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Abstract. For an additive polynomial and a positive integer, we define an irreducible smooth
representation of a Weil group of a non-archimedean local field. We study several invariants
of this representation. We obtain a necessary and sufficient condition for it to be primitive.

1. Introduction

Let p be a prime number and q a power of it. An additive polynomial R(x) overFq is
a one-variable polynomialwith coefficients inFq such that R(x+y) = R(x)+R(y).

It is known that R(x) has the form
∑e

i=0 ai x
pi (ae �= 0)with an integer e ≥ 0. Let F

be anon-archimedean local fieldwith residuefieldFq .We take a separable closure F
of F . LetWF be theWeil group of F/F . Let vF (·) denote the normalized valuation
on F . We take a prime number � �= p. For a non-trivial character ψ : Fp → Q

×
� ,

a non-zero additive polynomial R(x) over Fq and a positive integer m which is
prime to p, we define an irreducible smooth WF -representation τψ,R,m over Q�

of degree pe if vF (p) is sufficiently large. This is unconditional if F has positive
characteristic. The integer m is related to the Swan conductor exponent of τψ,R,m .
As m varies, the isomorphism class of τψ,R,m varies.

Let CR denote the algebraic affine curve defined by a p − a = x R(x) in
A
2
Fq

= SpecFq [a, x]. This curve is studied in [6] and [1] in detail. For example,
the smooth compactification of CR is proved to be supersingular if (p, e) �= (2, 0).
The automorphism group ofCR contains a semidirect product QR of a cyclic group
and an extra-special p-group (Definition 2.7). Let F be an algebraic closure of Fq .
Then a semidirect group QR � Z acts on the base change CR,F := CR ×Fq F as
endomorphisms, where 1 ∈ Z acts on CR,F as the Frobenius endomorphism over
Fq . The center Z(QR) of QR is identified with Fp, which acts onCR as a �→ a+ζ

for ζ ∈ Fp. Let H1
c (CR,F, Q�) be the first étale cohomology group of CR,F with

compact support. Each element of Z(QR) is fixed by the action of Z on QR . Thus
its ψ-isotypic part H1

c (CR,F, Q�)[ψ] is regarded as a QR � Z-representation.
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We construct a concrete Galois extension over F whose Weil group is iso-
morphic to a subgroup of QR � Z associated to the integer m (Definition 3.1 and
Lemma 3.9(1)). Namelywewill define a homomorphism�R,m,� : WF → QR�Z

in (3.17). As a result, we define τψ,R,m to be the composite

WF
�R,m,�−−−−→ QR � Z → Aut

Q�
(H1

c (CR,F, Q�)[ψ]).

This is a smooth irreducible representation of WF of degree pe.
We state our motivation and reason why we introduce and study τψ,R,m . It is

known that the reductions of concentric affinoids in the Lubin–Tate curve fit into
this type of curves CR with special R. For example, see [18] and [19]. When R
is a monomial and m = 1, the representation τψ,R,m is studied in [9] and [10]
in detail. In these papers, the reduction of a certain affinoid in the Lubin–Tate
space is related to CR in some sense and the supercuspidal representation π of
GLpe (F) which corresponds to τψ,R,m under the local Langlands correspondence
explicitly. The homomorphism �R,1 with R(x) = x pe (e ∈ Z≥1) does appear in
the work [9]. An irreducible representation of a group is said to be primitive if
it is not isomorphic to an induction of any representation of a proper subgroup.
The representation τψ,R,m in [9] and [10] is primitive and this property makes it
complicated to describe π in a view point of type theory. For example, see [2]. It
is an interesting problem to do the same thing for general τψ,R,m . In this direction,
it would be valuable to know when τψ,R,m is primitive. We expect that another CR

will be related to concentric affinoids in the Lubin–Tate spaces as in [9].
We briefly explain the content of each section. In 2, we state several things on

the curves CR and the extra-special p-subgroups contained in the automorphism
groups of the curves.

In 3.1 and 3.2, we construct the Galois extension mentioned above and define
τψ,R,m . Let dR := gcd{pi+1 | ai �= 0}.We show that the Swan conductor exponent
of τψ,R,m equals m(pe + 1)/dR (Corollary 3.15). In 3.3, we study primitivity of
τψ,R,m . In particular, we write down a necessary and sufficient condition for τψ,R,m

to be primitive. Using this criterion, we give examples that τψ,R,m is primitive
(Example 3.29). The necessary and sufficient condition is that a symplectic module
(VR, ωR) associated to τψ,R,m is completely anisotropic (Corollary 3.28). If R is a
monomial, (VR, ωR) is studied in 3.4 in more detail. In Proposition 3.44, a primary
module in the sense of [9,11] is constructed geometrically via the Künneth formula.

Our aim in 4 is to show the following theorem.

Theorem 1.1. Assume p �= 2. The following two conditions are equivalent.

(1) There exists a non-trivial finite étale morphism

CR → CR1; (a, x) �→ (a − 
(x), r(x)) ,

where 
(x) ∈ Fq [x] and r(x), R1(x) are additive polynomials over Fq such
that dR,m | dR1 and r(αx) = αr(x) for any α ∈ μdR,m .

(2) The WF-representation τψ,R,m is imprimitive.
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If τψ,R,m is imprimitive, it is written as a form of an induced representation of a
certain explicit WF ′-representation τ ′

ψ,R1,m
associated to a finite extension F ′/F .

The proof of the above theorem depends on several geometric properties of CR

developed in [6] and [1]. See the beginning of 4 for more details.

Notation

Let k be a field. Let μ(k) denote the set of all roots of unity in k. For a positive
integer r , let μr (k) := {x ∈ k | xr = 1}.

For a positive integer i , let A
i
k and P

i
k be an i-dimensional affine space and a

projective space over k, respectively. For a scheme X over k and a field extension
l/k, let Xl denote the base change of X to l. For a closed subset Z of a variety X ,
we regard Z as a closed subscheme with the reduced scheme structure.

Throughout this paper, we set q := p f with a positive integer f . For a positive
integer i , we simply write Nrqi /q and Trqi /q for the norm map and the trace map
from Fqi to Fq , respectively.

Let X be a scheme over Fq and let Fq : X → X be the q-th power Frobenius
endomorphism. LetF be an algebraic closure ofFq . Let Frq : XF → XF be the base
change of Fq to XF. This endomorphism Frq is called the Frobenius endomorphism
of X over Fq .

For a Galois extension l/k, let Gal(l/k) denote the Galois group of the exten-
sion.

2. Extra-special p-groups and affine curves

Definition 2.1. Let k be a field. A polynomial f (x) ∈ k[x] is called additive if
f (x + y) = f (x) + f (y). Let Ak be the set of all additive polynomials with
coefficients in k.

Let p be a prime number. We simply writeAq forAFq . Let R(x) :=∑e
i=0 ai x

pi ∈
Aq with e ∈ Z≥0 and ae �= 0. Let

ER(x) := R(x)p
e +

e∑

i=0

(ai x)
pe−i ∈ Aq . (2.1)

We always assume

(p, e) �= (2, 0). (2.2)

This condition and ae �= 0 guarantee that ER(x) is a separable polynomial of degree
p2e. We simply write μr for μr (F) for a positive integer r . Let

dR := gcd{pi + 1 | ai �= 0}.
If ai �= 0, we have α pi = α−1 and α pe−i = α for α ∈ μdR . Hence

αR(αx) = R(x), ER(αx) = αER(x) for α ∈ μdR . (2.3)
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We consider the polynomial

fR(x, y) := −
e−1∑

i=0

⎛

⎝
e−i−1∑

j=0

(ai x
pi y)p

j + (x R(y))p
i

⎞

⎠ ∈ Fq [x, y].

This is linear with respect to x and y. By (2.3), we have an equality

fR(αx, αy) = fR(x, y) for α ∈ μdR . (2.4)

Lemma 2.2. We have fR(x, y)p − fR(x, y) = −x pe ER(y) + x R(y) + yR(x). In
particular, if ER(y) = 0, we have fR(x, y)p − fR(x, y) = x R(y) + yR(x).

Proof. The former equality follows from

fR(x, y)p − fR(x, y) = x R(y) − (x R(y))p
e +

e−1∑

i=0

(ai x
pi y − (ai x

pi y)p
e−i

)

= −x pe ER(y) + x R(y) + yR(x).

�	
Definition 2.3. (1) Let VR := {β ∈ F | ER(β) = 0}, which is a (2e)-dimensional

Fp-vector space.
(2) Let

QR :=
{
(α, β, γ ) ∈ F

3 | α ∈ μdR , β ∈ VR, γ p − γ = βR(β)
}

be the group whose group law is given by

(α1, β1, γ1) · (α2, β2, γ2) := (α1α2, β1 + α1β2, γ1 + γ2 + fR(β1, α1β2)) .

(2.5)

We check that this is well-defined and QR is a group. From (2.3), it follows that
ER(α1β2) = α1ER(β2) = 0. Furthermore, lettingγ := γ1+γ2+ fR(β1, α1β2),
we compute

γ p − γ = β1R(β1) + β2R(β2) + β1R(α1β2) + α1β2R(β1)

= (β1 + α1β2)R(β1 + α1β2),

where we use Lemma 2.2 for the first equality and use (2.3) for the last one.
Hence the right hand side of (2.5) is in QR . Via (2.4), both of ((α1, β1, γ1) ·
(α2, β2, γ2)) · (α3, β3, γ3) and (α1, β1, γ1) · ((α2, β2, γ2) · (α3, β3, γ3)) equal

(α1α2α3, β1 + α1(β2 + α2β3), γ1 + γ2 + γ3 + fR(β1, α1(β2 + α2β3))

+ fR(β2, α2β3)).

Finally, (1, 0, 0) is the identity element of QR and the inverse element of
(α, β, γ ) ∈ QR is given by

(α, β, γ )−1 = (α−1,−α−1β,−γ + fR(β, β)), (2.6)

where the right hand side is in QR due to Lemma 2.2 and (2.3).
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(3) Let HR := {(α, β, γ ) ∈ QR | α = 1}, which is a normal subgroup of QR .

If e = 0, we have p �= 2 by (2.2). We have HR = Fp ⊂ QR = μ2 × Fp if e = 0.
For a group G and elements g, g′ ∈ G, let [g, g′] := gg′g−1g′−1.

Lemma 2.4. For g = (1, β, γ ), g′ = (1, β ′, γ ′) ∈ HR, we have [g, g′] =
(1, 0, fR(β, β ′) − fR(β ′, β)). In particular, we have fR(β, β ′) − fR(β ′, β) ∈ Fp.

Proof. Using (2.6) and letting γ1 := −γ −γ ′+ fR(β, β)+ fR(β ′, β ′)+ fR(β, β ′),
we compute

[g, g′] = (1, β, γ )(1, β ′, γ ′)(1,−β,−γ + fR(β, β))(1,−β ′,−γ ′ + fR(β ′, β ′))
= (1, β + β ′, γ + γ ′ + fR(β, β ′))(1,−β − β ′, γ1)
= (1, 0, fR(β, β) + fR(β ′, β ′) + 2 fR(β, β ′) − fR(β + β ′, β + β ′))
= (1, 0, fR(β, β ′) − fR(β ′, β)). �	

For a group G, let Z(G) denote its center and [G,G] the commutator subgroup
of G.

Definition 2.5. A non-abelian p-group G is called an extra-special p-group if
[G,G] = Z(G) and |Z(G)| = p.

Lemma 2.6. Assume e ≥ 1.

