
ORIGINAL

Transfer function-based analysis of the frequency-domain
properties of a double pipe heat exchanger

Krzysztof Bartecki

Received: 17 June 2013 / Accepted: 26 June 2014 / Published online: 19 July 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract This paper discusses irrational transfer function

representation for a typical thick-walled double pipe heat

exchanger. Closed-form analytical expressions for the

individual elements of 2 9 2 transfer function matrix are

derived both for the parallel- and the counter-flow config-

urations using the Laplace transform method. Based on the

transfer function representation, its frequency responses are

demonstrated both in the form of three-dimensional graphs

as well as classical, two-dimensional Bode and Nyquist

plots. Finally, steady-state temperature profiles are pre-

sented and compared for both flow arrangements

considered.

List of symbols

c Specific heat [J/(kg K)]

d Pipe diameter (m)

i Imaginary unit

G Transfer function (parallel-flow)
�G Transfer function (counter-flow)

h Heat transfer coefficient [W/(m2 K)]

Im Imaginary part

k Constant parameter (1/s)

l Space variable (m)

L Heat exchanger length (m)

Lm Logaritmic gain (dB)

L Laplace transform

M Characteristic polynomial of P

P Auxiliary matrix

p Auxiliary matrix element

R Set of real numbers

q Complex argument of Laplace transform

Re Real part

s Complex argument of Laplace transform

t Time (s)

v Fluid velocity (m/s)

a First component of /
b Second component of /
# Temperature (�C)

q Density (kg/m3)

s Time delay (s)

/ Auxiliary matrix eigenvalue

u Phase shift (rad)

x Angular frequency (rad/s)

Subscripts

i Inlet (temperature), inner (diameter)

l Space (Laplace transform)

o Outlet (temperature), outer (diameter)

s Shell-side

t Tube-side, time (Laplace transform)

w Wall

0 Initial (at t = 0)

1 Introduction

The transfer of thermal energy between fluids is one of the

most important processes in engineering, which is possible

through the use of different types of heat exchangers. They

are broadly used in many thermal processes, both for the

heating and cooling operations, and one of the simplest are

the so-called double pipe heat exchangers. Despite their

simplicity and low efficiency, they are very important due
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to their educational value in teaching the basics of heat

exchanger design. Moreover, they form the structural basis

for many more complex constructions, such as e.g. shell

and tube heat exchangers or steam generators [24].

The steady-state properties of this class of thermal

devices are very important from the point of view of their

operation and control and thus are readily available since

decades in many professional textbooks and scientific

publications. However, since heat exchangers usually con-

stitute part of larger industrial systems, their transient

operations can occur frequently and thus can significantly

influence overall system performance [21, 22, 25]. There-

fore, contemporary mathematical models of heat exchang-

ers should comprise not only their steady-state behaviour

but also their dynamic properties, which are essential e.g. to

impart effective control and to take preventive measures

considering the safety aspect of the entire plant [5, 11].

The conventional tool for the mathematical description

of the so-called distributed parameter systems (DPSs),

which also include heat exchangers, are partial differential

equations (PDEs) [13]. The development of the PDE-based

mathematical modeling methods has progressed here in

two parallel directions, with the use of either numerical or

analytical approaches. For example, the numerical

approach to some problems of plate fin and tube heat

exchangers is presented in [23], whereas the same collec-

tion also includes the closed-form analytical solutions for

the transient heat and moisture diffusion in a double-layer

plate [8]. Moreover, there exist many professional software

packages which allow to obtain numerical solutions to

PDEs and make it possible to solve even very complex

mathematical models, including the non-linear ones [19].

However, the use of such applications is usually limited

to the personal computers or workstations. They are usually

of little use for the real-time applications such as hardware-

in-the-loop, or for implementation on embedded systems.

From the control theory point of view, this kind of ana-

lytical representation is not fully effective because it does

not express directly the relationships between the output

(controlled) and the input (manipulated) variables of the

system, and thus it is difficult to be used e.g. in the control

system synthesis. In contrast, analytical methods allow for

more thorough physical interpretation of the process and

are more useful in the automatic control theory [20].

In this paper a method of the analytical description of a

double pipe heat exchanger is considered, which is based

on its transfer function representation. The main advantage

of this approach, as compared to the numerical modelling,

is that it constitutes a convenient starting point for com-

puter implementation of different control algorithms. The

knowledge of the transfer function make it to possible to

determine not only the steady-state but also frequency- and

time-domain responses of the system.

