Skip to main content

Advertisement

Log in

Investigation on thermal conductivities of pentaerythritol-graphene composites for thermal energy storage

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Low thermal conductivity is one of the major disadvantages that limit the practical application of energy storage materials. In this paper, the thermal physical properties and thermal conductivity of the composite phase change materials, in which the pentaerythritol is used as the matrix material and graphene/alumina as the thermal conductive fillers, is respectively investigated with experimental research and simulation analysis. The DSC results show that the specific heat capacity (25 °C) of the composite is improved because of the graphene. Additionally, the addition of graphene makes the phase change temperature and latent heat value of phase change slightly increase. As the mass percentages of thermal conductive filler increases, the thermal conductivity of pentaerythritol-graphene(PE-GE) as well as pentaerythritol-alumina(PE-Al2O3) composite increases gradually, but graphene has a more excellent effect. With increasing the mass fractions of graphene, the changing trend of interfacial thermal conductivity is consistent with the overall thermal conductivity because of that the interfacial thermal conductivity characterizes the combination of thermally conductive fillers and matrix materials, and the local promotion will affect the whole. Furthermore, the graphene structure changes towards better combination and more uniform dispersion with pentaerythritol as the increase of carbon atom spacing in graphene. In addition, the promoted overall thermal conductivity of the composite benefits from the structural change of the thermal conductive filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50

    Article  Google Scholar 

  2. Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B (2019) Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energ 235:846–873

    Article  Google Scholar 

  3. Xu J, Yang T, Xu X, Guo X, Cao J (2020) Processing solid wood into a composite phase change material for thermal energy storage by introducing silica-stabilized polyethylene glycol. Compos Part A Appl Sci Manuf 139:106098

  4. Nazir H, Batool M, Osorio FJB, Isazaruiz M, Xu X, Vignarooban K, Phelan PE, Inamuddin KAM (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Tran 129:491–523

    Article  Google Scholar 

  5. Tao Z, Chen X, Yang M, Xu X, Wang G (2020) Three-dimensional rGO@sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage. Sol Energy Mat Sol C 215:110600

    Article  Google Scholar 

  6. Elias CN, Stathopoulos VN (2019) A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia 161:385–394

    Article  Google Scholar 

  7. Liu L, Peng B, Yue C, Guo M, Zhang M (2019) Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a facile process for building energy efficiency. Mater Chem Phys 222:87–95

    Article  Google Scholar 

  8. Fallahi A, Guldentops G, Tao M, Granadosfocil S, Van Dessel S (2017) Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties. Appl Therm Eng 127:1427–1441

    Article  Google Scholar 

  9. Barrio EPD, Godin A, Duquesne M, Daranlot J, Jolly J, Alshaer WG, Kouadio T, Sommier A (2017) Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol Energ Mat Sol C 159:560–569

    Article  Google Scholar 

  10. Hesse A, Biyikal M, Rurack K, Weller MG (2016) Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement. J Mol Recognit 29(2):88–94

    Article  Google Scholar 

  11. Wang X, Sun Y, Gong N (2016) Experimental investigations for the phase equilibrium of R1234yf and R1234ze(E) with two linear chained pentaerythritol esters. J Chem Thermodyn 92:66–71

    Article  Google Scholar 

  12. Zhang Q, Rao Y, Jiao Y, Li L, Li Y, Jin L (2017) Preparation and performance of composite building materials with phase change material for thermal storage. Energy Procedia 143:125–130

    Article  Google Scholar 

  13. Takahashi Y, Kamimoto M, Abe Y, Nagasaka Y, Nagashima A (1988) Heat capacity, heat of transition, and thermal conductivity of pentaerythritol and its slurry. Jpnjthermophysprop 2(1):53–58

    Google Scholar 

  14. Seibert JR, Keles O, Wang J, Erogbogbo F (2019) Infusion of graphene quantum dots to modulate thermal conductivity and dynamic mechanical properties of polymers. Polymer 185:121988

    Article  Google Scholar 

  15. Billing BK, Dhar P, Singh N, Agnihotri PK (2018) Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes. Soft Matter 14(2):291–300

    Article  Google Scholar 

  16. Wang T, Tsai J (2016) Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Comput Mater Sci 122:272–280

    Article  Google Scholar 

  17. Miranda A, Bolzoni L, Barekar NS, Huang Y, Shin J, Ko S, Mckay B (2018) Processing, structure and thermal conductivity correlation in carbon fibre reinforced aluminium metal matrix composites. Mater Des 156:329–339

    Article  Google Scholar 

  18. Burger N, Laachachi A, Mortazavi B, Ferriol M, Lutz M, Toniazzo V, Ruch D (2015) Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int J Heat Mass Tran 89(oct.):505–513

    Article  Google Scholar 

  19. Liu Q, Wang F, Shen W, Qiu X, Xie Z (2019) Influence of interface thermal resistance on thermal conductivity of SiC/Al composites. Ceram Int 45(17):23815–23819

  20. Tang D, Su J, Kong M, Zhao Z, Niu Y (2016) Preparation and properties of epoxy/BN highly thermal conductive composites reinforced with SiC whisker. Polym Compos 37(9):2611–2621

    Article  Google Scholar 

  21. Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J (2017) Experimental study of thermal rectification in suspended monolayer graphene. Nat Commun 8:15843

    Article  Google Scholar 

  22. Gaweł, Żyła, Jacek, Fal (2016) Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids. Thermochim Acta 637:11–16

  23. Xoán G-F, Ana AP, Carmen C, Victor V, José AM (2018) Influence of phase morphology on the rheology and thermal conductivity of HDPE/PA6 immiscible blends with alumina whiskers. Polym Test 71:56–64

    Article  Google Scholar 

  24. Yang Q, Zhang Z, Gong X, Yao E, Zou H (2020) Thermal conductivity of Graphene-polymer composites: implications for thermal management. Heat Mass Trans 56(6):1931–1945

    Article  Google Scholar 

  25. Li C, Zeng X, Tan L, Yao Y, Zhu D, Sun R, Xu J, Wong C (2019) Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer. Chem Eng J 368:79–87

    Article  Google Scholar 

  26. Venkitaraj KP, Suresh S, Venugopal A (2018) Experimental study on the thermal performance of nano enhanced pentaerythritol in IC engine exhaust heat recovery application. Appl Therm Eng 137:461–474

    Article  Google Scholar 

  27. Venkitaraj KP, Suresh S (2018) Effects of Al2O3, CuO and TiO2 nanoparticles on thermal, phase transition and crystallization properties of solid-solid phase change material. Mec Mater128:64–88

  28. Hu P, Zhao P, Jin Y, Chen Z (2014) Experimental study on solid–solid phase change properties of pentaerythritol (PE)/nano-AlN composite for thermal storage. Sol Energy 102:91–97

    Article  Google Scholar 

  29. Liu M, Severino J, Bruno F, Majewski P (2019) Experimental investigation of specific heat capacity improvement of a binary nitrate salt by addition of nanoparticles/microparticles. J Energ Chem 22:137–143

    Google Scholar 

  30. Gao Y, Mullerplathe F (2016) Increasing the thermal conductivity of Graphene-Polyamide-6,6 Nanocomposites by surface-grafted polymer chains: calculation with molecular dynamics and effective-medium approximation. J Phys Chem B 120(7):1336–1346

    Article  Google Scholar 

  31. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No.51701102) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Yang, Q., Gong, X. et al. Investigation on thermal conductivities of pentaerythritol-graphene composites for thermal energy storage. Heat Mass Transfer 57, 1909–1919 (2021). https://doi.org/10.1007/s00231-021-03076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03076-z

Keywords

Navigation