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Abstract
Application of the method of fundamental solutions in combination with the global radial basis function collocation method for
analysis of fluid flow and heat transfer in an internally finned square duct is presented in the paper. Fluid flow problem is solved
using the modified method of fundamental solutions. After that, the average fluid velocity and product of friction factor and
Reynolds number can be determined. Heat transfer problem in the fluid is governed by a nonlinear equation with linear boundary
conditions. The Picard iteration method is employed in the paper in order to transform the nonlinear problem into a sequence of
inhomogeneous problems. At each iteration step, the general solution is obtained using the modified method of fundamental
solutions and the particular solution is obtained using the global radial basis function collocation method. When the iteration
process is stopped, the Nusselt number can be determined.

Nomenclature
a Half of internal width of channel [m]
b Thickness of wall [m]
Bb Dimensionless thickness of wall [−]
cb Shape parameter [−]
cj j-th unknown coefficient of the approximate solution

for the fluid velocity [−]
cp Specific heat at a constant pressure [J/(kg∙K)]
d Half of thickness of fin [m]
Db Half of dimensionless thickness of fin [−]
ej j-th unknown coefficient of the particular solution for

the fluid temperature [−]
f friction factor [−]
gj j-th unknown coefficient of the general solution for the

fluid temperature [−]
hj j-th unknown coefficient of the approximate solution

for the wall temperature [−]
kf Thermal conductivity of the fluid [W/(m∙K)]
kw Thermal conductivity of the wall [W/(m∙K)]
K Dimensionless thermal conductivity of the wall [−]
l Length of fin [m]
Lb Dimensionless length of fin [−]

ṁ Mass flow rate [kg/s]
M1 Number of harmonic functions in the approximate

solution for the fluid velocity [−]
M2 Number of harmonic functions in the general solution

for the fluid temperature [−]
M3 Number of harmonic functions in the approximate

solution for the wall temperature [−]
n Normal direction [−]
Nint Number of internal points [−]
NSf Number of source points for fluid flow problem [−]
NStf Number of source points for heat transfer problem

in the fluid region [−]
NStw Number of source points for heat transfer problem

in the wall region [−]
Nu Nusselt number [−]
p Pressure [Pa]
Pb Dimensionless wetted perimeter [−]
qav Average heat flux through external surface of the

tube [W/m2]
rj Distance between the point (X, Y) and the j-th

internal point (Xintj, Yintj) [−]
rSj Distance between the point (X, Y) and the j-th

source point (XSj, YSj) [−]
Re Reynolds number [−]
S Distance between the pseudo-boundary and the

considered region [−]
Sb Dimensionless area of the repeated element [−]
Tf Fluid temperature [K]
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To Constant temperature at the outer boundary
of the tube [K]

Tw Wall temperature [K]
TOL Tolerance of the iteration process [−]
w Axial fluid velocity [m/s]
W Dimensionless fluid velocity [−]
Greek letters
Γi Dimensionless internal boundary of the

duct in the repeated element [−]
Γei Internal boundary of the duct [m]
Γo Dimensionless outer boundary of the duct

in the repeated element [−]
Γeo Outer boundary of the duct [m]
θf Dimensionless temperature of the fluid [−]
θw Dimensionless temperature of the wall [−]
μ Dynamic viscosity of the fluid [Pa∙s]
ρ Density of the fluid [kg/m3]
Ω1 Dimensionless fluid region [−]
Ωe1 Fluid region [m2]
Ω2 Dimensionless wall region [−]
Ωe2 Wall region [m2]
Coordinate systems
(x, y, z) Cartesian coordinate system
(X, Y, Z) Dimensionless Cartesian coordinate system
(rF, θF) Local polar coordinate system centered at F
(rG, θG) Local polar coordinate system centered at G
Subscripts
av Average
f Fluid
g General
p Particular
w Wall
Superscripts
[i] Iteration step

1 Introduction

Fluid flow and heat transfer in internally finned tubes is a very
import problem from a practical point of view. In the literature
one can findmany different geometries of such tubes. Some of
these [1–9] are depicted in Fig. 1. In order to analyze this
problem the authors applied different numerical methods,
e.g. the finite difference method [10], the finite element meth-
od [11] or the finite volume method [12]. Example of such a
tube is also an internally finned square duct [13], which is
considered in the paper, see Fig. 2.