As opposed to the rational transfer function describing

the dynamic properties of lumped parameter systems

(LPSs), transfer functions of DPSs have the form of irra-

tional functions [7, 27]. Due to the mathematical com-

plexity, their analysis is more difficult, and possible

applications are more limited than in the case of the finite-

dimensional models. Therefore, in order to enable the

implementation of the developed over the years techniques

for the synthesis of control systems, the infinite-dimen-

sional DPS models are usually replaced by their finite-

dimensional approximations [3, 4, 9, 12, 16]. Nevertheless,

regardless of the approximation method used, the starting

point for the synthesis of a control system should be based

on the possibly most accurate description of the DPS,

taking into account its infinite-dimensional nature, e.g. a

model in the form of the irrational transfer function.

Compared to the previously presented results, in the

present paper the thermal capacity of the internal tube of

the exchanger is taken into account, and two different

typical flow configurations are considered, both for the

steady-state and frequency domains. The remainder of the

paper is organized as follows. Section 2 introduces

a mathematical model of the considered thick-walled

double pipe heat exchanger in the form of hyperbolic

PDE system. In Sect. 3, transfer function matrices for the

parallel- and counter-flow configurations are derived and

analyzed. Based on the obtained transfer functions, Sect.

4 presents selected frequency responses of the exchanger,

both in the form of three-dimensional graphs as well as

classical, two-dimensional Bode and Nyquist plots. Next,

Sect. 5 compares the steady-state temperature distribu-

tions for both flow configurations considered. Finally,

short conclusions and future work prospects are given in

Sect. 6.

2 Governing PDEs

The considered heat exchanger consists of two concentric

pipes (tubes) containing fluids flowing from the inlet of

each tube towards its outlet (Fig. 1). In order to avoid

ambiguity, throughout the rest of the paper the external

tube will be referred as shell and the internal—simply as

tube. Heat is transferred from one fluid to the other through

the wall of the tube, either from tube side to shell side or

vice versa. Depending on the flow arrangement, the fluids

can enter the shell and the tube from the same or from the

opposite ends of the exchanger. The first configuration is

commonly known as parallel- while the second is usually

referred to as counter-flow one.

In order to develop the mathematical model of the

exchanger based on the energy balance equations, the

following simplifying assumptions are made:
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• exchanger is perfectly insulated from the environment;

• there are no internal thermal energy sources;

• the flows are sufficiently turbulent to cause effective

heat transfer;

• only forced heat convection is considered (i.e. longi-

tudinal heat conduction within the fluids and wall is

neglected);

• pressure drops of fluids along the shell and the tube are

negligible;

• the densities and heat capacities of the shell, tube and

fluids are time and space invariant;

• the convective heat transfer coefficients are constant

and uniform over each surface.

According to the above assumptions, double pipe heat

exchanger depicted in Fig. 1 is governed, based on the

thermal energy balance equations, by the following PDE

system [2, 6, 18]:

o#t l; tð Þ
ot

þ vt

o#t l; tð Þ
ol

¼ k1

�
#w l; tð Þ � #t l; tð Þ

� ð1Þ

o#s l; tð Þ
ot

þ vs

o#s l; tð Þ
ol

¼ k2

�
#w l; tð Þ � #s l; tð Þ

� ð2Þ

o#w l; tð Þ
ot

¼ k3

�
#t l; tð Þ � #w l; tð Þ

�

þ k4

�
#s l; tð Þ � #w l; tð Þ

�
;

ð3Þ

where t 2 ½ 0;þ1Þ represents time, l 2 ½ 0; L� stands for the

space variable and the constant parameters k1, k2, k3, k4

depend on the shell and tube diameters, physical parame-

ters of the fluids and the exchanger material [18]:

k1 ¼
4ht

qtctdti

; k2 ¼
4dtohs

qscs d2
si � d2

to

� � ;

k3 ¼
4dtiht

qwcw d2
to � d2

ti

� � ; k4 ¼
4dtohs

qwcw d2
to � d2

ti

� � ;
ð4Þ

where q is the density, c is the specific heat and h is the

heat transfer coefficient (subscripts as for the temperatures,

see Fig. 1).

As one can notice, Eqs. (1–3) are weakly coupled, i.e.

coupled only through the terms of convective heat

exchange which do not contain derivatives. In contrast to

the commonly adopted heat exchanger models such as

those considered e.g. in [1, 11, 17], the abovementioned

simplifications do not contain any assumption on the neg-

ligible thermal capacity of the tube, which results in the

additional Eq. (3) representing heat conduction through the

wall of the tube.

In order to obtain a unique solution of Eqs. (1–3), one

must specify the appropriate initial and boundary condi-

tions. The initial conditions can be specified in the fol-

lowing form:

#t l; 0ð Þ ¼ #t0 lð Þ;
#s l; 0ð Þ ¼ #s0 lð Þ;
#w l; 0ð Þ ¼ #w0 lð Þ;

ð5Þ

where #t0ðlÞ; #s0ðlÞ; #w0ðlÞ : ½0; L� ! R are given functions

representing the initial (i.e. determined for t ¼ 0) temper-

ature profiles along the heat exchanger.