(1) The group HR is non-abelian. We have Z(HR) = Z(QR) = {(1, 0, γ ) | γ ∈
Fp}. The quotient HR/Z(HR) is isomorphic to VR.

(2) The group HR is an extra-special p-group. The Fp-bilinear form ωR : VR ×
VR → Fp; (β, β ′) �→ fR(β, β ′) − fR(β ′, β) is a non-degenerate symplectic
form.

Proof. We show (1). Let Xβ := {x ∈ F | fR(β, x) = fR(x, β)} for β ∈ VR .
Then Xβ is an Fp-vector space of dimension 2e − 1 if β �= 0. Since VR has
dimension 2e, we have VR � Xβ for β ∈ VR\{0}. We take β ′ ∈ VR\Xβ and g =
(1, β, γ ), g′ = (1, β ′, γ ′) ∈ HR . Then [g, g′] = (1, 0, fR(β, β ′)− fR(β ′, β)) �= 1
in HR according to Lemma 2.4. Hence HR is non-abelian.

Clearly we have Z := {(1, 0, γ ) | γ ∈ Fp} ⊂ Z(QR) ⊂ Z(HR). It suffices
to show Z(HR) ⊂ Z . Let (1, β, γ ) ∈ Z(HR). We have VR ⊂ Xβ by Lemma 2.4.
This implies β = 0. Thus we obtain Z(HR) ⊂ Z . The last claim is easily verified.

We show (2). By Lemma 2.4, we have [HR, HR] ⊂ Z(HR). Since HR is non-
abelian, [HR, HR] is non-trivial.Hencewehave [HR, HR] = Z(HR)by |Z(HR)| =
p. Thus HR is extra-special. Assume ωR(β, β ′) = 0 for any β ′ ∈ VR . We take an
element (1, β, γ ) ∈ HR . By Lemma 2.4, we have (1, β, γ ) ∈ Z(HR). Thus β = 0
by (1). �	
Definition 2.7. (1) LetCR be the affine curve over Fq defined by a p −a = x R(x).
(2) Let QR act on CR,F by

(a, x) · (α, β, γ ) =
(
a + fR(x, β) + γ, α−1(x + β)

)
, (2.7)

for (a, x) ∈ CR,F and (α, β, γ ) ∈ QR . This is well-defined by (2.3) and Lemma
2.2.
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The curve CR is studied in [6] and [1].
We take a prime number � �= p. For a finite abelian group A, let A∨ denote the

character group HomZ(A, Q
×
� ). For a representation M of A over Q� and χ ∈ A∨,

let M[χ ] denote the χ -isotypic part of M .
According to Lemma 2.6(1), we identify a character ψ ∈ F

∨
p with a character

of Z(HR).

Lemma 2.8. Let ψ ∈ F
∨
p \ {1}.

(1) Let W ⊂ VR be an Fp-subspace of dimension e, which is totally isotropic with
respect to ωR. Let W ′ ⊂ HR be the inverse image of W by the natural map
HR → VR; (1, β, γ ) �→ β. Let ξ ∈ W ′∨ be an extension of ψ ∈ Z(HR)∨. Let
ρψ := IndHR

W ′ ξ . Then ρψ is a unique (up to isomorphism) irreducible represen-
tation of HR containing ψ . In particular, ρψ |Z(HR) is a multiple of ψ .

(2) The ψ-isotypic part H1
c (CR,F, Q�)[ψ] is isomorphic to ρψ as HR-

representations.

Proof. From Lemma 2.4, it follows that the subgroup W ′ ⊂ HR is abelian, since
W is totally isotropic via ωR . Hence an extension ξ ∈ W ′∨ of ψ always exists.
From Lemma 2.6(2) and [8, 16.14(2) Satz], the claim (1) follows. By [18, Remark
3.29], we have dim H1

c (CR,F, Q�)[ψ] = pe. Hence the claim (2) follows from (1).
�	

The representation ρψ induces a projective representation

ρ̄ψ : HR/Z(HR) → PGLpe (Q�).

Lemma 2.9. The map ρ̄ψ is injective.

Proof. As in the proof of [15, Theorem 6], we have Tr ρψ(x) = 0 for x ∈
HR\Z(HR). Assume ρ̄ψ (x Z(HR)) = 1 for x ∈ HR . Then ρψ(x) is a non-zero
scalar matrix. Hence Tr ρψ(x) �= 0. This implies x ∈ Z(HR). �	

Let Z � 1 act on H1
c (CR,F, Q�) by the pull-back Fr∗q . Let Z � 1 act on QR

by (α, β, γ ) �→ (αq−1
, βq−1

, γ q−1
). The semidirect product QR � Z acts on

H1
c (CR,F, Q�)[ψ].
A smooth projective geometrically connected curve X over Fq is said to be

supersingular when the Jacobian of XF is isogenous to a power of a supersingular
elliptic curve.

Proposition 2.10. LetCR denote the smooth compactification ofCR. The projective
curve CR is supersingular. In particular, this curve has positive genus. The natural
map H1

c (CR,F, Q�) → H1(CR,F, Q�) is an isomorphism.

Proof. The former claim is shown in [6, Theorems (9.4) and (13.7)] ( [1, Proposi-
tion 8.5], [17, Theorem 1.1]). The last claim follows from [18, Lemmas 3.27 and
3.28(3)]. �	
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3. Local Galois representation

In this section, we define an irreducible smooth WF -representation τψ,R,m and
determine several invariants associated to it. In 3.2.2, we determine the Swan con-
ductor exponent of τψ,R,m . In 3.3, we determine the symplectic module associated
to τψ,R,m , and give a necessary and sufficient condition for τψ,R,m to be primitive.
As a result, we obtain several examples such that τψ,R,m is primitive. In Lemma
3.36, if R is a monomial, we calculate invariants of the root system corresponding
to (VR, ωR) defined in [11].

3.1. Galois extension

For a valued field K , let OK denote the valuation ring of K .
Let F be a non-archimedean local field. We denote the characteristic of F by

char F . Let F be a separable closure of F . Let F̂ denote the completion of F . Let

v(·) denote the unique valuation on F̂ such that v(�) = 1 for a uniformizer � of
F , which we now fix. We simply writeO forO

F̂
. Let p be the maximal ideal ofO.

For an element x ∈ O, let x̄ denote the image of x by the reduction map
O → O/p. For a positive integer r prime to p, we have the bijection

μr (F) ∪ {0} ∼−→ μr (F) ∪ {0}; x �→ x̄ . (3.1)

The inverse of this map is given by Teichmüller lift. Let q be the cardinality of the
residue field of OF . For an element a ∈ Fq , let ã ∈ μq−1(F) ∪ {0} denote its lift
via (3.1).

We take R(x) =∑e
i=0 ai x

pi ∈ Aq . Let

R̃(x) :=
e∑

i=0

ãi x
pi , ẼR(x) := R̃(x)p

e +
e∑

i=0

(̃ai x)
pe−i ∈ OF [x].

Similarly as in (2.3),

α R̃(αx) = R̃(x), ẼR(αx) = α ẼR(x) for α ∈ μdR (F). (3.2)

Definition 3.1. Letm be a positive integer prime to p. LetαR,� , βR,m,� , γR,m,� ∈
F be elements such that

α
dR
R,� = �, ẼR(βR,m,� ) = α−m

R,� , γ
p
R,m,� − γR,m,� = βR,m,� R̃(βR,m,� ).

For simplicity, we write αR, βR,m, γR,m for αR,� , βR,m,� , γR,m,� , respectively.

Remark 3.2. By deg ẼR(x) = p2e and deg R̃(x) = pe, we have

v(αR) = 1

dR
, v(βR,m) = − m

p2edR
, v(γR,m) = −m(pe + 1)

p2e+1dR
.
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The integer m controls the depth of ramification of the resulting field extension
F(αR, βR,m, γR,m)/F . We will understand this later in 3.2.2.

Let

f̃ (x, y) := −
e−1∑

i=0

⎛

⎝
e−i−1∑

j=0

(̃a j x
pi y)p

j + (x R̃(y))p
i

⎞

⎠ .

Let p[x] := pO[x] and p[x, y] := pO[x, y]. We assume that

β
pe

R,m(ẼR(βR,m + x) − ẼR(βR,m) − ẼR(x)),

βR,m(R̃(βR,m + x) − R̃(βR,m) − R̃(x)),

f̃ (βR,m, x)p − f̃ (βR,m, x) + β
pe

R,m ẼR(x) − x R̃(βR,m) − βR,m

R̃(x) are contained in p[x] and
(γR,m + f̃ (βR,m, y) + x)p − γ

p
R,m − f̃ (βR,m, y)p − x p ∈ p[x, y].

(3.3)

If char F = p, these differences are zero by (x + y)p = x p + y p and Lemma 2.2.
Thus (3.3) is always satisfied in this case.

For r ∈ Q≥0 and f, g ∈ F , we write f ≡ g mod r+ if v( f − g) > r . For a
local field K contained in F , let WK be the Weil group of F/K . Let

n : WK � Z; σ �→ nσ (3.4)

denote the homomorphism defined by σ(x) ≡ xq
−nσ mod 0+ for x ∈ OF . Let

vK (·) denote the normalized valuation on K .

Definition 3.3. For σ ∈ WF , we set

aR,σ := σ(αR)/αR ∈ μdR (F), bR,σ := amR,σ σ (βR,m) − βR,m,

cR,σ := σ(γR,m) − γR,m − f̃ (βR,m, bR,σ ).
(3.5)

In the following, we simply write aσ , bσ , cσ for aR,σ , bR,σ , cR,σ , respectively.

In the following proofs, for simplicity, we often write α, β and γ for αR , βR,m and
γR,m , respectively.

Lemma 3.4. We have bσ , cσ ∈ O, ER(b̄σ ) = 0 and c̄pσ − c̄σ = b̄σ R(b̄σ ).

Proof. Using (3.2), the equality ẼR(β) = α−m in Definition 3.1 and (3.5),

ẼR(β + bσ ) = ẼR(amσ σ (β)) = amσ ẼR(σ (β)) = amσ σ (α)−m = α−m = ẼR(β).

Using v(β) < 0 in Remark 3.2 and (3.3), we have 
(x) := ẼR(β + x)− ẼR(β)−
ẼR(x) ∈ p[x]. By letting x = bσ and applying the previous relationship, we obtain
that ẼR(bσ ) + 
(bσ ) = 0. Hence bσ ∈ O and ER(b̄σ ) = 0.

By (3.3), we have

β R̃(β + bσ ) ≡ β R̃(β) + β R̃(bσ ),

f̃ (β, bσ )p − f̃ (β, bσ ) ≡ bσ R̃(β) + β R̃(bσ ) mod 0 + . (3.6)
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Substituting y = bσ ∈ O to (3.3), we obtain


1(x) := (γ + f̃ (β, bσ ) + x)p − γ p − f̃ (β, bσ )p − x p ∈ p[x].
We have σ(β)R̃(σ (β)) = (β +bσ )R̃(β +bσ ) by substituting (3.5) and using (3.2).
By multiplying the first congruence in (3.6) by bσ β−1, we obtain bσ R̃(β + bσ ) ≡
bσ R̃(β) + bσ R̃(bσ ) mod 0+. Hence, we compute

σ(γ )p − σ(γ ) = σ(β)R̃(σ (β)) = (β + bσ )R̃(β + bσ )

≡ β R̃(β) + bσ R̃(β) + β R̃(bσ ) + bσ R̃(bσ )

≡ γ p − γ + f̃ (β, bσ )p − f̃ (β, bσ ) + bσ R̃(bσ )

≡ σ(γ )p − σ(γ ) − (cpσ − cσ + 
1(cσ )) + bσ R̃(bσ ) mod 0+,

where we have used (3.5) for the last congruence. Therefore, we obtain cpσ − cσ +

1(cσ ) ≡ bσ R̃(bσ ) mod 0+. By bσ ∈ O, we have cσ ∈ O and c̄ pσ − c̄σ =
b̄σ R(b̄σ ). �	
Assume that

(x + βR,m)p
i − x pi − β

pi

R,m ∈ p[x] for 1 ≤ i ≤ e − 1,

f̃ (βR,m, x + y) − f̃ (βR,m, x) − f̃ (βR,m, y) ∈ p[x, y],
(3.7)

which are satisfied if char F = p, because these differences are zero. Let

�R,m,� : WF → QR � Z; σ �→ ((āmσ , b̄σ , c̄σ ), nσ ). (3.8)

Lemma 3.5. The map �R,m,� is a homomorphism.

