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Abstract. We give some conditions on a family of abelian covers of P1 of genus g curves,
that ensure that the family yields a subvariety of Ag which is not totally geodesic, hence it
is not Shimura. As a consequence, we show that for any abelian group G, there exists an
integer M which only depends on G such that if g > M , then the family yields a subvariety
of Ag which is not totally geodesic. We prove then analogous results for families of abelian
covers of C̃t → P

1 = C̃t/G̃ with an abelian Galois group G̃ of even order, proving that
under some conditions, if σ ∈ G̃ is an involution, the family of Pryms associated with the
covers C̃t → Ct = C̃t/〈σ 〉 yields a subvariety of Aδ

p which is not totally geodesic. As a

consequence, we show that if G̃ = (Z/NZ)m with N even, and σ is an involution in G̃, there
exists an integer M(N ) which only depends on N such that, if g̃ = g(C̃t ) > M(N ), then
the subvariety of the Prym locus in Aδ

p induced by any such family is not totally geodesic
(hence it is not Shimura).

1. Introduction

In this paperwe study families of abelian covers ofP1, in relationwith theColeman-
Oort conjecture and with an analogue of this conjecture for the Prym maps of
(possibly ramified) double covers.

Given a family of Galois covers of genus g curves, Ct → Ct/G ∼= P
1, the

associated family of Jacobians gives a subvariety of Ag and we ask under which
conditions this subvariety is a Shimura subvariety of Ag . A Shimura subvariety of
Ag is by definition aHodge locus for the tautological family of principally polarized
abelian varieties on Ag .

Coleman–Oort conjecture predicts that for g sufficiently high, there should
not exist positive dimensional Shimura subvarieties of Ag generically contained
in the Torelli locus. In [9] (and in [15,16] in the ramified case) a similar question
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was posed about the existence of positive dimensional Shimura subvarieties of
the moduli space of polarised abelian varieties of a fixed dimension, which are
generically contained in the Prym loci, that is in the closure of the image of the
Prymmaps of (possibly ramified) double covers. Both in the case of the Torelli map
and in the case of Prym maps, there are examples of such Shimura subvarieties for
low values of g. These constructions all use families of Galois covers (see [12–
14,18,21,31,32,40] for the Torelli case, [9,15,16] for the Prym case).

Shimura subvarieties are totally geodesic, i.e, they are images of totally geodesic
submanifolds of the Siegel space Hg endowed with the symmetric metric. Recall
that a submanifold of Hg is totally geodesic if its second fundamental form is
identically zero. More precisely, by results of Mumford and Moonen an algebraic
subvariety of Ag is a Shimura subvariety if and only if it is totally geodesic and
it contains a CM (complex multiplication) point (see [30,33]). The notion of CM
point is arithmetic, while the condition of being totally geodesic is related to the
locally symmetric geometry of Ag induced by the Siegel space.

Let us first explain the main result of this paper in the case of the Torelli
morphism. Fix a family of abelian covers of P1, Ct → Ct/G ∼= P

1, where Ct has
genus g. We show that there exists an integer M which only depends on G such
that if g > M , then the family of Jacobians of the curves Ct yields a subvariety of
Ag which is not totally geodesic, hence it is not Shimura.

More precisely, assume we have a family of Galois covers of P1 with Galois
group G. With the notations used in [13, Sect. 2], denote by Mg(m,G, θ) the
corresponding subvariety of Mg . Here θ : �r = 〈γ1, ..., γr | ∏r

i=1 γi = 1〉 → G
denotes the monodromy of the cover (m := (m1, ...,mr ) is such thatmi is the order
of θ(γi ) in G). Consider j : Mg → Ag the Torelli morphism, which is an orbifold
immersion outside the hyperelliptic locus ([37]). The second fundamental form of
the Torelli map with respect to the Siegel metric has been studied in [8,10,19]. Its
dual at a point [C] ∈ Mg corresponding to a non hyperelliptic curve C is a map

ρ : I2(KC ) → S2H0(C, K⊗2
C ) (1.1)

where I2(KC ) is the kernel of the multiplication map S2 H0(C, KC ) →
H0(C, K⊗2

C ), that is, the space of quadrics containing the canonical image of C .
In [31] in the cyclic case and in [13, Theorem 3.9] for any group G, it is proven

that if the following condition holds

(∗) dim(S2H0(C, KC ))G = dim H0(C, K⊗2
C )G,

for a general member [C] ∈ Mg(m,G, θ), then the family of Galois covers yields
a Shimura (hence totally geodesic) subvariety of Ag . Moonen proved in [31], using
techniques in positive characteristic, that condition (∗) is also necessary for a family
of cyclic covers of P1 to give a Shimura subvariety ofAg . This was then generalised
in [29], still using positive characteristic techniques, for 1-dimensional families of
abelian covers ofP1.Using this sufficient condition (∗) and computer computations,
many examples of Shimura subvarieties of Ag generically contained in the Torelli
locus have been constructed in [13,18,31,32]. Recently in [11] the authors proved
that if g ≤ 100 the examples found in [13], that are all in genus g ≤ 7, are the
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only ones satisfying condition (∗), thus giving a strong evidence for the Coleman–
Oort conjecture (at least for Shimura subvarieties obtained via families of Galois
covers of P1). In [14] it is shown that the only families of Galois covers of curves
of genus g′ > 0 satisfying condition (∗) are the ones found in [18] that are all
in low genus g ≤ 4. In [8, Proposition 5.4] it is proven that if a family of cyclic
covers of P1 does not satisfy (∗) and another condition on the dimension of the
eigenspaces for the representation of G on H0(C, KC ) is satisfied, then the family
of cyclic covers gives a subvariety of Ag which is not even totally geodesic (hence
it is not Shimura). Here we generalise this result to families of abelian covers of
P
1 in Theorem 3.1. Let C → C/G ∼= P

1 be a general element of a family of
abelian covers. Since G is abelian, we have an isomorphism of G with the group
of characters G∗ = Hom(G,C∗), hence we identify an element n of G with the
corresponding character χ ∈ G∗ and we denote by dn := dim H0(C, KC )χ (see
Sect. 2).

We have the following

Theorem 1.1. (Theorem 3.1)

(1) If there exists an element n ∈ G ⊆ (Z/NZ)m such that n �= −n, dn ≥ 2,
d−n ≥ 2, then the subvariety of Ag induced by the family of abelian covers of
genus g ≥ 4 is not totally geodesic (hence it is not Shimura).

(2) If there exists an element n ∈ G ⊆ (Z/NZ)m of order 2 such that dn ≥ 3, then
the subvariety of Ag induced by the family of abelian covers of genus g ≥ 4 is
not totally geodesic (hence it is not Shimura).

As a consequence we prove the following

Theorem 1.2. (Corollaries 3.2, 3.3, 3.4)
Assume G ⊆ (Z/NZ)m, N ≥ 3, set d := #G, g ≥ 4. Assume that we have

a family of G-covers of P1 yielding a totally geodesic subvariety of Ag. Then
r ≤ 2Nm and g ≤ 1 + d(m(N − 1) − 1).

If G = (Z/2Z)m (g ≥ 4) and we have a family of G-covers of P1 yielding
a totally geodesic subvariety of Ag, then m ≤ 6, r ≤ 6m ≤ 36, and g ≤ 1 +
2m−1(3m − 2) ≤ 513.

If G = (Z/pZ)m, with p a prime number, p ≥ 3, g ≥ 4. Assume that we
have a family of G-covers of P1 yielding a totally geodesic subvariety of Ag. Then
m ≤ 2p, r ≤ 4p2 and g ≤ 1 + p2p(2p(p − 1) − 1).

