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Abstract The aim of this work is the development of the
lattice Boltzmann model for simulation of the mold filling
process. The authors present a simplified approach to the
modeling of liquid metal-gas flows with particular emphasis
on the interactions between these phases. The boundary con-
dition for momentum transfer of the moving free surface to the
gaseous phase is shown. Simultaneously, the method for
modeling influence of gas back pressure on a position and
shape of the interfacial boundary is explained in details. The
problem of the lattice Boltzmann method (LBM) stability is
also analyzed. Since large differences in viscosity of both
fluids are a source of the model instability, the so-called frac-
tional step (FS) method allowing to improve the computation
stability is applied. The presented solution is verified on the
bases of the available reference data and the results of exper-
iments. It is shown that the model describes properly such
effects as: gas bubbles formation and air back pressure, ac-
companying liquid-gas flows in the casting mold. At the same
time the proposed approach is easy to be implemented and
characterized by a lower demand of operating memory as
compared to typical LBM models of two-phase flows.

Keywords Lattice Boltzmannmethod . LBM . Two-phase
flows . Boundary conditions . Stability . Back pressure

List of symbols
c Lattice constant
cs Speed of sound in the model
ei Discrete velocity set
fi Particle distribution function
f eqi Equilibrium distribution
Fi External force term
gc Compressibility level
l Domain linear size
m Mass
n Normal direction
p Pressure
t Time
u Velocity
wp Boundary friction coefficient
x Position

Greek symbols
ε Phase fraction
Δmi Mass changes in i direction
Δt Time step
Δx Lattice step
ν Kinematic viscosity
νFS Fictitious viscosity
ρ Density
τ Relaxation time

Subscripts
A Average value
g Gaseous phase
in Value at inlet
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l Liquid phase
out Value at outlet

Superscript
* Dimensionless value

1 Introduction

It is currently estimated that even 90% of technological prob-
lems accompanying the casting production are related to not
proper proceedings of a mold pouring. During this process
liquid metal flows via the gating system channels into the
mold cavity (Fig. 1). In case of the majority of casting tech-
nologies (apart from the vacuum casting) when the pouring
starts the mold is filled with the air. The air as well as other
gases, formed due to the thermal degradation of molding ma-
terials [1, 2], are compressed by the flowing stream and
‘pushed out’ from the mold via pores in its structure (sand
molds) and special venting elements, open feeders etc.
Simultaneously, not proper or not efficient enough venting
system can cause that gases will constitute a barrier, not
allowing the casting alloy to fill completely the mold cavity
[3]. In case when the liquid metal motion is accompanied with
turbulences, gas bubbles can be also enclosed within the
stream which, in consequence, leads to casting defects diffi-
cult to be removed [4, 5].

As can be seen, pouring of a castingmold is an example of a
two-phase flow: liquid metal - gas and its character and kinet-
ics has an essential influence on the final quality of cast ele-
ments. Due to its complexity and multitude of effects accom-
panying this process, engineers designing casting technologies
are more and more often using the simulation software. These
programs, regardless of their increasing popularity, are still
characterized by a low efficiency. This is caused by the com-
plicated CFD algorithms based on the Navier-Stokes (N-S)
equation and VoF-like [6, 7] interface tracking methods, usu-
ally applied in them. An alternative for such approach can be
the application of the Lattice Boltzmann method (LBM)
[8–10] which, due to its high efficiency, simplicity and suscep-
tibility to parallelization of calculations, has now become very
popular in solving fluid dynamics and heat transfer [11–14]

problems. On the other hand the Lattice Boltzmann method
has an important drawback, which is its low numerical stability
[15]. An additional issue constitutes the problem of two-phase
flows modeling. There are many LB models for the
multicomponent/multiphase flow, such as the method of
Gunstensen et al. [16], Shan and Chen [17] and its modifica-
tions [18], Swift et al. free energy approach [19], entropic
method by Mazloomi Moqaddam et al. [20] and even direct
solution for casting processes [21]. However, most of them
require storing separate sets of variables for each component/
phase or individual distribution functions for velocity and in-
terface tracking computations [22], which involves a high
memory requirement. In some cases an additional computation
step is also required to achieve zero diffusivity between fluids
(immiscible). This, of course, prolongs the calculation time and
decreases the algorithm efficiency. Also some other interesting
but more complicated models with multiple distribution func-
tions for multiphase/multicomponent flows conjugated with
heat transfer exists [23, 24] Therefore, this work discusses
the simplified numerical model of liquid-gas flows character-
ized by an adequate stability and accuracy, which will allow its
application in simulations of the casting mold pouring process.