The form of the boundary conditions for Eqs. (1–3)

depends on the flow arrangement (see Fig. 1). For the case

Fig. 1 Schematic of a double pipe heat exchanger. vs; vt—shell-side

and tube-side fluid velocities; #s; #t—shell-side and tube-side fluid

temperatures; #w—wall temperature; #si; #ti—shell-side and tube-side

fluid inlet temperatures; #so; #to—shell-side and tube-side fluid outlet

temperatures; L—heat exchanger length; dti; dto—inner and outer

diameters of the tube; dsi; dso—inner and outer diameters of the shell.

Solid arrows show flow directions for the parallel-flow mode, whereas

dotted ones—for the counter-flow mode

Heat Mass Transfer (2015) 51:277–287 279

123



of the parallel-flow one obtains the following boundary

conditions:

#t 0; tð Þ ¼ #ti tð Þ;
#s 0; tð Þ ¼ #si tð Þ;

ð6Þ

whereas for the counter-flow configuration the boundary

conditions are expressed as follows:

#t 0; tð Þ ¼ #ti tð Þ;
#s L; tð Þ ¼ #si tð Þ;

ð7Þ

where #tiðtÞ, #siðlÞ represent the inlet temperatures which

can be considered, from the control theory point of view,

either as control signals or external disturbances.

3 Transfer function representation

For the heat exchanger under consideration one can dis-

tinguish two lumped input signals represented by the

boundary conditions (6) or (7), and two output signals

representing the distribution of the fluid temperatures along

its axis. As shown e.g. in [7, 10], it is possible for the

considered DPS with boundary inputs to obtain closed form

expressions for the transfer functions by taking the Laplace

transforms of the original PDEs and solving the resulting

boundary value problem. In the following two subsections,

transfer function matrices for the heat exchanger are

introduced for two different boundary input configurations

corresponding to the parallel- and counter-flow modes.

Next, closed-form analytical expressions for those transfer

functions are derived.

3.1 Parallel-flow mode

The transfer function matrix of the heat exchanger can be

defined for the parallel-flow configuration described by the

boundary conditions (6) as the matrix of the following

form:

Gðl; sÞ ¼ Gttðl; sÞ Gtsðl; sÞ
Gstðl; sÞ Gssðl; sÞ

� �
; ð8Þ

where

Gttðl; sÞ ¼
#tðl; sÞ
#tð0; sÞ

; Gstðl; sÞ ¼
#sðl; sÞ
#tð0; sÞ

; ð9Þ

for #sð0; sÞ ¼ 0, and

Gtsðl; sÞ ¼
#tðl; sÞ
#sð0; sÞ

; Gssðl; sÞ ¼
#sðl; sÞ
#sð0; sÞ

; ð10Þ

for #tð0; sÞ ¼ 0, all for zero initial conditions,

#tðl; 0Þ ¼ #sðl; 0Þ ¼ 0, where

# l; sð Þ ¼ Lt # l; tð Þf g ð11Þ

stands for the Laplace transform of #ðl; tÞ in variable t.

The vector of Laplace transforms of the fluid temperatures

#ðl; sÞ ¼ #tðl; sÞ #sðl; sÞ½ �T ; ð12Þ

can therefore be determined, assuming zero initial condi-

tions, based on the following equation:

#ðl; sÞ ¼ Gðl; sÞ#ðsÞ; ð13Þ

where

#ðsÞ ¼ #tð0; sÞ #sð0; sÞ½ �T¼ #tiðsÞ #siðsÞ½ �T ð14Þ

can be considered as the vector of the boundary input

signals for the parallel-flow mode.

A block diagram of the transfer function model for this

mode is presented in Fig. 2. In order to find the elements of

the transfer function matrix Gðl; sÞ in (8), the Laplace

transform approach can be used to solve Eqs. (1–3) with

the boundary conditions (6). After Laplace transformation

(11), Eqs. (1–3) take the following form:

s#t l;sð Þ�#t l;0ð Þþ vt

o#t l;sð Þ
ol
¼k1

�
#w l;sð Þ�#t l;sð Þ

�
; ð15Þ

s#s l;sð Þ�#s l;0ð Þþ vs

o#s l;sð Þ
ol
¼k2

�
#w l;sð Þ�#s l;sð Þ

�
; ð16Þ

s#w l;sð Þ�#w l;0ð Þ ¼ k3

�
#t l;sð Þ�#w l;sð Þ

�

þ k4

�
#s l;sð Þ�#w l;sð Þ

�
:

ð17Þ

Assuming zero initial conditions and expressing the

Laplace-transformed wall temperature #wðl; sÞ from (17) as

#wðl; sÞ ¼
k3#tðl; sÞ þ k4#sðl; sÞ

sþ k3 þ k4

; ð18Þ

the equation set (15–17) can be reduced to the following

two equations:

Fig. 2 Block diagram of the transfer function model of the heat

exchanger (parallel-flow mode)
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o#t l; sð Þ
ol

¼ pttðsÞ#t l; sð Þ þ ptsðsÞ#s l; sð Þ; ð19Þ

o#s l; sð Þ
ol

¼ pstðsÞ#t l; sð Þ þ pssðsÞ#s l; sð Þ; ð20Þ

where

pttðsÞ ¼ �
s2 þ ðk1 þ k3 þ k4Þsþ k1k4

vt sþ k3 þ k4ð Þ ; ð21Þ

ptsðsÞ ¼
k1k4

vt sþ k3 þ k4ð Þ ; ð22Þ

pstðsÞ ¼
k2k3

vs sþ k3 þ k4ð Þ ; ð23Þ

pssðsÞ ¼ �
s2 þ ðk2 þ k3 þ k4Þsþ k2k3

vs sþ k3 þ k4ð Þ ; ð24Þ

can be considered as elements of the following matrix:

PðsÞ ¼ pttðsÞ ptsðsÞ
pstðsÞ pssðsÞ

� �
: ð25Þ

By performing the Laplace transform again, now with

respect to the space variable l:

# q; sð Þ ¼ Ll

�
# l; sð Þ

�
ð26Þ

and taking into account that

Ll

o#ðl; sÞ
ol

� 	
¼ q#ðq; sÞ � #ð0; sÞ; ð27Þ

one can transform the Eqs. (19) and (20) into the following

algebraic form:

#t q; sð Þ ¼ q� pssðsÞ
Mðq; sÞ #t 0; sð Þ þ ptsðsÞ

Mðq; sÞ#s 0; sð Þ; ð28Þ

#s q; sð Þ ¼ pstðsÞ
Mðq; sÞ#t 0; sð Þ þ q� pttðsÞ

Mðq; sÞ #s 0; sð Þ; ð29Þ

where Mðq; sÞ is the characteristic polynomial of the matrix

PðsÞ

Mðq; sÞ¼det qI�PðsÞð Þ¼ q�/1 sð Þð Þ q�/2 sð Þð Þ; ð30Þ

where /1ðsÞ, /2ðsÞ are its eigenvalues given by

/1;2ðsÞ ¼ aðsÞ � bðsÞ ð31Þ

with

aðsÞ ¼ 1

2
pttðsÞ þ pssðsÞð Þ ð32Þ

and

bðsÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pttðsÞ � pssðsÞð Þ2þ4ptsðsÞpstðsÞ

q
: ð33Þ

Finding the inverse Laplace transform of (28) and (29) with

respect to q by taking advantage of the following property

[14]:

L�1
q

SðqÞ
TðqÞ¼

SðqÞ
QN

j¼1

q� kj

� �

8
>>><

>>>:

9
>>>=

>>>;

¼
XN

j¼1

SðkjÞ
dTðqÞ

dq

���
q¼kj

ekjt; ð34Þ

where SðqÞ and TðqÞ represent polynomials in q of degree

M and N [ M, respectively, and kj is a single root of TðqÞ,
yields the following form of the equations:

#t l; sð Þ ¼ Gtt l; sð Þ#t 0; sð Þ þ Gts l; sð Þ#s 0; sð Þ; ð35Þ

#s l; sð Þ ¼ Gst l; sð Þ#t 0; sð Þ þ Gss l; sð Þ#s 0; sð Þ; ð36Þ

where the transfer functions are as follows:

Gttðl; sÞ ¼
/1ðsÞ � pssðsÞ
/1ðsÞ � /2ðsÞ

e/1ðsÞl

þ /2ðsÞ � pssðsÞ
/1ðsÞ � /2ðsÞ

e/2ðsÞl;

ð37Þ

Gtsðl; sÞ ¼
ptsðsÞ

/1ðsÞ � /2ðsÞ
e/1ðsÞl � e/2ðsÞl
� 


; ð38Þ

Gstðl; sÞ ¼
pstðsÞ

/1ðsÞ � /2ðsÞ
e/1ðsÞl � e/2ðsÞl
� 


; ð39Þ

Gssðl; sÞ ¼
/1ðsÞ � pttðsÞ
/1ðsÞ � /2ðsÞ

e/1ðsÞl

þ /2ðsÞ � pttðsÞ
/1ðsÞ � /2ðsÞ

e/2ðsÞl;

ð40Þ

with pttðsÞ, ptsðsÞ, pstðsÞ and pssðsÞ being the elements of

the matrix PðsÞ in (25) given by Eqs. (21–24) and /1ðsÞ,
/2ðsÞ—its eigenvalues given by (31–33).