Note that in [27, Theorem 5.2] it is proven, using characteristic p techniques,
that if there exists n ∈ G such that {dn, d−n} �= {0, r − 2}, where r is the number
of branch points of the cover, and dn + d−n ≥ r − 2, then the subvariety of Ag

induced by the family of abelian covers is not Shimura.
In the second part of the paper we show similar statements for families of Galois

covers yielding subvarieties generically contained in the Prym loci of possibly
ramified double covers.

Denote by Rg,b the moduli space of isomorphism classes of triples [(C, α, B)]
where C is a smooth complex projective curve of genus g, B is a reduced effective
divisor of degree b on C and α ∈ Pic(C) is such that α2 = OC (B). A point
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[(C, α, B)] ∈ Rg,b determines a double cover of C , f : C̃ → C branched on B,
with C̃ = Spec(OC ⊕ α−1).

The Prym variety P(C, α, B) (also denoted by P(C̃,C)) associated to
[(C, α, B)] is the connected component containing the origin of the kernel of the
norm map Nm f : JC̃ → JC . When b > 0, ker Nm f is connected. The variety
P(C, α, B) is a polarised abelian variety of dimension g − 1 + b

2 . In fact, if we
denote by
 the restriction to P(C̃,C) of the principal polarisation on JC̃ , if b = 0,

 is twice a principal polarisation, hence we consider on P(C̃,C) this principal
polarisation. If b > 0, we endow P(C̃,C) with the polarisation 
 which is of type
δ = (1, . . . , 1, 2, . . . , 2

︸ ︷︷ ︸
g times

).

Denote byAδ

g−1+ b
2
the moduli space of abelian varieties of dimension g−1+ b

2

with a polarization of type δ, then we consider the Prym map

Pg,b : Rg,b −→ Aδ

g−1+ b
2
, [(C, α, B)] �−→ [(P(C, α, B),
)].

The dual of the differential of the Prym map Pg,b at a generic point [(C, α, B)] is
given by the multiplication map

(dPg,b)
∗ : S2H0(C, ωC ⊗ α) → H0(C, ω2

C ⊗ OC (B)) (1.2)

The multiplication map is surjective if dimRg,b ≤ dimAδ

g−1+ b
2
, ([24]). So the

Prym map Pg,b is generically finite, if and only if dimRg,b ≤ dimAδ

g−1+ b
2
, that is

if either b ≥ 6 and g ≥ 1, or b = 4 and g ≥ 3, b = 2 and g ≥ 5, b = 0 and g ≥ 6.
For b = 0 the Prym map is generically injective for g ≥ 7 ([20,23]). If b > 0,

in [25,26,35], it is proven that Pg,b is generically injective in all the cases except
for b = 4, g = 3, when the degree is 3 ([1,34]). Moreover, a global Prym-Torelli
theorem was recently proved for all g and b ≥ 6 ([22] for g = 1 and [36] for all g).

Let G̃ be a group containing a central involution σ . Assume we have a family
of Galois covers ψt : C̃t → P

1 = C̃t/G̃. Then we have an exact sequence 0 →
〈σ 〉 → G̃ → G → 0, and a commutative diagram

C̃t Ct = C̃t/〈σ 〉
P
1

ϕt

ψt

πt

(1.3)

For a general element of the family C̃t , denote by V := H0(C̃t , KC̃t
) ∼= V+ ⊕V−,

where V+ is the set if σ -invariant elements, and V− is the set if σ -anti-invariant
elements. The double cover ψt : C̃t → Ct = C̃t/〈σ 〉 corresponds to a triple
(Ct , αt , Bt ), where Bt is a reduced effective divisor of degree b on Ct and αt

is a line bundle on Ct such that α2
t = OCt (Bt ). Then V+ ∼= H0(Ct , KCt ) and

V− ∼= H0(Ct , KCt ⊗ αt ) ∼= H1,0(P(C̃t ,Ct )).
For the precise construction of the subvarieties ofAδ

g−1+ b
2
generically contained

in the Prym loci given by families of Galois covers, see [16, Sect. 3]. Given a family
of Galois covers as above, observe that multiplication map

m : S2V → H0(C̃, K⊗2
C̃t

),
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which is the dual of the differential of the Torelli map j̃ : Mg̃ → Ag̃ at the point

[C̃t ] ∈ Mg̃ , is G̃-equivariant, hence m maps (S2V )G̃ to H0(C̃, K⊗2
C̃t

)G̃ . We have

the following isomorphism:

(S2V )G̃ = (S2(V+))G̃ ⊕ (S2(V−))G̃ .

The codifferential of the restriction of Prymmap to the subvariety ofRg,b given
by our family of Galois covers at the point [(Ct , αt , Bt )] is the restriction of the
multiplication map m to (S2(V−))G̃ , that we still denote by m : (S2(V−))G̃ −→
H0(C̃, K⊗2

C̃t
)G̃ (see [15,16]).

In [15, Theorem 3.2], which is a generalisation of Theorems 3.2 and 4.2 in [9],
it is shown that if the map m : (S2(V−))G̃ −→ H0(C̃, K⊗2

C̃t
)G̃ is an isomorphism,

then the family of Pryms yields a Shimura subvariety of Aδ

g−1+ b
2
. Using this crite-

rion, in [9,15,16] many examples of Shimura subvarieties generically contained in
the Prym loci have been constructed.

A natural question is to ask whether the above condition is also necessary for
such families of abelian covers to yield Shimura subvarieties ofAδ

g−1+ b
2
generically

contained in the Prym loci.
We give a partial answer to this question in the case of abelian covers in Theorem

4.2, which is an analogue of Theorem 3.1 in the Prym case. Notice that Theorem
4.2 improves the results obtained in [28] by different techniques.

As a consequence we show the following

Theorem 1.3. (Corollaries 4.4, 4.5, and Remark 4.6)
Assume G̃ = (Z/NZ)m with N even, and let σ be an involution in G̃. Consider

a family of abelian covers of P1, C̃t → C̃t/G̃ ∼= P
1, with g(C̃t ) = g̃ ≥ 4. Assume

that the covers C̃t → Ct = C̃/〈σ 〉 have b ramification points and denote by g the
genus of Ct .

If the multiplication map m : (S2(V−))G̃ −→ H0(C̃, K⊗2
C̃t

)G̃ is surjective at a

general element of the family of covers, then there exists an integer M(N ) which
only depends on N such that, if g̃ > M(N ), then the subvariety of the Prym locus in
Aδ

g−1+ b
2
induced by any such family is not totally geodesic (hence it is not Shimura).

We remark that the condition on the surjectivity of the multiplication map

m : (S2(V−))G̃ −→ H0(C̃, K⊗2
C̃t

)G̃

at a general element of the family of covers is automatically satisfied if b ≥ 6
thanks to the Prym-Torelli theorem proved in [22,36].

The technique used to prove the main Theorems 3.1 and 4.2 is the computation
of the second fundamental forms of the Torelli map and of the Prym maps on some
particular quadrics invariant under the action of the Galois group. The fact that
the Galois group is abelian allows to explicitly construct such quadrics. Then, the
techniques developed in [8,10,17] for the second fundamental form of the Torelli
map and in [5–7] for the second fundamental form of the Prym map, allow to
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compute these second fundamental forms on the quadrics that we have constructed
and show that they do not vanish. A similar technique in the case of cyclic groups,
has been used in [19] to show that the bielliptic and the bihyperelliptic loci are not
totally geodesic.

The structure of the paper is as follows. In Sect. 2 we recall the construction of
abelian covers of P1 following [29,41]. In Sect. 3 we prove the main results in the
case of the Torelli map and we finish giving one example. In Sect. 4 we prove the
main results in the case of the Prym maps and we conclude giving some examples.

2. Abelian covers of P1

In this section, we recall the construction of abelian covers of P1 following [29,41]
(see also [16,38]).

