

ments, emphasizing their importance to antimicrobial

resistance. In this review, we will summarize the known

biocide substrates of these efflux pumps, compare their

structural relatedness, Enterobacteriaceae distribution, and

significance. Knowledge gaps will be highlighted in an

effort to unravel the role that these apparent ‘‘lone wolves’’

of the efflux-mediated resistome may offer.
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Introduction

Biocides describe a chemically diverse range of antimi-

crobial compounds used as antiseptics, disinfectants, and

preservatives. In an effort to eradicate potentially infec-

tious bacteria from food preparation, healthcare, and vet-

erinary facilities, biocides such as benzalkonium,

chlorhexidine, and triclosan, are commonly used to disin-

fect exposed surfaces (Gebel et al. 2013), equipment/tubing

(Otter et al. 2015), skin, sutures, and wounds (Maillard

2005; Atiyeh et al. 2009). Biocides at high concentrations

generally act by disrupting cell envelopes (Maillard 2002;

Gilbert and Moore 2005); biocide concentrations (0.1–10%

w/v) required for disinfection are too toxic for safe inges-

tion (orally or parenterally) in most human/animal treat-

ments. Many biocide molecules insert between

phospholipid headgroups and displace divalent cations,

destabilizing the membrane and reducing osmoregulation

(Gilbert and Moore 2005). In contrast to therapeutic

antibiotics, biocides have far fewer usage regulations (Levy

2002; Maillard 2005), and are common additives in a wide

range of products beyond the healthcare/veterinary setting

including: cleansers used in meat/dairy facilities,
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household products in cosmetics, apparel, wound dressings,

and in water/oil pipeline industries to name only a few

(McDonnell and Russell 1999; Chapman 2003a; Gilbert

and Moore 2005; Atiyeh et al. 2009). Annual biocide usage

by commercial, agricultural, and medical industries com-

bined is estimated to reach and exceed annual antimicrobial

usage (Van Boeckel et al. 2014), and contributes to con-

tamination of wastewater and soil sediments [as reviewed

by (Tezel and Pavlostathis 2011)]. When environmental

biocide concentrations accumulate, selective pressure is

believed to drive commensal and pathogenic bacterial

adaptation and/or acquisition of biocide resistance mech-

anisms that degrade (Gilbert and McBain 2003) and/or

reduce biocide permeability (Levy 2002; Chapman 2003a).

Biocide resistance among Gram-negative Enterobacte-

riaceae is particularly concerning, since biocide resistance

has demonstrated cross-resistance to a variety of antimi-

crobials (Chapman 2003b; Braoudaki and Hilton 2004;

Gnanadhas et al. 2013), including polymyxins (Wand et al.

2017), which may represent a last line of defense. Since

Enterobacteriaceae can spread and thrive in wastewater,

sewage, and soils beyond their enteric niches (Szmolka and

Nagy 2013), biocide adaptation and chronic low-level

exposure in these habitats may be promoting antimicrobial

cross-resistance (Gaze et al. 2013; Buffet-Bataillon et al.

2016). Enterobacteriaceae are highly adept at acquiring

both biocide and antimicrobial resistance genes (Pal et al.

2015), such as extended spectrum beta lactamases (ESBL),

through horizontal gene and conjugative element transfer

in the gastrointestinal tract (Stecher et al. 2012), or within

the environment (Gaze et al. 2005, 2011).

By comparison to Gram-positive bacteria, Gram-nega-

tive bacteria have higher tolerance to antimicrobials

including biocides due to the architecture and composition

of their cell envelope that possesses a lipopolysaccharide

rich outer membrane, reducing permeability (Fig. 1a).

Biocide resistance in Gram-negative Enterobacteriaceae is

associated with an assortment of cell envelope alterations

that reduce antimicrobial permeability: lipid modifications

(Ishikawa et al. 2002; Gilbert and Moore 2005), porin-

down regulation (Fernandez and Hancock 2012), outer

membrane vesicle formation (Jagannadham and Chat-

topadhyay 2015; Kulkarni et al. 2015), and intrinsic efflux

pump up regulation or efflux pump acquisition (Poole

2002, 2014b; Blair et al. 2014). Among all of these diverse

resistance mechanisms, efflux pump activity is a major

contributor, particularly in Enterobacteriaceae, due to the

presence and diversity of many efflux systems with over-

lapping (redundant) substrate recognition, and drug

polyspecificity. Efflux poses complex resistance chal-

lenges to overcome therapeutically, since a single efflux

pump can expel a variety of chemically diverse biocides

and antimicrobials from the cell. Enterobacterial genomes

can encode more than four different efflux pump families

on average (Fig. 1b), and many of these families have

close homology to eukaryotic transporter protein families

(Saier, Jr and Paulsen 2001; Saier et al. 2016), making

efflux a formidable resistance mechanism to inhibit

(Marquez 2005; Baugh et al. 2014; Opperman and Nguyen

2015).

In Escherichia coli, efflux-mediated resistance to

antimicrobials is conferred by multipartite protein efflux

pump systems that span the outer membrane (OM), peri-

plasm, and plasma membrane (PM) through a protein

complex between an outer membrane protein (OMP), a

membrane fusion protein (MFP), and efflux pump pro-

tein(s) (Nishino et al. 2003). In general, antimicrobial

resistance is conferred mainly by the activity of three

multipartite efflux pump transporter families; ATP driven

ATP-Binding Cassette (ABC) family members such E. coli

MacAB system (Poole 2014b; Orelle and Jault 2016), by

proton motive force driven Resistance-Nodulation-Cell

Division (RND) efflux family members AcrAB (Du et al.

2014), and members of the Major Facilitator Superfamily

(MFS) such as EmrAB (Kumar et al. 2013b). In Enter-

obacteriaceae, these systems rely upon an OMP, TolC, to

expel various toxic substrates from the periplasmic space

across the OM (Zgurskaya et al. 2011).