3.2 Counter-flow mode

For the counter-flow configuration (7) the transfer function

matrix of the exchanger can be defined in the following

form:

�Gðl; sÞ ¼
�Gttðl; sÞ �Gtsðl; sÞ
�Gstðl; sÞ �Gssðl; sÞ

� �
; ð41Þ

where

�Gttðl; sÞ ¼
#tðl; sÞ
#tð0; sÞ

; �Gstðl; sÞ ¼
#sðl; sÞ
#tð0; sÞ

; ð42Þ

for #sðL; sÞ ¼ 0, and

�Gtsðl; sÞ ¼
#tðl; sÞ
#sðL; sÞ

; �Gssðl; sÞ ¼
#sðl; sÞ
#sðL; sÞ

; ð43Þ
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for #tð0; sÞ ¼ 0, all for zero initial conditions,

#tðl; 0Þ ¼ #sðl; 0Þ ¼ 0.

The vector of Laplace transforms of the fluid

temperatures

#ðl; sÞ ¼ #tðl; sÞ #sðl; sÞ½ �T ; ð44Þ

can therefore be determined, assuming zero initial condi-

tions, based on the following equation:

#ðl; sÞ ¼ �Gðl; sÞ �#ðsÞ ð45Þ

where

�#ðsÞ ¼ #tð0; sÞ #sðL; sÞ½ �T¼ #tiðsÞ #siðsÞ½ �T ð46Þ

can be considered as the vector of the input signals for the

counter-flow mode.

A block diagram of the transfer function model for the

counter-flow mode is presented in Fig. 3. In order to find

the elements of the transfer function matrix �Gðl; sÞ, the

similar approach as for parallel-flow can be applied, now

with the boundary conditions (7). As a result one obtains

the following equations:

#t l; sð Þ ¼ �Gtt l; sð Þ#t 0; sð Þ þ �Gts l; sð Þ#s L; sð Þ; ð47Þ

#s l; sð Þ ¼ �Gst l; sð Þ#t 0; sð Þ þ �Gss l; sð Þ#s L; sð Þ; ð48Þ

where

�Gttðl; sÞ ¼
e/2ðsÞLe/1ðsÞl /1ðsÞ � pssðsÞð Þ

e/2ðsÞLð/1ðsÞ � pssðsÞÞ � e/1ðsÞLð/2ðsÞ � pssðsÞÞ

þ e/1ðsÞLe/2ðsÞl /2ðsÞ � pssðsÞð Þ
e/2ðsÞLð/1ðsÞ � pssðsÞÞ � e/1ðsÞLð/2ðsÞ � pssðsÞÞ

;

ð49Þ

�Gtsðl; sÞ ¼
ptsðsÞ e/2ðsÞl � e/1ðsÞl

� �

e/2ðsÞLð/2ðsÞ � pttðsÞÞ � e/1ðsÞLð/1ðsÞ � pttðsÞÞ
;

ð50Þ

�Gstðl; sÞ ¼
pst e/2ðsÞLe/1ðsÞl � e/1ðsÞLe/2ðsÞl
� �

e/2ðsÞLð/1ðsÞ � pssðsÞÞ � e/1ðsÞLð/2ðsÞ � pssðsÞÞ
;

ð51Þ

�Gssðl; sÞ ¼
e/2ðsÞl /2ðsÞ � pttðsÞð Þ � e/1ðsÞl /1ðsÞ � pttðsÞð Þ
e/2ðsÞL /2ðsÞ � pttðsÞð Þ � e/1ðsÞL /1ðsÞ � pttðsÞð Þ :

ð52Þ

As it can be easily noticed, the change in the boundary

conditions imposed by the different flow configuration

significantly affects the form of the transfer functions of the

heat exchanger. This fact is reflected both in its steady-state

and dynamic properties, as will be demonstrated later.