2 Lattice Boltzmann method for single phase flows

The basic dependence describing the model evolution in the
LB method is the so-called lattice Boltzmann equation:

f i xþ eiΔt; t þΔtð Þ− f i x; tð Þ

¼ −
1

τ
f i x; tð Þ− f ieq x; tð Þð Þ þ Fi ð1Þ

where fi is the particle distribution function in i direction, f eqi
equilibrium distribution, x position, ei discrete velocity set, Fi
external force (e.g., gravity), t time and Δt is the time step.

Parameter τ is the relaxation time dependent directly on the
fluid kinematic viscosity ν:

τ ¼ ν*

c2s
þ 0:5 ð2Þ

Fig. 1 Schematic presentation of the mold filling process: (a) casting system, (b) empty (filled with air) mold before pouring, (c) metal flow in gating
system, (d) filling the mold cavity together with the air evacuation process
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where cs is a speed of sound in the model. Index „*^ concerns
dimensionless values, thus

ν* ¼ ν
Δt
Δx2

: ð3Þ

The remaining dimensionless parameters for the LBM can
be determined in an analogous way.

The heat exchange process was intentionally omitted in the
study. However, the presented below model can be easily
supplemented with the possibility of simulating the casting
cooling and solidification processes, by applying the thermal
lattice Boltzmann method [25].

Despite that the lattice Boltzmann method describes the
fluid behavior in the mesoscopic scale [9], it is possible - on
the bases of the particle distribution function - to compute,
essential from the point of view of the foundry technology,
macroscopic quantities including velocity:

u* ¼ 1

ρ*
∑
8

i¼0
f iei ð4Þ

and density:

ρ* ¼ ∑
8

i¼0
f i: ð5Þ

Here we used D2Q9 two-dimensional, single relaxation
time (SRT) model (Fig. 2).

The determination of the fluid pressure p∗ is possible by
means of the equation of state:

p* ¼ c2s ⋅ρ
*: ð6Þ

On the bases of u∗ and ρ∗ it is possible to define the equi-
librium distribution function:

f eqi ρ* x; tð Þ; u* x; tð Þ� �
¼ ωiρ

* 1þ 1

c2s
ei⋅u*
� �þ 1

2c4s
ei⋅u*
� �2− 1

2c2s
u*2

� �
: ð7Þ

Values of the remaining constant parameters from Eqs. (1–7)
are listed in Table 1.

3 Lattice Boltzmann method for free-surface flows

The free-surface lattice Boltzmann model developed by
C. Körner for the simulation of metallic foams formation
[26, 27], was used as the base for further analyses.
Certain modifications of this solution and the detailed
computational algorithm can be found in work [28], in
which the author focused on the computer animation of
the fluid motion.

In this approach all lattice cells - on the bases of the volume
fraction of liquid εl - are assigned to one of three types:

Type G - cells totally filled with a gaseous phase (εl = 0);
Type L - cells totally filled with a liquid phase (εl = 1);
Type I - cells filled with both phases - interface cells
(εl ∈ (0, 1)).

Cells filled with a gaseous phase are disregarded by the
numerical algorithm and thus they are determined as emp-
ty cells. Computations in the type L cells are carried out
as in the lattice Boltzmann method for single-phase flows
(described in section 2). The free surface tracking is done
by recording fluid mass changes in interface cells.