In addition to TolC-dependent multipartite efflux pump

systems, there have been a growing number of single

component, TolC-independent, ion/H? driven efflux pump

families shown to play a supporting or major role in

antimicrobial resistance, most notably to biocides. These

single component secondary active efflux pumps can all

confer biocide resistance in the absence of TolC and belong

to a variety of transporter families; the small multidrug

resistance (SMR) family (Bay et al. 2008) part of the drug

and metabolite transporter (DMT) superfamily (Jack et al.

2001), multidrug and toxin extrusion (MATE) family

(Kuroda and Tsuchiya 2009), major facilitator superfamily

(MFS) (Saidijam et al. 2006; Yan 2013), cation diffusion

facilitator (CDF) family (Fang et al. 2002; Cubillas et al.

2013), and the recently identified proteobacterial antimi-

crobial compound efflux (PACE) family (Hassan et al.

2013, 2015b). Hence, they are often referred to as TolC-

independent efflux systems (Nishino et al. 2003). It is not

well understood if TolC-independent efflux pump members

function through a single dedicated, but as yet unidentified

OMP(s), or if these efflux systems can utilize a variety of

OMPs/channels to completely expel drug substrates from

the cell. However, these efflux systems are increasingly

important to examine in Enterobacteriaceae based on their

ability to confer overlapping substrate specificity, but also

resistance to unique substrates not offered by their multi-

partite system counterparts (Bragg et al. 2014). TolC-in-

dependent efflux systems can also expel toxic metabolites
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and molecules that may be important for cell communi-

cation, biofilm formation, and osmoregulation, enhancing

their roles in virulence (Piddock 2006; Alcalde-Rico et al.

2016). Efflux pump redundancy and overlapping substrate

specificity are some of the major hurdles in elucidating

specific efflux pump substrate profiles and in designing

improved specific efflux pump inhibitors (Stavri et al.

2007; Tegos et al. 2011). Since many single component

efflux pumps are conditionally expressed (Tal and

Schuldiner 2009; Hassan et al. 2015a), and are frequently

encoded on mobile genetic elements including multidrug

resistant plasmids, they are of particular importance to

consider in our efforts to combat efflux-mediated multidrug

resistance.

Because there have been a number of excellent recent

review articles summarizing antimicrobial resistance

attributed to multipartite TolC-dependent efflux systems

(Poole 2014b; Sun et al. 2014; Li et al. 2015), this article
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Fig. 1 a Summary diagram of single component TolC-independent

biocide selective efflux pump transporter family members in Enter-

obacteriaceae. TolC-independent archetypical transporter family

members generated from their representative crystal structures for

each of the five families: CDF dimer structure CepA/FieF/YiiP (PDB

3H90; Lu et al. 2009), MATE MdtK/NorM (PDB 3MKT; He et al.

2010), MFS MdfA (PDB 4ZOW; Heng et al. 2015), PACE AceI, and

SMR EmrE (PDB 3B5D Chen et al. 2007) are shown in the plasma

membrane alongside a representative RND multipartite system, AcrA,

AcrB, and TolC complex (PDB 5O66; Wang et al. 2017). Gray

arrows indicate the direction of ion influx and black arrows show the

direction of substrate efflux. b A distribution heatmap of TolC-

independent efflux pump members within various Enterobacterial

genera. Characterized efflux pumps from various Enterobacteriaceae

listed in Table 1 were used as query sequences to detect the presence

of each member within the completed Enterobacterial genome

sequences using tBLASTn (Gertz et al. 2006). The presence (filled

squares) and absence (white squares) of efflux pump gene sequences

within more than 75% of the listed Enterobacterial species is

indicated
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will overview biocide resistance from the perspective of

single component, TolC-independent, secondary active

efflux pump systems in Enterobacteriaceae, specifically

members of the SMR, MFS, MATE, CDF, and PACE

families. The aim of this review is to provide an overview

of biocides targeted by single component efflux systems,

by comparing the biocide and antimicrobial selectivity of

characterized members of Enterobacteriaceae, highlight the

shared and unique structural features of these pumps, and

summarize the significance of their individual activities on

resistance and virulence. The knowledge gaps regarding

single component efflux pumps conferring biocide resis-

tance will be also discussed in the concluding remarks.

Biocide Substrates of Single Component
Secondary Active Efflux Pumps

Single component efflux pumps have garnered criticism

regarding their clinical significance and contributions to

biocide resistance as well as antimicrobial resistance

(Russell 2003; Sheldon Jr. 2005; Hirsch et al. 2011), lar-

gely due to their modest minimal inhibitory concentration

value increases and lower activity when compared to

multipartite efflux systems (Russell 2000; Poole 2002;

Hegstad et al. 2010). Identification of specific biocide

substrates attributed to specific single component efflux

pumps is challenging due to the presence of multiple efflux

pump families in any given member of Enterobacteriaceae

(Fig. 1b). BLAST-based surveys involving characterized

single component efflux members within Enterobacteri-

aceae genomes reveals that most species possess at least

three of the five families discussed herein (Figs. 1b and 2).

Single efflux pump gene deletions in Enterobacteriaceae

often fail to accurately identify the full range of substrates

they may recognize due to the presence of the dominant

multicomponent RND system, AcrAB (Sulavik et al. 2001;

Tal and Schuldiner 2009). Hence, substrate determination

for single component secondary active efflux pumps are

commonly determined by pump overexpression in E. coli

strains lacking acrB, such as KAM3 and KAM32 (Chen

et al. 2002), to avoid competition with the AcrAB system

(Table 1). Single component efflux pumps have been

reported to confer resistance to a wide range of chemically

diverse biocides and other classes of antimicrobials as

shown for MFS and MATE family members (Table 1). In

contrast, some pumps demonstrate a preference for one

specific class of biocide over others (Table 1). SMR family

members confer resistance to a broad range of antiseptics,

and relatively few antibiotics (Bay et al. 2008), while CDF

member CepA/FieF appears to confer significant resistance

to chlorhexidine (Fang et al. 2002) (Table 1). Some of the

problems with comprehensive substrate identification are

broad range of biocides to include in susceptibility testing

and the lack of standard biocide testing methods as noted in

a number of reviews over the last two decades (McDonnell

and Russell 1999; Gilbert and McBain 2003; Gilbert and

Moore 2005; Tumah 2009; Buffet-Bataillon et al. 2012).

