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Abstract. We study a one-dimensional Lagrangian problem including the variational refor-
mulation, derived in a recent work of Ambrosio–Baradat–Brenier, of the discrete Monge–
Ampère gravitational model, which describes the motion of interacting particles whose
dynamics is ruled by the optimal transport problem. The more general action-type func-
tional we consider contains a discontinuous potential term related to the descending slope
of the opposite squared distance function from a generic discrete set in R

d . We exploit the
underlying geometrical structure provided by the associated Voronoi decomposition of the
space to obtain C1,1-regularity for local minimizers out of a finite number of shock times.
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1. Introduction

In recent years, action functionals of the form

I f (γ ) =
∫ 1

0
|γ̇ |2 + |∇ f (γ )|2 (1.1)

have received the attention of many authors, due to their appearence in several areas
of Mathematics. In the theory of gradient flows, for instance, they correspond to
the integral form of the energy dissipation (see [5]), and they are also related to the
so-called entropic regularization of the Wasserstein distance, when f is a multiple
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of the logarithmic entropy, defined on the space of probability measures with finite
quadratic moment (see [9,12,13]). In all these cases, the main obstruction to the
application of standard results of Calculus of Variations stems from the lack of
differentiability, even continuity, of the Lagrangian with respect to γ .

When f : X → (−∞,+∞] is a λ-convex function defined on a metric space
(X, d), the term |∇ f (x)| has to be interpreted as the descending slope of f at x ,
namely

|∇− f |(x) := lim sup
y→x

[ f (x) − f (y)]+
d(x, y)

, (1.2)

and, if X is a Hilbert space, it also coincides with the norm of the minimal selection
in the subdifferential ∂ f (x), known as the extended gradient of f at x (see [5]). In
this general framework, stability of the functionals I f with respect to�-convergence
of the functions f was investigated in [2–4]. In particular, [2] addressed a rigorous
derivation, along the lines of [8], of a dynamical system of interacting particles
strictly related to the optimal transport problem, known as the discrete Monge–
Ampère gravitational (MAG) model (see Sect. 2.2). What emerged from this work
is that the dynamics of MAG can be conveniently studied as the Euler–Lagrange
equation associated to an action functional of type (1.1), where f = fK is the (−1)-
convex function given by the (halved) opposite squared distance from a specific
discrete set K ⊂ R

d , namely

fK (x) := −dist2K (x)

2
= −min

y∈K
|x − y|2

2
. (1.3)

Clearly, fK is not everywhere differentiable in general, so that ∇ fK , denoting the
extended gradient of fK , is not even continuous, and standard results of Calculus
of Variations are not directly applicable in this case.

The present work aims at a systematic analysis of the properties of local mini-
mizers for the functional I fK , where K is a generic discrete set K inR

d . Our results
apply in particular to solutions of the discrete MAG model, thereby addressing the
general n-dimensional case, left open in [2], where the most involved part of the
analysis was carried out only in dimension 1.

The plan of the paper is the following. In Sect. 2 we present the general frame-
work and the motivations of our work. More precisely, in Sect. 2.1 we provide a
contextualization of the problem in the general Hilbertian setting, with particular
emphasis on the variational properties of functionals of type (1.1), when f is a
λ-convex function. The main references for this part are [3,5]. Then, in Sect. 2.2,
we introduce the Monge–Ampère gravitational model in the flat torus T

n as a mod-
ification of the classical Newtonian gravitation in which the linear Poisson equation
is replaced by the fully non-linear Monge–Ampère equation (see (2.7)). Following
the ideas of [8], we underline the intriguing link of this dynamical system with the
optimal transport problem, whose powerful tools can be used in order to derive a
Lagrangian reformulation of MAG particularly meaningful in the discrete setting,
where additional foundation to the model is given by the results in [2]. By means of
a least action principle, we then interpret solutions of the discrete MAG model as
local minimizers of the functional I fK , where fK is the opposite squared distance
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function from a discrete set K ⊂ R
d , as defined in (1.3). Section3, being the core

of the paper, is then devoted to the analysis of local minimizers for the Lagrangian
problem associated to I fK , when K is a finite collection of points in R

d :

K = {p1, . . . , pN } .

Wecrucially consider theVoronoi partition of the space carried by K ,which encodes
the underlying geometrical structure of the problem, and exploit it in order to obtain,
in Proposition 3.8, the existence of some specific directions alongwhichmomentum
is locally conserved by the dynamics. As a byproduct, we show in Corollary 3.9
that a local minimizer γ is regular as long as it stays in a single Voronoi cell,
possibly developing singularities only at those times in which the optimality class
changes. As it is shown later, the set K also carries a partition of R

d into “potential
zones” (see Proposition 3.6). This second partition is in general less fine than the
Voronoi one, and coincides with it when the set K is “balanced”, like for instance
a cubic lattice. We then define S(γ ) to be the set of “shock times”, at which the
curve γ jumps from a Voronoi cell to another, and NDS(γ ) ⊆ S(γ ) the set of
“non-degenerate shock times”, at which γ not only changes the Voronoi cell, but
also the potential zone. With this in mind, our main regularity results Theorem 3.15
and Corollary 3.16 can be collected in a single statement as follows:

Theorem. (Partial regularity) Let γ be a local minimizer of I fK with endpoints
constraints. Then

(i) γ has a finite number of non-degenerate shock times out of which it is C1,1.
(ii) Under the additional assumption that K is balanced, γ has a finite number of

shock times out of which it is C∞.