For the interface cell, neighboring in the given direction i
with the type L cell, its mass change Δmi in this direction is
determined by the following equation:

Δmi
* x; t þΔtð Þ ¼ f inv xþ eiΔt; tð Þ− f i x; tð Þ ð8Þ

where inv means the opposite direction to i.
For two neighboring interface cells the surface area,

through which the mass is exchanged, should be additionally
taken into account, thus:

Δmi
* x; t þΔtð Þ ¼ se⋅

εl xþ eiΔt; tð Þ þ εl x; tð Þ
2

ð9Þ

where

se ¼ f inv xþ eiΔt; tð Þ− f i x; tð Þ: ð10Þ

The new mass value for each interface cell is computed in
the following way:

m* x; t þΔtð Þ ¼ m* x; tð Þ þ ∑
8

i¼0
Δmi

* x; t þΔtð Þ: ð11Þ
Fig. 2 Discrete velocity set for a lattice cell in the D2Q9 model

Table 1 Values of the selected parameters for the D2Q9 model

ωi ei i cs

4/9 [0, 0] i = 0 cffiffi
3

p
1/9 [±1, 0]c , [0, ±1]c i = 1,2,3,4

1/36 [±1, ±1]c i = 5,6,7,8
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Parameter εl is determined on the basis of this value
(εl =m∗/ρ∗) and the interface cells are converted into type
L or G, respectively.

A gaseous phase is taken into consideration in this model
only by the averaged pressure (density) ρ*A exerted on a free
surface. Due to this, the missing particle distribution functions
in Eq. (1) - streamed from the type G cells - are reconstructed
with bounce-back rule:

f i x; t þΔtð Þ ¼ f eqi ρ*A; u
* x; tð Þ� �

þ f eqinv ρA; u
* x; tð Þ� �

− f inv x; tð Þ: ð12Þ

This approach is of a high efficiency due to neglecting type
G cells in computations. In case of simple problems there is
even the possibility of performing the real time simulations
[29]. On the other hand, the presented model of free-surface
flows is still a single-phase solution which does not allow
simulations of the mentioned effects, having the influence
on the castings quality. Thus, it is necessary to expand this
model in such way as it would be able to take into account
flows of both fluids filling the casting mold, at simultaneous
retaining the high efficiency and simplicity of the computa-
tional algorithm.

4 Simplified approach to modeling two-phase:
liquid-gas flows (piston model)

Problems of taking into account - in the model - mutual
interactions between liquid metal and gases filling the
mold are discussed here. In our solution these phases are
considered separately. The gas flows (in G type cells) is
treated now as a single phase flow with moving bound-
aries. Thus for the I cells the boundary constitute type G
cells and vice versa. The interaction of both phases is taken
into account by an application of the proper boundary con-
ditions on the dividing them interface.

The idea of this method can be explained by a pictorial
example of a piston moving in a cylinder (Fig. 3). The free
surface of liquid metal acts as a piston which - when moving -
is pressing and compressing the gases filling the mold. The
result of this operation can be an increased pressure in the
gaseous phase, which - in turn - will influence the liquid mo-
tion by pressing its free surface (piston surface) [25, 30].

For the proper representation of the interaction between
liquid metal and gases filling the mold, the problem of taking
into account eventual slips/frictions between these fluids is of
a critical meaning. Due to this, the boundary condition pre-
sented in work [28] - allowing transferring of the moving
obstacle (piston surface) momentum to the fluid as well as
determining the degree of flow deceleration being the result
of friction on the movable boundary - is adapted. For the type

G cell in point x neighboring the interface cell in the direction
inv the distribution functions, streamed from the liquid phase,
will be determined according to the equation:

f i x; t þΔtð Þ ¼ wp f inv x; tð Þ þ 2ωiρ
*
g3ei⋅u

*
0

� �
þ 1−wp
� �

f r x; tð Þ þ wr x; tð Þ2ωiρ
*
g3ei⋅ n⋅u*0

� �
n

	 
� �
ð13Þ

where fr is the distribution function reconstructed by means of
the free-slip boundary condition, ρ*g gas density, wp boundary

friction coefficient, u*0 liquid velocity in the interface cell, thus
u*0 ¼ u* xþ einvΔtð Þ. Constant wr is assuming value 1, when
function fr is reduced to the value corresponding with the no-
slip boundary condition, and is 0 in other cases.

The parameter wp takes on values from 0 to 1, where for
these extremes the free-slip and no-slip condition on the free
surface is assumed, respectively. It should be emphasized that
for wp = 0, the momentum is only transferred in the normal
direction n to the interface. Thus, to maintain the proper bal-
ance of forces at the interface the pressure of gases should also
act in the n direction only.