3.3 The case of zero heat transfer

As previously mentioned, the hyperbolic PDEs (1–3) are

weakly coupled through the terms on the right-hand sides

which represent the convective heat exchange. Assuming

that no heat is transferred between the fluids through the

wall, i.e. ht ¼ hs ¼ 0 in (4) which results in k1 ¼ k2 ¼
k3 ¼ k4 ¼ 0 in (1–3), one obtains the extremely simplified

form of the equations

o#t l; tð Þ
ot

þ vt

o#t l; tð Þ
ol

¼ 0; ð53Þ

o#s l; tð Þ
ot

þ vs

o#s l; tð Þ
ol

¼ 0; ð54Þ

for which the matrix PðsÞ in (25) takes the following form:

PðsÞ ¼
� s

vt

0

0 � s

vs

2

64

3

75 ð55Þ

with the eigenvalues

/1ðsÞ ¼ pttðsÞ ¼ �
s

vt

; ð56Þ

/2ðsÞ ¼ pssðsÞ ¼ �
s

vs

; ð57Þ

which consequently result in the following transfer func-

tion matrix:

Gðl; sÞ ¼ e�sstðlÞ 0

0 e�sssðlÞ

� �
ð58Þ

with

stðlÞ ¼
l

vt

; ssðlÞ ¼
l

vs

; ð59Þ

for the parallel-flow, and

stðlÞ ¼
l

vt

; ssðlÞ ¼
l� L

vs

; ð60Þ

for the counter-flow configuration.
Fig. 3 Block diagram of the transfer function model of the heat

exchanger (counter-flow mode)
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The resulting system can thus be considered as two

separate pure time-delay subsystems with time delays

given by (59) or (60), representing two fluids of constant

temperature profiles travelling along the exchanger.

4 Frequency responses

Based on the transfer functions derived in Sect. 3 it is

straightforward to determine frequency responses of the

heat exchanger. For this purpose, one should replace in the

relationships (37–40) or (49–52) the operator variable s

with the expression ix, where i is the imaginary unit and x
stands for the angular frequency.

The graphical representation of these responses can take

the form of three-dimensional graphs, taking into account

their dependence on both the angular frequency x and the

space variable l. Another possibility is the representation in

the form of classical two-dimensional plots, determined for

fixed value of the space variable, e.g. l ¼ 0 or l ¼ L.

Considering as an example the Bode plot, the expressions

for the logarithmic gain and phase take the following well-

known form [14]:

Lm l;xð Þ ¼ 20 log
��G l; ixð Þ

�� ð61Þ

and

u l;xð Þ ¼ arg
�
G l; ixð Þ

�
; ð62Þ

where the expressions for the modulus and argument of the

frequency response are as follows:

��G l;ixð Þ
��¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2
�

G l;ixð Þ
�
þIm2

�
G l;ixð Þ

�q
ð63Þ

and

arg
�
G l; ixð Þ

�
¼ arctan

Im
�

G l; ixð Þ
�

Re
�

G l; ixð Þ
� : ð64Þ

Figures 4 and 5 show three-dimensional Bode plots of the

frequency response Gtsðl; ixÞ of the exchanger operating in

the parallel-flow mode, determined based on Eqs. (38) and

(61–64) for the following parameter values:

qt ¼ qs ¼ 1000 kg/m3, qw ¼ 7800 kg/m3, ct ¼ cs ¼
4200 J=ðkg K), cw ¼ 500J=ðkg K), ht ¼ hs ¼ 6000 W=

ðm2 KÞ, dti ¼ 0:09 m, dto ¼ 0:1 m, dsi ¼ 0:15 m, L ¼ 5 m,

vt ¼ 1 m/s, vs ¼ 0:1 m/s.

From the practical point of view, most important are the

responses evaluated at the exchanger outlets, i.e. assuming

l ¼ 0 for �Gst; �Gss, and l ¼ L for the remaining transfer

functions. Fig. 6 shows classical two-dimensional Bode

plots of the heat exchanger frequency responses Gtsðl; sÞ

determined for l ¼ L. Next, the Nyquist plot for the same

transfer function channel is presented in Fig. 7.

As seen from the Bode plots, the increase in the fre-

quency of the sinusoidal input signal initially causes a

decrease in the amplitude of the output signal, and then it

gives rise to a local maximum. To a lesser extent this

phenomenon is apparent in the phase characteristic. As the

frequency increases, this effect repeats itself, which can be

observed as oscillations on the Bode plot or as character-

istic ‘‘loops’’ on the Nyquist plot. These oscillations are

closely associated with the wave phenomena taking place

inside the exchanger pipes [14].

Analysis of the frequency responses of the heat

exchanger exhibits typical characteristics of systems with

distributed delay [15]. In particular, in the case of the

Fig. 4 Three-dimensional amplitude Bode plot of the frequency

response Gtsðl; ixÞ for the parallel-flow heat exchanger

Fig. 5 Three-dimensional phase Bode plot of the frequency response

Gtsðl; ixÞ for the parallel-flow heat exchanger
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‘‘straightforward’’ transfer function channels Gttðl; sÞ,
Gssðl; sÞ and their counter-flow counterparts, one can notice

the dominant influence of the transport delay in the fluid

flow. In order to confirm this conclusion, Nyquist plot of

the frequency response GssðL; sÞ is shown in Fig. 8. The

amplitude damping of the sinusoidal oscillations in the real

and imaginary parts of the frequency response is relatively

small, which is reflected here in the circular-shaped plot.