In numerical analysis of boundary value problemsmeshless
methods are more and more popular [14, 15]. The method of
fundamental solutions (MFS) is one of such a method. It was
proposed in 1964 by Kupradze and Aleksidze [16]. The meth-
od can be applied for these boundary value problems for
which the fundamental solution of partial differential operator

in the governing equation is known. In the MFS two types of
points are used: the source points and the collocation points.
The source points are located outside the considered domain
on so called the pseudo-boundary (or the fictitious boundary)
and the collocation points are put on the boundary of the con-
sidered region to satisfy the boundary conditions.
Fundamental solution is a function of distance between a point
inside the domain and the source point. The approximate so-
lution in the MFS is a linear combination of fundamental so-
lutions. The main problem in the MFS is how to distribute the
source points. Distribution of the source points has been stud-
ied by some researchers in the literature [17–20]. Because of
that, the method requires some experience in this matter.
Nonetheless the method is quite easy to implement. Probably
the first numerical implementation of the method was given by
Mathon and Johnston [21]. Some authors considered also sta-
bility of the method [22, 23]. The MFS has been successfully
applied for solving different boundary value problems, e.g.,
direct [24, 25] or inverse problems [26]. To the best knowl-
edge of the author, the MFS has been applied for solving fluid
flow and heat transfer only in one paper [27].

In case of nonlinear problem, the MFS cannot be applied
directly to solve it. In order to transform the nonlinear problem
into a sequence of inhomogeneous equation, the Picard itera-
tion method can be employed [28]. At the beginning in the
nonlinear equation, the linear and nonlinear terms are distin-
guished. After that, at each iteration step to transform the
problem in the nonlinear term, the solution from the previous
iteration step is used and the problem to solve is inhomoge-
neous. Then, the method of particular solution can be applied.
The solution of inhomogeneous equation consists of the gen-
eral and particular solutions at each iteration step. The partic-
ular solution very often is obtained using the dual reciprocity
method (DRM) [29]. The inhomogeneous term is interpolat-
ed, e.g., using the radial basis functions (RBFs), and simulta-
neously the particular solution is obtained if the particular
solution of the RBF for the given linear operator is known.
The DRM in combination with the MFS was compared with
another method for obtaining the particular solution (based on
the Newtonian potential [30]) by Golberg [31]. He showed
that it gives more accurate results in case of the Poisson’s
equation. The numerical procedure with the DRM and the
MFS is very common in the literature. It has been successfully
applied in many engineering and scientific problems, e.g.,
flow in a wavy channel [32], non-Newtonian fluids flows
[33, 34] or elastoplastic torsion of prismatic bars [35]. In the
paper, the global radial basis function collocation method
(GRBFCM) is applied to obtain the particular solution, which
is not so typical in solving the inhomogeneous and nonlinear
problems using the MFS. The GRBFCM is called also the
Kansa method after the name of the author of the paper [36],
who proposed the method for solving some boundary value
problems.
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For obtaining the general solution, the standard MFS can be
applied in solving inhomogeneous problems. However, in this
paper the problem to solve includes sharp corners and it gener-
ates additional singularity in solution. In the literature, one can
find somemodifications of theMFS for problemswith boundary
singularities. Antunes andValychev applied theMFS for analysis
of acoustic wave propagation problems in two-dimensional do-
mains with corners and cracks [37]. Two-dimensional singular
direct [38] and inverse [39] Helmholtz problems were analyzed
using the MFS by Marin. Karageorghis proposed the modified
MFS (MMFS) for solving harmonic and biharmonic problems
with boundary singularities [40]. Thismodification of theMFS is
employed in the paper for solving fluid flow and heat transfer in
an internally finned square duct, which is a practical example of
problems with sharp corners.