In order to take into account, in the model, the influence of
the pressure of gases on the liquid stream motion the gaseous
phase global pressure ρ*A (Eq. (12)) should be substituted by
the local pressure computed for individual type G cells neigh-
boring the interface cells:

f i x; t þΔtð Þ ¼ f eqi ρ*g xþ einv; tð Þ; u* x; tð Þ
� �

þ
þ f eqinv ρ*g xþ einv; tð Þ; u* x; tð Þ

� �
− f inv x; tð Þ:

ð14Þ

It should be mentioned in this place that one of the most
important factors influencing the shape of the liquid- gas in-
terfacial boundary is the surface tension. This force can be
taken into account in the model as it is shown in paper [31].
However, in such case for the type I cell it is necessary to
determine the local interface curvature, which requires several
additional calculations. Admittedly, it is possible to find in

Fig. 3 Schematic presentation of the piston model
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references [32] solutions not requiring the interface curvature,
but they also negatively influence the model efficiency. Due to
this, the surface tension is omitted in the hereby paper, as it is
often done in engineering calculations for the casting industry.

5 Boundary conditions

As it was mentioned, one of the advantages of the LBM is the
possibility of direct defining the boundary conditions on the
basis of the particle distribution functions. Therefore - accord-
ing to bounce back rule - for no-slip boundary missing distri-
bution functions in i -direction are obtained from

f i x; t þΔtð Þ ¼ f inv x; tð Þ: ð15Þ

The free-slip boundary condition can be implemented as it
is shown in paper [10].

For inlet and outlet boundarymissing distribution functions
are computed in the analogous way as in Eq. (14). In such case
the equilibrium distribution functions are determined by the
velocity or density (pressure) at inlet

f i x; t þΔtð Þ ¼ f eqi ρ*in; u
*
in

� �þ
þ f eqinv ρ*in; u

*
in

� �
− f inv x; tð Þ ð16Þ

or at outlet

f i x; t þΔtð Þ ¼ f eqi ρ*out; u
*
out

� �þ
þ f eqinv ρ*out; u

*
out

� �
− f inv x; tð Þ ð17Þ

where subscripts in and out mean values at inlet and outlet
boundary, respectively.

6 Numerical stability

An essential drawback of the presented approach is its low
numerical stability caused by large differences in the kinemat-
ic viscosity of both phases (indirectly caused also by differ-
ences in fluids density). The basic stability criteria in the LB
method are: the dimensionless fluid velocity less than cs and
the relaxation time comprising within the range (0.5, 2.5).
Here we concentrate on the second one.

Along with the Reynolds number (Re) increase (the fluid
viscosity decrease) the model stability decreases: τ→ 0.5.
Performing computations can be also impossible in case of
small Re values, since τ→ ∞ . In the lattice Boltzmann method
there is a direct connection between a time step and lattice step,
which for the presented free-surface model [28] is as follows:

Δt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gc⋅Δx
gj j

s
: ð18Þ

Parameter gc describing the allowable compressibility
level, due to gravitational acceleration g, can be changed
within a narrow range only and its value is usually individ-
ually selected for the given problem. Thus, this model can
be treated as the weakly-compressible scheme for incom-
pressible flows. It should be mentioned that due to rela-
tively low velocities occurring during the mold pouring
(except for the high pressure die casting technology) the
assumption of the fluid incompressibility concerns liquid
metal as well as gases in the casting mold and is here the
condition limiting the model usage.

It can be noticed that the only parameter, which has an
influence on the relaxation time (model stability) and which
can be freely controlled - at least theoretically - is the lattice
step Δx. By compiling Eqs. (2), (3) and (18) it is possible to
determine the number N of lattice cells which will assure the
proper τ value:

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81 τ−0:5

3ν*
� �2

0:0001

3

s
⋅l ð19Þ

where l is the domain linear size.
Substituting τ = 0.53 (empirically determined value

allowing to perform computations) and τ = 2.5 into Eq. (19)
the minimal Nmin and maximal Nmax number of cells in the
given direction - warranting meeting the stability condition - is
obtained, respectively.

As can be seen from Table 2, in the case of large vis-
cosity differences of both fluids present in the casting mold
(as for example in the case of air and liquid steel) finding
the N value, which will warrant satisfying the stability cri-
terion, can be impossible.