Proof. Let σ, σ ′ ∈ WF . Recall that σ(x) ≡ xq
−nσ mod 0+ for x ∈ OF . Using

Definition 2.3(2), we reduce the claim to checking that

āσσ ′ = āσ ā
q−nσ

σ ′ ,

b̄σσ ′ = āmσ b̄q
−nσ

σ ′ + b̄σ ,

c̄σσ ′ = c̄σ + c̄q
−nσ

σ ′ + fR(b̄σ , āmσ b̄−nσ

σ ′ ). (3.9)

We easily check that aσσ ′ = σ(aσ ′)aσ and bσσ ′ = amσ σ (bσ ′) + bσ . Hence the first
two equalities in (3.9) follow. We compute

cσσ ′ = cσ + σ(cσ ′) + σ( f̃ (β, bσ ′)) + f̃ (β, bσ ) − f̃ (β, bσσ ′)

≡ cσ + σ(cσ ′) + σ( f̃ (β, bσ ′)) − f̃ (β, amσ σ (bσ ′)) mod 0+,

where we use the second condition in (3.7) for the second congruence. We have

σ( f̃ (β, bσ ′)) = −
e−1∑

i=0

e−i−1∑

j=0

(̃a jσ(bσ ′)σ (β)p
i
)p

j −
e−1∑

i=0

(σ (β)R̃(σ (bσ ′)))p
i

≡ f̃ (bσ , amσ σ (bσ ′)) + f̃ (β, amσ σ (bσ ′)) mod 0+,

where we substitute σ(β) = a−m
σ (β + bσ ), (3.7) and (3.2) for the second congru-

ence. The last equality in (3.9) follows from f̃ (bσ , amσ σ (bσ ′)) = fR(b̄σ , āmσ b̄q
−nσ

σ ′ ),
since f̃ (x, y) is a lift of fR(x, y) to OF [x, y]. �	
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Lemma 3.6. If v(p) is large enough, the conditions (3.3) and (3.7) are satisfied.

Proof. There exists s ∈ Z≥1 such that the coefficients of all polynomials in (3.3)
and (3.7) have the form: p ·βs

R,m ·a with a ∈ OF byRemark 3.2. Since the valuation
of v(βR,m) is independent of F , the claim follows. �	
In the sequel, we assume that the conditions (3.3) and (3.7) are satisfied. Let Fur

denote the maximal unramified extension of F in F .

Lemma 3.7. The extension Fur(αm
R , βR,m, γR,m)/F is Galois.

Proof. Let L0 := Fur(αm, β, γ ) and L := L̂0 be the completion of L0. Let σ ∈
GF . We note that aσ ∈ μdR (F) ⊂ Fur by p � dR . Hence σ(αm) = amσ αm ∈ L0.
We show σ(β), σ (γ ) ∈ L0. It suffices to prove

bσ , cσ ∈ L0,

since

σ(β) = bσ + β

amσ
, σ (γ ) = γ + cσ + f̃ (β, bσ )

by (3.5). As in the proof of Lemma 3.4, we have (ẼR + 
)(bσ ) = 0, E(x) :=
(ẼR + 
)(x) ∈ OL0 [x] and deg E(x) = p2e. The equation E(x) ≡ 0 mod 0+
has p2e different roots. Thus by Hensel’s lemma, E(x) = 0 has p2e different roots
in OL . Hence bσ ∈ L ∩ F = L0. As in the proof of Lemma 3.4, we have

f (cσ ) := cpσ − cσ + 
1(cσ ) − y = 0 with y ∈ OL0 ,

where f (x) ∈ OL0 [x] with deg f (x) = p. We have y ≡ bσ R̃(bσ ) mod 0+.
The equation f (x) ≡ x p − x − y ≡ x p − x − bσ R̃(bσ ) ≡ 0 mod 0+ has p
different roots. By Hensel’s lemma, f (x) = 0 has p different roots in OL . Hence
cσ ∈ L ∩ F = L0. �	
Definition 3.8. Let

dR,m := dR
gcd(dR,m)

, QR,m := {(α, β, γ ) ∈ QR | α ∈ μdR,m }.

We have

Fur ⊂ Fur(αm
R ) ⊂ Fur(αm

R , βR,m) ⊂ Fur(αm
R , βR,m, γR,m). (3.10)

Using Definition 3.1 and p � dR,m , the first extension is a tamely ramified extension
of degree dR,m . According to Remark 3.2, the second and last extensions are totally
ramified extensions of degree p2e and p, respectively. Thus

[Fur(αm
R , βR,m, γR,m) : Fur] = dR,m p2e+1. (3.11)

Lemma 3.9. (1) The homomorphism �R,m,� in (3.8) induces the isomorphism

W (Fur(αm
R , βR,m, γR,m)/F)

∼−→ QR,m � Z; σ �→ ((āmσ , b̄σ , c̄σ ), nσ ).

(3.12)
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(2) The homomorphism �R,m,� induces

Gal(Fur(αm
R , βR,m, γR,m)/Fur)

∼−→ QR,m,

Gal(Fur(αm
R , βR,m, γR,m)/Fur(αm

R ))
∼−→ HR .

Proof. We use the same notation as in the proof of Lemma 3.4. Let

I := Gal(Fur(αm, β, γ )/Fur) ⊃ P := Gal(Fur(αm, β, γ )/Fur(αm))

and � : I → QR,m be the restriction of (3.12). By the snake lemma, the assertion
(1) is reduced to showing that � is an isomorphism. In order to show that � is
an isomorphism, it suffices to show that � is injective according to (3.11) and
|QR,m | = dR,m p2e+1. If � is injective, it follows that �|P : P → HR is an
isomorphism from |P| = |HR | = p2e+1.

We will now show that � is injective. Assume �(σ) = 1 for σ ∈ I . We will
show σ = 1. By the assumption, āmσ = 1, b̄σ = 0 and c̄σ = 0. Recall (3.1). By
āmσ = 1 and aσ ∈ μdR (F) in (3.5), we have amσ = 1 and σ(αm) = αm .

We recall the equality ẼR(bσ ) + 
(bσ ) = 0 in the proof of Lemma 3.4, where

(x) ∈ p[x] has no constant coefficient. We write ẼR(x) + 
(x) =∑r

i=1 ci x
i ∈

O[x]. From E ′
R(0) �= 0 and 
(x) ∈ p[x], it follows that v(c1) = 0. We have

v(bσ ) > 0 by b̄σ = 0. Thus, for an integer 2 ≤ i ≤ r , we obtain v(c1bσ ) =
v(bσ ) < v(biσ ) ≤ v(ci biσ ). Hence v(bσ ) = v(c1bσ ) = v(ẼR(bσ ) + 
(bσ )) = ∞.
Hence bσ = 0 and σ(β) = β.

By the last condition in (3.3) with y = 0,

�(x) := (γ + x)p − γ p − x p ∈ p[x].
Definition 3.1 induces σ(γ )p − σ(γ ) = γ p − γ . Thus (γ + cσ )p − γ p = cσ and
cpσ + �(cσ ) = cσ . Since �(x) ∈ p[x] has no constant coefficient, if 0 < v(cσ ) <

∞, we have v(cpσ + �(cσ )) > v(cσ ), which can not occur. Hence cσ = 0 and
σ(γ ) = γ . As a result, we obtain σ = 1. Thus � is injective. �	

3.2. Galois representations associated to additive polynomials

3.2.1. Construction of Galois representation We assume that (3.3) and (3.7) are
satisfied. If char F is positive, these are unconditional. If char F is zero, these
conditions are satisfied if the absolute ramification index of F is large enough as
in Lemma 3.6.

Definition 3.10. Letψ ∈ F
∨
p \{1}.We define τψ,R,m,� to be theWF -representation

which is the inflation of the QR � Z -representation H1
c (CR,F, Q�)[ψ] by �R,m,�

in (3.8). For simplicity, we write τψ,R,m for τψ,R,m,� .

For a non-archimedean local field K , let IK denote the inertia subgroup of K . Then
Ker τψ,R,m contains the open compact subgroup IF(αm

R ,βR,m ,γR,m ) by Lemma 3.9(1).
According to Lemma 3.9(2) and Lemma 2.8(1), τψ,R,m |IF(αmR )

is irreducible. Hence

the representation τψ,R,m is a smooth irreducible representation of WF .
Let GF := Gal(F/F). We consider a general setting in the following lemma.
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Lemma 3.11. Let τ̃ be a continuous representation of GF over Q� such that there
exists an unramified continuous character φ of GF such that (̃τ ⊗φ)(GF ) is finite.
Assume that τ := τ̃ |WF is irreducible. Then τ̃ ⊗ φ is primitive if and only if τ is
primitive.

Proof. Let τ̃ ′ := τ̃ ⊗ φ and τ ′ := τ ⊗ φ|WF . The subgroup Ker τ̃ ′ is open by
|GF/Ker τ̃ ′| < ∞. Hence Ker τ ′ ⊂ WF is open. Therefore τ ′ is smooth. Hence so
is τ . Since τ is irreducible and smooth, we have dim τ < ∞. We will show that τ̃ ′
is imprimitive if and only if τ is imprimitive.

First, assume an isomorphism τ̃ ′ � IndGF
H η′ with a proper subgroup H .We can

check Ker τ̃ ′ ⊂ H . Hence H is open. Hence we can write H = GF ′ with a finite
extension F ′/F . Thus we obtain an isomorphism τ � IndWF

WF ′ (η
′|WF ′ ⊗ φ−1|WF ′ ).

To the contrary, assume τ � IndWF
H σ . In the same manner as above with

replacing GF by WF , the subgroup H is an open subgroup of WF of finite index
by dim τ < ∞. Hence we can write H = WF ′ with a finite extension F ′/F . Let
σ ′ := σ ⊗ φ|WF ′ . We have τ ′ � IndWF

WF ′ σ ′. From Frobenius reciprocity, we have

that σ ′(WF ′) ⊂ τ ′(WF ). By the assumption, the image σ ′(WF ′) is finite. Hence
the smooth WF ′ -representation σ ′ extends to a smooth representation of GF ′ , for
which we write σ̃ ( [2, Proposition 28.6]). The restriction of IndGF

GF ′ σ̃ to WF is

isomorphic to IndWF
WF ′ σ ′ � τ ′. Both of IndGF

GF ′ σ̃ and τ̃ ′ are smooth irreducible GF -

representations whose restrictions toWF are isomorphic to τ ′. Hence we obtain an
isomorphism τ̃ ′ � IndGF

GF ′ σ̃ as GF -representations by [2, Lemma 28.6.2(2)]. �	

We identify as Gal(F/Fq)
∼−→ Ẑ, which sends the geometric Frobenius to 1. The

group Gal(F/Fq) acts on QR,m naturally. Then H1
c (CR,F, Q�)[ψ] is regarded as

a representation of QR,m � Ẑ. We identify as Gal(Fur/F)
∼−→ Gal(F/Fq)

∼−→ Ẑ,

where the first isomorphism is the natural map. Let n̂ : GF
rest.−−→ Gal(Fur/F)

∼−→ Ẑ

be the composite, which is an extension of n : WF → Z; σ �→ nσ in (3.4). Then
we have

�̂R,m,� : GF → QR,m � Ẑ; σ �→ ((āmσ , b̄σ , c̄σ ), n̂σ ),

which is defined by the same formulas as in (3.5). Then �̂R,m,� extends �R,m,� .
By inflating H1

c (CR,F, Q�)[ψ] via �̂R,m,� , we obtain a continuous representation
of GF , which we denote by τ̃ψ,R,m .