In the paper. steady, fully-developed fluid flow and heat
transfer in an internally finned square duct is considered using
the MMFS and the GRBFCM. Fluid flow problem is de-
scribed by a linear governing equation with linear boundary

conditions. It can be solved using the MMFS. After that, the
average fluid velocity and product of friction factor and
Reynolds number can be determined. Heat transfer problem
is governed by a nonlinear equation with linear boundary con-
ditions. The nonlinear equation is transformed into a sequence
of inhomogeneous equations using the Picard iteration meth-
od. Then in the nonlinear term at each iteration step, the solu-
tion from the previous iteration step is employed and solution
of the inhomogeneous problem consists of the general and
particular solutions. In order to obtain the particular solution
the GRBFCM is employed and the inhomogeneous term is
satisfied at a finite number of internal points. After that, the
general solution is obtained using the MMFS and by satisfy-
ing the boundary conditions. In the end of each iteration step,
the average fluid temperature is calculated. After stopping the
iteration process, the Nusselt number can be determined. The
paper presents quite new application of a meshless procedure
for solving fluid flow and heat transfer in a internally finned
square duct. In comparison to the previous paper on applica-
tion of the MFS and RBFs for solving fluid flow and heat
transfer in internally corrugated or finned ducts [27, 41–43],
in this paper, the MMFS is applied in order to obtain stable
solution because of boundary singularities. Furthermore, in-
stead of the commonly usedDRM, the GRBFCM is employed
in the paper for obtaining the particular solution in the Picard
iteration process, what is also not so typical for application of
the MFS for nonlinear and inhomogeneous problems.

Fig. 1 Different geometries of internally finned tubes

Fig. 2 Geometry of the considered problem
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The paper is organized as follows. Statement of the consid-
ered problem is presented in Section 2. Mathematical descrip-
tion of the geometry, the governing equations and boundary
conditions can be found in this part of the paper. Section 3
presents a meshless method applied in the paper. At the be-
ginning of this section, the numerical algorithm is shown and
then subsequent steps of the algorithm are described. The
results of the conducted numerical experiments are shown in
Section 4. Final conclusions are drawn in Section 5.

2 Mathematical formulation of the problem

Mathematical formulation (mathematical description of the
geometry, governing equations and boundary conditions for
fluid flow and heat transfer) of the considered problem is
given in this section.

2.1 The considered geometry of the problem

Figure 2 shows an example of internally finned square duct
cross-section. The characteristic dimensions, i.e., the internal
width of the channel 2a, the length of fins l, the thickness of
fins 2d and the thickness of the wall b, are also depicted in the
figure. Furthermore, one can notice that the internal region of

the tube, where the fluid flows is denoted here by Ωe1 and the

wall region byΩe2. In a similar way, Γei is the internal boundary
of the duct and Γeo is the outer boundary.

Let us consider a repeated element of the considered region
because of symmetry of the considered problem. The follow-
ing dimensionless quantities can be introduced

Lb ¼ l
a
;Db ¼ d

a
;Bb ¼ b

a
: ð1Þ

The repeated element with characteristic dimensionless
quantities is depicted in Fig. 3. In this figure,Ω1 andΩ2 denote
dimensionless fluid flow and wall regions, respectively.

In such a dimensionless repeated element, the area is given
by

Sb ¼ 1

2
−Db Lb ð2Þ

and the wetted perimeter takes the form

Pb ¼ 1þ Lb: ð3Þ

2.2 The momentum equation

Let us consider a steady, fully-developed flow of an in-
compressible Newtonian fluid in the axial direction. The
problem can be mathematically described in the Cartesian
coordinate system (x, y, z) by the following governing
equation