This problem was solved by the application in the model
the so-called Fractional Step (FS) method originally presented
by Shu et al. [33]. The process of solving Eq. (1) within the
given time step is - in this method - divided in two stages.

During the first stage (predictor step) Eq. (1) is solved
for the predetermined relaxation time value, which war-
rants maintaining the model numerical stability (usually
τ = 1). The a priori determination of τ parameter means,
according to Eq. (2), that the fluid kinematic viscosity
has also a certain, a priori determined value. This viscosity
is called a Bfictitious viscosity^ since it does not concern
directly the fluid physical property. On account of this,
during the second stage (corrector step) the correction of
the velocity field to the value corresponding the real vis-
cosity is performed:

∂u*

∂t
¼ ν−νFSð Þ∇2u* ð20Þ

where νFS is the fictitious viscosity computed on the bases of
Eq. (2) for τ = 1.

Heat Mass Transfer (2017) 53:3421–3431 3425



Equation (20) is of a form of the well known diffusion
equation and the number of effective numerical solutions of
this equation exist. The real kinematic viscosity of modeled
fluids was in a way ‘pulled out’ outside the lattice Boltzmann
algorithm, and thus would not have any direct influence on the
model stability [34]. However, the most time consuming part
of computation is made still with the LBM, which allows to
utilize this method advantages. It should be added, that the ν
value in type I cells (in which both phases coexist) will line-
arly depend on the volume fractions of both fluids:

ν ¼ εlνl þ 1−εlð Þνg ð21Þ

where subscripts l and g are related to the liquid and gaseous
phase, respectively.

The complete algorithm consists of the following steps:

Step 1: Calculation (in interface cells) of the new mass
value (Eq. (11));
Step 2: Solving (in G, L and I type cells) the lattice
Boltzmann equation (Eq. (1)) for τ = 1;
Step 3: Reconstruction (in interface cells) of the missing
distribution function streamed from G type cells
(Eq. (14));
Step 4: Reconstruction (in gas cells) of the missing dis-
tribution function streamed from I type cells (Eq. (13));
Step 5: Reconstruction (in G, L and I type cells) of the
remaining missing distribution function streamed from
domain boundary (Eqs. (15–17));
Step 6: Computation (in G, L and I type cells) the new
velocity and density values (Eqs. (4 and 5));
Step 7: Correction (in G, L and I type cells) the velocity
field based on local viscosity (Eq. (21)) - numerical solu-
tion (here the explicit finite difference scheme is used) of
Eq. (20);
Step 8: Computation (in G, L and I type cells) the new
value of the equilibrium distribution function (Eq. (7));
Step 9: Conversion of I type cells, based on the deter-
mined mass value, and closing the interface again;
Step 10: Proceeding to the next time step.

7 Validation of the model

In this section the simulation results are compared with exper-
imental data. Due to a high melting temperature of casting
alloys and the problem with the flow recordings (not transpar-
ent molding materials) water was used as the model fluid in
investigations. Water models are often applied for validating
numerical simulations of casting problems [35]. This is related
to a relatively low kinematic viscosity of water, similar to the
viscosity of several casting alloys. In the case of non-T
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isothermal flows some other model liquids are also used (e.g.
glycerol) for their strong variation of viscosity (characteristic
also for foundry alloys) with temperature [36].

7.1 Gas bubbles formation

In order to verify whether the model properly reproduces the
gas bubbles formation process during mold filling, simulation
results were compared with Kanatani et al. studies [37] pre-
sented in paper [38]. In this case, water is injected into a
rectangular cavity (100 × 130 [mm]) through the bottom inlet
at the constant velocity of uin = 1 [m/s]. The air flows out
through two vents placed in the upper part of the cavity.
This system was represented by two-dimensional grid with a
size of 256 × 522 and 117,163 active cells belonging to a
liquid or a gaseous phase (the rest belongs to the boundary
cells). For simplicity, in the simulation, the entire upper wall
was treated as the outlet boundary (open to the atmosphere
(ρout = 1)). On the remaining domain walls the free-slip con-
dition was applied. The free-slip condition was also used on
the liquid free surface (wp = 0 in Eq. (13)). Values of the pa-
rameters used in computations are listed in Table 3.