We fix an isomorphism ι : C
∼−→ Q�, and work with the choice of square root q

in Q� given by ι(
√
q).

Lemma 3.12. The eigenvalues of Fr∗q on H1
c (CR,F, Q�)[ψ] have the forms ζ

√
q

with roots of unity ζ in Q�. The automorphism Fr∗q is semi-simple.

Proof. As in [14, 2.3], it is well-known that a smooth projective geometrically
connected curve X over Fq is supersingular if and only if all the eigenvalues of
Fr∗q on H1(XF, Q�) have the form ζ

√
q with ζ ∈ μ(Q�). Hence the claim follows

from Proposition 2.10. �	
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Let φ : GF → Q
×
� be the unramified character sending a geometric Frobenius to√

q−1. The image of GF by the twist τ̃ ′ := τ̃ψ,R,m ⊗ φ is finite by Lemma 3.12.
By the isomorphism ι : Q� � C, we obtain a continuous representation τ̃ ′

C
of

GF over C by τ̃ ′. Then τ̃ ′
C
is primitive if and only if τ̃ψ,R,m is primitive.

Corollary 3.13. The WF-representation τψ,R,m is primitive if and only if the con-
tinuous GF-representation τ̃ ′

C
is primitive.

Proof. Clearly τ̃ ′
C
is primitive if and only if τ̃ ′ is primitive. We obtain the claim by

applying Lemma 3.11 with τ̃ = τ̃ψ,R,m and τ = τψ,R,m . �	

3.2.2. Swan conductor exponent In the sequel, we compute the Swan conductor
exponent Sw(τψ,R,m).

We simply write α, β, γ for αR, βR,m, γR,m in Definition 3.1, respectively.
We consider the unramified field extension Fr/F of degree r such that N :=
Fr (α, β, γ ) is Galois over F . Let T := Fr (α) and M := T (β). Then we have

F ⊂ Fr ⊂ T ⊂ M ⊂ N .

Let L/K be a Galois extension of non-archimedean local fields with Galois
group G. Let

{
Gi
}
i≥−1 denote the upper numbering ramification groups of G in

[16, IV 3]. Let ψL/K denote the Herbrand function of L/K .

Lemma 3.14. Let G := Gal(N/F). Then we have

ψN/F (t) =

⎧
⎪⎪⎨

⎪⎪⎩

t if t ≤ 0,
dRt if 0 < t ≤ m

dR
,

p2edRt − (p2e − 1)m if m
dR

< t ≤ pe+1
pe

m
dR

,

p2e+1dRt − (pe + 1)(pe+1 − 1)m otherwise

and

Gi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G if i = −1,
Gal(N/Fr ) if − 1 < i ≤ 0,
Gal(N/T ) if 0 < i ≤ m

dR
,

Gal(N/M) if m
dR

< i ≤ pe+1
pe

m
dR

,

{1} otherwise.

Proof. Similarly as in (3.10), T/F is a totally ramified extension of degree dR . We
easily have

ψT/F (t) =
{
t if t ≤ 0,
dRt otherwise.

For a finite Galois extension L/K , let {Gal(L/K )u}u≥−1 be the lower numbering
ramification subgroups. Let 1 �= σ ∈ Gal(M/T ). Let bσ = σ(β) − β as before.
We have ẼR(β+bσ ) = ẼR(β) by the proof of Lemma 3.4. If v(bσ ) > 0, we obtain
bσ = 0 by the same arguments as in the proof of Lemma 3.9. This induces σ = 1.



14 T. Tsushima

Hence v(bσ ) = 0. From vM (β) = −m, we obtain vM (σ (�M ) − �M ) = m + 1.
Thus

Gal(M/T )u =
{
Gal(M/T ) if u ≤ m,

{1} otherwise,

ψM/T (t) =
{
t if t ≤ m,

p2et − (p2e − 1)m otherwise.

Let 1 �= σ ∈ Gal(N/M). If vN (σ (γ ) − γ ) > 0, we obtain σ(γ ) = γ in the same
way as the proof of Lemma 3.9. This implies that σ = 1. Hence vN (σ (γ )−γ ) = 0.
Let �N be a uniformizer of N . From vN (γ −1) = (pe + 1)m, it follows that
vN (σ (�N ) − �N ) = (pe + 1)m + 1. Thus

Gal(N/M)u =
{
Gal(N/M) if u ≤ (pe + 1)m,

{1} otherwise,

ψN/M (t) =
{
t if t ≤ (pe + 1)m,

pt − (p − 1)(pe + 1)m otherwise.

Hence the former claim follows from ψN/F = ψN/M ◦ ψM/T ◦ ψT/F .
We can check

Gu =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G if u = −1,
Gal(N/Fr ) if − 1 < u ≤ 0,
Gal(N/T ) if 0 < u ≤ m,

Gal(N/M) if m < u ≤ (pe + 1)m,

{1} otherwise

by using the former claim and [16, Propositions 12(c), 13(c) and 15 in IV3]. Hence
the latter claim follows from Gi = GψN/F (i). �	
Corollary 3.15. We have Sw(τψ,R,m) = m(pe + 1)/dR.

Proof. Before Corollary 3.13, it is stated that the twist τψ,R,m ⊗ φ factors through
a finite group QR � (Z/rZ) � Gal(Fr (α, β, γ )/F) with a certain integer r . Since
φ is unramified, Sw(τψ,R,m) = Sw(τψ,R,m ⊗φ). It follows that Sw(τψ,R,m ⊗φ) =
m(pe + 1)/dR from Lemma 3.14 and [7, Théorème 7.7] ( [16, Exercise 2 in 2VI]).
�	

3.3. Symplectic module associated to Galois representation

We simply write PGL(Q�) for Aut
Q�

(H1
c (CR,F, Q�)[ψ])/Q

×
� . Let ρ denote the

composite

WF
τψ,R,m−−−→ Aut

Q�
(H1

c (CR,F, Q�)[ψ]) can.−−→ PGL(Q�).

Namely, ρ is the projective representation associated to τψ,R,m . Similarly, let ρ′ be
the projective representation associated to τ̃ ′ = τ̃ψ,R,m ⊗ φ.
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Lemma 3.16. We have ρ(WF ) = ρ′(GF ), which is finite.

Proof. Since τ̃ ′ is a smooth irreducible GF -representation, we have that τ̃ ′(GF ) =
(τψ,R,m ⊗ φ)(WF ) ( [2, the proof of Lemma 2 in 28.6]). Thus the claim follows. �	
Let Fρ denote the kernel field of ρ and Tρ the maximal tamely ramified extension
of F in Fρ . Let

H := Gal(Fρ/Tρ) ⊂ G := Gal(Fρ/F).

The homomorphism ρ induces an injection ρ̄ : G → PGL(Q�).
Recall that H1

c (CR,F, Q�)[ψ] is regarded as a QR � Z-representation as in 2.
We have the subgroup QR,m � Z ⊂ QR � Z. Now we regard H1

c (CR,F, Q�)[ψ] as
a QR,m � Z-representation. Let τ denote the composite

QR,m � Z → Aut
Q�

(H1
c (CR,F, Q�)[ψ]) → PGL(Q�).

From Definition 3.10 and Lemma 3.9(1), it follows that τ ◦ �R,m,� = ρ. Let
i : HR ↪→ QR,m � Z be the natural inclusion. Since τ ◦ i equals ρ̄ψ in Lemma 2.9,
we obtain Ker(τ ◦ i) = Z(HR) according to the lemma. Let VR be as in Lemma
2.6. Then we have pr : HR/Z(HR)

∼−→ VR; (1, β, γ )Z(HR) �→ β. Thus we have
a commutative diagram

WF

�R,m,� ρ

G
ρ̄

QR,m � Z
τ

PGL(Q�)

HR

i

can.

τ◦i

HR/Z(HR)
pr
� VR .

(3.13)

Lemma 3.17. We have an isomorphism ρ̄(H) � VR.

Proof. Let L := Fur(αm
R , βR,m, γR,m) and K := Fur(αm

R ). From Lemma 3.9, we
recall

W (L/F) � QR,m � Z, W (L/K ) � HR .

The subfield K is the maximal tamely ramified extension of F in L . In the sequel,
we freely use (3.13). FromLemma 3.9(1), it follows that Fρ ⊂ L and Tρ = Fρ ∩K .

The homomorphism �R,m,� induces G = W (Fρ/F) � WF/Ker ρ
∼−→ (QR,m �

Z)/Ker τ . Thus we have a commutative diagram

1 ker(τ ◦ i) � W (L/FρK ) HR � W (L/K )
rest.

H = W (Fρ/Tρ) 1

1 ker τ � W (L/Fρ) QR,m � Z � W (L/F)
rest.

G = W (Fρ/F) 1,

where the two horizontal sequences are exact. This induces that

H = Gal(Fρ/Tρ) � HR/Ker(τ ◦ i) = HR/Z(HR)
∼−→ VR .

Since ρ is injective, the claim follows. �	
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Let

H0 := G/H = Gal(Tρ/F).

Let σ ∈ H0. We take a lifting σ̃ ∈ G � H0 of σ . Let H0 act on H by σ · σ ′ :=
σ̃ σ ′σ̃−1 for σ ′ ∈ H . This is well-defined because H is abelian according to Lemma
3.17. We regard H � VR as an Fp[H0]-module.

By Lemma 3.12, we can take a positive integer r such that rZ ⊂ Ker τ and
xq

r = x for x ∈ μdR,m . Let Z/rZ act onμdR,m by 1 · x = xq
−1
. We take a generator

α ∈ μdR,m . Let

H := μdR,m � (Z/rZ)
∼−→
〈
σ, τ | σ r = 1, τ dR,m = 1, σ τσ−1 = τ q

〉
,

(3.14)

where the isomorphism is given by (α, 0) �→ τ and (1,−1) �→ σ . The groupsH0
and H are supersolvable. We consider the commutative diagram

QR,m � Z (QR,m � Z)/Ker τ � G

H � (QR,m � Z)/(HR � rZ)
ϕ

(QR,m � Z)/(Ker τ · HR) � H0,

where every map is canonical and surjective.

Lemma 3.18. The elementsϕ(α, 0)andϕ(1,−1) inH0 act on H � VR by x �→ αx
and x �→ xq for x ∈ VR, respectively.

Proof. These are directly checked. �	
We can regard VR as an Fp[H ]-module via ϕ. Let ωR be as in Lemma 2.6(2).

Lemma 3.19. We have ωR(hx, hx ′) = ωR(x, x ′) for h ∈ H .