Antiseptics (benzalkonium, cetrimide, and cetylpyri-

dinium), herbicides (methyl viologen), and dyes (ethidium,

acriflavine, and rhodamine 6G) that have one or more

permanently charged cationic atoms, typically nitrogen, are

referred to as quaternary ammonium compounds (QACs)

(Gilbert and Moore 2005; Zhang et al. 2015). QACs appear

to be the most common substrate of single component

efflux pumps as highlighted in Table 1. In fact, ethidium or

Hoechst 33342 are QAC dyes commonly used to identify

and validate the activity of most TolC-independent efflux

pumps (Blair and Piddock 2016). QACs are also one of the

most heavily used biocides with an estimated global usage

of 700 kT/year; (Tezel and Pavlostathis 2011), as these

compounds are routine additives to commercial, industrial,

agricultural, livestock, veterinary, and healthcare products

(Zhang et al. 2015).

In contrast, resistance to the bisbiguanide antiseptic

chlorhexidine appears to be highly selective and somewhat

inconsistent as a substrate for many Enterobacteriaceae

efflux pump families, particularly CDF and PACE (Hassan

et al. 2015b). Chlorhexidine is commonly added to medical

solutions, wipes, baths, and cleansers in medical and vet-

erinary facilities. This apparent bias in substrate selectivity

may have as much to do with the inconsistent inclusion of

biocide chemicals in routine resistance screening panels, as

it does with their over-usage in commercially available

products.

It is important to note that the antiseptic triclosan, a

chlorinated phenoxyphenol used in oral hygiene products

and cleansers, does not appear to be a substrate of single

component efflux systems to date (Minato et al. 2008; He

et al. 2011a, b). Triclosan is a substrate of multipartite

AcrAB systems in E. coli (McMurry et al. 1998), and

Salmonella spp. (Webber et al. 2008) and the unique

multipartite system TriABC-OmpH in Pseudomonas spp.

(Mima et al. 2007). Triclosan resistance is also conferred

due to lipid modification; triclosan binds and inhibits the

activity of the fatty acid biosynthesis gene fabI, an enoyl-

acyl carrier protein (Sivaraman et al. 2004). A similar sit-

uation is noted for the antiseptic polyhexamethylene

biguanide (PMHB), a biguanide used in skin wound care

products and ointments, which appears to be a substrate of

the multipartite MexCD-OprJ RND system (Fraud et al.

2008).

Cationic biocides like QACs and chlorhexidine function

by disrupting the outer and inner plasma membranes of

Gram-negative bacilli, denaturing proteins, and enhancing

reactive oxygen and nitrogen species generation (Gilbert
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and Moore 2005). Currently, it remains unclear how efflux

pumps can target and expel biocides without succumbing

to the effects of the biocide itself, since cationic biocides

have the propensity to disrupt membranes at low concen-

trations and dissipate proton motive force. This phe-

nomenon may explain why many efflux pumps listed in

Table 1 confer modest (1-sixfold) increases in biocide

MICs. Experiments have demonstrated that the inhibition

of efflux systems using electron transport chain disrupting

compounds such as CCCP reduce biocide tolerance in

Enterobacteriaceae (Braoudaki and Hilton 2005; Rania

et al. 2014). Some of the structural features that unify

biocide resistance pumps is their increased hydrophobicity

and the involvement of negatively charged residues in

active site regions of the protein that bind drugs as dis-

cussed in the following sections. SMR members have

demonstrated a requirement for anionically charged phos-

pholipids, such as cardiolipin and phosphatidyl glycerol

(Charalambous et al. 2008; Miller et al. 2009; Dutta et al.

2014), suggesting that the membrane environment may

also play an important contribution for biocide recognition

and resistance. More studies involving structural and

functional analysis of single component efflux pump sys-

tems summarized herein will be important in understanding

how efflux pumps recognize and transport biocides and

other antimicrobial compounds.
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NP_414995 AcrBFig. 2 A summary of the

average distance percent

identities of TolC-independent

efflux pump protein family

members identified from

Enterobacterial genomes. The

dendrogram was generated

using Jalview software

(Waterhouse et al. 2009) based

on protein sequence alignments

of efflux pump sequences

(shown according to GenBank

locus tag or protein accession

numbers) collected from E. coli

K12 (b), E. coli O83:H1 str.

NRG 857C, Enterobacter

cloacae (ECL), Salmonella

enterica subsp. enterica serovar

Typhi str. CT18 (STY),

Citrobacter freundii CFNIH1,

Klebsiella pneumoniae subsp.

pneumoniae (KPHS) species.

Protein sequence percent

identities were generated from a

pairwise alignment was

generated using ClustalW

BLOSUM weight matrix and

bootstrapping of the generated

tree matrix was performed using

the ’R’ statistics software

‘‘boot’’ package (Ripley 2017).