This result in particular provides an extention to any space dimension of [2, The-
orem 13], where regularity out of a finite number of shock times was proved for
minimizers of a one-dimensional version of the MAG model.

2. General framework and motivations

2.1. Action functionals depending on the gradient of convex functions

λ-convex functions. Given a Hilbert space H , we consider a function f : H →
(−∞,+∞], and denote by dom( f ) its finiteness domain. We say that f is λ-
convex if x �→ f (x)− λ

2 |x |2 is convex. It is easily seen that λ-convex functions are
precisely those functions that satisfy the perturbed convexity inequality

f ((1 − t)x + t y) ≤ (1 − t) f (x) + t f (y) − λ

2
t (1 − t)|x − y|2, t ∈ [0, 1].

By ∂ f (x) we denote the Gateaux subdifferential of f at x ∈ dom( f ), namely the
(possibly empty) closed convex set

∂ f (x) :=
{
ξ ∈ H : lim inf

t→0+
f (x + tv) − f (x)

t
≥ ξ · v, ∀v ∈ H

}
.
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We denote by dom(∂ f ) the domain of the subdifferential. For a λ-convex function,
we can exploit the monotonicity of difference quotients to derive the equivalent
non-asymptotic definition of the subdifferential

∂ f (x) :=
{
ξ ∈ H : f (y) ≥ f (x) + 〈ξ, y − x〉 + λ

2
|y − x |2, ∀y ∈ H

}
.

Whenever x ∈ dom(∂ f ), there exists a unique element ξ with minimal norm in
∂ f (x), obtained by projecting 0 on ∂ f (x). This element is called the extended
gradient of f at x , and is denoted by ∇ f (x). The concept of extended gradient is
strictly related to the one of descending slope of f at x ∈ dom( f ), namely

|∇− f |(x) := lim sup
y→x

[ f (x) − f (y)]+
|x − y| .

In fact, for λ-convex functions, it can be proved that ∂ f (x) is not empty if and only
if |∇− f |(x) < +∞, and that, in this case, the following equalities hold (see [5]):

|∇ f (x)| = |∇− f |(x) = sup
y �=x

[ f (x) − f (y) + λ
2 |x − y|2]+

|x − y| . (2.1)

By setting |∇ f | equal to +∞ out of dom(∂ f ), we easily deduce from (2.1) that
the function H � x �→ |∇ f (x)| ∈ [0,+∞] is lower semicontinuous, being the
supremum of a collection of continuous functions.

In this paper we deal with the following specialization of the above setting.
Given a closed set K ⊆ H , we consider the (halved) opposite squared distance
function from K , namely

fK (x) := −dist2K (x)

2
= − inf

y∈K
|x − y|2

2
. (2.2)

The infimum is not attained in general, unless K is either convex or compact, or H
is finite-dimensional. By defining the convex function

gK (x) := sup
y∈K

(
〈x, y〉 − |y|2

2

)
,

we derive from the equality gK (x) = fK (x) + |x |2
2 that fK is (−1)-convex.

A class of action functionals. We now introduce, in the general Hilbertian setting,
the class of action functionals that we are going to study throughout the paper. We
fix a function h : [0,+∞] → [0,+∞] representing a “potential shape”. Then, for
δ > 0 and f : H → (−∞,+∞] proper, λ-convex and lower semicontinuous, we
consider the functional I δ

f : C([0, δ], H) → [0,+∞] defined by

I δ
f (γ ) :=

⎧⎨
⎩

∫ δ

0
|γ̇ |2 + h(|∇ f |2(γ )) if γ ∈ AC([0, δ], H),

+∞ otherwise.
(2.3)
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Compared to the one of type (1.1) studied so far in the literature, we consider here
the enriched class of functionals in which the potential shape h is allowed to be
different from the identity. In the sequel we assume h to be continuous, and C1

when restricted to [0,+∞).
As we have in mind to study this type of functionals from the variational point

of view, it is crucial to realize that (2.3) is lower semicontinuous with respect to the
C([0, δ], H) topology. This in fact easily follows from the lower semicontinuity of
the classical action and the above characterization of the extended gradient (2.1).
Then, for x0, xδ ∈ H , the infimum

�δ
f (x0, xδ) := inf

{
I δ
f (γ ) : γ (0) = x0, γ (δ) = xδ

}

is attained under suitable coercivity conditions. Note in particular that this is the
case if H is finite-dimensional.

Due to the lack of continuity of the potential term, however, very little is known
about the regularity for minimizers of this type of functionals, even in the finite-
dimensional case. We could ask for instance whether some higher regularity or at
least a sort of Euler–Lagrange equation like formally

γ̈ = h′(|∇ f (γ )|2)∇2 f (γ )∇ f (γ ) (2.4)

could be derived for local minimizers. It is worth mentioning here that a rigor-
ous Euler–Lagrange equation like the one in (2.4) has been derived in [10] in the
context of the entropic regularization of the Wasserstein distance, where f is the
Boltzmann–Shannon relative entropy. In the very specific case in which f is the
opposite squared distance function from a discrete set in R

d , we will prove in the
sequel that local minimizers are piecewise C1,1, and that, out of a finite number
of singularities, (2.4) holds taking the modulus on both sides and replacing the
equality with a ≤ sign (see Theorem 3.15). Nevertheless, in the general setting,
one can exploit the fact that the functional I δ

f is autonomous in order to perform
“horizontal” variations of the independent variable, and eventually derive the Du
Bois–Reymond equation for a local minimizer γ (see [1]):

d

dt

{
|γ̇ |2 − h(|∇ f |2(γ ))