On the other hand, in the case of the ‘‘crossover’’ transfer

functions Gtsðl; sÞ and Gstðl; sÞ, the damping of the input

signal with increasing frequency is much greater as for the

‘‘straight-forward’’ channels (see Figs. 6, 7).

5 Steady-state analysis

The steady-state temperature profiles along the heat

exchanger can be determined directly from Eqs. (1–3) by

assuming all time derivatives equal to zero, and solving the

resulting boundary value problem

vt

d#t lð Þ
dl
¼ k1

�
#w lð Þ � #t lð Þ

�
; ð65Þ

vs

d#s lð Þ
dl
¼ k2

�
#w lð Þ � #s lð Þ

�
; ð66Þ

k3

�
#t lð Þ�#w lð Þ

�
þk4

�
#s lð Þ�#w lð Þ

�
¼ 0; ð67Þ

with the boundary conditions representing constant inlet

temperatures for the parallel-flow

#tð0Þ ¼ #ti; #sð0Þ ¼ #si; ð68Þ

or for the counter-flow configuration

#tð0Þ ¼ #ti; #sðLÞ ¼ #si: ð69Þ

The other possibility is to calculate the steady state

responses of the exchanger from its transfer functions

assuming s ¼ 0 or, equivalently, from its frequency

responses assuming x ¼ 0, and this approach will be

applied below.

For s ¼ 0 one obtains the following values of the

parameters (21–24):

ptt ¼ pttð0Þ ¼ �
k1k4

vt k3 þ k4ð Þ ; ð70Þ

pts ¼ ptsð0Þ ¼
k1k4

vt k3 þ k4ð Þ ¼ �ptt; ð71Þ

pst ¼ pstð0Þ ¼
k2k3

vs k3 þ k4ð Þ ; ð72Þ

pss ¼ pssð0Þ ¼ �
k2k3

vs k3 þ k4ð Þ ¼ �pts; ð73Þ

for which one obtains based on (32) and (33)

a ¼ að0Þ ¼ 1

2
ptt þ pssð Þ ¼ � k1k4vs þ k2k3vt

2vtvs k3 þ k4ð Þ ; ð74Þ

b ¼ bð0Þ ¼ � 1

2
ptt þ pssð Þ ¼ k1k4vs þ k2k3vt

2vtvs k3 þ k4ð Þ ; ð75Þ

and consequently from (31)

/1 ¼ /1ð0Þ ¼ aþ b ¼ 0; ð76Þ

/2 ¼ /2ð0Þ ¼ a� b ¼ 2a ¼ � k1k4vs þ k2k3vt

vtvs k3 þ k4ð Þ : ð77Þ

Based on the transfer functions determined in Sect. 3, it is

now straightforward to obtain the formulas for the steady-

state temperature profiles:

#t lð Þ ¼ Gtt lð Þ#ti þ Gts lð Þ#si; ð78Þ

#s lð Þ ¼ Gst lð Þ#ti þ Gss lð Þ#si; ð79Þ

Fig. 6 Classical Bode plot of the frequency response GtsðL; ixÞ for

the parallel-flow heat exchanger

Fig. 7 Nyquist plot of the frequency response GtsðL; ixÞ for the

parallel-flow heat exchanger
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where

GttðlÞ ¼ Gttðl; 0Þ ¼
pss

/2

þ 1� pss

/2

� �
e/2l; ð80Þ

GtsðlÞ ¼ Gtsðl; 0Þ ¼
pts

/2

e/2l � 1
� �

; ð81Þ

GstðlÞ ¼ Gstðl; 0Þ ¼
pst

/2

e/2l � 1
� �

; ð82Þ

GssðlÞ ¼ Gssðl; 0Þ ¼
ptt

/2

þ 1� ptt

/2

� �
e/2l; ð83Þ

can be considered as the steady-state transfer functions of

the heat exchanger, with ptt, pts, pst, pss and /2 given by

(70–77).