∂2w x; yð Þ
∂x2

þ ∂2w x; yð Þ
∂y2

¼ 1

μ
dp
dz

in Ω
~

1; ð4Þ

where w(x, y) is the axial velocity, dp/dz is a constant
pressure gradient in the z axis direction and μ is the dy-
namic viscosity. The non-slip boundary condition is for-
mulated in this study and it is expressed by

w x; yð Þ ¼ 0 on Γ
~
i: ð5Þ

Introducing the dimensionless fluid velocity

W X ; Yð Þ ¼ w x; yð Þ
−
a2

μ
dp
dz

; ð6Þ

Eq. (4) takes the following dimensional form

∂2W X ; Yð Þ
∂X 2 þ ∂2W X ; Yð Þ

∂Y 2 ¼ −1 in Ω1: ð7Þ

subject to the boundary conditions

W X ; Yð Þ ¼ 0 on BF
― ∪ FG

― ∪GE― non−slip boundary conditionð Þ;
ð8Þ

∂W X ; Yð Þ
∂n

¼ 0 on AB
― ∪EA― symmetry conditionð Þ; ð9Þ

where n is the normal direction.
The product of friction factor and Reynolds [10, 42] num-

ber takes the form

f Re ¼ 8Sb2
WavPb2; ð10Þ

where the dimensionless average velocity Wav is defined as
follows

Fig. 3 The repeated element of the internally finned square duct with the
characteristic dimensionless quantities
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Wav ¼
∫
Ω1

W X ; Yð ÞdΩ1

∫
Ω1

dΩ1
¼

∫
Ω1

W X ; Yð ÞdΩ1

S
~
:

ð11Þ

2.3 The energy equation

Let us consider heat transfer in such a tube. We put the fol-
lowing assumptions:

1) heat transfer in the fluid and wall regions is steady,
2) temperature profile is fully-developed,
3) heat transfer in the axial direction can be neglected,
4) temperature at the outer boundary of the tube is constant

and known,
5) heat flux through the outer boundary of the tube on an

unit length of the tube is constant.

Taking into account these assumptions, the governing
equation in the fluid region takes the following form in the
Cartesian coordinate system (x, y, z)

∂2T f x; yð Þ
∂x2

þ ∂2T f x; yð Þ
∂y2

¼ ρcp
k f

w x; yð Þ ∂T f x; yð Þ
∂z

in Ω
~

1; ð12Þ

where Tf(x, y) is the fluid temperature, kf is the thermal con-
ductivity of the fluid and cp is the specific heat at a constant
pressure.

Let us introduce the dimensionless fluid temperature

θ f X ; Yð Þ ¼ T f x; yð Þ−To
� �

k f

qava
: ð13Þ

Finally, the dimensionless governing equation for heat
transfer problem in the fluid region Ω1 after some mathemat-
ical operations [10, 42] takes the form

∂2θ f X ; Yð Þ
∂X 2 þ ∂2θ f X ; Yð Þ

∂Y 2

¼ f ReW R; θð Þ θ f X ; Yð Þ
θ f av

in Ω1; ð14Þ

where the dimensionless average fluid temperature θfav is giv-
en by

θ f av ¼
∫
Ω1

θ f X ; Yð ÞW X ; Yð ÞdΩ1

∫
Ω1

W X ; Yð ÞdΩ1
: ð15Þ

The Nusselt number is formulated as

Nu ¼ −
2

θ f av
: ð16Þ

The dimensionless temperature of the wall is expressed by

θw X ; Yð Þ ¼ Tw x; yð Þ−Toð Þkw
qava

; ð17Þ

Tw(x, y) is the wall temperature and kw is the thermal conduc-
tivity of the wall.

Using the above dimensionless temperature θw(X, Y), the
energy equation in the wall region Ω2 for steady, fully-
developed heat transfer is given by

∂2θw X ; Yð Þ
∂X 2 þ ∂2θw X ; Yð Þ

∂Y 2 ¼ 0 in Ω2: ð18Þ

Heat transfer problem is governed by the dimensionless
Eqs. (14) in the fluid region Ω1 and (18) in the wall region
Ω2. The boundary conditions are expressed as follows

∂θ f X ; Yð Þ
∂n

¼ 0 on AB
― ∪EA― symmetry conditionð Þ

ð19Þ

θ f X ; Yð Þ ¼ θw X ; Yð Þ on BF
― ∪ FG

― ∪GE―

continuity of the temperatureð Þ;
ð20Þ

∂θ f X ; Yð Þ
∂n

¼ K
∂θw X ; Yð Þ

∂n
on BF

― ∪ FG
― ∪GE―

continuity of the heat f luxð Þ;
ð21Þ

∂θw X ; Yð Þ
∂n

¼ 0 on BC
― ∪ED― symmetry conditionð Þ;

ð22Þ
θw X ; Yð Þ ¼ 0 on CD

―
given value of the temperatureð Þ;

ð23Þ
where K = kw/kf is the dimensionless thermal conductivity of
the wall.