}
= 0 (2.5)

in the sense of distributions in (0, δ). Equivalently, there exists a constant c ∈ R

such that

|γ̇ |2 = h(|∇ f |2(γ )) + c

a.e. in (0, δ). This implies in particular that every local minimizer of I δ
f is Lipschitz

continuous, provided that |∇ f | is bounded on bounded sets.
We end this part by quoting a result from [3] addressing the matter of stability

for the class of functionals considered so far. By adding endpoints constraints
x0, xδ ∈ H , we define the functional I δ

f,x0,xδ
: C([0, δ], H) → [0,+∞] such that

I δ
f,x0,xδ

(γ ) :=
⎧⎨
⎩

∫ δ

0
|γ̇ |2+h(|∇ f |2(γ )) if γ ∈ AC([0, δ], H) and γ (0)= x0, γ (δ)= xδ,

+∞ otherwise.
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Theorem 2.1. (Stability, [3]) Let f j , f be uniformly λ-convex functions, and let
x j,0, x j,δ, x0, xδ ∈ H. Suppose that

(i) f j → f w.r.t. Mosco convergence.
(ii) lim

j→∞x j,i = xi , for i = 0, δ.

(iii) sup
j

|∇ f j |(x j,i ) < ∞, for i = 0, δ.

Then I δ
f j ,x j,0,x j,δ

�-converge to I δ
f,x0,xδ

in the C([0, δ], H) topology.

As a byproduct, under an additional equi-coercivity assumption, this theoremgrants
convergence of minimal values to minimal values and of minimizers to minimizers.
Notice that Theorem 2.1 is stated in [3] for h = id, but the same proof is seen to
work in the general case with only minor modifications.

2.2. The Monge–Ampère gravitational model

In a periodic spatial domain like the flat torus T
n = R

n/Z
n , we can describe

classical Newtonian gravitation of a unity of mass in a “parametric” way as follows.
We first choose a reference probability space (A, λ) of labels for the gravitating
particles. Then we assign to each particle a ∈ A its position Xt (a) ∈ T

n at
time t . Tipical choices for the reference space are the unit cube [0, 1]n with the n-
dimensional Lebesguemeasure in the continuous case, and a finite set of points with
the renormalized counting measure in the discrete case. Denoting by μt := (Xt )#λ

the image measure of λ by Xt , the Newtonian model can be written as{
d2

dt2
Xt (a) = −∇φt (Xt (a)),

	φt = μt − 1.
(2.6)

Here φt is the gravitational potential generated by μt , defined on T
n . Notice that

due to the periodicity of the space, the average density 1 has been subtracted from
the right-hand side of the Poisson equation, in order to let the uniform measureL n

be a stationary solution of the system. This is a perfectly meaningful assumption,
because by symmetry, the attractive force of the uniform density has to be zero
everywhere on T

n .
In this section we are interested in the related Monge–Ampère gravitational

model (MAG in short), which is simply obtained from (2.6) by replacing the Poisson
equation with the fully non-linear Monge–Ampère equation:{

d2

dt2
Xt (a) = −∇φt (Xt (a)),

det(I + ∇2φt ) = μt .
(2.7)

Notice that (2.6) can be recovered from (2.7) by expanding the determinant in
the Monge–Ampère equation and keeping only the linear term:

det(I + ∇2φt ) ≈ 1 + Tr(∇2φt ) = 1 + 	φt .

Werefer to [8] and the references therein for a broader introduction to this dynamical
system, as well as for a comparison with the classical Newtonian model.
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The MAG model in optimal transportation terms. System (2.7) appears to have an
intriguing geometrical interpretation if we look at it from the optimal transportation
point of view. In order to better illustrate this link, we first quote the following
specialization to the flat torus T

n of the classical Brenier-McCann theorem on
the existence and uniqueness of optimal transport maps on Riemannian manifolds
(see [7,11,15]). Let us begin with some notation. We denote by π : R

n → T
n the

projection to the quotient. We say that a vector field F : R
n → R

n isZ
n-translation

invariant if F(· + z) = F(·) + z, for every z ∈ Z
n . If this is the case we make a

little abuse of notation by considering F also as a vector field from T
n to itself.

Given a Borel probability measure λ on T
n , we consider the Hilbert space

Hλ := L2(Tn, λ; R
n)

and its closed subset Kλ given by all the λ-preserving vector fields

Kλ := {Y ∈ Hλ : (π ◦ Y )#λ = λ} .

Finally, we recall that fKλ denotes the opposite squared distance function from Kλ,
as defined in (2.2).

Theorem 2.2. (Existence and uniqueness of optimal transport maps in T
n) Let μ

and λ be Borel probability measures on T
n, and suppose that μ � L n. Then

(i) There exists a locally Lipschitz convex function ψ : R
n → R, such that

φ(x) := ψ(x) − |x |2
2 is Z

n-periodic (therefore ∇ψ(x) = x + ∇φ(x) is
Z
n-translation invariant), and T := ∇ψ : T

n → T
n is the unique optimal

transport map from μ to λ.
(ii) Ifμ = ρL n and λ = ηL n are both absolutely continuous w.r.t. the Lebesgue

measure, then φ solves the Monge–Ampère equation

det(I + ∇2φ)η(T (x)) = ρ(x) (2.8)

in the almost everywhere sense. Furthermore, if ρ and η are of class C0,α and
ρ, η > 0, then φ is of class C2,β , for 0 < β < α, and solves (2.8) in the
classical sense.