Consider an m × r matrix A = (ri j ) whose entries ri j are in Z/NZ for some
N ≥ 2 such that the sum of the columns of A is zero in (Z/NZ)m and all the
columns are different from zero. Denote by r̃i j the lift of ri j to Z∩ [0, N ) and take
t1, ..., tr ∈ C, ti �= t j , ∀i �= j . Let C(x) be the algebraic closure of C(x). For each
i = 1, . . . ,m, choose a function wi ∈ C(x) with

wN
i =

r∏

j=1

(x − t j )
r̃i j for i = 1, . . . ,m, (2.1)

in C(x)[w1, . . . , wm]. The Eq. (2.1) give in general a singular affine curve and we
take its normalization. Notice that the cover given by (2.1) is not ramified over the
infinity and the local monodromy around the branch point t j is given by the column
vector (r1 j , . . . , rmj )

t . Hence the order of ramification over t j is N
gcd(N ,̃r1 j ,...,̃rmj )

.

The covering has the Galois group which is given by the subgroup G of (Z/NZ)m

generated by the columns of A. So by the Riemann-Hurwitz formula, we compute
the genus of the curve as follows:

g = 1 + d

⎛

⎝r − 2

2
− 1

2N

r∑

j=1

gcd(N , r̃1 j , . . . , r̃m j )

⎞

⎠ , (2.2)

where d is the cardinality of G. Denote by G∗ = Hom(G,C∗) the group of the
characters of G. Consider a Galois covering π : C → P

1 with Galois group G.
The group G acts on the sheaves π∗(OC ) and π∗(C) via its characters and we
get corresponding eigenspace decompositions π∗(OC ) = ⊕

χ∈G∗ π∗(OC )χ and

π∗(C) = ⊕
χ∈G∗ π∗(C)χ . Set L−1

χ = π∗(OC )χ and let Cχ = π∗(C)χ denote the
eigensheaves corresponding to the character χ . Then Lχ is a line bundle and Cχ

is a local system of rank 1 outside of the branch locus of π .
Denote by l j the j-th column of the matrix A. The group G is the subgroup of

(Z/NZ)m generated by the columns of A, hence each column l j is an element of
G. Since G is a finite abelian group, then the character group G∗ = Hom(G,C∗) is
isomorphic to G. In fact, if G = Z/NZ is cyclic, then we can fix an isomorphism
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between Z/NZ and the group of N -th roots of unity inC∗ via 1 �→ e
2π i
N . Therefore

G∗ is isomorphic to the group of N -th roots of unity via χ �→ χ(1). In general, the
abelian group G is a product of finite cyclic groups, so this isomorphism extends
to an isomorphism G

∼−→ G∗. Fix a character χ of G, then χ(l j ) ∈ C
∗ and since

G is finite, χ(l j ) is a root of unity. Hence there exists a unique integer α j ∈ [0, N )

such that χ(l j ) = e
2π iα j
N . Equivalently, we can obtain α j as follows: let n ∈ G ⊆

(Z/NZ)m be the element corresponding to χ under the above isomorphism. We
see n a row vector. Then (α1, . . . , αr ) = n · A.

Denote by ñ the lift of n to (Z∩[0, N ))m and set ñ · Ã = (α1, . . . , αr ), where Ã
is the matrix with entries given by the r̃i j ’s. This means that α j = ∑m

i=1 ni r̃i j ∈ Z

(notice that α j is not necessarily in Z ∩ [0, N )).
Let us denote by KC the canonical sheaf ofC . The sheaf π∗(KC )χ decomposes

according to the action ofG. Let χ be the character associated to an element n ∈ G.
Then we have: Lχ = OP1(

∑r
j=1〈α j

N 〉), where 〈x〉 is the fractional part of the real
number x and

π∗(KC )χ = KP1 ⊗ L−1
χ = OP1

⎛

⎝−2 +
r∑

j=1

〈
−α j

N

〉
⎞

⎠ . (2.3)

For a proof of this, see [16, Lemma 4.2], [38, Proposition 1.2]. Consider now an
abelian groupG ⊆ (Z/NZ)m and aG-abelian cover given by the Eq. (2.1). Let n ∈
G be the element (n1, . . . , nm) ∈ (Z/NZ)m under the inclusion G ⊆ (Z/NZ)m

with ni ∈ Z ∩ [0, N ). By (2.3), we have

dn := dim H0(C, KC )n = −1 +
r∑

j=1

〈−α j

N
〉. (2.4)

A basis for H0(C, KC ) is given by the forms

ωn,ν = xνw
n1
1 · · ·wnm

m

r∏

j=1

(x − t j )
�− α j

N �dx . (2.5)

Here α j is as above and 0 ≤ ν ≤ dn − 1 = −2+ ∑r
j=1〈−α j

N 〉. The fact that these
elements give a basis of H0(C, KC ) is proven in [29, Lemma 5.1].

To construct a family of abelian covers of P1, we fix a matrix A as above and
we let the points (t1, ..., tr ) vary in Yr := {(t1, . . . , tr ) ∈ (A1

C
)r | ti �= t j , ∀i �= j}.

Over this affine open set we define a family of abelian covers of P1 by the equation
(2.1). Clearly the branch points are (t1, . . . , tr ) ∈ Yr . Varying the branch points we
get a family f : C̃ → Yr of smooth projective curves whose fibersCt are the abelian
covers of P1 introduced above. Denote by Mg(G, A) ⊂ Mg the corresponding
subvariety inMg . For more details on the construction of families of Galois covers
see e.g. [2,3,13,16].
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3. Totally geodesic subvarieties in the Torelli locus

Assume we have a family of Galois covers of P1 with Galois group G. With the
notation used in [13, Sect. 2], denote byMg(m,G, θ) the corresponding subvariety
ofMg . Here θ : �r = 〈γ1, ..., γr | ∏r

i=1 γi = 1〉 → G denotes the monodromy of
the cover (m := (m1, ...,mr ) is such that mi is the order of θ(γi ) in G). Consider
j : Mg → Ag the Torelli morphism, which is an orbifold immersion outside the
hyperelliptic locus. We endow Ag with the Siegel metric, that is the orbifold metric
induced on Ag by the symmetric metric on the Siegel space Hg .

Recall that an algebraic subvariety of Ag is totally geodesic if it is the image of
a totally geodesic submanifold of the Siegel spaceHg endowed with the symmetric
metric. A submanifold of Hg is totally geodesic if its second fundamental form is
identically zero. Moreover, an algebraic subvariety of Ag is a Shimura subvariety
if and only if it is totally geodesic and it contains a CM (complex multiplication)
point (see [30,33]). Hence, if an algebraic subvariety of Ag is not totally geodesic,
it is not Shimura.

The second fundamental form of the Torelli map with respect to the Siegel
metric has been studied in [8,10,19]. Its dual at a point [C] ∈ Mg corresponding
to a non hyperelliptic curve C is a map

ρ : I2(KC ) → S2H0(C, K⊗2
C ) (3.1)

where I2(KC ) is the kernel of the multiplication map S2 H0(C, KC ) →
H0(C, K 2

C ). In [31] in the cyclic case and in [13, Theorem 3.9] for any group
G, it is proven that if, for a general curve C of our family of Galois covers, the
following condition holds

(∗) dim(S2H0(C, KC ))G = dim H0(C, K⊗2
C )G,

then the family ofGalois covers yields aShimura (hence totally geodesic) subvariety
of Ag . We want to show that if (∗) does not hold, the group G is abelian, and under
some assumptions on the dimension of the eigenspaces of the action of G on
H0(KC ), the family of abelian covers is not totally geodesic. We will do it by an
explicit computation of the second fundamental form of the subvariety along some
tangent directions and showing that it does not vanish.

To do this we will need to compute the first and the second Gaussian maps of
the canonical line bundle KC .