Bootstrap p-values of\ 80%

are indicated above each node

with a black circle, and p-values

ranging from 79 to 65% are

indicated by gray circles
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Small Multidrug Resistance (SMR) Efflux Family

SMR protein family members represent one of the smallest

efflux families to date, are exclusive to Bacterial and

Archaeal kingdoms, and range in length from 100 to 140

amino acids (Bay et al. 2008). SMR genes are inherited

vertically on the chromosome, but are frequently encoded

by prophages (Wang and Wood 2016), Class 1 and Class 3

integrons (Gaze et al. 2005), and conjugative multidrug

resistance plasmids (Bay and Turner 2009) (Table 1;

Fig. 1b). The most well characterized and archetypical

member of the SMR family is E. coli ethidium multidrug

resistance protein E (EmrE). At only 110 amino acids in

length (12 kDa), EmrE consists of four transmembrane a-
helical TMH domains that arrange to form a minimal

homodimeric functional unit (Butler et al. 2004; Dutta

et al. 2014) (Fig. 3a). The topological arrangement of

EmrE monomers within the dimer has been controversial

(Schuldiner 2010), as EmrE protein monomers have

demonstrated functional activity when both amino and

carboxy termini face the same direction (Steiner-Mordoch

et al. 2008) or in an asymmetrical arrangement where

termini face opposite sides of the membrane (Korkhov and

Tate 2009; Morrison et al. 2011; Lloris-Garceras et al.

2012). At the present time, experimental consensus sup-

ports an asymmetric SMR dimer topology for the EmrE

protein. All SMR members possess a single highly con-

served negatively charged glutamate residue (E. coli EmrE

E14) within the first TMH which participates in both H?

and drug binding during transport (Morrison et al. 2015)

(Fig. 3a). Despite their small size, SMR members are

capable of transporting relatively large cationic com-

pounds, primarily QACs and a limited range of antimi-

crobials (Table 1), similar to much larger MFS and MATE

transporters (12–14 TMH). SMR efflux proteins can be

classified into three subgroups, small multidrug protein

(SMP); suppressor of groEL (SUG); and paired SMR

proteins (PSMR) based on phenotypic and phylogenetic

sequence analysis (Bay et al. 2008; Bay and Turner

2009, 2016).

The SMP subgroup confers resistance to a wide range of

QACs when expressed as a single gene (refer to references

provided in Table 1), and SMP members include homo-

logues of E. coli EmrE. SMP members may also participate

in osmotic regulation, as E. coli EmrE overexpression

results in hypersaline and pH related loss of growth phe-

notypes due to the loss of osmoprotectants, specifically

betaine and choline (Bay and Turner 2012). In addition to

EmrE homologues, SMP subgroup members include inte-

gron and multidrug resistant plasmid encoded quaternary

ammonium compound resistant proteins (Qac) that also

confer resistance to a broad range of QACs (Bay et al.

2010; Buffet-Bataillon et al. 2012). A number of Qac

members have been identified in Enterobactericaeae, QacE,

QacED1, QacF, QacG, and QacH; where the most fre-

quently identified qac gene from multidrug resistant clini-

cal (Kücken et al. 2000; Wang et al. 2008; Pastrana-

Carrasco et al. 2012) and food contaminant (Zou et al.

2014; Zhang et al. 2016) genetic surveillance studies is

qacED1. QacED1 has demonstrated poor QAC efflux

activity (30%) in comparison to QacE based on overex-

pression experiments (Paulsen et al. 1993; Kazama et al.

1999); QacED1 and QacE are nearly identical (up to resi-

due 94), and differ by an in-frame insertion element that

disrupts and extends the fourth TMH of QacED1 by an

additional five amino acids. It is uncertain why a semi-

functional qacED1 is so highly conserved on 30 regions of
Class 1 integrons when compared to other Qac members

including qacE. The activity of qacED1 may improve

cross-resistance conferred by its synergy to other conserved

resistance genes in the 30 region including sulfonamide

(sul1), adenylyltransferase (aad), and dihydrofolate

reductase (dfrA) (Mazel et al. 2000; Su et al. 2006; Gillings

et al. 2008); further studies would help clarify its impor-

tance. Qac member detection is highly correlated to QAC

contaminated areas (Gaze et al. 2011) and serves as a

useful marker for QAC biocide pollution (Gaze et al.

2005). Many qac genes frequently detected in pathogenic

Enterobacteriaceae are also identified from environmen-

tally isolated Enterobacterial biofilms (Gillings et al. 2009),

where acquiring one or more Qac members may confer

selective advantages such as an ability to expel toxic and

QAC-based metabolic compounds as demonstrated by

other SMR members.

Members of the SUG subclass are phylogenetically

distinct from SMP members (Bay and Turner 2009), and

were originally named for their ability to suppress groEL

chaperonin protein E (SugE) in E. coli that was later

demonstrated to be a cloning artifact (Bishop and Weiner

1993; Bishop et al. 1995). Characterized SUG members

include SugE from E. coli and Citrobacter freundii, where

E. coli SugE members have demonstrated resistance to a

narrow range of long acylated QACs, including cetrimide

and cetylpyridinium (Chung and Saier Jr. 2002). Resistance

to other metal containing biocides has also been demon-

strated by Gram-negative Aeromonas molluscorum SugE

homologs that specifically efflux di- and tri-butyltin (Cruz

et al. 2013); tin containing biocides banned from use in

developed countries since the 1990s. Mutational studies of

C. freundii Sug members can demonstrate function as an

importer as well as an exporter (Son et al. 2003), similar to

EmrE (Brill et al. 2012). A recent biofilm study of E. coli

single gene deletion mutants identified that a sugE deletion

enhanced biofilm biomass formation, suggesting that under

wildtype conditions this pump may expel metabolites
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regulating biofilm formation (Bay et al. 2017). Although

SUG members are inherited chromosomally, many Enter-

obacteriaceae SugE homologs are detected from mobile

genetic elements carried on multidrug resistant plasmids,

particularly in the poultry industry (Chung and Saier Jr.