(iii) Let Y ∈ Hλ be such that (π ◦ Y )#λ = μ. Then T ◦ Y is the unique projection
of Y on Kλ, and

‖T ◦ Y − Y‖Hλ = W2(μ, λ), (2.9)

where W2 is the Wasserstein distance in the space P2(T
n). Moreover, the

map fKλ is Gateaux differentiable at Y and it holds

∇ fKλ(Y ) = T ◦ Y − Y = ∇φ ◦ Y. (2.10)

In order to reformulate the Monge–Ampère gravitational model in optimal trans-
portation terms,we look to the continuous case, inwhich the reference space is given
by (Tn,L n). Fix then λ = L n in the Theorem above, and consider a parametriza-
tion Xt : T

n → T
n such that (Xt )#λ = μt andμt = ρtL n is absolutely continuous

w.r.t. the Lebesgue measure. If Yt ∈ Hλ is any lifting of Xt , that is to say a map
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that satisfies π ◦ Yt = Xt , then Theorem 2.2 grants that the Kantorovich potential
φt solves the Monge–Ampère equation

det(I + ∇2φt ) = μt ,

and −∇φt = Yt − Tt ◦ Yt , where Tt is the unique optimal transport map from μt

to λ. So we see that (2.7) reduces to

d2

dt2
Yt (a) = Yt (a) − Tt (Yt (a)). (2.11)

Moreover, from (2.10) we obtain

|∇ fKλ(Y )|2 = |T ◦ Y − Y |2 = −2 fKλ(Y ),

suggesting an interpretation of (2.11) as the Euler–Lagrange equation associated
to the functional

∫ δ

0
|γ̇ |2 + |∇ fKλ(γ )|2, γ : [0, δ] → Hλ. (2.12)

This variational reformulation appears natural in the attempt to give a meaning to
system (2.7) also in the discrete setting, where, as it is well-known, Theorem 2.2
fails.

The discrete MAG model. As already mentioned before, one of the aims of this
work is to go deeper in the analysis of the discrete version of the Monge–Ampère
gravitational model, first introduced in [8] and then formalized in [2]. Here we
choose as reference measure

λ = 1

m

m∑
i=1

δai ,

where the ai ’s are distinct points on T
n (think for instance to a regular lattice

approximating the uniform measure). In this case, the space Hλ is easily seen to
be finite-dimensional, and isomorphic to R

nm , through the identification of a map
Y ∈ Hλ with the m-uple (Y (a1), . . . ,Y (am)) ∈ (Rn)m . Under this correspon-
dence, Kλ is represented by the discrete set of all points (b1, . . . , bm) in R

nm such
that π ({b1, . . . , bm}) = {a1, . . . , am}. By regarding, a bit improperly, the ai ’s as
elements of [0, 1)n , the set Kλ can be written as the union of m! cubic lattices in
R
nm :

Kλ =
⋃

σ∈Sm

(aσ(1), . . . , aσ(m)) + Z
nm .

In this discrete scenario, the MAG model describes the motion of m particles of
equal mass 1/m in the torus T

n , whose dynamics is ruled by the optimal transport
problem as follows. The position of the i th particle at time t is denoted by xi (t) =
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Xt (ai ), and a lifting of xi (t) to R
n by yi (t) = Yt (ai ). The equivalent of (2.11) in

this setting is, at least formally,

ÿi (t) = yi (t) − bopti (t), i ∈ {1, . . . ,m} , (2.13)

where (bopt1 (t), . . . , boptm (t)) is the closest point to (y1(t), . . . , ym(t)) in Kλ. The
system (2.13) is easily seen to be ill posed, because of the general non-uniqueness of
the projection on Kλ, ultimately due to the non-uniqueness of the optimal transport
map in the discrete setting, in contrast with the absolutely continuous one. As
already pointed out in [2], in order to fix this problem, it is convenient to switch
to a variational reformulation of the dynamical system, by considering an action
functional of type (2.12). Therefore, relying on a least action principle, we say
that y ∈ AC([0, δ], R

nm) is a solution of the discrete MAG model if it is a local
minimizer of the functional ∫ δ

0
|γ̇ |2 + |∇ fKλ(γ )|2

subject to endpoints constraints. In the next section, we are going to study a more
general functional in which Kλ is replaced by a generic discrete set K in R

d .
Before concluding this part, we would like to briefly turn the attention of the

reader to an analogous Lagrangian problem in the space of probability measures
(P(Tn),W2). This can be obtained fromMAGby dropping the parametric descrip-
tion of the gravitating matter, required by the Hilbertian setting of Sect. 2.1, and
directly considering the evolution of a probability measure μt in T

n .

A related Lagrangian problem in (P(Tn),W2). Far from being limited to the
Hilbertian context, functionals of type (1.1) can be considered in a much more
general metrict setting, provided that we interpret |∇ f (x)| as the descending slope
|∇− f |(x) defined in (1.2), and |γ̇ | as the metric derivative of an absolutely con-
tinuous curve γ : [0, 1] → X . We avoid to repeat all the constructions in this
new scenario (see [4] for a systematic introduction), and prefer to immediately
specialize to our case of interest. We take (X, d) = (P(Tn),W2) the space of
probability measures on T

n endowed with the Wasserstein distance induced by
the optimal transport problem with quadratic cost. As it is well-known, (X, d) is
compact, geodesic and positively curved (see [5]). Given a “reference” probability
measure λ ∈ P(Tn), we consider the (halved) opposite squared distance function
from λ, namely

fλ(μ) = −W 2
2 (μ, λ)

2
.