We briefly recall their definition in local coordinates. Take a local coordinate z
on C . The first Gaussian (or Wahl map) is the linear map

μ1 : ∧2H0(C, KC ) → H0(C, K⊗3
C ),

μ1(α ∧ β) := ( f ′(z)g(z) − f (z)g′(z))(dz)3,

where α = f (z)dz, β = g(z)dz are the local expressions of the holomorphic forms
α and β. Then one immediately sees that the zero divisor of the section μ1(α ∧ β)

is given by 2F + R, where F is the base locus of the pencil 〈α, β〉, and R is the
ramification divisor of the map given by the pencil 〈α, β〉.
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Let us now recall the definition of the second Gaussian map

μ2 : I2(KC ) → H0(C, K⊗4
C ).

Take a basis {ω1, ..., ωg} of H0(C, KC ) and a quadric Q = ∑g
i, j=1 ai jωi ⊗ ω j ∈

I2(KC ), where ai j = a ji , ∀i, j . Assume that locally we have ωi = fi (z)dz. Since
Q ∈ I2(KC ), we have

g∑

i, j=1

ai j fi (z) f j (z) = 0.

Derivating we get

g∑

i, j=1

ai j f
′
i (z) f j (z) = 0,

hence

g∑

i, j=1

ai j f
′
i (z) f

′
j (z) +

g∑

i, j=1

ai j f
′′
i (z) f j (z) = 0.

In local coordinates the second Gaussian map is defined as follows:

μ2(Q) :=
g∑

i, j=1

ai j f
′
i (z) f

′
j (z)(dz)

4 = −
g∑

i, j=1

ai j f
′′
i (z) f j (z)(dz)

4.

Assume now that the Galois group is an abelian group G ⊆ (Z/NZ)m of
cardinality d, and the family of abelian covers has equations given by (2.1) given
by an m × r matrix A = (ri j ) whose entries are in Z/NZ for some N ≥ 2.
For an element n ∈ G denote by Vn := H0(C, KC )n and by dn = dim Vn =
−1 + ∑r

j=1〈−α j
N 〉 (see (2.4)). We have the following

Theorem 3.1. (1) If there exists an element n ∈ G ⊆ (Z/NZ)m such that n �= −n,
dn ≥ 2, d−n ≥ 2, then the subvariety of Ag induced by the family of abelian
covers of genus g ≥ 4 is not totally geodesic (hence it is not Shimura).

(2) If there exists an element n ∈ G ⊆ (Z/NZ)m of order 2 such that dn ≥ 3, then
the subvariety of Ag induced by the family of abelian covers of genus g ≥ 4 is
not totally geodesic (hence it is not Shimura).

Proof. Assume first that the generic curve C of the family of abelian covers is
not hyperelliptic. In case (1), by assumption, and by (2.5) there exists subspaces
〈ω1, ω2 = xω1〉 ⊆ Vn , 〈ω3, ω4 = xω3〉 ⊆ V−n . Then the quadric

Q := ω1 � ω4 − ω2 � ω3

clearly lies in (I2(KC ))G . Consider the d : 1 cover π : C → C/G ∼= P
1 and take

a generic fibre π−1(t) = {p1, ..., pd} such that pi �= p j , ∀i �= j and such that
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∀i , pi does not belong to the base locus of the pencil given by 〈ω1, ω3〉, nor to the
ramification locus of the map given by the pencil 〈ω1, ω3〉.

Consider the vector v = ∑d
i=1 ξpi ∈ H1(TC )G , where ξpi denotes the Schiffer

variation at pi (for a definition of it see e.g. [8, Sect. 2.2]). Then using [10, Theorem
3.1], or [8, Theorem 2.2] and the fact that ρ is G-equivariant, we have

ρ(Q)(v � v) =
∑

i �= j

ρ(Q)(ξpi � ξp j ) +
d∑

i=1

ρ(Q)(ξpi � ξpi )

= −4π i
∑

i �= j

Q(pi , p j ) · ηpi (p j ) + dρ(Q)(ξp1 � ξp1). (3.2)

For i �= j , we have Q(pi , p j ) = 0, since x(pi ) = x(p j ) = t , while ρ(Q)(ξp1 �
ξp1) = −2π i · μ2(Q)(p1), where μ2 : I2(KC ) → H0(C, K⊗4

C ) is the second
Gaussian map of the canonical line bundle KC .

So we have
ρ(Q)(v � v) = −2dπ iμ2(Q)(p1). (3.3)

Assume that in a local coordinate around p1, ωi = fi (z)dz, with f2(z) =
x(z) f1(z), f4(z) = x(z) f3(z). Then we have

μ2(Q) = ( f ′
1(z) · f ′

4(z) − f ′
2(z) · f ′

3(z))(dz)
4 =

= (
f ′
1 · (x ′(z) f3(z) + x(z) f ′

3(z)) − (x ′(z) f1(z) + x(z) f ′
1(z)) · f ′

3(z)
)
(dz)4 =

= x ′(z) · (
f ′
1(z) f3(z) − f1(z) f

′
3(z)

)
(dz)4 =

= x ′(z)dz · μ1(ω1 ∧ ω3),

where μ1 : ∧2H0(C, KC ) → H0(C, K⊗3
C ) denotes the first Gaussian map of the

canonical bundle KC . So μ2(Q) vanishes exactly in the base locus of the linear
system 〈ω1, ω3〉, in the ramification points of the map given by 〈ω1, ω3〉 and in the
ramification points of the cover π : C → P

1. Hence by our choice of t , we get
μ2(Q)(p1) �= 0, so ρ(Q)(v � v) �= 0, so the variety given by the family of abelian
covers is not totally geodesic.

In fact, call X the subvariety of Ag given by the family of abelian covers. Then
the second fundamental form of X in Ag is a map

S2TX → NX/Ag ,

where TX is the tangent bundle of X and NX/Ag is the normal bundle of X in Ag .
Its dual is a map

ρX : N∗
X/Ag

→ S2T ∗
X .

Clearly the conormal bundle N∗
Mg/Ag |X ofMg in Ag restricted to X is contained in

the conormal bundle N∗
X/Ag

of X in Ag . So, at a point [C] ∈ X , we have

I2(KC ) = N∗
Mg/Ag,[C] ⊂ N∗

X/Ag,[C].
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Since v ∈ H1(C, TC )G = TX,[C] is tangent to X , we have

ρX (Q)(v � v) = ρ(Q)(v � v) �= 0.

Sowe have shown that the dualρX of the second fundamental form of the subvariety
X is not identically zero, hence X is not totally geodesic.

In case (2) by assumption, there exists a subspace 〈ω1, ω2 = xω1, ω3 =
x2ω1〉 ⊆ Vn , with n = −n. Thus we can take the quadric

Q := ω1 � ω3 − ω2 � ω2 ∈ I2(KC )G .

For a general fibre π−1(t) = {p1, ..., pd}, take v = ∑d
i=1 ξpi ∈ H1(TC )G as

above, then

ρ(Q)(v � v) = −4π i
∑

i �= j

Q(pi , p j ) · ηpi (p j ) + dρ(Q)(ξp1 � ξp1) = −2dπ iμ2(Q)(p1).

(3.4)
If we write in local coordinates as above ωi = fi (z)dz, i = 1, 2, 3, we have
f2(z) = x(z) f1(z), f3(z) = (x(z))2 f1(z). So we compute

μ2(Q) = f ′
1(z) · (

2x(z)x ′(z) f1(z) + (x(z))2 f ′
1(z)

)

−(
x ′(z) f1(z) + x(z) f ′

1(z)
) · (

x ′(z) f1(z) + x(z) f1(z)
)

= − (x ′(z))2( f1(z))2.

Therefore if we take t generic as above, we have μ2(Q)(p1) �= 0, hence
ρ(Q)(v � v) �= 0.