Proof. The claim for h = α follows from (2.4). For h = (1,−1), the claim
follows from ωR(xq , x ′q) = ( fR(x, x ′) − fR(x ′, x))q = fR(x, x ′) − fR(x ′, x) =
ωR(x, x ′). �	
Definition 3.20. Let G be a finite group. Let V be an Fp[G]-module with
dimFp V < ∞. Let ω : V × V → Fp be a symplectic form. We say that the pair
(V, ω) is symplectic if ω is non-degenerate and satisfies ω(gv, gv′) = ω(v, v′) for
g ∈ G and v, v′ ∈ V .

Lemma 3.21. The Fp[H ]-module (VR, ωR) is symplectic.

Proof. The claim follows from Lemma 2.6(2) and Lemma 3.19. �	
Definition 3.22. TheFp[H0]-module (VR, ωR) is called a symplecticmodule asso-
ciated to τψ,R,m .
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Definition 3.23. Let σ : F → F; x �→ xq . For f (x) =∑n
i=0 ai x

i ∈ F[x], we set
f σ (x) :=∑n

i=0 σ(ai )xi .

Let k be a field. We say that a polynomial f (x) ∈ k[x] is reduced if the ring
k[x]/( f (x)) is reduced. An additive polynomial f (x) ∈ AF \ {0} is reduced if and
only if f ′(0) �= 0.

Lemma 3.24. Let E(x) ∈ AF be a reduced polynomial. Let V := {β ∈ F | E(β) =
0}.
(1) Assume that E(x) ismonic and V is stable underσ . Thenwehave E(x) ∈ Fq [x].
(2) Let r be a positive integer. Assume that V is stable under μr -multiplication.

Then we have E(αx) = αE(x) for α ∈ μr .

Proof. We show (1). The assumption implies that Eσ (β) = (E(βq−1
))q = 0 for

any β ∈ V . Since E(x) is separable, there existsα ∈ F
× such that Eσ (x) = αE(x).

Then α = 1, because E(x) is monic. Hence we have the claim.
We show (2). Let α ∈ μr . By the assumption, E(αβ) = 0 for any β ∈ V .

Since E(x) is separable, there exists a constant c ∈ F
× such that E(αx) = cE(x).

By considering the derivatives of E(αx), cE(x) and substituting x = 0, we obtain
α = c by E ′(0) �= 0. Hence the claim follows. �	
Definition 3.25. Let f (x) ∈ Aq .

(1) A decomposition f (x) = f1( f2(x)) with fi (x) ∈ Aq is said to be non-trivial
if deg fi > 1 for i ∈ {1, 2}.

(2) We say that f (x) ∈ Aq is prime if it does not admit a non-trivial decomposition
f (x) = f1( f2(x)) with fi (x) ∈ Aq .

Definition 3.26. Let (V, ω) be a symplectic Fp[H ]-module. Then (V, ω) is said
to be completely anisotropic if V does not admit a non-zero totally isotropic proper
Fp[H ]-submodule.

For an Fp-subspaceW ⊂ V , letW⊥ := {v ∈ V | ω(v,w) = 0 for all w ∈ W }.

Proposition 3.27. The symplecticFp[H ]-module (VR, ωR) is completely anisotropic
if and only if there does not exist a non-trivial decomposition ER(x) = f1( f2(x))
with fi (x) ∈ Aq such that f2(αx) = α f2(x) for α ∈ μdR,m and V f2 := {β ∈ F |
f2(β) = 0} satisfies V f2 ⊂ V⊥

f2
.

Proof. Assume that there exists such a decomposition ER(x) = f1( f2(x)). Since
the decomposition is non-trivial, we have V f2 �= {0}. Hence V f2 is a non-zero totally
isotropic proper Fp[H ]-submodule of VR . Thus VR is not completely anisotropic.

Assume that VR is not completely anisotropic. We take a non-zero totally
isotropicFp[H ]-submodule V ′ ⊂ VR . According to [13, 4 in Chap. 1], there exists
a monic reduced polynomial f (x) ∈ AF such that V ′ = {β ∈ F | f (β) = 0}.
Since V ′ is stable by σ , we have f (x) ∈ Fq [x] by Lemma 3.24(1). Since V ′ is
stable by τ , we have f (αx) = α f (x) for α ∈ μdR,m from Lemma 3.18 and Lemma
3.24(2). There exist f1(x), r(x) ∈ Aq such that ER(x) = f1( f (x)) + r(x) and



18 T. Tsushima

deg r(x) < deg f (x) according to [13, Theorem 1]. For any root β ∈ V ′ of f (x),
we have r(β) = 0 from ER(β) = 0. Since f (x) is separable, r(x) is divisible by
f (x). Hence deg r(x) < deg f (x) induces r(x) ≡ 0. From definition, we obtain
V ′ ⊂ V ′⊥. Thus the converse is shown. �	
Corollary 3.28. (1) The WF-representation τψ,R,m is primitive if and only if the

symplectic Fp[H ]-module (VR, ωR) is completely anisotropic.
(2) The WF-representation τψ,R,m is primitive if and only if there does not exist

a non-trivial decomposition ER(x) = f1( f2(x)) with fi (x) ∈ Aq such that
f2(αx) = α f2(x) for α ∈ μdR,m and V f2 := {β ∈ F | f2(β) = 0} satisfies
V f2 ⊂ V⊥

f2
.

(3) If ER(x) ∈ Aq is prime, the WF-representation τψ,R,m is primitive.
(4) If R(x) = aex pe and Fp(μdR,m ) = Fp2e , the Fp[H ]-module VR is irreducible.

TheWF-representation τψ,R,m is primitive. If gcd(pe+1,m) = 1, the condition
Fp(μdR,m ) = Fp2e is satisfied.

Proof. The claim (1) follows from Corollary 3.13, Lemma 3.17, and [11, Theorem
4.1].

The claim (2) follows from (1) and Proposition 3.27. The claim (3) follows
from (2) immediately.

We show (4). We assume that there exists a non-zero Fp[H ]-submodule W ⊂
VR = {β ∈ F | (aex pe )p

e + aex = 0}. We take a non-zero element β ∈ W . Then
Fp(μdR,m ) = Fp2e implies Fp2eβ = Fp(μdR,m )β ⊂ W . Since VR is the set of the
roots of a separable polynomial ER(x) of degree p2e, we have |VR | = p2e. Hence
W = VR = Fp2eβ. Thus the first claim follows. The second claim follows from
the first one and [11, Theorem 4.1]. If gcd(pe + 1,m) = 1, we have dR,m = dR =
pe + 1. Hence the third claim follows from Fp(μpe+1) = Fp2e . �	
Example 3.29. For a positive integer s, we consider the set

Aq,s :=
{

ϕ(x) ∈ Fq [x]
∣
∣
∣ ϕ(x) =

n∑

i=0

ci x
psi
}

,

which is regarded as a ring with multiplication ϕ1 ◦ ϕ2 := ϕ1(ϕ2(x)) for ϕ1, ϕ2 ∈
Aq,s . The number of prime elements in Aq,s in the sense of Definition 3.25(2) is
calculated in [4] and [12]. We will review this now.

In the following, we give examples such that ER(x) is prime. We write dR =
pt + 1 with t ≥ 0. Then ER ∈ Aq,t . We write q = p f . Assume f | t . We have

ER(x) =
e∑

i=0

ai x
pe+i +

e∑

i=0

ai x
pe−i

. (3.15)

Becauseof f | t ,wehave the ring isomorphism� : Aq,t
∼−→ Fq [y];∑r

i=0 ci x
pti �→∑r

i=0 ci y
i , where Fq [y] is a usual polynomial ring. The polynomial ER(x) ∈ Aq

is prime if and only if�(ER(x)) is irreducible in Fq [y] in a usual sense. Recall that
a polynomial

∑r
i=0 ci y

i ∈ Fq [y] is said to be reciprocal if ci = cr−i for 0 ≤ i ≤ r .
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Via (3.15), we know that �(ER(x)) is a reciprocal polynomial. The number of the
monic irreducible reciprocal polynomials is calculated in [3, Theorems 2 and 3].

In general, we do not know a necessary and sufficient condition on R(x) for
ER(x) to be prime.

Proposition 3.30. Assume dR,m ∈ {1, 2}. There exists an unramified finite exten-
sion F ′/F such that τψ,R,m |WF ′ is imprimitive.

Proof. We take a non-zero element β ∈ VR . Let t be the positive integer such that
Fqt = Fq(β). Let Ht ⊂ H be the subgroup generated by σ t , τ . Since dR,m ≤ 2,
according to Lemma 3.18, τ acts on VR asmultiplication by sign. Thus the subspace
WR := Fpβ ⊂ VR is an Fp[Ht ]-submodule, since σ t acts on WR trivially. From
Lemma 2.6(2), it follows that ωR(ζβ, ζ ′β) = ζ ζ ′ωR(β, β) = 0 for any ζ, ζ ′ ∈ Fp.
Thus WR is a totally isotropic proper Fp[Ht ]-submodule of VR . Hence VR is not a
completely anisotropic Fp[Ht ]-module. Let Ft/F be the unramified extension of
degree t in F . Then τψ,R,m |WFt

is imprimitive by [11, Theorem 4.1]. �	

Lemma 3.31. The WTρ -representation τψ,R,m |WTρ
is imprimitive.

Proof. We take a non-zero element β ∈ VR . Then Fpβ is a totally isotropic sym-
plectic submodule of the symplectic module VR associated to τψ,R,m |WTρ

. Hence
τψ,R,m |WTρ

is imprimitive by Corollary 3.28(1). �	

3.4. Root system associated to irreducible Fp[H ]-module

A root system associated to an irreducible Fp[H ]-module is defined in [11]. We
determine the root system associated to VR in the situation of Corollary 3.28(4).

We recall the definition of a root system.

Definition 3.32. ( [11, 7])

(1) Let � be the group of the automorphisms of the torus (F×)2 generated by the
automorphisms θ : (α, β) �→ (α p, β p) and σ : (α, β) �→ (αq−1

, β). A �-orbit
of (F×)2 is called a root system.

(2) Let W = �(α, β) be a root system. Let

a = a(W ) be the minimal positive integer with αqa = α,

b = b(W ) the minimal positive integer withα pb = αqx , β pb = β with x ∈ Z, and

c = c(W ) the minimal non-negative integer with α pb = αqc .

Let e′ = e′(W ) and f ′ = f ′(W ) be the orders of α and β, respectively. These
integers are independent of (α, β) in W .

(3) Let Hd,r := 〈σ, τ | τ d = 1, σ r = 1, σ τσ−1 = τ q
〉
with qr ≡ 1 (mod d).

(4) We say that a root system W belongs to Hd,r if e′ | d and a f ′ | r .
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(5) Let W = �(α, β) be a root system which belongs to Hd,r . Let M(W ) be the
F-module with the basis

{θ iσ jm | 0 ≤ i ≤ b − 1, 0 ≤ j ≤ a − 1}
and with the action of H by

τm = αm, σ am = βm, θbm = σ−cm.

Theorem 3.33. ( [11, Theorems 7.1 and 7.2])

(1) There exists an irreducible Fp[Hd,r ]-module M(W ) such that M(W )⊗Fp F is

isomorphic to M(W ) as F[Hd,r ]-modules.
(2) The map W �→ M(W ) defines a one-to-one correspondence between the set of

root systems belonging toHd,r and the set of isomorphism classes of irreducible
Fp[Hd,r ]-modules.