Since (X, d) is positively curved, we easily deduce that fλ is (−1)-convex (in the
metric setting, convexity has to be intended along geodesics). Moreover, we can
bound the descending slope of fλ at μ as follows:

|∇− fλ|(μ) = lim sup
ν→μ

[W 2
2 (ν, λ) − W 2

2 (μ, λ)]+
2W2(μ, ν)

≤ lim sup
ν→μ

W2(ν, λ) + W2(μ, λ)

2
= W2(μ, λ). (2.14)
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A precise characterization of |∇− fλ|(μ) is given in [5, Theorem 10.4.12], and
involves the minimal L2 norm of the barycentric projection of optimal transport
plans. Inspired by the MAG model, and in particular by formulas (2.9) and (2.10),
one could study the Lagrangian problem associated to the lower semicontinuous
functional I δ

fλ,μ0,μδ
: C([0, δ], X) → [0,+∞] defined by

I δ
fλ,μ0,μδ

(γ ) =
⎧⎨
⎩

∫ δ

0
|γ̇ |2 + |∇− fλ|2(γ ) if γ ∈ AC([0, δ], X), and γ (0) = μ0, γ (δ) = μδ,

+∞ otherwise.

From the compactness of X , we immediately obtain the existence of minimizers of
I δ
fλ,μ0,μδ

. In addition, by exploiting a generalization of Theorem 2.1 to the general
metric setting provided by [4, Theorem 17], as well as the bound on the descending
slope (2.14), we obtain the following stability result:

Proposition 2.3. Let λ j , λ ∈ P(Td) be reference measures, and μ j,0, μ j,δ, μ0,

μδ ∈ P(Td) be endpoints. Suppose that

(i) λ j → λ in W2.
(ii) μ j,i → μi in W2, for i = 0, δ.

Then I δ
fλ j ,μ j,0,μ j,δ

�-converge to I δ
fλ,μ0,μδ

in the C([0, δ], X) topology. Moreover,

we have convergence of minimal values to minimal values and of minimizers to
minimizers.

3. The case of the opposite squared distance function in R
d

In this section the main results of the paper will be derived. We study functionals of
type (2.1) in the special case in which H = R

d and f = fK is the opposite squared
distance function from a closed subset K ⊆ R

d . Motivated by the variational
reformulation of the discrete MAG model, derived in the previous section, we will
in particular focus on the case in which K is a discrete collection of points in
R
d . We highlight here that the functional associated to a general closed set can be

approximated, in the sense of �-convergence, by functionals associated to discrete
sets (seeCorollary 3.4 below). In the discrete setting,wewill exploit the geometrical
structure given by the associated Voronoi decomposition of the space in order to
get regularity for local minimizers out of a finite number of “shock times”.

Given a closed set K ⊆ R
d , we consider the opposite squared distance function

from K , defined by

fK (x) := −dist2K (x)

2
= −min

y∈K
|x − y|2

2
. (3.1)

Notice that the infimum in (2.2) is always attained here, due to the local compactness
of the ambient space. The convex function

gK (x) := max
y∈K

(
x · y − |y|2

2

)
(3.2)
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satisfies gK (x) = fK (x) + |x |2
2 , thus implying the (−1)-convexity of fK . We fix

a potential shape h : [0,+∞) → [0,+∞) of class C1 and consider the action
functional I δ

fK ,x0,xδ
: C([0, δ], R

d) → [0,+∞] defined by

I δ
fK ,x0,xδ

(γ ) :=
⎧⎨
⎩

∫ δ

0
|γ̇ |2+h(|∇ fK |2(γ )) if γ ∈ AC([0, δ], R

d ) and γ (0)= x0, γ (δ)= xδ,

+∞ otherwise.

We stress that ∇ fK has to be intended as an extended gradient, because fK is
differentiable only at those points in which the projection on K is unique.

In order to get a useful characterization of∇ fK , we need a well-known Lemma
of convex analysis providing an explicit formula for the subdifferential at x of the
maximum of a family of convex functions, under suitable assumptions (see [14]).

Lemma 3.1. (Subdifferential of the sup function) Let
{
gα : R

d → R
}
α∈A be a

collection of convex functions indexed on a compact metric space A, and suppose
that α �→ gα(x) is upper semicontinuous for every x ∈ R

d . We consider the
supremum function

g := sup
α∈A

gα.

Then, if the supremum in the definition of g(x) is attained, the following formula
holds for the subdifferential of g at x:

∂g(x) = conv
(⋃

{∂gα(x) : gα(x) = g(x)}
)

.

We call optK (x) the compact subset of K containing all the points that minimize
the distance from x :

optK (x) := {y ∈ K : distK (x) = |x − y|} =
{
y ∈ K : gK (x) = x · y − |y|2

2

}
.

In the sequel we will refer to optK (x) as the optimality class of x . Applying Lemma
3.1 we get:

Proposition 3.2. (Subdifferential of the opposite squared distance function) Let
K ⊆ R

d be a closed set, and let fK , gK be defined as in (3.1) and (3.2). Then

(i) The subdifferential of gK at x is given by

∂gK (x) = conv(optK (x)).

(ii) The subdifferential of fK at x is given by

∂ fK (x) = conv(optK (x)) − x .