It remains to consider the case inwhich the family of abelian covers is contained
in the hyperelliptic locus. The Torelli map restricted to the hyperelliptic locusHEg ,
jh : HEg → Ag , is an orbifold immersion ([37]) and in [4, Prop. 5.1], [19, Sect. 6]
the second fundamental form of the restriction of the Torelli map to the hyperelliptic
locus has been studied.

We have the following tangent bundle exact sequence

0

0 THEg TAg |HEg

=

NHEg/Ag 0

TMg |HEg
TAg |HEg

NMg/Ag |HEg
0

(3.5)

Denote by
ρHE : N∗

HEg |Ag
→ S2T ∗

HEg
(3.6)
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the dual of the second fundamental form of jh .
At a point [C] ∈ HEg , the dual of (3.5) is

0 I2(KC )

=

S2H0(KC )

=

m
H0(K⊗2

C )

0 I2(KC ) S2H0(KC )
m

H0(K⊗2
C )+ 0

(3.7)

where H0(C, K⊗2
C )+ denotes the subspace of H0(C, K⊗2

C ) of the elements which
are invariant under the hyperelliptic involution τ and I2(KC ) can be identified with
the set of quadrics containing the rational normal curve.

Denote by H1(TC )+ the subspace of H1(TC )of the elementswhich are invariant
under the hyperelliptic involution τ , that is the tangent space of the hyperelliptic
locus at the point [C]. We have ∀Q ∈ I2(KC ), ∀v,w ∈ H1(TC )+,

ρHE (Q)(v � w) = ρ(Q)(v � w)

(see [4, Prop. 5.1]).
So, if the the hyperelliptic involution is contained in the Galois group G of

the cover, the tangent vector v = ∑d
i=1 ξpi is G-invariant, hence τ -invariant, i.e.

v ∈ H1(TC )+. Therefore if we take a quadric Q as above (both in case (1), and
(2)), we have:

ρHE (Q)(v � v) = ρ(Q)(v � v) =
∑

i �= j

ρ(Q)(ξpi � ξp j ) +
d∑

i=1

ρ(Q)(ξpi � ξpi ) =

= −4π i
∑

i �= j

Q(pi , p j ) · ηpi (p j ) + dρ(Q)(ξp1 � ξp1 ) = −2π idμ2(Q)(p1) �= 0

for a generic choice of the point t ∈ P
1.

If the hyperelliptic involution τ is not contained in G, we can consider the
subgroup G̃ of Aut (C) generated by G and τ . Since τ is central in Aut (C), the
group G̃ is abelian and, substituting G with G̃ we can assume that the hyperelliptic
involution is contained in the Galois group of the cover. By this we mean that we
take the quadrics Q as above, we consider the map h : C → C/G̃ ∼= P

1, we take
a generic point t ∈ P

1 and the vector v = ∑2d
i=1 ξqi ∈ H1(TC )G̃ ⊂ H1(TC)+,

where h−1(t) = {q1, ..., q2d}. Then we have

ρHE (Q)(v � v) = ρ(Q)(v � v) =
∑

i �= j

ρ(Q)(ξqi � ξq j ) +
d∑

i=1

ρ(Q)(ξqi � ξqi ) =

= −4π i
∑

i �= j

Q(qi , q j ) · ηqi (q j ) + dρ(Q)(ξq1 � ξq1) = −2π idμ2(Q)(q1) �= 0,

for t general. This concludes the proof.
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Corollary 3.2. Under the above assumptions, if G = (Z/2Z)m (g ≥ 4) and the
family is totally geodesic, then

(1) r ≤ 6m, and g ≤ 1 + 2m−1(3m − 2),
(2) m ≤ 6, hence r ≤ 36, g ≤ 513.

Proof. By Theorem 3.1 (2), if the family is totally geodesic, for every n ∈ G, with
n �= 0, we must have dn ≤ 2. Consider the i-th row (ri1, ..., rir ) of the matrix A
that gives the monodromy of the cover π : C → C/G ∼= P

1. Denote by r̃i j the
lift of ri j in Z ∩ [0, N ). Set ei = (0, ..., 0, 1, 0, ..., 0)t ∈ G and denote by βi the
number of nonzero entries in the row (ri1, ..., rir ) = ei · A. Then

2 ≥ dei = −1 +
r∑

j=1

〈−r̃i j
2

〉 = −1 + βi

2
,

hence βi ≤ 6, ∀i = 1, ...,m. So if r > 6m there must be a column of A which
is zero, a contradiction. Recall that the columns of A give the monodromy of the
cover, hence they have order 2. So r ≤ 6m and by the Riemann Hurwitz formula
we have:

2g − 2 = −2 · 2m + r · 2
m

2
,

so

g = 1 + 2m−1(
r

2
− 2) ≤ 1 + 2m−1(3m − 2).

It remains to show thatm ≤ 6. SinceG = (Z/2Z)m is generated by the columns
of the matrix A, the set of the columns of A contains a basis of the vector space
(Z/2Z)m . Hence, composing with an automorphism of (Z/2Z)m , we can assume
that the canonical basis e1, ..., em is a subset of the set of the columns of A. So,
consider the element n := (1, ..., 1)t , seen as a character χ : G → {±1} ⊂ C

∗.
Then (1, ..., 1)A = (α1, ..., αr ) has at least m non zero entries, corresponding to
the columns given by e1, ..., em . So one immediately computes dn ≥ −1 + m

2 ,
and by Theorem 3.1 (2), we must have m ≤ 6. Thus r ≤ 6m ≤ 36 and g ≤
1 + 2m−1(3m − 2) ≤ 513.

Corollary 3.3. Assume G ⊆ (Z/NZ)m, N ≥ 3, set d := #G, g ≥ 4. Assume that
we have a family of G-covers of P1 yielding a totally geodesic subvariety of Ag.
Then r ≤ 2Nm and g ≤ 1 + d(m(N − 1) − 1).

Proof. Consider as above the element ei = (0, ..., 0, 1, 0, ..., 0)t , then eti · A =
(ri1, ..., rir ) is the i th-row of A. By Theorem 3.1, for each row eti · A of the matrix
A we must have dei ≤ 2, if eti · A has order 2, otherwise either dei ≤ 1, or d−ei ≤ 1.

We claim that in the first case we obtain βi ≤ 6, while in the second case
βi ≤ 2N .

In fact if eti · A has order 2, then all its nonzero entries are equal to N/2, hence

2 ≥ dei = −1 + ∑r
j=1

〈−r̃i j
N

〉 = −1 + βi
2 , so βi ≤ 6.
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If eti · A has order bigger than 2, we have either

1 ≥ dei = −1 +
r∑

j=1

〈−r̃i j
N

〉 = −1 +
∑

j |r̃i j �=0

(1 − r̃i j
N

) ≥ −1 + βi − βi
N − 1

N
,

(since r̃i j ≤ N − 1), ∀i, j , thus βi ≤ 2N , or

1 ≥ d−ei = −1 +
r∑

j=1

〈 r̃i j
N

〉 = −1 +
∑

j |r̃i j �=0

r̃i j
N

≥ −1 + βi

N
,

thus again we have βi ≤ 2N .

Denote by p the number of rows of A of order 2, and by q the number of rows
of A of order greater than 2. Then we must have r ≤ ∑m

i=1 βi ≤ 6p + 2Nq ≤
2N (p + q) = 2Nm.

By the Riemann Hurwitz formula we have:

2g − 2 = d

(

−2 +
r∑

i=1

(

1 − 1

mi

))

≤ −2d

+ dr(1 − 1

N
) ≤ −2d + 2dNm(1 − 1

N
) = 2d(m(N − 1) − 1),

since mi ≤ N , ∀i and r ≤ 2Nm. Hence g ≤ 1 + d(m(N − 1) − 1).