2002; Hegde et al. 2016). This suggests that SMR

Fig. 3 Topology diagrams of

biocide resistant efflux pumps

representing transporter families

SMR, MFS, MATE, CDF, and

PACE. a Topology diagram of

SMR member E. coli EmrE

(NP_415075); this protein

inserts in either orientation,

therefore, no membrane

orientation is shown.

b Topology diagram of MFS

member E. coli MdfA

(NP_415363). c Topology

diagram of MATE member

E. coli MdtK/NorM/YdhE

(YP_025307). d Topology

diagram of PACE member

E. coli (EII93401). e Topology

diagram of CDF member E. coli

FieF/YiiP (NP_418350).

Topology diagrams were

generated using the web

interface program Protter

version 1.0 (Omasits et al. 2014)
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members, such as SUG and SMP Qac proteins, may be

selectively enriched either on specific mobile genetic ele-

ments or by QAC pollution (Gaze et al. 2005).

The PSMR subclass differs from SMP and SUG sub-

groups due to the expression of two distinct genes to confer

QAC resistance forming a functional heterodimer (Bay

et al. 2008). Phylogenetic analysis of PSMR subgroup

homologues indicates that these proteins evolved more

recently due to gene duplications from SMP and SUG

group members, however, in Enterobacteriaceae PSMR

members share close homology to E. coli MdtIJ (YdgEF)

related to the SMP subclass (Bay and Turner 2009). By

comparison to EmrE, PSMR proteins have longer

hydrophobic loops between TMH1-4 and an extended

carboxyl-terminus (Kikukawa et al. 2007), that fixes their

topology and multimerization into asymmetric hetero-

dimers (Drew et al. 2002; Rapp et al. 2004). While MdtIJ

does confer multidrug resistance to QACs and cationic

dyes, they also contribute towards polyamine resistance

indicating they may play an important role in preventing

polyamine toxicity (Higashi et al. 2008).

Major Facilitator Superfamily (MFS) Efflux
Family

MFS transporters span all three kingdoms of life and cur-

rently form 74 families (Reddy et al. 2012). In Enter-

obacteriaceae, characterized MFS members that are

capable of conferring biocide resistance include the TolC-

dependent multipartite efflux pumps systems; E. coli

EmrKY and EmrAB (Li and Nikaido 2004; Tanabe et al.

2009), and TolC-independent as well as monomeric TolC-

independent efflux pumps: EmrD (Naroditskaya et al.

1993; Nishino and Yamaguchi 2001; Yin 2006), and

MdfA/CmlA/Cmr (Edgar and Bibi 1997a; Bohn and Bou-

loc 1998) (Table 1; Figs. 1b, 2). Enterobacteriaceae typi-

cally encode two or three different TolC-independent

biocide selective MFS members that confer both QAC and

fluoroquinolone resistance: EmrD, MdfA, and SmvA

(Table 1, Figs. 1b, 2). The third MFS family member

known as SmvA/KmvA/SmfY is distinguished for its

ability to confer methyl viologen resistance and has been

functionally characterized from Salmonella enterica ser-

ovar Typhimurim (Hongo et al. 1994; Santiviago et al.

2002; Villagra et al. 2008), Serratia marcescens

(Shahcheraghi et al. 2007) and K. pneumoniae (Ogawa

et al. 2006) species (Table 1).

MFS members typically range from 400-600 amino

acids in length and possess 12 TMH that form two 6 TMH

domains at the N- and C- termini (Yan 2013). TolC-inde-

pendent MFS members from Enterobacteriaceae share

close identity to either E. coli EmrD, SmvA, or MdfA as

shown in Fig. 2. Enterobacteriaceae monomeric biocide

selective efflux pumps belonging to the MFS members

generally possess 12 TMH (Fig. 3b), with the exception of

Serratia marcescens SmfY (Shahcheraghi et al. 2007) with

14 TMH as noted by (Hofmann and Stoffel 1993; Krogh

et al. 2001) and predicted by TMpred and TMHMM.

Regardless of TMH number, both N- and C-termini of

MSF generally face the cytosolic side of the membrane,

and structural similarity between each N- and C-terminal

domain suggests that the MFS efflux protein originated

from a gene duplication event (Saier Jr. 2001; Saier Jr. and

Paulsen 2001; Reddy et al. 2012). Monomeric MFS

transporters function through two pseudosymmetrical 6

TMH domain units that surround a central hydrophobic

substrate binding pocket with fluctuating drug/ion access

via a rocker-switch mechanism (Yan 2013; Quistgaard

et al. 2016) (Fig. 3b). Most MFS members contain two

highly conserved, negatively charged residues in their

central substrate binding pocket; in E. coli MdfA the loss

of residues E26 and D34 in TMH1 eliminates drug efflux

activity (Adler et al. 2004; Sigal et al. 2006). However, in a

previous study a pair of glutamates required for drug efflux

activity could be removed and replaced in different TMH

(Sigal et al. 2009), highlighting the conformational plas-

ticity of these proteins (Fig. 3b). Some studies demonstrate

that MFS transporters may utilize Na?/K? as well as H?

in drug antiport function (Edgar and Bibi 1997a; Mine

et al. 1998; Lewinson et al. 2004). The ability to use Na?

and H? appears to confer an osmoregulatory function for

these pumps, as observed for alkali tolerant E. coli MdfA

and K. pneumoniae KdeA/MdfA strains when these pumps

are over-expressed (Lewinson et al. 2004; Ping et al. 2007).

Alkali tolerance synergizes well with known cationic bio-

cide resistance mechanisms as both are stress induced

responses in Enterobacteriaceae [as reviewed by (Rowbury

2003; Poole 2014a; Buffet-Bataillon et al. 2016)].