Moreover, denoting by ηK (x) the unique projection of x on the closed convex
set conv(optK (x)), the following formula holds for the extended gradient of fK
at x:

∇ fK (x) = ηK (x) − x . (3.3)
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(iii) The point ηK (x) depends only on the optimality class of x. That is to say,
ηK (x) = ηK (y), whenever optK (x) = optK (y).

Proof. Point (i) easily follows from Lemma 3.1 if K is compact. To deal with
the general case it is enough to notice that for every x ∈ R

d and every radius
R > distK (x), we have gK = gK∩BR(x) in a neighborhood of x . The formula
for ∂ fK (x) is a consequence of the rule for the subdifferential of the sum of two
functions, one of which smooth. Then, by definition, ∇ fK (x) is the projection of
0 on ∂ fK (x) = conv(optK (x))− x , and formula (3.3) follows after a translation of
x . Let us now address point (iii). Suppose that x and y share the same optimality
class, optK (x) = optK (y). Consider the affine space A spanned by optK (x) and its
orthogonal space B passing through x . From the hypothesis on x and y we deduce
that also y belongs to B. Then, denoting by p the point of intersection of A and B,
by orthogonality we have:

|x − z|2 = |x − p|2 + |p − z|2,
|y − z|2 = |y − p|2 + |p − z|2 for every z ∈ conv(optK (x)).

Hence, both distances are minimized by the point z obtained by projecting p on
conv(optK (x)), thus ηK (x) = ηK (y). ��
Remark 3.3. From (3.3) we deduce that the potential term |∇ fK (x)|2 is always less
than or equal to −2 fK (x) = dist2K (x), and equality holds if and only if x has a
unique projection on K . It is interesting to see what this means for theMAGmodel.
Using the notation of Sect. 2.2, the potential of a configuration (y1, . . . , ym) ∈ R

nm

is always smaller than W2(μ, λ), where, setting xi = π(yi ),

λ = 1

m

m∑
i=1

δai , μ = 1

m

m∑
i=1

δxi

and W2 is the Wasserstein distance in P2(T
n). Moreover, equality holds if and

only if there exists a unique optimal transport map from μ to λ. So we see that
in the context of the MAG model, the potential term should be interpreted as a
“measure of the ambiguity in the optimal transport problem”. Tipicalmanifestations
of ambiguity in the discrete scenario appear when two or more particles collapse,
thus sharing the same position in T

n . Compare also this phenomenon with the
continuous framework of Theorem 2.2, where this ambiguity does not occur.

To end this part, we briefly come back to the matter of stability in this specialized
context, stating the following Corollary of Theorem 2.1:

Corollary 3.4. Let K j , K be closed subsets of R
d , and let x j,0, x j,δ, x0, xδ ∈ R

d .
Suppose that

(i) K j → K in the sense of Hausdorff in every compact set.
(ii) x j,i → xi for i = 0, δ.

Then I δ
fK j ,x j,0,x j,δ

�-converge to I δ
fK ,x0,xδ

in the C([0, δ], R
d) topology. Moreover,

we have convergence of minimal values to minimal values and of minimizers to
minimizers.
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As a consequence, the functional associated to a closed set K can be approximated
by functionals associated to K j , where each K j is a finite collection of points in
R
d . It is the scope of the following subsection to focus on this simpler situation.

3.1. The discrete case

From now on, we restrict our analysis to the case in which K is given by a collection
of N distinct points in R

d :

K = {p1, . . . , pN } .

Weare particularly interested in studying properties of localminimizers for I δ
fK ,x0,xδ

because of the link with the variational reformulation of the discrete MAG model
(see the discussion above). There, K was an infinite discrete set, but we can clearly
restrict our analysis, which is essentially local, to the case in which K is finite, due
to the compactness of the range of every continuous curve γ : [0, δ] → R

d . Let us
fix K , so as to be allowed to omit all the pedices involving it. Then, for instance,
we will write f, g, η, opt in the place of fK , gK , ηK , optK .

Polyhedra, Voronoi cells and potential zones. We say that P ⊆ R
d is a polyhedron

if it is a non-empty closed convex set admitting a representation of the form

P =
�⋂

j=1

{
x ∈ R

d : Tj (x) ≤ 0
}

, (3.4)

where � ∈ N and Tj : R
d → R are affine functions. A bounded polyhedron is

called a polytope.
The Voronoi partition associated to a finite collection of points K =

{p1, . . . , pN } is the finite decomposition {VH }H∈P(K ) of R
d , indexed by the set

P(K ) of the parts of K , and such that

VH =
{
x ∈ R

d : opt(x) = H
}

.

We call VH the Voronoi cell corresponding to the optimality class H . The following
are well-known facts about this remarkable cellular decomposition of the space (see
[6]).

Proposition 3.5. (Properties of the Voronoi partition) Let H ∈ P(K ) be such that
the Voronoi cell VH is non-empty. Then

(i) VH is a convex set. Moreover, denoting by AH the affine space spanned by H,
and by BH the affine space

BH :=
{
x ∈ R

d : |x − pi | = |x − p j |, ∀pi , p j ∈ H
}

,

we have that AH is orthogonal to BH , they have complementary dimensions in
R
d , and VH is relatively open in BH . We call pH the unique intersection point

of AH and BH .
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(ii) The closure VH is a polyhedron, whose relative boundary in BH is precisely
given by the disjoint union of all the Voronoi cells VL with H � L.