Corollary 3.4. Assume G = (Z/pZ)m, with p a prime number, p ≥ 3, g ≥
4. Assume that we have a family of G-covers of P1 yielding a totally geodesic
subvariety of Ag. Then m ≤ 2p, r ≤ 4p2 and g ≤ 1 + p2p(2p(p − 1) − 1).

Proof. By Corollary 3.3 we know that r ≤ 2pm and g ≤ 1 + pm(m(p − 1) − 1).
Then it suffices to show that m ≤ 2p.

Since the columns of A generate the vector space G = (Z/pZ)m , a subset of
the set of the columns of A gives a basis of G. Hence, applying an automorphism
of G we can assume that the canonical basis e1, ..., em is a subset of the set of the
columns of A. Consider the element n = (1, ..., 1)t ∈ G, set nt A = (α1, ..., αr ).
Then, by Theorem 3.1 (1), either

1 ≥ dn = −1 +
r∑

j=1

〈−α j

p

〉 ≥ −1 + m(1 − 1

p
),

or

1 ≥ d−n = −1 +
r∑

j=1

〈α j

p

〉 ≥ −1 + m

p
.

Hence m ≤ 2p.
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So this concludes the proof of Theorem 1.2.
Clearly the above estimates are not sharp, as one can see by the following

example.
Example. r = 8, g = 13. G = Z/2Z×Z/4Z = 〈g1〉×〈g2〉 ⊆ Z/4Z×Z/4Z,

g1 �→ (2, 0)t , g2 �→ (0, 1)t . The family of covers is given by the matrix

A =
(
2 2 2 2 0 0 0 0
0 0 0 0 1 1 1 1

)

,

so the equations can be written as:

w2
1 =

4∏

i=1

(x − ti )

w4
2 =

8∏

i=5

(x − ti ).

By theHurwitz formula, one immediately computes g = 13. The non zero elements
of G, with the identification of G with its group of characters explained in Sect. 2
are:

g1 = (1 0)A, g2 = (0 1)A, g1 + g2 = (1 1)A, g1 + 2g2 = (1 2)A,

g1 + 3g2 = (1 3)A, 2g2 = (0 2)A, 3g2 = (0 3)A.

So we have:

dg1 = 1, dg2 = 2, dg1+g2 = 4, dg1+2g2 = 3,

dg1+3g2 = 2, d2g2 = 1, d3g2 = 0.

Since dg1+g2 = 4,−(g1+g2) = g1+3g2 and dg1+3g2 = 2, we can apply Theorem
3.1(1) and conclude that this family gives a subvariety of A13 contained in the
Torelli locus which is not totally geodesic. We could also apply Theorem 3.1(2) to
conclude, since dg1+2g2 = 3 and dg1+2g2 has order 2.

4. Totally geodesic subvarieties in the Prym loci

Denote by Rg,b the moduli space of isomorphism classes of triples [(C, α, B)]
where C is a smooth complex projective curve of genus g, B is a reduced effective
divisor of degree b on C and α ∈ Pic(C) is such that α⊗2 = OC (B). A point
[(C, α, B)] ∈ Rg,b determines a double cover of C , f : C̃ → C branched on B,
with C̃ = Spec(OC ⊕ α−1).

The Prym variety P(C, α, B) (also denoted by P(C̃,C)) associated to
[(C, α, B)] is the connected component containing the origin of the kernel of the
norm map Nm f : JC̃ → JC . When b > 0, ker Nm f is connected. The variety
P(C, α, B) is a polarised abelian variety of dimension g − 1 + b

2 . In fact, if we
denote by
 the restriction to P(C̃,C) of the principal polarisation on JC̃ , if b = 0,
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 is twice a principal polarisation, hence we consider on P(C̃,C) this principal
polarisation. If b > 0, we endow P(C̃,C) with the polarisation 
 which is of type
δ = (1, . . . , 1, 2, . . . , 2

︸ ︷︷ ︸
g times

).

If we denote by Aδ

g−1+ b
2
the moduli space of abelian varieties of dimension

g − 1 + b
2 with a polarization of type δ, then we consider the Prym map

Pg,b : Rg,b −→ Aδ

g−1+ b
2
, [(C, α, B)] �−→ [(P(C, α, B),
)].

The dual of the differential of the Prym map Pg,b at a generic point [(C, α, B)]
is given by the multiplication map

(dPg,b)
∗ : S2H0(C, ωC ⊗ α) → H0(C, ω2

C ⊗ OC (B)) (4.1)

Themultiplicationmap is surjective if dimRg,b ≤ dimAδ

g−1+ b
2
, ([24]).Assume

we have a family of Galois coversψt : C̃t → P
1 = C̃t/G̃, where G̃ is a finite group

containing a central involution σ . Then we have an exact sequence 0 → 〈σ 〉 →
G̃ → G → 0, and a commutative diagram

C̃t Ct = C̃t/〈σ 〉
P
1

ϕt

ψt

πt

(4.2)

For a general element C̃ of the family, denote by V := H0(C̃, KC̃ ) ∼= V+⊕V−,
where V+ is the set if σ -invariants elements, and V− is the set if σ -anti-invariant
elements. The double cover ϕ : C̃ → C = C̃/〈σ 〉 corresponds to a triple (C, α, B),
where B is a reduced effective divisor of degree b on C and α is a line bundle on
C such that α⊗2 = OC (B). Then V+ ∼= H0(C, KC ) and V− ∼= H0(C, KC ⊗ α) ∼=
H1,0(P(C̃,C)).

For the precise construction of the subvarieties ofAδ

g−1+ b
2
generically contained

in the Prym loci given by families of Galois covers, see [16, Sect. 3]. Given a family
of Galois covers as above, consider the multiplication map m : S2V → W =
H0(C̃, K⊗2

C̃
), which is the dual of the differential of the Torelli map j̃ : Mg̃ → Ag̃

at the point [C̃] ∈ Mg̃ . The map m is G̃-equivariant, hence it maps (S2V )G̃ to

H0(C̃, K⊗2
C̃

)G̃ . We have the following isomorphism: (S2V )G̃ = (S2(V+))G̃ ⊕
(S2(V−))G̃ .

The dual of the differential of the restriction of Prym map to the subvariety of
Rg,b given by our family of Galois covers at the point [(C, α, B)] is the restriction
of the multiplication map m to (S2(V−))G̃ . We still denote by

m : (S2(V−))G̃ −→ H0(C̃, K⊗2
C̃

)G̃ (4.3)

this restriction (see [15,16]).
In [15, Theorem 3.2], which is a generalisation of Theorems 3.2 and 4.2 in [9],

it is shown that if the map m : (S2(V−))G̃ −→ H0(C̃, K⊗2
C̃

)G̃ is an isomorphism,
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then the family of Pryms yields a Shimura subvariety of Aδ

g−1+ b
2
. Using this crite-

rion, in [9,15,16] many examples of Shimura subvarieties generically contained in
the Prym loci have been constructed.

We prove that in the case of abelian covers, under some assumptions, the above
condition is also necessary for such families of abelian covers to yield a Shimura
subvariety of Aδ

g−1+ b
2
generically contained in the Prym loci.

So, consider now an abelian group G̃ ⊆ (Z/NZ)m containing an involution σ

as above and a G̃-abelian cover given by the Eq. (2.1). Let n ∈ G̃ be the element
(n1, . . . , nm) ∈ (Z/NZ)m under the inclusion G̃ ⊆ (Z/NZ)m withni ∈ Z∩[0, N ).
By (2.4),

dim H0(C̃, KC̃ )n = −1 +
r∑

j=1

〈−α j

N
〉.