3 Numerical procedure

Table 1 shows a general concept of the numerical procedure
proposed in the paper.

3.1 Solution of Newtonian fluid flow problem using
the modified method of fundamental solutions

The boundary value problem to solve is described by the
governing Eq. (7) subject to the boundary conditions

Heat Mass Transfer (2020) 56:639–649 643



(8)–(9). The solution of this problem consists of two parts: the
general solution and the particular solution

W X ; Yð Þ ¼ Wg X ; Yð Þ þWp X ; Yð Þ; ð24Þ

whereWg(X, Y) andWp(X, Y) denote the general and particular
solutions, respectively. The particular solution is given by

Wp X ; Yð Þ ¼ −
X 2 þ Y 2

4
: ð25Þ

The general solution can be easily solved using the MMFS
in which the approximate solution consists of a linear combi-
nation of fundamental solutions and harmonic functions. It
can be written in the form

Wg X ; Yð Þ ¼ ∑
j¼1

NS f

c jln r2Sj
� �

þ ∑
m¼1

M1

αmr
λm
F f m θFð Þ; ð26Þ

whereNSf is the number of the source points,M1 is the number
of the harmonic function in the solution, cj (j = 1, 2, …, NSf)
and αm (m = 1, 2, …, M1) are unknown coefficients, (rF, θF)
are local polar coordinates centered at F (see Fig. 4) and rSj
denotes distance between the point (X, Y) and the j-th source
point (XSj, YSj)

rSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X−X Sj
� �2 þ Y−YSj

� �2q
: ð27Þ

The additional term in the general solution (in comparison
with the classical version of the MFS) approximates solution
of the problem in the neighborhood of boundary singularity
(for this case at the point F). For the Laplace equation and this
form of singularity, the harmonic functions are expressed by

Table 1 Numerical algorithm of
the proposed method of solution Step 1 Input parameters of the considered problem.

Step 2 Input parameters of the proposed method of solution.

Step 3 Solve fluid flow problem using the MMFS. Determine the unknown coefficients by
satisfying the boundary conditions at a finite number of the collocation points (the
boundary collocation technique).

Step 4 Calculate the average fluid velocityWav (e.g. using the Gaussian quadrature) and product
of friction factor and Reynolds number fRe.

Step 5 For the first approximation take i = 1.

Step 6 Determine the particular solution of the fluid temperature using the GRBFCM. Unknown
coefficients can be determined by satisfying the inhomogeneous equation at a finite
number of the internal points.

Step 7 Determine the general solutions of fluid and wall temperatures employing the MMFS.
Unknown coefficients are calculated by satisfying the boundary conditions at a finite
number of the collocation points (the boundary collocation technique).

Step 8 Calculate the dimensionless average temperature θ i½ �
f av (using e.g. Gaussian quadrature).

Step 9 Check the condition for stopping the iteration process

If θ i½ �
f X ; Yð Þ−θ i−1½ �

f X ; Yð Þ
��� ��� < TOL

else TAKE i = i + 1 and GO TO Step 6,

where TOL is tolerance of the iteration process.

Step 10 Calculate the Nusselt number Nu.

Fig. 5 Distribution of the source and collocation points for fluid flow
problemFig. 4 Local polar coordinates centered at F
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rλm
F f m θFð Þ ¼ r

2
3m
F sin

2θFm
3

� 	
: ð28Þ

In order to obtain the unknown coefficients cj (j = 1, 2,…,
NSf) and αm (m = 1, 2, …, M1) – Step 3 of the numerical
algorithm – the set of equations resulting from satisfying the
boundary conditions (8)–(9) has to be solved. Distribution of
the source and collocation points in the MMFS for the con-
sidered problem is depicted in Fig. 5. The source points are
situated on a pseudo-boundary outside the considered region.