Similarly, for the counter-flow configuration one obtains

based on Eqs. (47–52) and (70–77) the following steady-

state equations:

#t lð Þ ¼ �Gtt lð Þ#ti þ �Gts lð Þ#si; ð84Þ

#s lð Þ ¼ �Gst lð Þ#ti þ �Gss lð Þ#si; ð85Þ

where

�GttðlÞ ¼ �Gttðl; 0Þ ¼
e/2Lpss þ e/2l /2 � pssð Þ

pss e/2L � 1ð Þ þ /2

; ð86Þ

�GtsðlÞ ¼ �Gtsðl; 0Þ ¼
pts e/2l � 1
� �

e/2L /2 � pttð Þ þ ptt

; ð87Þ

�GstðlÞ ¼ �Gstðl; 0Þ ¼
pst e/2l � e/2L
� �

pss e/2L � 1ð Þ þ /2

; ð88Þ

�GssðlÞ ¼ �Gssðl; 0Þ ¼
e/2l /2 � pttð Þ þ ptt

e/2L /2 � pttð Þ þ ptt

: ð89Þ

Having determined, based on Eqs. (78–83) or (84–89), the

steady-state profiles of both fluids, it is straightforward to

calculate also the temperature profiles for the wall from the

algebraic Eq. (67) as

#wðlÞ ¼
k3#tðlÞ þ k4#sðlÞ

k2 þ k3

: ð90Þ

Figure 9 shows the steady-state temperature profiles for the

tube- and shell-side fluids, calculated based on Eqs. (78–

83) for the following constant values of the inlet temper-

atures: #sð0Þ ¼ #si ¼ 100 �C, #tð0Þ ¼ #ti ¼ 50 �C,

assuming vs ¼ 0:1 m/s and two different velocities of the

tube-side fluid: vt ¼ 1 m/s (solid line) and vt ¼ 0:2 m/s

(dashed line). Additionally, the steady-state temperature

profiles of the wall are shown here, calculated based on

Eqn. (90).

Figure 10 illustrates the steady-state temperature profiles

calculated for the counter-flow configuration based on Eqs.

(84–89) and (90) assuming: #sðLÞ ¼ #si ¼ 100 �C,

#tð0Þ ¼ #ti ¼ 50 �C, vs ¼ �0:1 m/s and two different

velocities of the tube-side fluid: vt ¼ 1 m/s and

vt ¼ 0:2 m/s.

From the obtained results it is possible to determine

e.g. the outlet temperatures of both fluids involved in the

heat exchange. For example, for the parallel-flow con-

figuration the outlet temperature #tðLÞ of the heated fluid

is about 54:8 �C and the outlet temperature #sðLÞ of the

heating fluid is 69 �C (see Fig. 9). Reducing the flow rate

vt of the heated fluid from 1 to 0:2 m/s increases its outlet

temperature #tðLÞ to about 68:6 �C and also causes an

increase in the outlet temperature #sðLÞ of the heating

fluid to 75:9 �C. As is apparent from Fig. 10, the change

in the flow configuration causes further increase in the

temperature of the heated fluid as compared to the par-

allel-flow mode. For example, when changing the flow

rate vt from 1 to 0:2 m/s its outlet temperature #tðLÞ
reaches 71:3 �C.

It is worth noting that the derived analytical expressions

describing the steady-state properties not only make it

possible to determine the outlet temperatures of the fluids

but also allow an analysis of the temperature profiles along

the heat exchanger, which may be of great importance from

a technological point of view.

To sum up, the counter-flow mode has several advan-

tages as compared to the parallel-flow one. The outlet

temperature of the heated fluid can approach the inlet

temperature of the heating fluid. The more uniform tem-

perature difference between the two fluids prevents thermal

stresses in the exchanger material. The other advantage is

that the more uniform difference between temperatures

#tðlÞ and #sðlÞ has an effect of more uniform heat transfer

rate. The results presented above have been compared and

found to be in general consistent with those well-known

from the literature [18, 24, 26].

Fig. 8 Nyquist plot of the frequency response GssðL; ixÞ for the

parallel-flow heat exchanger
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6 Conclusion

The closed-form analytical expressions have been derived

for the individual elements of the 2 9 2 transfer function

matrix of a double pipe heat exchanger working both in the

parallel- and counter-flow modes. Unlike the case of

lumped parameter systems, the transfer functions derived

for this distributed parameter system contain irrational

functions such as exponential and square root ones. As

shown in the paper, the location of the boundary inputs of

the system related to the flow configuration significantly

affects its transfer function representation. Based on the

obtained transfer functions, selected frequency responses

of the heat exchanger have been presented both in the form

of three-dimensional graphs as well as classical, two-

dimensional Bode and Nyquist plots. Moreover, steady

state temperature profiles have been determined and com-

pared for both considered flow arrangements.

The future works could include determination of the

space-time impulse responses for the individual transfer

function channels, both for the parallel- and the counter-

flow mode. Another issue to be thoroughly examined,

which is very important from the control synthesis point

of view, is selecting an appropriate method for the

transfer functions and space-time responses approxima-

tion using the finite-dimensional models mentioned in

Sect. 1.
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