A basis for the C-vector space H0(C̃, KC̃ ) is given by the forms in (2.5):

ωn,ν = xνw
n1
1 · · · wnm

m

r∏

j=1

(x − t j )
�− α̃ j

N �dx,

where α̃ j is as introduced above and 0 ≤ ν ≤ dn − 1 = −2 + ∑r
j=1〈−α j

N 〉.
The action of σ is given by wi �→ −wi for some subset of {1, . . . ,m},

and w j �→ w j for j in the complement of this subset. In fact, the elements
of order 2 in (Z/NZ)m have entries either equal to zero or to N

2 . Denote by
g j = (0, ..., 0, N

2 , 0, ..., 0) the element of (Z/NZ)m where N
2 is in the j-th posi-

tion. Then σ = ∑m
j=1 ε j g j , where ε j is either zero, or 1. Then, by the construction

of abelian covers (see e.g. [41]), the action of σ is given by:

σ(wi ) = (e
2π i
N )

N
2 ·εi · wi = (−1)εi · wi = ±wi . (4.4)

We may then, without loss of generality, assume that σ(wi ) = −wi for i ∈
{1, . . . , k} for some k ≤ m and σ(wi ) = wi for the i > k. We recall now [28,
Lemma 2.5].

Lemma 4.1. The group G̃ acts on H0(C̃, KC̃ )− and for n ∈ G̃, n =
(n1, ..., nm)t , we have H0(C̃, KC̃ )−,n = H0(C̃, KC̃ )n if n1 + · · · + nk is odd

and H0(C̃, KC̃ )−,n = 0 otherwise. Similar equalities hold for H1(C̃,C)−,n.

Under these hypotheses, we have the following

Theorem 4.2. Assume that themultiplicationmapm : (S2(V−))G̃→H0(C̃, K⊗2
C̃

)G̃

is surjective at the generic point of the family. Then

(1) If there exists n ∈ G̃ of order greater than 2, dim(V−)n = dn ≥ 2 and
dim(V−)(−n) = d−n ≥ 2, then the family of Pryms gives a subvariety of
Aδ

g−1+ b
2
which is not totally geodesic.
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(2) If there exists n ∈ G̃ such that n = −n and dim(V−)n = dn ≥ 3, then the
family of Pryms gives a subvariety of Aδ

g−1+ b
2
which is not totally geodesic.

Proof. Assume that G̃ ⊆ (Z/NZ)m and the family of G̃-covers is given by amatrix
A = (ri j ) whose entries are in Z/NZ for some N ≥ 2. Then the equations for the
cover G̃ are

wN
i =

r∏

j=1

(x − t j )
r̃i j for i = 1, . . . ,m, (4.5)

and we can assume that the involution σ is given by σ(wi ) = −wi , ∀i = 1, ..., k,
σ(wi ) = wi , ∀i ≥ k + 1. Then, denoting as above by V = H0(C̃, KC̃ ) and by

V− = H0(C̃, KC̃ )− ∼= H0(C, KC ⊗ α) ∼= H1,0(P(C̃,C)),

by Lemma 4.1, we have (V−)n = 0, if n1 + ... + nk is even, while (V−)n = Vn if
n1 + ... + nk is odd.

Hence if we are in case (1), there exist subspaces 〈ω1, ω2 = xω1〉 ⊆ (V−)n =,
and 〈ω3, ω4 = xω3〉 ⊆ (V−)(−n). So the quadric Q := ω1 � ω4 − ω2 � ω3 is

G̃-invariant and it belongs to the kernel I2(KC ⊗ α)G̃ of the multiplication map
m : (S2(V−))G̃ → H0(C̃, K⊗2

C̃
)G̃ . The assumption on the surjectivity of the map

m is equivalent to saying that the differential of the restriction of the Prym map to
the subvariety X of Rg,b given by our family of abelian covers is injective. So it is
possible to study the second fundamental form of the immersion of X in Aδ

g−1+ b
2

given by the restriction of the Prym map to X.
In [6, Sect. 2] it is proven that if

ρP : I2(KC ⊗ α)G̃ → (S2H0(C̃, K⊗2
C̃

))G̃

is the dual of the second fundamental form of the restriction of the Prym map to X
we have

ρP (Q)(v � v) = ρ̃(Q)(v � v),

∀v ∈ H1(TC̃ )G̃ , where ρ̃ is the dual of the second fundamental form of the Torelli
map of the family of covers ψ : C̃ → C̃/G̃ = P

1. As in the proof of Theorem 3.1,
if the family of covers C̃ → C̃/G̃ is contained in the hyperelliptic locus then ρ̃(Q)

is the section Q̃ · η̂, seen as an element in S2 H0(K⊗2
C̃

) as in [8, Theorem 3.7].

Let t ∈ P
1 be a general point, then ψ−1(t) = {p1, ..., pd}, where d is the order

of G̃ and pi �= p j , ∀i �= j . Set v := ∑d
i=1 ξpi . Then clearly v ∈ H1(TC̃ )G̃ and we

have:

ρP (Q)(v � v) = ρ̃(Q)(v � v) =
∑

i �= j

ρ̃(Q)(ξpi � ξp j ) +
d∑

i=1

ρ̃(Q)(ξpi � ξpi ) =

= −4π i
∑

i �= j

Q(pi , p j )η̃pi (p j ) + dρ̃(Q)(ξp1 � ξp1) = −2π idμ2(Q)(p1),
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where μ2 : I2(KC̃ ) → H0(C̃, K⊗4
C̃

) is the second Gaussian map of the canonical

line bundle KC̃ . Here we used again the G̃-equivariance of ρ̃ and the fact that
Q(pi , p j ) = 0, for all i, j , since x(pi ) = x(p j ). Hence if we take t ∈ P

1 generic
as in the proof of Theorem 3.1 we have μ2(Q)(p1) �= 0. This concludes the proof
of case (1).

Case (2) is very similar: by assumption there exist a subspace 〈ω1, ω2 =
xω1, ω3 = x2ω1〉 ⊆ (V−)n = Vn , with n = −n. Thus we can take the quadric
Q := ω1�ω3−ω2�ω2 ∈ I2(KC⊗α)G̃ .For a general fibreψ−1(q) = {p1, ..., pd},
we have again

ρP (Q)(v � v) = −4π i
∑

i �= j

Q(pi , p j ) · ηpi (p j ) + dρ(Q)(ξp1 � ξp1 ) = −2π idμ2(Q)(p1) �= 0,

(4.6)
for t generic.

Remark 4.3. The assumption on the surjectivity of the multiplication map m :
(S2(V−))G̃ → H0(C̃, K⊗2

C̃
)G̃ at the generic point of the family is automatically

satisfied if b ≥ 6, thanks to the Prym-Torelli theorem proved in [22,36].

Corollary 4.4. With the above notation, assume that the multiplication map m :
(S2(V−))G̃ → H0(C̃, K⊗2

C̃
)G̃ is surjective, G̃ = (Z/2Z)m, and σ(wi ) = −wi ,

for i = 1, ...,m. If the family of Pryms yields a totally geodesic subvariety, then
r ≤ 6m and g̃ ≤ 1 + 2m−1(3m − 2).

Proof. Since σ(wi ) = −wi , ∀i = 1, ...,m, setting as usual ei = (0, ..., 0, 1,
0, ..., 0)t ∈ G̃, by Lemma 4.1 we have Vei = (V−)ei , for all i = 1, ...,m. Hence
by Theorem 4.2 (2), if the family is totally geodesic, we must have dei ≤ 2,
∀i = 1, ...,m. So we conclude as in Corollary 3.2.

Corollary 4.5. Assume that the multiplication map m : (S2(V−))G̃

→ H0(C̃, K⊗2
C̃

)G̃ is surjective, G̃ ⊆ (Z/NZ)m, N ≥ 3, σ(wi ) = −wi , for

i = 1, ...,m. Set d := #G̃. If the family of Pryms yields a totally geodesic subvari-
ety, then r ≤ 2Nm and g̃ ≤ 1 + d(−1 + m(N − 1)).