3.2 Solution of heat transfer problem using
the modified method of fundamental solutions

Heat transfer problem is described by a nonlinear governing
Eq. (14) in the fluid regionΩ1 with a linear governing Eq. (18)
in the wall regionΩ2 subject to the linear boundary conditions
(19)–(23). In this study, the nonlinear problem is transformed
into a sequence of inhomogeneous problems using the Picard
iteration method. In such a case, at the i-th iteration step, the
inhomogeneous equation takes the form

∂2θ i½ �
f X ; Yð Þ
∂X 2 þ ∂2θ i½ �

f X ; Yð Þ
∂Y 2

¼ f ReW X ;Yð Þ θ
i−1½ �
f X ; Yð Þ
θ i−1½ �
f av

in Ω1: ð29Þ

In the first approximation (Step 5 of the numerical algo-
rithm), it is assumed that

θ 0½ �
f X ; Yð Þ
θ 0½ �
f av

¼ 1: ð30Þ

It leads to the following governing equation for obtaining
the first solution

∂2θ 1½ �
f X ; Yð Þ
∂X 2 þ ∂2θ 1½ �

f X ; Yð Þ
∂Y 2 ¼ f ReW X ; Yð Þ in Ω1: ð31Þ

At each iteration step, the approximate solution consists of
the general and particular solutions

θ i½ �
f X ; Yð Þ ¼ θ i½ �

fg X ; Yð Þ þ θ i½ �
fp X ; Yð Þ; ð32Þ

where θ i½ �
fg X ; Yð Þ and θ i½ �

fp X ; Yð Þ denote the general and partic-

ular solutions, respectively.
The GRBFCM is employed to obtain the particular solu-

tion which can be approximated by

Fig. 6 Distribution of the internal, collocation and source points in the
MMFS and GRBFCM for solving heat transfer problem in internally
finned square duct (fluid region)

Fig. 7 Local polar coordinates centered at G

Fig. 8 Distribution of the collocation and source points in theMMFS and
GRBFCM for solving heat transfer problem in internally finned square
duct (wall region)
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θ i½ �
fp X ; Yð Þ ¼ ∑

j¼1

N int

e jϕ r j
� �

; ð33Þ

where Nint denotes the number of internal points inside the
fluid region Ω1 (see Fig. 6), ej (j = 1, 2, .., Nint) are unknown
coefficients, ϕ(r) is the form of the RBF, (Xintj, Yintj) are coor-
dinates of the j-th internal point and rj is a distance between
the point (X, Y) and the j-th internal point (Xintj, Yintj)

r j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X−X int j
� �2 þ Y−Y int j

� �2q
: ð34Þ

The multiquadric function (MQ) is used in the paper as the
form of the RBF in order to obtain the particular solution. The
MQ is given by

ϕ rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ cb2;p

ð35Þ

where cbis the shape parameter.

In order to obtain (Step 6 of the numerical algorithm), the
unknown coefficients ej (j = 1, 2, .., Nint) the inhomogeneous
term

∂2θ i½ �
fp X ; Yð Þ
∂X 2 þ ∂2θ i½ �

fp X ; Yð Þ
∂Y 2 ¼ f ReW X ; Yð Þ θ

i−1½ �
f X ; Yð Þ
θ i−1½ �
f av

ð36Þ

should be satisfied at a finite number of the internal points.
Distribution of the internal points is depicted in Fig. 6.