Figure 4 shows the obtained results. During the process gas
bubbles are formed between the liquid and cavity walls. They
counteract the complete filling of the domain lower part. In
case of the piston model the calculation results agree well with
the experimental data. Some small deformations visible on the
interface line are caused by the high value of flow dimension-
less velocity, close to the maximum allowable value in the
LBMmodel - cs. Even in such case the computation algorithm
remains stable. Simultaneously in the free-surface model gas
bubbles do not occur since type G cells are nearly immediately
filled with liquid.

It should be mentioned here that this simple test case can
constitute problem for the lattice Boltzmann SRT algorithms.
For the discussed system of a length of 0.1 [m] in the x direc-
tion and the assumed viscosity of liquid and gaseous phases,
in order to obtain τ in the stability interval it is necessary - in
accordancewith Eq. (19) - to apply the lattice which has in this
direction from 2141 to 6059 cells (Nmin = 369 ,Nmax = 6059

for the gaseous phase and Nmin = 2141 ,Nmax = 35196 for the
liquid phase), resulting in long computation time. As can be
seen, by means of the presented FS method it was possible to
perform a stable and accurate simulation for the lattice of
much lower resolution. Additionally, the calculation results
for lattices with 256, 128 and 64 cells in the x axis direction
are shown in Fig. 5. In the first two cases the results are very
similar. Only for the 64 × 132 grid the influence of the in-
creased lattice step on the liquid-gas interface shape can be
noticed. In this case gas bubbles between liquid and the do-
main walls are smaller than the assumed lattice step and

Table 3 Values of parameters used in numerical computations

Parameter Value

Gravitational acceleration, g [0, ‐9.81] [m/s2]

Water velocity at the system inlet uin [1, 0] [m/s]

Pressure (density) of fluids at the
system outlet, ρ*out

1 (dimensionless
air density)

Water kinematic viscosity, νl 1 ⋅ 10−6[m2/s]

Air kinematic viscosity, νg (in piston model) 1.4 ⋅ 10−5[m2/s]

Compressibility level gc (from Eq. (15)) 2 ⋅ 10−4

Fig. 4 Comparison of the experimental data [37] (left column) and the
numerical simulation results obtained by the piston model (center
column) and free surface model (right column)

Heat Mass Transfer (2017) 53:3421–3431 3427



therefore are not visible in the simulation results. It is impor-
tant that in each case the simulation process was characterized
by a sufficient stability and the system filling ratio was at a
similar level as for experimental results.

7.2 Gas back pressure

The influence of the gas back pressure on the liquid motion
was also analyzed. The experiments were performed by
means of the experimental system shown in Fig. 6a. It was
made up of the liquid container B1^ placed at a certain height
(to obtain - typical for the foundry engineering - a gravity
driven flow) and connected by pipes with the so-called gating
column B3^. The task of this element - consisting of a set of
sieves and vents - was to stabilize a flow and to eliminate air
bubbles from it. When valve B2^ is opened water flows from
the container via the column to the transparent acrylic mold

B4^. The water-air flow in the mold, was observed by the fast
(up to 50,000 FPS) digital camera. To achieve the proper
synchronization between the computational results and exper-
imental data the triggering device (LED - phototransistor) was
applied in the gating column. The camera recorded images
after specific time from the trigger signal (moment when col-
ored water covered the phototransistor). In a similar fashion
the time after liquid reaches the lattice cell corresponding to
the trigger localization in the experimental set-up, was record-
ed in simulations.

In order to enable the flow observations the mold and gat-
ing column was made from glued and sealed acrylic glass
plates (Fig. 7). The mold was lighted from the back by
LEDs which flash was coupled with the trigger signal. The
mold with channels forming the rotated letter BY^ in two
versions, called the type A and type B (Fig. 7) was used in
tests. In the type A the air filling the system was freely pushed

Fig. 5 Simulation results after
0.24 [s] for different grid
resolution: (a) 256 × 522, (b)
128 × 262, (c) 64 × 132

Fig. 6 Schematic presentation of
the model system (a) and its
fragment represented in the
numerical simulations (b)
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out through two outlets (to the atmosphere) by flowing water.
In the type B variant the upper outlet was closed. Therefore it
was expected that the gas pressure would start to increase
significantly, which - in turn - should influence the liquid
stream motion. To measure the air pressure changes, the pres-
sure sensor was used.