In order to introduce the second fundamental decomposition associated to K , we
also need to define, for every η ∈ R

d , the sets:

Qη :=
{
x ∈ R

d : η(x) = η
}

,

Pη :=
{
x ∈ R

d : η ∈ ∂g(x)
}

.

The following proposition encodes the underlying geometrical structure conferred
to our variational problem by the particular choice wemade for the potential. It will
be of fundamental importance in deriving regularity results for local minimizers of
the functional I δ

fK ,x0,xδ
.

Proposition 3.6. (Voronoi cells and potential zones) The following facts hold:

(i) The map η is constant in each Voronoi cell, and hence has a finite range, that
we denote by E .

(ii)
{
Qη

}
η∈E is a partition of Rd , and x ∈ Qη if and only if ∇ f (x) = η − x. In the

sequel we will refer to the Qη’s as potential zones.
(iii) For every η ∈ E , both Qη and Pη are union of Voronoi cells and it holds

Qη ⊆ Pη.
(iv) For every η ∈ E , Pη is a polyhedron.
(v) Let β be the positive constant defined by

β := min
η �=η̄

η,η̄∈E
|η − η̄|2. (3.5)

Then we have

|η̄ − x |2 ≥ |η − x |2 + β for every distinct η, η̄ ∈ E and x ∈ Qη ∩ Pη̄. (3.6)

Proof. Point (i), (ii) and (iii) are direct consequences of Proposition 3.2. To prove
point (iv) it is enough to notice that Pη is a closed convex set that can be written as
the union of a finite number of polyhedra (the closures of theVoronoi cells contained
in Pη). Finally, point (v) easily follows from the fact that η is the projection of x
on the closed convex set ∂g(x) containing η̄. ��
So we see that K carries two partitions of R

d , one finer than the other: the first into
Voronoi cells and the second into potential zones. Simple examples show that for
a general K they do not coincide (see for instance Example 3.14 hereafter). If they
coincide, we say that K is balanced. In such a case, the map η defines a bijection
between Voronoi cells and potential zones, that is to say,

η(x) = η(y) ⇐⇒ opt(x) = opt(y).

Clearly, a sufficient condition for K to be balanced is given by

opt(η(x)) = opt(x) for every x ∈ R
d . (3.7)

It is worth noting that in dimension d = 1 every K is balanced, and that the same
is true in any dimension for cubic lattices.
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Conserved quantities. In this paragraph we underline the presence of some con-
served quantities for local minimizers of our variational problem. They naturally
arise by testing the local minimality against variations along some specific direc-
tions. The following Lemma collects two crucial observations in order to suitably
perform such variations:

Lemma 3.7. (Local properties of the Voronoi diagram) The following facts hold:

(i) If x ∈ VH , for some H ⊆ K, then there exists a neighborhood U of x such that
opt(y) ⊆ H, for every y ∈ U.

(ii) If x ∈ VH , then x + εv ∈ VH , provided that the vector v is parallel to BH , and
ε is sufficiently small.

Proof. Point (i) follows from the fact that a point of K which is not optimal for
x is neither optimal for y, provided that y is chosen close enough to x . Point (ii)
is instead a direct consequence of the fact that VH is relatively open in the affine
space BH . ��
By using very classical variational arguments as well as Lemma 3.7 we derive the
following

Proposition 3.8. (Conservation laws) Let γ be a local minimizer of I δ
fK ,x0,xδ

. Then

(i) (Conservation of the energy). There exists a constant c ∈ R such that

|γ̇ |2 − h(|∇ f (γ )|2) = c a.e. in (0, δ).

In particular, γ is Lipschitz continuous.
(ii) (Local conservation of momentum). Let (t1, t2) ⊆ [0, δ] be a time interval.

Suppose that there exists an optimality class H ⊆ K, with VH �= ∅, such that
for every s ∈ (t1, t2) the inclusion opt(γ (s)) ⊆ H holds. Let γH be the curve
obtained by projecting γ on the affine space BH . Then γH is a C1,1 curve in
(t1, t2) and, in this interval, it satisfies

γ̈H = h′(|γ − η(γ )|2)(γH − pH ).

In particular, for each time t ∈ (0, δ), denoting H = opt(γ (t)), there exists a
neighborhood of t in which the component γ̇H of the momentum parallel to BH

is continuous.

Proof. Point (i) states that γ solves the Du Bois–Reymond equation (2.5). This
can be shown by testing the local minimality through “horizontal” variations of
the independent variable of the form γε = γ ◦ ρ−1

ε , where ρε = id+εϕ, ϕ ∈
C∞
c ((0, δ)), and ε is small enough so that ρε is a diffeomorphism. The Lipschitz

continuity of γ then follows from (3.3) via |∇ fK (x)| ≤ distK (x) and the continuity
of γ . To get point (ii), instead, we need to perform “vertical” variations of the form
γε = γ +εϕv, whereϕ ∈ C∞

c ((t1, t2)) and v is any vector parallel to the affine space
BH . We then use point (ii) of Lemma 3.7 to get η(γε) = η(γ ), for ε sufficiently
small. ��
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Point (ii) of the previous proposition implies in particular that γ is regular as long
as it stays in a single Voronoi cell. More precisely:

Corollary 3.9. (Regularity inside a Voronoi cell) Let γ be a local minimizer of
I δ
fK ,x0,xδ

. Suppose that opt(γ (s)) = H is constant in (t1, t2) and let ηH = η(VH ).