We go back to the original situation. Assume that R(x) = aex pe and Fp(μdR,m ) =
Fp2e . Let H be as in (3.14). In the above notation, we have H = HdR,m ,r . As in
Corollary 3.28(4), the Fp[H ]-module VR is irreducible.

Proposition 3.34. We write q = p f . Let e1 := gcd( f, 2e) and β :=
Nrq/pe1 (−a−(pe−1)

e ). Let α ∈ μdR,m be a primitive dR,m-th root of unity. We con-
sider the root system W := �(α, β).

(1) We have a(W ) = 2e/e1 and b(W ) = e1. Further, c(W ) is the minimal non-
negative integer such that f c(W ) ≡ e1 (mod 2e).

(2) The root system W belongs toH .
(3) We have an isomorphism VR � M(W ) as Fp[H ]-modules.
Proof. We show (1). We simply write a, b, c for a(W ), b(W ), c(W ), respectively.
By definition, a is the minimal natural integer such that αqa = α. Because of
Fp(α) = Fp2e , a is the minimal positive integer satisfying f a ≡ 0 (mod 2e).
Thus we obtain a = 2e/e1.

From definition, b is the minimal natural integer such that α pb = αqx with
some integer x and β pb = β. The first condition implies that f x ≡ b (mod 2e).
Hence b is divisible by e1. The congruence f x ≡ e1 (mod 2e) has a solution x
and β ∈ Fpe1 means β pe1 = β. Thus b = e1.

By definition, c is the minimal non-negative integer such that α pb = αqc . This
is equivalent to e1 = b ≡ f c (mod 2e). We have shown (1).

We show (2). The order e′ of α equals dR,m . Let f ′ be the order of β. It suffices
to show a f ′ | r . By the choice of r , we have αqr = α. Hence 2e | f r , since
Fp2e = Fp(α) and a | r . These imply that Fp2e ⊂ Fqa ⊂ Fqr .

Let η ∈ VR \{0}. Using ηp2e = −a−(pe−1)
e η, ae ∈ F

×
q and 2e | f r , we compute

ηq
r = (ηp2e−1)

qr−1
p2e−1 η = Nrqr /p2e (−a−(pe−1)

e )η = Nrqa/p2e (−a−(pe−1)
e )r/aη.

(3.16)
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The restriction map Gal(Fqa/Fp2e ) → Gal(Fq/Fpe1 ) is an isomorphism because

of a = 2e/e1. Since ae ∈ F
×
q , we have Nrqa/p2e (−a−(pe−1)

e ) = β. Hence ηq
r =

βr/aη by (3.16). Since ηq
r = η by Lemma 3.18 and Definition 3.32(3), we obtain

βr/a = 1. Thus f ′ | (r/a).
We show (3). Let η ∈ VR \ {0}. Similarly to (3.16), we have σ aη = ηq

a =
βη. From Lemma 3.18, we have τη = αη. The Fp[H ]-module VR satisfies the
assumption in [11, Lemma 7.3] by (2). Hence [11, Lemma 7.3] induces {0} �=
M(W ) ⊂ VR . Since VR is irreducible as in Corollary 3.28(4), we obtain M(W ) =
VR . �	
A necessary and sufficient condition for an irreducible Fp[H ]-module to have a
symplectic form is determined in [11, Theorem 8.1]. We recall the result.

Theorem 3.35. ( [11, Theorem 8.1]) Let W = �(α, β) be a root system. The
irreducible Fp[H ]-module M(W ) has a symplectic form if and only if

(A) a(W ) ≡ 0 (mod 2), α ∈ μqa(W )/2+1 and β = −1,
(B) b(W ), c(W ) ≡ 0 (mod 2), α ∈ μpb(W )/2+qc(W )/2 and β ∈ μpb(W )/2+1, or
(C) b(W ) ≡ 0 (mod 2), c(W ) ≡ a(W ) (mod 2), α ∈ μpb(W )/2+q(a(W )+c(W ))/2 and

β ∈ μpb(W )/2+1.

There are two isomorphism classes of symplectic structures on M(W ) in the case
A, p �= 2 and one in all other cases.

Lemma 3.36. LetW be as inProposition 3.34. Let v2(·) denote the 2-adic valuation
on Q.

(1) Assume v2(e) ≥ v2( f ). Then the module M(W ) is of type A in Theorem 3.35.
(2) Assume v2(e) < v2( f ). Thenwe have a(W ) ≡ 1 (mod 2), b(W ) ≡ 0 (mod 2)

and (b(W )/2) | e. Hence we have β ∈ μpb(W )/2+1.
(i) If c(W ) ≡ 0 (mod 2), the module M(W ) is of type B in Theorem 3.35.
(ii) If c(W ) ≡ 1 (mod 2), the module M(W ) is of type C in Theorem 3.35.

Proof. We show (1). Recall that e1 = gcd( f, 2e) and β = Nrq/p1(−a−(pe−1)
e ).

We have e1 | e, a(W ) = 2e/e1 ≡ 0 (mod 2) and f/e1 ≡ 1 (mod 2). From
(pe1 − 1) | (pe − 1), it follows that

β = (−1)
f
e1
(
a

− pe−1
pe1−1

e
)q−1 = −1,

where we use ae ∈ F
×
q for the last equality. By f a(W )/2 = f e/e1 and q = p f ,

we have qa(W )/2 = p f e/e1 . Since f e/e1 is divisible by e and f/e1 is odd, dR,m |
(pe + 1) | p f e/e1 + 1 = qa(W ) + 1. Hence we obtain α ∈ μqa(W )/2+1. Thus the
claim follows.

We show (2). Recall b(W ) = e1. The former claims are clear. Since (e1/2) | e,
we have (pe1/2 − 1) | (pe − 1). From the definition of β and ae ∈ F

×
q , it follows

that

β p
e1
2 +1 = (a

− pe−1

pe1/2−1
e

)q−1 = 1.
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Henceβ ∈ μpb(W )/2+1. Assume that c(W ) is even.Wewrite (c(W )/2) f = (e1/2)+
le with l ∈ Z by Proposition 3.34(1). Then l is odd by e1 = gcd( f, 2e). Thus
(pe + 1) | (ple + 1). This induces that α ∈ μpb(W )/2+qc(W )/2 . Hence (2)(i) follows.
The remaining claim is shown similarly. �	

3.4.1. Künneth formula and primary module Classification results in [11] We
recall classification results on completely anisotropic symplectic modules given in
[11] restricted to the case p �= 2.

Theorem 3.37. ( [11, Theorem 9.1]) Let (V, ω) =⊕n
i=1(Vi , ωi ) be a direct sum

of irreducible symplectic Fp[H ]-modules. Assume that p �= 2. Then (V, ω) is
completely anisotropic if and only if, for each isomorphism class, the modules of
type B or C occur at most once and of type A at most twice among V1, . . . , Vn.

Assume that p �= 2. Let (M(W ), 0) denote the unique symplecticmodule onM(W )

which is of type B or C by Theorem 3.35. Let (M(W ), 0), (M(W ), 1) denote the
two symplectic modules on M(W ) in the case where p �= 2 and M(W ) is of
type A. We denote by (M(W ), 2) the completely anisotropic symplectic module
on M(W ) ⊕ M(W ), where M(W ) is of type A.

Theorem 3.38. ( [11, Theorem 8.2]) Each completely anisotropic symplectic
Fp[H ]-module is isomorphic to one and only one symplectic module of the form

n⊕

i=1

(M(Wi ), νi ),

where W1, . . . ,Wn are mutually different root systems belonging to H .

Let k be a positive integer. Let R := {Ri }1≤i≤k with Ri ∈ Aq . We consider the
k-dimensional affine smooth variety XR defined by

a p − a =
k∑

i=1

xi Ri (xi )

inA
k+1
Fq

. The product group QR := QR1 ×· · ·×QRk acts on XR naturally similarly

as (2.7). Let Z act on QR naturally. Letψ ∈ F
∨
p \{1}. We regard Hk

c (XR,F, Q�)[ψ]
as a QR � Z-representation. Let the notation be as in (3.5). Let m = {mi }1≤i≤k ,
where mi is a positive integer. We have the homomorphism

�R,m,� : WF → QR � Z; σ �→ ((ami
Ri ,σ

, bRi ,σ , cRi ,σ )1≤i≤k, nσ ). (3.17)

Definition 3.39. We define a smooth WF -representation τψ,R,m to be the inflation
of the QR � Z-representation Hk

c (XR,F, Q�)[ψ] by �R,m,� .

Lemma 3.40. We have an isomorphism τψ,R,m � ⊗k
i=1 τψ,Ri ,mi as WF-

representations.
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Proof. Let QRi ,Z := QRi � Z and �Ri ,mi ,� : WF → QRi ,Z be as in (3.8). Let

δ′ : QR � Z → QR1,Z × · · · × QRk ,Z; ((gi )1≤i≤k, n) �→ (gi , n)1≤i≤k .

Each H1
c (CRi ,F, Q�)[ψ] is regarded as a QRi ,Z-representation. Via the Künneth

formula, we have an isomorphism Hk
c (XR,F, Q�)[ψ] �⊗k

i=1(H
1
c (CRi ,F, Q�)[ψ])

as QR � Z-representations, where the right hand side is regarded as a QR � Z-
representation via δ′. We consider the commutative diagram

WF

�R,m,�

δ
Wk

F

�R1,m1,� ×···×�Rk ,mk ,�

QR � Z
δ′

QR1,Z × · · · × QRk ,Z,

where δ is the diagonal map. Hence the claim follows. �	
Remark 3.41. Let +: ∏k

i=1 Z(QRi ) → Fp; (1, 0, γi )1≤i≤k �→ ∑k
i=1 γi and

QR := QR/Ker+. The action of QR � Z on Hk
c (XR,F, Q�) factors through

QR � Z. Let HR denote the image of HR1 × · · · × HRk under QR → QR . The
group HR is an extra-special p-group. The quotient HR/Z(HR) is isomorphic to⊕k

i=1 VRi . Moreover, QR/HR is supersolvable.

Lemma 3.42. The WF-representation τψ,R,m is irreducible.

Proof. The HR-representation Hk
c (XR,F, Q�)[ψ] is irreducible by [8, 16.14(2)

Satz]. The claim follows from this. �	
Let ρψ,Ri ,mi denote the projective representation associated to τψ,Ri ,mi . Let Fi
denote the kernel field of ρψ,Ri ,mi and Ti the maximal tamely ramified extension of
F in Fi . The field Ti is called the tame kernel field of ρψ,Ri ,mi . Let FR := F1 · · · Fk .

Lemma 3.43. Let ρψ,R,m be the projective representation associated to τψ,R,m.
The kernel field of ρψ,R,m is FR.

Proof. ByLemma 3.40, we can checkKer ρψ,R,m =⋂k
i=1 Ker ρψ,Ri ,mi . The claim

follows from this. �	
Let TR be themaximal tamely ramified extension of F in FR .We have the restriction
map VR ↪→ ∏k

i=1 Gal(Fi/Ti ) � ⊕k
i=1 VRi . Then VR := Gal(FR/TR) has a

bilinear form stable under the action of Fp[Gal(TR/F)] ( [11, 4]). The form on VR

is given by ωR :=∑k
i=1 ωRi .

Let ωRi be the form on VRi in Lemma 2.6(2). We give a recipe to make an
example of (M(W ), 2) below.