The obtained experimental results were compared with the
data from numerical simulations. Due to a high efficiency of
the presented approach it was possible to reflect in computa-
tions a larger part of the experimental stand together with the
gating column fragment (Fig. 6b). Two dimensional lattice
consisting of 591,300 cells (including 186,184 active cells)
was used. Again the free-slip boundary condition was applied
on domain walls and at the liquid free surface (wp = 0). The

inflow velocity was 0.19 [m/s], while gc = 3.16e − 5
(Eq. (18)). Values of the remaining parameters used in com-
putations were the same as given in Table 3.

Photos of the flow in the type A system, recorded by the
camera after t = 0.4 [s] and t = 0.45 [s] (from the trigger
signal), are shown in Fig. 8 together with the visualization
(in FieldView 15 software) of the numerical simulation re-
sults. As can be seen in both cases the mold pouring process
is similar. This concerns the filling level of the system as well
as the free surface shape.

At the initial stage of pouring (t = 0.4 [s]) water flows - under
an influence of the gravity force - in the direction of the lower
elbow. However the inlet velocity is high enough to make water
to start filling the upper elbow too (t = 0.45 [s]). The air is
pushed out through two outlets and therefore its pressure
(density) in both elbows is similar. This is illustrated in Fig. 9a.

However, in case of the type B system this process looks
differently (Fig. 10).

The air closed in the upper elbow, already from the very
beginning of the process, significantly slows down the water
stream motion, even when the pressure/density differences in
the various areas of the mold at this stage are relatively small

Fig. 8 Comparison of experimental data (left column) and the numerical
simulation results (right column) for the type A system

Fig. 9 Comparison of density and streamlines in a gaseous phase
obtained from the simulations for the type A (a) and B (b) system at
t = 0.38 [s]

Fig. 7 Photo of acrylic glass
mold (left) and the schematic
presentation of two variants of the
model system used in
experiments (center and right),
with marked inlets and outlets
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(Fig. 9b). The gas can be pushed out from the system by the
lower outlet only. Therefore after t = 0.4 [s] the model liquid
reaches only the place where the horizontal inlet channel joins
the vertical one. Then at t = 0.45 [s] water starts flowing to the
lower elbow. The liquid stream ‘breaks’ characteristically at
an angle close to the right one but does not fill the upper elbow
since the increased air pressure prevents it. Such casting mold
pouring process would lead to misrun formations.

The obtained results indicate that the model properly rep-
resents the gas back pressure effect. It is also clear from the
direct comparison of pressure curves (Fig. 11) recorded in the
control point, where after about 0.45 [s] from the trigger signal
(moment at which the upper elbow is completely separated by
the flowing liquid) a significant pressure jump is seen.

8 Conclusions

The obtained results indicate that the presented piston model
describes properly interactions between fluids filling the cast-
ing mold for flows with the velocity range within the incom-
pressible limits. This model correctly represents such phenom-
ena as a gas bubble formation and gas back pressure effect
which are of the essential meaning from the point of view of

the casting practice. Simultaneously, the proposed solution al-
lows to simulate local velocity and pressure/density changes in
the gaseous phase while maintaining characteristic - for the
lattice Boltzmann method - transparency and simplicity
(efficiency) of the computational algorithm. Equally important
is the fact that the pistonmodel - which is a SRTapproach - has
a sufficient stability (even for low resolution grids) in case of
large viscosity differences of both fluids.

Additionally, for the presented solutions, the demand for the
operating memory is significantly smaller than in the typical
two-phase models for the LBM. In the piston model there is no
need for storing separate sets of variables characterizing the
flow of each phase. In the interface cells, which are filled with
liquid as well as gas, such parameters as density and velocity
are treated as averaged values for both fluids. In consequence,
behavior of modeled phases can be described by means of the
single set of variables (in the same way as for free-surface
flows). Also no additional diffusion-correction steps are re-
quired since the phase separation assumption is always main-
tained. These features cause that the presented here simplified
approach to modeling of two-phase flows can be successfully
used in simulations of the mold filling process.
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