TolC independent MFS members can be inherited ver-

tically on the chromosome, as demonstrated by E. coli

MdfA and EmrD (Edgar and Bibi 1997b; Nishino and

Yamaguchi 2001), as well as on mobile genetic elements

such as Cmr/CmlA, which are found on integrons and

multidrug resistant conjugative plasmids making them

highly transmissible, particularly within environments

highly contaminated by QACs (Bohn and Bouloc 1998;

Ploy et al. 1998; Heuer et al. 2004; Bischoff et al. 2005). In

E. coli, MFS efflux proteins make up about half of all

unique efflux transporters known, highlighting their

importance for biocide and multidrug resistance (Kumar

et al. 2013a). Experiments involving E. coli RND AcrAB

pump deletions demonstrated that chromosomally encoded

SMR and MFS members, EmrE and MdfA respectively,

were important to confer antimicrobial resistance under

specific growth conditions (Tal and Schuldiner 2009),
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underscoring their importance in expelling substrates,

specifically methyl viologen, a biocide not recognized by

RND pumps (Villagra et al. 2008). Expression and deletion

of E. coli MFS member MdfA has also demonstrated its

involvement in enhancement of biofilm formation (Mat-

sumura et al. 2011; Soto 2013b), suggesting it may play a

role in biofilm establishment and biocide tolerance. Hence,

with multiple copies of TolC-independent MFS members

in a single Enterobacteriaceae species, the contributions of

these pumps to biocide resistance may be highly important

when conditions arise that prohibit RND and other multi-

partite system activities.

Multidrug and Toxic Compound Extrusion
(MATE) Efflux Family

MATE protein family members are part of the larger

multidrug/oligosaccharidyl-lipid/polysaccharide (MOP)

superfamily (Hvorup et al. 2003). MATE family members

are currently subdivided into three main subfamilies

according to kingdom and sequence phylogeny: Family 1

bacterial MATEs; Family 2, eukaryotic MATEs subdivided

as 2A fungal, 2B plant, 2C animal, and 2D protozoan; and

Family 3, bacterial and archaebacterial MATEs (Omote

et al. 2006; Kuroda and Tsuchiya 2009). The first bacterial

MATE member, NorM, is related to family 1 and was

identified from Vibrio parahaemolyticus (Morita et al.

1998), and has high sequence similarity and homology to

MdtK (YdhE) based on its identification in E. coli (Figs. 1b

and 2). There is no single archetypical MATE member to

date due to the low sequence identity between MATE

homologues (* 40%), which can range in length from 440

to 500 amino acids (Omote et al. 2006). However, NorM

crystal structures from Neisseria gonorrhea (Lu et al.

2013) and Vibrio cholerae (He et al. 2010) best represent

bacterial MATE transporters at present. Functional Na?

dependency has not been demonstrated for all MATE

families (Mishra and Daniels 2013), but bacterial NorM

homologues have demonstrated both Na? and H? depen-

dence (Lu et al. 2013; Jin et al. 2014). MATE transporters

typically arrange into 12 TMH (Fig. 3c) based on V. cho-

lerae and N. gonorrhea NorM crystal structures, forming

two lobes at the N- (TMH 1-6) and C- (7-12) terminal

domains with a hydrophobic cleft connected by a cyto-

plasmic loop between TMH 6–7 similar to MFS members

(as reviewed by (Kuroda and Tsuchiya 2009; Lu et al.

2013; Du et al. 2015)). Based on the conservation and

symmetry within the N- and C-lobes, each domain within

MATE proteins likely arose due to gene duplication or

fusion event similar to MFS members (Lu et al. 2013).

However, a 13th TMH may be present at the C-terminus as

suggested by an epitope tagged eukaryotic MATE1

homologue (Zhang and Wright 2009) and hydropathy

plots. Similar to SMR and MFS members, functionally

essential and highly conserved negatively charged residues

serve as active sites for binding cationic drugs and/or ions

(Kuroda and Tsuchiya 2009; Du et al. 2015). Negatively

charged residues are positioned in both lobes at TMH1

D32, TMH7 E252, and TMH10 D368 (Omote et al. 2006)

numbered according to E. coli MdtK (Fig. 2). MATE

efflux proteins demonstrate a rotational symmetry within

the first and last TMH loops forming the N and C lobe

domains respectively, and a cytoplasmic loop connects the

two halves between TMH loops 6 and 7 (Fig. 2) (He et al.

2010; Nishima et al. 2014). Substrate binding and release

has been shown to function through an inward and outward

alternating conformer known as a rocker-switch model

(Nishima et al. 2014). The hydrophobicity of the drug

binding clefts and highly conserved negatively charged

residues share similar characteristics with other cationic

biocide selective transporter families.

Cloned and characterized Enterobacterial MATE mem-

bers include E. coli MdtK (Morita et al. 1992), Klebsiella

pneumoniae KetM/MdtK (Ogawa et al. 2015), and Enter-

obacter cloacae EmmdR (He et al. 2011a), which all

confer resistance to QAC antiseptics and DNA intercalat-

ing dyes as well as quinolone antimicrobials (Table 1)

driven by Na? and/or H? motive force similar to NorM

(Jin et al. 2014). E. cloacae EmmdR shows much higher

sequence identity to E. coli MATE member YeeO than

MdtK (Fig. 2), suggesting that two different biocide

selective TolC-independent MATE members are present in

Enterobacteriaceae. In Enterobacteriaceae, MATE genes

are encoded chromosomally and have not been confidently

identified from multidrug resistant plasmids yet according

to BacNet (Pal et al. 2014) and GenBank searches); genes

encoding MATE members often possess an alternative start

codon, GTG, that may play a regulatory role in reducing its

expression indicative of conditional regulation (Long et al.

2008; Ogawa et al. 2015). MATE homologue E. coli MdtK

overexpression has been shown to rescue 8-oxoguanine-

repair-deficient hypermutator phenotypes and protect cells

against H2O2 damage, suggesting that NorM homologues

may act as a guanine oxidation backup system when toxic

metabolic reactive oxygen species build up (Guelfo et al.