Proposition 3.44. Assume k = 2. Let Ri (x) = ae,i x pe �= 0 for i ∈ {1, 2}. Assume
m1 �= m2, d := dR1,m1 = dR2,m2 .
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(1) We have an isomorphism VR � VR1 ⊕ VR2 .
(2) We have TR = T1 · T2.
(3) Assume that p �= 2, v2(e) ≥ v2( f ) and Fp(μd) = Fp2e . If (VR, ωR) is com-

pletely anisotropic as a symplectic Fp[Gal(TR/F)]-module, VR is isomorphic
to a primary module (M(W ), 2) with a root system W.

Proof. Via Lemma 2.9 and Lemma 3.12, there exists an unramified finite extension
E of F such that Fi ⊂ E(α

mi
Ri

, βRi ,mi ) for i = 1, 2 and E(α
mi
Ri

, βRi ,mi )/E is

Galois. We put T := E(α
mi
Ri

) = E(� 1/d) and Ei := T (βRi ,mi ) for i = 1, 2. Let
ni := mid/dR = mi/gcd(dR,mi ). Let {Gal(Ei/T )v}v≥−1 be the upper numbering
ramification subgroups of Gal(Ei/T ). Similarly as the proof of Lemma 3.14, we
have

Gal(Ei/T )v =
{
Gal(Ei/T ) if v ≤ ni ,
{1} if v > ni .

Let H := E1 ∩ E2. Since Ei/T is Galois, so is H/T . By [16, Proposition 14 in
IV3], the subgroup Gal(H/T )v equals Gal(H/T ) if v ≤ ni and {1} if v > ni .
Hence we conclude Gal(H/T ) = {1} by n1 �= n2. We obtain H = T . Thus we
have an isomorphism Gal(E1E2/T ) � Gal(E1/T ) × Gal(E2/T ) � VR1 ⊕ VR2 .
The extension E1E2/T is totally ramified and the degree is p-power. Hence, T is
the maximal tamely ramified extension of E in E1 · E2. Therefore, TR = FR ∩ T .
We have the commutative diagram

Gal(E1E2/T )
� Gal(E1/T ) × Gal(E2/T )

�

Gal(FR/TR)
g

Gal(F1/T1) × Gal(F2/T2),

where every map is the restriction map. The right vertical isomorphism follows
from Lemma 3.17. Clearly g is injective. The commutative diagram implies that g
is bijective. Hence we obtain (1).

We have the commutative diagram

1 Gal(FR/TR)

�

Gal(FR/F)

g1

Gal(TR/F)

g2

1

1 VR1 ⊕ VR2 Gal(F1/F) × Gal(F2/F) Gal(T1/F) × Gal(T2/F) 1,

where the two horizontal sequences are exact. Since g1 is injective, so is g2. Hence
TR = T1T2.

We show (3). Let r := [E : F] and Hd,r := μd � (Z/rZ) as in (3.14). We
identify Gal(T/F) with Hd,r . Since TR ⊂ T , the VR , VRi are naturally regarded
as Fp[Hd,r ]-modules. Let α be a primitive d-th root of unity. LetW := �(α,−1).
Then we have an isomorphism VRi � M(W ) as Fp[Hd,r ]-modules and know that
VRi is of type A by Proposition 3.34(3), Lemma 3.36(1) and dR1,m1 = dR2,m2 . This
induces an isomorphismVR1 � VR2 asFp[Hd,r ]-modules.Hence the claim follows
from the assumption that (VR, ωR) is completely anisotropic and the definition of
(M(W ), 2). �	
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Example 3.45. Assume p �= 2. Let e = f = 1, R1(x) = x p and R2(x) = ax p ∈
Fp[x]\{0}. We assume that m1 �= m2 and dR1,m1 = dR2,m2 = p + 1. We have

VRi = {x ∈ F | x p2 + x = 0} for i = 1, 2.
Let W ⊂ VR1 ⊕ VR2 be a totally isotropic Fp[Gal(TR/F)]-subspace. Assume

W �= {0}. We take a non-zero element (x1, x2) ∈ W . We have fR1(x, y) = −xy p ,
fR2(x, y) = −axy p and hence ωR((x1, x2), (ξ x1, ξ x2)) = (x p+1

1 + ax p+1
2 )(ξ −

ξ p) = 0 for any ξ ∈ μp+1. Thus x
p+1
1 + ax p+1

2 = 0 and x2 �= 0. There exists
η ∈ F such that ηp+1 = −a and x1 = ηx2. Since Fp2 = Fp(μp+1), we have
W1 := {(ηx, x) | x ∈ VR2} ⊂ W and W2 := {(ηpx, x) | x ∈ VR2} ⊂ W . Let

( ·
p

)

be the Legendre symbol. If W1 ∩ W2 �= {0}, we have η ∈ Fp and η2 = −a. This
implies

(−a
p

) = 1.

Assume
(−a

p

) = −1. Then W = W1 ⊕ W2 = VR1 ⊕ VR2 by W1 ∩ W2 = {0}.
This is a contradiction. Hence VR1 ⊕ VR2 is completely anisotropic if

(−a
p

) = −1.

If
(−a

p

) = 1, we have W1 = W2, which is the unique non-zero totally isotropic
Fp[H ]-subspace. Hence VR1 ⊕ VR2 is not completely anisotropic.

4. Geometric interpretation of imprimitivity

Through this section, we always assume p �= 2. Our aim in this section is to
show Theorem 4.13. To show the theorem, we use the explicit understanding of
the automorphism group of CR and the mechanism of taking quotients of CR by
certain abelian groups, which are developed in [1] and [6].

4.1. Quotient of CR and description of τψ,R,m

Let CR be as in (2.7). In this subsection, we always assume that there exists a finite
étale morphism

φ : CR → CR1; (a, x) �→ (a − 
(x), r(x)), (4.1)

where 
(x) ∈ Fq [x] and r(x), R1(x) ∈ Aq satisfy dR,m | dR1 and r(αx) = αr(x)
for α ∈ μdR,m . Since φ is étale, r(x) is a reduced polynomial. Hence r ′(0) �= 0.
The above assumption implies that

x R(x) = r(x)R1(r(x)) + 
(x)p − 
(x) (4.2)

r ′(0) �= 0, dR,m | dR1 , r(αx) = αr(x) for α ∈ μdR,m . (4.3)

Let e′ be a non-negative integer such that deg R1(x) = pe
′
and e′ ≤ e. Then

deg r(x) = pe−e′
by (4.2).

We have αR1(αx) = R1(x) for α ∈ μdR,m by dR,m | dR1 and (2.3). Hence

(αx) − 
(x) ∈ Fp for α ∈ μdR,m by (4.2). We have 
(αx) = 
(x), since the
constant coefficient of 
(αx) − 
(x) is zero.

Lemma 4.1. Let ϕ : CR,F → CR,F; (x, a) �→ (x + c, a + g(x)) be the automor-
phism with g(x) ∈ F[x] and c ∈ F. Then we have ER(c) = 0.
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Proof. From the definition of ϕ, we have that

g(x)p − g(x) = cR(x) + x R(c) + cR(c). (4.4)

Let P : F[x] → F[x]; f (x) �→ f (x)p − f (x). Since F is algebraically closed,
cR(c) ≡ 0 mod P(F). From (4.4) and the definition of ER(x), it follows that

0 ≡ cR(x) + x R(c) + cR(c) ≡ ER(c)1/p
e
x mod P(F[x]).

Hence there exists h(x) ∈ F[x] such that h(x)p − h(x) = ER(c)1/p
e
x in F[x]. By

considering degrees, we obtain h(x) = 0 and ER(c) = 0. �	
Lemma 4.2. We have ER1(r(x)) | ER(x).

Proof. Letβ ∈ Fbe an element such that ER1(r(β)) = 0.We take an elementγ ∈ F

such that γ p − γ = r(β)R1(r(β)). Let ϕ : CR,F → CR,F be the automorphism
defined by

ϕ(a, x) = (a + fR1(r(x), r(β)) + 
(x + β) − 
(x) + γ, x + β
)
.

This is well-defined by Lemma 2.2 and (4.2). From Lemma 4.1 it follows that
ER(β) = 0. Since ER1(r(x)) is separable, the claim follows. �	
Lemma 4.3. Let α, α′ ∈ μdR,m . Assume ER1(r(αy)) = 0 for a certain y ∈ F. Then
we have the equality


(α′x + αy) + fR1(r(α
′x), r(αy)) = 
(x) + 
(y) + fR(α′x, αy).

Proof. By 
(α′x + αy) = 
(x + (α/α′)y) and (2.4), we may assume α′ = 1
by (4.3). Lemma 4.2 induces that ER(αy) = 0. Let 
1(x) and 
2(x) denote the
left and right hand sides of the required equality, respectively. We have 
1(0) =

(αy) = 
(y) = 
2(0), since fR(0, x ′) ≡ 0 in Fq [x ′] by definition. Hence
it suffices to show 
1(x)p − 
1(x) = 
2(x)p − 
2(x). Lemma 4.2 and the
assumption imply ER1(r(αy)) = ER(αy) = 0. Therefore, for each i = 1, 2, we
have 
i (x)p − 
i (x) = (x + αy)R(x + αy) − r(y)R1(r(y)) − r(x)R1(r(x))
according to Lemma 2.2. Hence the claim follows. �	
Let

UR := {x ∈ F | r(x) = 0} ⊂ V ′
R := {x ∈ F | ER1(r(x)) = 0}.

We obtain V ′
R ⊂ VR via Lemma 4.2. Then UR and V ′

R are regarded as Fp[H ]-
modules according to r(x), R1(x) ∈ Fq [x] and (4.3).

Lemma 4.4. We have V ′
R ⊂ U⊥

R . In particular, the Fp[H ]-module UR is totally
isotropic.

Proof. Let β be inUR and β ′ be in V ′
R so that r(β) = 0 and ER1(r(β

′)) = 0. From
Lemma 4.3, it follows that fR(β ′, β) = fR(β, β ′) = 
(β + β ′) − 
(β) − 
(β ′).
Hence ωR(β, β ′) = 0. �	
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Let

Q′
R,m := {(α, β, γ ) ∈ QR,m | β ∈ V ′

R}.

Then Q′
R,m is a subgroup of QR,m of index pe−e′

, because of (4.3) and [VR : V ′
R] =

pe−e′
. We have the map

π : Q′
R,m → QR1,m; (α, β, γ ) �→ (α, r(β), γ − 
(β)).

Corollary 4.5. The map π is a homomorphism.

Proof. The claim follows from Lemma 4.3 and (4.3). �	
We have

U ′
R := {(1, β,
(β)) ∈ Q′

R,m | β ∈ UR} = Ker π. (4.5)

The space V ′
R is stable by the q-th powermap.Hencewe can consider the semidirect

product Q′
R,m � Z. The map π induces π ′ : Q′

R,m � Z → QR1,m � Z.
Quotient of CR Let φ be as in (4.1). We can check that φ factors through CR,F →
CR,F/U ′

R
φ̄−→ CR1,F by (2.7). We obtain an isomorphism φ̄ : CR,F/U ′

R
∼−→ CR1,F.

Lemma 4.6. We have φ((a, x)g) = φ(a, x)π ′(g) for g ∈ Q′
R,m � Z.

Proof. The claim follows from Lemma 4.3. �	
Let τ ′

ψ,R1,m
denote the Q′

R,m � Z-representation which is the inflation of the

QR1,m � Z-representation H1
c (CR1,F, Q�)[ψ] by π ′. We have the homomorphism

�R,m,� : WF → QR,m � Z as in (3.8). We define the WF -representation τ ′′
ψ,R1,m

to be the inflation of Ind
QR,m�Z

Q′
R,m�Z

τ ′
ψ,R1,m

via �R,m,� . We have dim τ ′′
ψ,R1,m

= pe,

since [QR,m : Q′
R,m] = pe−e′

and dim τ ′
ψ,R1,m

= pe
′
.