Proof. Since σ(wi ) = −wi , ∀i = 1, ...,m, by Lemma 4.1 we have Vei = (V−)ei ,
for all i = 1, ...,m. Hence by Theorem 4.2, for each row eti · A, i = 1, ...,m, we
must have dei ≤ 2, if ei · A has order 2, otherwise either dei ≤ 1, or d−ei ≤ 1.

As in Corollary 3.3, we show that in the first case we obtain βi ≤ 6, while in
the second case βi ≤ 2N , i = 1, ..,m and we conclude as in Corollary 3.3.

Remark 4.6. Notice that in the case G̃ = (Z/NZ)m we can always assume that
σ(wi ) = −wi , for i = 1, ...,m, that is, σ = ( N2 , ..., N

2 )t , since, given any two
elements σ1, σ2 of order 2, there always exists an automorphism of G̃ sending σ1
to σ2.
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Proof. Each order 2 element σ1 of (Z/NZ)m has entries equal either to 0 or to N
2 .

Consider the element e ∈ (Z/NZ)m whose entries are either 0 or 1 and such that
the zero entries are in the same positions as the ones equal to zero in σ1 (e.g. if
σ1 = ( N2 , 0, ..., 0)t , then e = (1, 0, ..., 0)t ). Assume that the i-th entry of σ1 is N

2 .
Denote as usual by e j the element having the j-th entry equal to one and all the
other entries equal to zero. Denote by ϕ the automorphism of (Z/NZ)m sending e
to (1, 1, ..., 1)t and e j to e j for all j �= i . Then clearly ϕ(σ1) = ( N2 , ..., N

2 )t .
By (4.4) the action of σ = ( N2 , ..., N

2 )t is σ(wi ) = −wi , ∀i , since here εi = 1,
∀i .

Corollaries 4.4, 4.5 and Remark 4.6 prove Theorem 1.3.
We give now some examples where the assumptions of Theorem 4.2 are satis-

fied.
Clearly the above estimates are not sharp, as one can see by example 2.
Example 1 r = 8, b = 8, g̃ = 5, g = 1. G̃ = Z/2Z × Z/2Z. The family of

covers is given by the matrix

A =
(
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

)

,

so the equations are:

w2
1 = (x − t1)(x − t2)(x − t3)(x − t4)

w2
2 = (x − t1)(x − t2)(x − t3)(x − t4)(x − t5)(x − t6)(x − t7)(x − t8).

By theRiemannHurwitz formula, one immediately computes g̃ = 5. The involution
σ = (1, 1)t acts as follows: σ(w1) = −w1, σ(w2) = −w2. The map C̃ → C =
C̃/〈σ 〉 ramifies over ti , i = 1, ..., 4, hence it has 8 ramification points, so by the
Riemann Hurwitz we see that g = g(C) = 1.

We compute:

d(1,0) = −1 + 4

2
= 1,

and

(V−)(1,0) = 〈
α1 = w1

dx

(x − t1)(x − t2)(x − t3)(x − t4)
= dx

w1

〉
,

d(0,1) = −1 + 8

2
= 3,

and

(V−)(0,1) = 〈
α2 = w2

dx
∏8

i=1(x − ti )
= dx

w2
, α3 = x

dx

w2
, α4 = x2

dx

w2

〉
.

Hence V− = 〈
α1, α2, α3, α4

〉
, and

(S2(V−))G̃

= 〈
α1 � α1, α2 � α2, α2 � α3, α2 � α4, α3 � α3, α3 � α4, α4 � α4

〉

∼= C
7.
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Since the differential of the Prym map P1,8 : R1,8 → Aδ
4 is injective ([36]), the

multiplication map

m : (S2(V−))G̃ ∼= C
7 → H0(C̃, K⊗2

C̃
)G̃ ∼= C

5

is surjective, and dim(V−)(0,1) = 3, so we can apply Theorem 4.2 (2) and conclude
that the family of Pryms is not totally geodesic.

One can also explicitly compute the kernel of themultiplicationmap as follows:
We have

α1
2 = dx2

(x − t1)(x − t2)(x − t3)(x − t4)
, α2

2 = dx2
∏8

i=1(x − ti )
, α2α3 = xα2

2,

α2α4 = x2α2
2, α2

3 = x2α2
2, α3α4 = x3α2

2, α2
4 = x4α2

2 .

We can assume that t5 = 0, t6 = 1, t7 = −1, so one easily computes that

a1α
2
1 + a2α

2
2 + a3α2α3 + a4α2α4 + a5α

2
3 + a6α3α4 + a7α

2
4 = 0,

if and only if a7 = −a1, a6 = t8a1, a5 = −a4 + a1, a3 = −t8a1, a2 = 0. Hence
the kernel of the multiplication map

m : (S2(V−))G̃ ∼= C
7 → H0(C̃, K⊗2

C̃
)G̃ ∼= C

5

has dimension 2 and it is generated by the quadrics

Q1 = α2 � α4 − α3 � α3,

Q2 = α1 � α1 − t8α2 � α3 + α3 � α3 + t8α3 � α4 − α4 � α4.

Since dim(S2(V−))G̃ = 7 and dim H0(C̃, K⊗2
C̃

)G̃ = 8 − 3 = 5, we conclude that
m is surjective.

Example 2 r = 8, b = 0, g̃ = 33, g = 17. G̃ = Z/4Z × Z/4Z. The family of
covers is given by the matrix

A =
(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

)

,

so the equations are:

w4
1 = (x − t1)(x − t2)(x − t3)(x − t4)

w4
2 = (x − t5)(x − t6)(x − t7)(x − t8).

By the Hurwitz formula one immediately computes g̃ = 33. The involution σ =
(1, 1)t acts as follows: σ(w1) = −w1, σ(w2) = −w2. The map C̃ → C = C̃/〈σ 〉
is étale so g = 17.
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We compute:

d(1,0) = −1 + 4 · 3
4

= 2 = d(0,1),

d(3,0) = −1 + 4 · 1
4

= 0 = d(0,3),

d(1,2) = −1 + 4 · 3
4

+ 4 · 1
2

= 4 = d(2,1),

d(3,2) = −1 + 4 · 1
4

+ 4 · 1
2

= 2 = d(2,3).

So

(S2(V−))G̃ = (
(V−)(1,2) ⊗ (V−)(3,2)

) ⊕ (
(V−)(2,1) ⊗ (V−)(2,3)

)

and since d(1,2) = 4 and d(3,2) = 2, Theorem 4.2 (1) applies, provided that the

multiplication map m : (S2(V−))G̃ ∼= C
16 → H0(C̃, K⊗2

C̃
)G̃ ∼= C

5 is surjective.

We show that the restriction of m to
(
(V−)(1,2) ⊗ (V−)(3,2)

)
has rank 5, hence

m is surjective. A basis of (V−)(1,2) is
{

β1 = w1w
2
2dx

∏8
i=1(x − ti )

, β2 = xβ1, β3 = x2β1, β4 = x3β1

}

.

A basis of (V−)(3,2) is {γ1 = w3
1w

2
2dx∏8

i=1(x−ti )
, γ2 = xγ1}. So a basis of

(
(V−)(1,2) ⊗

(V−)(3,2)
)
is given by {βi � γ j | i = 1, ..., 4, j = 1, 2}. We have

∑

i, j

ai jβiγ j = 0

if and only if

β1γ1(a11 + xa21 + x2a31 + x3a41 + xa12 + x2a22 + x3a32 + x4a42) = 0.

So we get a11 = a42 = 0, a21 = −a12, a31 = −a22, a41 = −a32. Thus the
kernel of the restriction of m to

(
(V−)(1,2) ⊗ (V−)(3,2)

)
has dimension 3, hence m

is surjective and the family of Pryms is not totally geodesic.
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