2010). Since QAC biocides have demonstrated an ability to

induce significant oxidative damage to cells, and many

have complex chemical structures reminiscent of fluoro-

quinolones (as reviewed by (Buffet-Bataillon et al. 2016)),

MATE protein biocide efflux may be a coincidental by-

product related to oxidative stress compounds rather than

specific biocide resistance. In E. coli, MdtK and RND

pump AcrAB were both shown to influence cell growth

during stationary phase (Yang et al. 2006), potentially due

to the secretion of metabolic quorum sensing molecules
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such as 4-quinolone that may influence cell–cell commu-

nication and biofilm formation (Nair et al. 2016). The fact

that MATE members function as sodium-drug antiporters

and regulate quorum sensing factor release, and confer

protection against reactive oxygen species, suggests that

their role is multifaceted and involved in protection and

regulating cell metabolism, in addition to multidrug

resistance.

Proteobacterial Antimicrobial Compound Efflux
(PACE) Family

The newest addition to the efflux transporter proteins is the

PACE family, which was discovered in Acinetobacter

baumannii by Hassan et al. 2013, and named accordingly

as Acinetobacter chlorhexidine efflux protein I (AceI)

(Hassan et al. 2015b). As the name suggests, the PACE

efflux proteins have specificity for chlorhexidine as well as

other cationic membrane disrupting QAC antimicrobials

such as, benzalkonium chloride and acriflavine (Table 1)

(Hassan et al. 2015b). A. baumannii AceI efflux pumps

were discovered from chlorhexidine shock induction

experiments monitoring transcriptionally upregulated

genes; chlorhexidine was selected for its frequent antiseptic

usage in industrial and hospital settings (Hassan et al.

2013). PACE efflux pumps are predicted to function as a

secondary active drug/H? antiporter (Hassan et al. 2015b).

Secondary structure predictions of AceI and its homo-

logues indicate that these proteins are short in length (180

amino acids) and have two tandem bacterial transmem-

brane pair (BTP) domains (Fig. 3d) (Hassan et al. 2015a).

AceI homologues also rely upon a negatively charged

glutamate (A. baumannii E50; E. coli E22) residue in the

first TMH domain (Fig. 2), which was shown to inhibit

transport activity, but not drug binding, suggesting other as

yet unidentified residues may be involved in chlorhexidine

binding (Hassan et al. 2013). Although PACE family

members are primarily identified from y-proteobacteria,

they are not exclusively found in proteobacteria, there are

also a few homologous members in the firmicutes Veil-

lonella parvula, and likely in representatives of other phyla

(Hassan et al. 2015a). In E. coli, there is an AceI homolog

identified in the strains TW07793 and KTE84, which are

flanked by transposase and phage insertion sequences,

suggesting these PACE transporters were acquired laterally

from related proteobacteria (Hassan et al. 2013). To date,

PACE efflux proteins have only been identified in the

domain Eubacteria demonstrating similarity to the SMR

family of transporters. PACE family members may also be

regulated by a general stress response mechanism (Hassan

et al. 2013), but it remains unclear how similar the stress

response is to other single component transporter families.

Cation Diffusion Facilitator (CDF) Superfamily

Cation Diffusion Facilitators (CDFs) represent a family of

transporters in all three kingdoms of life that confer metal

tolerance/resistance by efflux of zinc and heavy metal ions

(Cubillas et al. 2013; Kolaj-Robin et al. 2015). Phyloge-

nomic groupings of prokaryotic CDF family members are

based on metal ion specificity (Cubillas et al. 2013), and

thus far only one CDF member has demonstrated biocide

resistance, K. pneumoniae chlorhexidine efflux protein

A (CepA) (Fang et al. 2002), also annotated as ferrous iron

efflux protein F (FieF/YiiP) due to its ability to relieve

toxic concentrations of iron stress (Grass et al. 2005). The

archetypical structural arrangement of the bacterial CDF

protein family is based on the crystal structures of the zinc

binding CDF member in E. coli FieF/YiiP (Lu and Fu

2007; Lu et al. 2009). E. coli FieF/YiiP forms a functional

homodimer where each monomer has a modular two

domain architecture in which both TMH domains form a

hydrophobic cleft, and cytoplasmically exposed domains

form a metal ion binding domain (Fig. 2) (Wei et al. 2004).

Monomeric CDF protein arranges to form 6 TMH with

three domains: an N-terminal domain (NTD), histidine rich

interconnecting loops (ILs), and 100 a.a. long C-terminal

domain (CTD) arranging together to form a TMH and

cytoplasmic domain that coordinates the metal ion trans-

port from the cytoplasm (Fig. 3e) (Kolaj-Robin et al.

2015). Dimer stabilization and metal ion coordination is

accomplished by conserved aspartate and histidine residues

within the TMH domain of the E. coli FieF protein, TMH2

(D45, D49), and TM5 (H153, D157); as well as a number

of hydrophobic cleft forming residues located in TMH2,

TMH3, and TMH5; along with salt bridge forming aspar-

tate and lysine residues located in TMH3 and cytoplasmic

domains (Wei and Fu 2006; Fu 2010; Kolaj-Robin et al.

2015). Based on current structures of the E. coli YiiP (Lu

and Fu 2007; Coudray et al. 2013), it is uncertain how

chlorhexidine transport is accomplished by K. pneumoniae

CepA, despite their high sequence identity (86%) (Fang

et al. 2002); nor is it clear if other FieF homologues can

confer biocide resistance. FieF homologues are well rep-

resented in most pathogenic Enterobacterial species

(Fig. 1b), suggesting that metal and chlorhexidine efflux

may be important for pathogenicity. Two transport mech-

anism models are currently being validated (Kolaj-Robin

et al. 2015). cepA genes are frequently detected in biocide

resistant Klebseilla spp. isolates (Abuzaid et al. 2012;

Naparstek et al. 2012; Rania et al. 2014), as well as in

Enterobacter sp. (Ren et al. 2010) either chromosomally

(Cubillas et al. 2013), or from multidrug resistant plasmids

(Rania et al. 2014). cepA is commonly associated with

other biocide selective efflux pump family members, most
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frequently SMR family qac genes (Azadpour et al. 2015),

and/or MFS cmlA members (Naparstek et al. 2012). The

association of toxic metal efflux pumps with efflux pumps

conferring biocide resistance is not uncommon on mobile

genetic elements (Gullberg et al. 2014; Wales and Davies

2015; Pal et al. 2015), as both toxic/heavy metals and

biocides are used together as antiseptics in livestock and

healthcare settings. Further examination of the potential

biocide resistance conferred by FieF homologues will

hopefully provide additional insights into the role they play

in virulence, and antimicrobial/metal resistance in

Enterobacteriaceae.