Proposition 4.7. Wehavean isomorphism τψ,R,m � τ ′′
ψ,R1,m

asWF-representations.

Proof. Lemma 4.6 induces an injection

τ ′
ψ,R1,m = H1

c (CR1,F, Q�)[ψ] φ∗
−→ H1

c (CR,F, Q�)[ψ]

of Q′
R,m � Z-representations. Hence we have a non-zero homomorphism

Ind
QR,m�Z

Q′
R,m�Z

τ ′
ψ,R1,m → H1

c (CR,F, Q�)[ψ] (4.6)

asQR,m�Z-representations viaFrobenius reciprocity. Since the target is irreducible
by Lemma 2.8, the map (4.6) is surjective.We know that (4.6) is an isomorphism by
comparing the dimensions. By inflating (4.6) via �R,m,� , we obtain the claim. �	
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We consider the open subgroup W ′ := �−1
R,m,� (Q′

R,m � Z) ⊂ WF of index

pe−e′
. We can write W ′ = WF ′ with a finite field extension F ′/F of degree pe−e′

.
Let

τ ′
ψ,R1,m : WF ′

�R,m,�−−−−→ Q′
R,m � Z

π ′−→ QR1,m � Z → Aut
Q�

(H1
c (CR1,F, Q�)[ψ])

(4.7)

be the composite.

Corollary 4.8. We have an isomorphism τψ,R,m � IndWF
WF ′ τ ′

ψ,R1,m
as WF-

representations. If e′ < e, the WF-representation τψ,R,m is imprimitive.

Proof. The assertion follows from Proposition 4.7. �	

4.2. Totally isotropic subspace and geometry of CR

Let (1, β, γ ) ∈ HR so, as in Definition 2.3(2), we know that γ p −γ = βR(β). We
obtain ( fR(β, β) − 2γ )p = fR(β, β) − 2γ by the definition of the pairing ωR in
Lemma 2.6(2). Assume we have that

β �= 0, γ = fR(β, β)

2
. (4.8)

The following lemma is given in [6, Proposition (13.5)] and [1, Proposition 7.2].
This lemma gives an algorithm of taking quotients ofCR by certain abelian groups.

Lemma 4.9. Let CR be as in Definition 2.7. Assume e ≥ 1.

(1) Let

u := x p − β p−1x, v := a + (x/β)(γ (x/β) − fR(x, β)). (4.9)

Then there exists P1(u) ∈ AF of degree pe−1 such that v p − v = uP1(u).
(2) Let U := {(1, ξβ, ξ2γ ) ∈ HR | ξ ∈ Fp} = 〈(1, β, γ )〉. Then the quotient

CR,F/U is isomorphic to CP1,F.

Proof. We show (1). Let x1 := x/β and u1 := u/β p. Then u1 = x p
1 − x1. We

compute

v p − v = x R(x) + γ px2p1 − γ x21 − x p
1 fR(x, β)p + x1 fR(x, β)

= x R(x) + γ (x2p1 − x21 ) + β−2p+1R(β)x2p

− u1 fR(x, β) − (x/β)p(βR(x) + x R(β))

= uβ−p(−βR(x) + β−p+1R(β)x p + γ (x p
1 + x1) − fR(x, β)),

where we use γ p − γ = βR(β) and Lemma 2.2 for the second equality. Let
P(x) := β−p(−βR(x) + β−p+1R(β)x p + γ (x p

1 + x1) − fR(x, β)). Since P(x)
is additive, there exists P1(u) ∈ AF such that P(x) = P1(u) + αx for a constant
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α. By (4.8), we have P(β) = β−p(2γ − fR(β, β)) = 0. Thus α = 0. From
deg P(x) = pe, it follows that deg P1(u) = pe−1. Hence we obtain (1).

We show (2). We easily check that the finite étale morphism of degree p:
CR,F → CP1,F; (a, x) �→ (v, u) factors through CR,F → CR,F/U → CP1,F.
Since CR,F → CR,F/U is a finite étale morphism of degree p, the claim follows. �	
Let


0(x) := −(x/β)(γ (x/β) − fR(x, β)).

From Lemma 4.9(1), it follows that

x R(x) = uP1(u) + 
0(x)
p − 
0(x). (4.10)

We write u(x) for u.
Let (1, β ′, γ ′) ∈ HR be an element satisfying (4.8). Assume ωR(β, β ′) = 0.

Then (1, β, γ ) commutes with (1, β ′, γ ′). Hence the action of (1, β ′, γ ′) on CR,F

in (2.7) induces the automorphism of CP1,F � CR,F/U .

Lemma 4.10. Let π(β ′, γ ′) := (1, u(β ′), γ ′ − 
0(β
′)).

(1) We have π(β ′, γ ′) ∈ HP1 and fP1(u(β ′), u(β ′)) = 2(γ ′ − 
0(β
′)).

(2) The action of (1, β ′, γ ′) on CR,F induces π(β ′, γ ′) on CP1,F.

Proof. Let 
1(x) := fR(x, β ′) − 
0(x + β ′) + 
0(x). By (4.9), the action of
(1, β ′, γ ′) onCR,F induces the automorphism ofCP1,F given by u �→ u+u(β ′) and
v �→ v+
1(x)+γ ′ onCP1,F. Using (4.8), we can easily check that
1(x)−
1(0)
is an additive polynomial such that 
1(β) − 
1(0) = ωR(β, β ′) = 0. Hence there
exists g(u) ∈ Fq [u] such that 
1(x) = g(u(x)) + 
1(0). Lemma 4.1 induces that
EP1(u(β ′)) = 0. Thus u(β ′) ∈ VP1 . We show (1). The former claim follows from
(4.10). Using 
0(0) = EP1(u(β ′)) = ER(β ′) = 0 in the same way as Lemma 4.3,
we have


0(x + β ′) + fP1(u(x), u(β ′)) = 
0(x) + 
0(β
′) + fR(x, β ′). (4.11)

Substituting x = β ′, and using 
0(2β ′) = 4
0(β
′) and (4.8) for (β ′, γ ′), we

obtain the latter claim in (1).
By (4.11),

v + fR(x, β ′) − 
0(x + β ′) + 
0(x) + γ ′ = v + fP1(u(x), u(β ′)) + γ ′ − 
0(β
′).

Hence the claim (2) follows from (2.7). �	
Assume that VR is not completely anisotropic. LetUR be a non-zero totally isotropic
Fp[H ]-submodule in VR . There exists a monic reduced polynomial r(x) ∈ AF

such that UR = {x ∈ F | r(x) = 0} by [13, Theorem 7]. Since UR is an Fp[H ]-
module, we have

r(αx) = αr(x) for α ∈ μdR,m and r(x) ∈ Fq [x] (4.12)

by Lemma 3.24.Wewrite deg r(x) = pe−e′
with a non-negative integer 0 ≤ e′ < e.
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We take a basis {β1, . . . , βe−e′ } of UR over Fp. Let (1, βi , γi ) ∈ HR be an
element satisfying (4.8). Let Ui := {(1, ξβi , ξ2γi ) | ξ ∈ Fp} ⊂ HR , which is a
subgroup. SinceUR is totally isotropic, we haveωR(βi , β j ) = 0. Thus gi g j = g j gi
for any gi ∈ Ui and g j ∈ Uj via Lemma 2.6(2). We consider the abelian subgroup

U ′
R := U1 · · ·Ue−e′ ⊂ HR . (4.13)

Proposition 4.11. Assume that VR is not completely anisotropic. Then there exist
R1(x) ∈ AF of degree pe

′
and a polynomial 
(x) ∈ F[x] such that 
(0) = 0 and

the quotient CR,F/U ′
R is isomorphic to the affine curve CR1,F and the isomorphism

is induced by π : CR,F → CR1,F; (a, x) �→ (a − 
(x), r(x)). In particular, we
have x R(x) = r(x)R1(r(x)) + 
(x)p − 
(x). Furthermore, we have dR,m | dR1 .

Proof. By applying Lemmas 4.9 and 4.10 successively, we know that the quotient
CR,F/U ′

R is isomorphic to the curve CR1,F with some R1(x) ∈ AF, and we obtain
π : CR,F → CR1,F; (a, x) �→ (a−
(x), r(x)). By (4.9), we have
(0) = 0. Since
UR is an Fp[H ]-module, the subgroup A := {(α, 0, 0) ∈ QR,m | α ∈ μdR,m }
normalizes U ′

R . Hence A acts on the quotient CR1,F. We recall that bp − b =
yR1(y) is the defining equation of CR1,F. Through the morphism π , the action of
A � (α, 0, 0) on CR1,F is given by b �→ b + 
(x) − 
(α−1x), y = r(x) �→
r(α−1x) = α−1y by (4.12). From [6, Theorem (13.3)] or [1, Theorem 4.3.2], it
follows that α ∈ μdR1

. Hence the last claim follows. �	
Corollary 4.12. Let the assumption be as in Proposition 4.11. We have 
(x),
R1(x) ∈ Fq [x].
Proof. We use the same notation as in Definition 3.23. We consider the equal-
ity x R(x) = r(x)R1(r(x)) + 
(x)p − 
(x) in Proposition 4.11. Let S(x) :=
−Rσ

1 (x) + R1(x) and �(x) := 
σ (x) − 
(x). Then S(x) ∈ AF. Since
r(x), R(x) ∈ Fq [x],

�(x)p − �(x) = r(x)S(r(x)). (4.14)

Assume S(x) �= 0. We have the non-constant morphism f : A
1
F

→ CS,F; x �→
(�(x), r(x)), since r(x) is non-constant. Let CS,F be the smooth compactification
of CS,F. The morphism f extends to a non-constant morphism P

1
F

→ CS,F. Hence
this is a finite morphism. From the Riemann–Hurwitz formula, it follows that the
genus of CS,F equals zero. This contradicts to Lemma 2.10. Hence S(x) ≡ 0 and
R1(x) ∈ Fq [x]. We have �(x) ∈ Fp by (4.14). As in Proposition 4.11, 
(0) = 0
induces �(0) = 0. Hence �(x) ≡ 0. Thus the claim follows. �	

4.3. Theorem

Finally, we summarize the contents of 4.1 and 4.2 as a theorem.

Theorem 4.13. Assume p �= 2. The following conditions are equivalent.



Local Galois representations associated... 31

(1) There exists a non-trivial finite étale morphism

CR → CR1; (a, x) �→ (a − 
(x), r(x)),

where 
(x) ∈ Fq [x] and r(x), R1(x) ∈ Aq satisfy dR,m | dR1 and r(αx) =
αr(x) for α ∈ μdR,m .

(2) The Fp[H ]-module (VR, ωR) is not completely anisotropic.
(3) The WF-representation τψ,R,m is imprimitive.

If the above equivalent conditions are satisfied, the WF-representation τψ,R,m is

isomorphic to IndWF
WF ′ τ ′

ψ,R1,m
, where τ ′

ψ,R1,m
is given in (4.7).

Proof. Assume (1). The degree of the finite covering CR → CR1 equals deg r(x).
Since CR → CR1 is not an isomorphism, we have deg r(x) > 1. Thus (2) fol-
lows from Lemma 4.4 and UR �= {0}. Assume (2). Then (1) follows from (4.12),
Proposition 4.11 and Corollary 4.12.

The equivalence of (2) and (3) follows from Corollary 3.28(1).
The last claim follows from Corollary 4.8. �	
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