The MMFS is also applied for obtaining the general solu-
tion of the fluid temperature and solution for the wall temper-
ature. Thus the approximate general solution of the fluid tem-
perature is given by

θfg X ; Yð Þ ¼ ∑
j¼1

NStf

g jln r2Sj
� �

þ ∑
m¼1

M2

βmr
λm
F f m θFð Þ; ð37Þ

where NStf is the number of the source points for heat transfer
problem outside the fluid region (see Fig. 5),M2 is the number
of the harmonic function in the solution, gj (j = 1, 2,…, NStf)

Fig. 9 Influence of the length and width of fins on the dimensionless average fluid velocity and product of friction factor and Reynolds number

Fig. 10 Influence of the length and width of fins on the dimensionless average fluid temperature and Nusselt number
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and βm (m = 1, 2, …, M2) are unknown coefficients, (rF, θF)
are local polar coordinates centered at F (see Fig. 3) and rSj
denotes distance between the point (X, Y) and the j-th source
point (XSj, YSj) defined in Eq. (27).

The wall temperature is also approximated using the
MMFS. It takes the form

θw X ; Yð Þ ¼ ∑
j¼1

NStw

h jln r2Sj
� �

þ ∑
m¼1

M3

γmr
λm
G f m θGð Þ; ð38Þ

where NStw is the number of the source points for heat transfer
problem outside the wall region (see Fig. 7),M3 is the number
of the harmonic function in the solution, hj (j = 1, 2,…, NStw)
and γm (m = 1, 2, …, M3) are unknown coefficients, (rG, θG)
are local polar coordinates centered at G (see Fig. 7) and rSj
denotes distance between the point (X, Y) and the j-th source
point (XSj, YSj) defined in Eq. (27). The harmonic functions in
the local polar coordinates (rG, θG) in this solution are given by

rλm
G f m θGð Þ ¼ r

2
3m
G sin

2θGm
3

� 	
: ð39Þ

In order to determine the unknown coefficients of the general
solution of the fluid temperature gj (j = 1, 2, …, NStf) and βm
(m = 1, 2, …, M2) and unknown coefficients of the wall tem-
perature hj (j = 1, 2,…,NStw) and γm (m = 1, 2,…,M3) – Step 7
in the numerical algorithm – the boundary collocation method
has to be applied. The boundary conditions (19)–(23) should be
satisfied at a finite number of the collocation points. Distribution
of the collocation and source points for the fluid region Ω1 is
depicted in Fig. 6 and for the wall region Ω2 in Fig. 8.

4 Results

The results obtained using the presented meshless procedure
are shown in this section. Influence of the geometry of the

internally finned square duct on fluid flow and heat transfer
in such a tube is here investigated.

Figure 9 presents influence of the length and width of fins
on the dimensionless average fluid velocity and product of
friction factor and Reynolds number. One can notice that the
average fluid velocity decreases with increasing length of the

fins. Only for D̂ ¼ 0:15 and D̂ ¼ 0:2 the average velocity
slightly increases for higher values of the length of fins. The
average fluid velocity is greater if the width of the fins is
smaller for a given length of fins. The smallest product of
friction factor and Reynolds number has been achieved for

the thinnest fin (D̂ ¼ 0:05 ).
Influence of the length and width of fins on the dimension-

less average fluid temperature and Nusselt number is present-
ed in Fig. 10. One can observe that the average fluid velocity
and Nusselt number increase with increasing length of fin. For

shorter fins (L̂ < 0:4 ) the average fluid velocity and Nusselt
number are greater if the fin is thinner. For longer fins the
dependency is reversed – the average fluid velocity and
Nusselt number are greater for thicker fins.

Influence of the dimensionless thermal conductivity of the
wall is not so significant. It is depicted in Fig. 11. The differ-
ences between the average fluid temperature andNusselt num-
ber for different values of the thermal conductivity are very
small. However the average fluid temperature and Nusselt
number are greater for thinner fins.

5 Conclusions

In the paper, a meshless procedure has been proposed for
analysis of fluid flow and heat transfer in an internally
finned square duct. The procedure is based on the modified
method of fundamental solutions and global radial basis
function collocation method. The proposed numerical al-
gorithm has been successfully applied for a practical

Fig. 11 Influence of the dimensionless thermal conductivity of the wall on the dimensionless average fluid temperature and Nusselt number
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problem with sharp corners, which introduce boundary sin-
gularities and makes the problem numerically more diffi-
cult to solve. The procedure gives stable solution and it can
be easily extended in the future for another geometries of
internally finned tubes.
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