Knowledge Gaps

Many questions remain regarding the structure, function,

and regulation of TolC-independent efflux pumps.

Regarding functional considerations, how biocides are

completely expelled from within the periplasm after single

component efflux activity remains unclear. Do these pumps

function with one or more multipartite systems, such as the

AcrAB-TolC system as suggested from an E. coli study of

combinatorial RND AcrAB, SMR emrE, and MFS mdfA

gene deletions (Tal and Schuldiner 2009)? Or is the

expulsion of substrates across the outer membrane from the

periplasm reliant on passive diffusion through one or more

OMP? Evidence supporting specific OMP involvement has

been demonstrated for SMR member EmrE, which

demonstrated an association with OmpW to expel osmo-

protectants and methyl viologen (Beketskaia et al. 2014).

What roles do these efflux systems contribute to biofilms?

QACs are frequently used to eradicate biofilms (McBain

et al. 2004; Buffet-Bataillon et al. 2011), the presence of

QAC resistant TolC-independent efflux pumps may indi-

cate that these systems play a role in the establishment and

maintenance of biofilm growth (Russell 2003; McBain

et al. 2004; Houari and Di Martino 2007; Buffet-Bataillon

et al. 2011; Soto 2013a). Therefore, single component

efflux pumps may contribute to biofilm formations that are

more difficult to treat in healthcare and industrial settings,

making this an imperative area for future study.

The association of lipid modifications caused by biocide

exposure and upregulated efflux activity is also present in

biocide resistant Enterobacteriaceae. Most biocide resis-

tance studies examine laboratory adapted strains that

exhibit changes not only in efflux pump activity but also in

lipid modifications which alter head group charge and fatty

acid saturation (Braoudaki and Hilton 2004, 2005; Langs-

rud et al. 2004; Bore et al. 2007). Studies of SMR member

EmrE suggest that efflux pump activity is regulated by

lipids, specifically low abundance anionic phospholipid

cardiolipin (Charalambous et al. 2008; Miller et al. 2009;

Dutta et al. 2014). Understanding the interconnectedness of

biocides, lipids, and efflux pump proteins together, may

help improve the design of specific efflux pump inhibitors.

With regards to function, the biocide concentrations that

individual efflux pumps can confer resistance to may differ

depending on how the cells are grown: the physiology of

the cells (planktonic versus surface attached biofilm), the

type of growth media used, and the background genotype

of the bacterial strain used to measure minimum inhibitory

concentration values attributed to specific pump activity [as

reviewed by (Baugh et al. 2014; Blair and Piddock 2016)].

E. coli, being a reservoir for mobile genes in the environ-

ment (Szmolka and Nagy 2013), and a representative

member of Enterobacteriaceae, make it an ideal candidate

to study single component efflux pumps as a model

organism. Considering many TolC-independent efflux

pumps exhibit conditional activity that influences

osmoregulation (SMR, MFS, and MATE), DNA repair

(MATE), metal transport (CDF), and metabolite regulation

(SMR, MFS, and MATE), these efflux systems likely have

overlooked importance. Further insights into the nature of

the stress response(s) involved in single component efflux

system expression beyond standard laboratory growth

conditions may help provide greater insights into condi-

tional phenotypes conferred by these efflux pumps.

Concluding Remarks

The biocide selective transporter families focused on in this

review are found in many pathogenic Gram-negative

Enterobacteriaceae, and the fact that they may confer

cross-resistance to other antimicrobials, highlights their

clinical importance (Table 1). In addition to drug resis-

tance, many of these TolC-independent efflux pumps

contribute towards other physiological processes such as

osmoregulation (SMR, MFS, and MATE), biofilms (SMR,

MFS, and MATE), quorum sensing (MATE), tolerance to

toxic metals (CDF) and reactive oxygen species (MATE);

these features demonstrate the adaptability, and multi-

faceted function that are hallmarks of single component

efflux pumps.

Single component efflux pump systems have been lar-

gely overlooked as compared to other well studied efflux

families, such as multipartite RND pumps, however, their

prevalence on mobile genetic elements, along with their

frequent detection in healthcare and environmental Enter-

obacterial isolates, suggests that there is sufficient selective

pressure to maintain and spread these efflux pumps to other

systems. The selection for these single component efflux

pumps may be perpetuated by the widespread overuse of

antimicrobials, especially cationic antiseptics such as

QACs, and the detection of these efflux pumps may be a
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marker for anthropogenic contamination of the environ-

ment with these antimicrobials; driving a shift towards

decreased membrane permeability in Gram-negative

bacilli. The recent ban of biocides from hand soaps by the

US Food and Drug Administration (Sept. 2016), which

includes triclosan, and many QAC antiseptics as well as

even more stringent regulations imposed on the use and

inclusion of biocides in commercial products by the

European union over the last 10 years (Biocidal Products

Regulation; https://ec.europa.eu/health/biocides/policy_

en), provide some hope that more responsible biocide

regulations and stewardship may soon be on the global

horizon. By reducing environmental biocide exposure, we

may begin to reduce the selective pressure driving the

spread and adaptation of these efflux systems towards

biocides and antimicrobials.
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