Then, in this interval, γ = γH , η(γ ) = ηH is constant, and γ is a C2 solution of

γ̈ = h′(|γ − ηH |2)(γ − pH ).

Moreover, if h is C∞, then γ ∈ C∞((t1, t2)).

As a natural consequence, any singularity for a local minimizer of the functional
I δ
fK ,x0,xδ

appears only when the optimality class “changes”. In the next paragraph
we will try to give a more precise meaning to this statement.

Shock times and minimal deviation. Given a curve γ : [0, δ] → R
d , and a time

t ∈ [0, δ], we say that

• t is a shock for γ if opt(γ ) is not constant on I for every neighborhood I of t
in [0, δ].

• t is a non-degenerate shock for γ if η(γ ) is not constant on I for every neigh-
borhood I of t in [0, δ].

• t is an effective shock for γ if there are two distinct potential zones Qη, Qη̄,
and two distinct Voronoi cells VH ⊆ Qη, VH̄ ⊆ Qη̄ such that, for some ε > 0,
one of the following holds:
– γ ((t − ε, t)) ⊂ VH and γ ([t, t + ε)) ⊂ VH̄ . In this case, H � H̄ and we
say that t is a left effective shock.

– γ ((t − ε, t]) ⊂ VH and γ ((t, t + ε)) ⊂ VH̄ . In this case, H̄ � H and we
say that t is a right effective shock.

We denote by S(γ ), NDS(γ ) and ES(γ ) respectively the sets of shocks, non-
degenerate shocks and effective shocks for γ . Notice that ES(γ ) ⊆ NDS(γ ) ⊆
S(γ ), and that S(γ ) and NDS(γ ) are compact. According to the definitions
above, during a shock there must be a change of Voronoi cell, while, during a
non-degenerate shock there is also a change of potential zone. Clearly we have
S(γ ) = NDS(γ ) provided that K is balanced. Finally, we have an effective shock
when a neat passage occurs from a Voronoi cell to an adjacent one with different
potential. By conservation of the energy, we expect the dynamics to develop a sin-
gularity in the kinetic term here. This is the content of the following proposition,
which is a direct consequence of the conservation laws stated in Proposition 3.8.

Proposition 3.10. (Minimal deviation during an effective shock) Suppose that the
potential shape h is strictly increasing. Let γ be a local minimizer of I δ

fK ,x0,xδ
.

Suppose that t ∈ (0, δ) is a left effective shock for γ , in which γ jumps from VH to
VH̄ . Let ηH = η(VH ) and ηH̄ = η(VH̄ ). Defined γ̇−(t) and γ̇+(t) respectively by

γ̇−(t) := lim
s→t−

γ̇ (s) γ̇+(t) := lim
s→t+

γ̇ (s),

then γ̇+(t) is the component of γ̇−(t) parallel to BH̄ . Moreover

|γ̇−(t)−γ̇+(t)|2=|γ̇−(t)|2−|γ̇+(t)|2=h(|γ (t) − ηH |2) − h(|γ (t) − ηH̄ |2) > 0
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Clearly an analogous result holds for right effective shocks.

Remark 3.11. The fact that γ̇+(t) is the component of γ̇−(t) parallel to BH̄ has the
following interpretation: in the dynamics, when there is a neat passage from a given
Voronoi cell to an adjacent one (hence lower-dimensional), the component of the
momentum γ̇ parallel to the second cell is continuous, while the orthogonal one has
a jump. In the specific case of a superadditive shape h, (for instance when h = id,
as in the MAGmodel), we can also derive a uniform lower bound for such a jump:

|γ̇−(t) − γ̇+(t)|2 = h(|γ (t) − ηH |2) − h(|γ (t) − ηH̄ |2) ≥ h(|ηH − ηH̄ |2) ≥ h(β),

where β was defined in (3.5).

Remark 3.12. In the MAG dynamics, shocks tipically happen when two or more
particles collide or separate, generating an instant change in the optimality class.
For instance an effective shock occurswhen two particles collide and remain sticked
together. Notice that Proposition 3.8 tells us that energy and momentum are con-
served in a collision.

To end this part, we show, through a couple of simple examples, that all of the
three types of shock times defined in this paragraph may occur for a minimizer of
I δ
fK ,x0,xδ

.

Example 3.13. (Effective and non-effective shocks) Take h = id, δ = 1, d = 1,
K = {−1, 1}, x0 = −c, x1 = c, with c ≥ 0. We see that R is partitioned into three
Voronoi cells, namely: V{−1} = (−∞, 0), V{1} = (0,+∞) and V{−1,1} = {0}. The
potential term takes the form

|∇ f (x)|2 =
⎧⎨
⎩

|x + 1|2 if x ∈ (−∞, 0),
0 if x = 0,
|x − 1|2 if x ∈ (0,+∞).

It is easily seen that a minimizer γ of I δ
fK ,x0,xδ

has to be non-decreasing, and

thus γ −1(0) = [t0, t1] is a closed interval (possibly degenerate if t0 = t1), and
S(γ ) = NDS(γ ) = {t0, t1}. Then, there are two possible qualitatively different
behaviors of γ , according to whether t0 = t1 or not. If t0 = t1, then γ has a single
non-degenerate non-effective shock time. If instead t0 �= t1, then t0 and t1 are
respectively left and right effective shocks. Now, direct computations show that the
first case occurs if for instance c = 1. On the other hand, we can prove that the
second case necessarily occurs if c is chosen sufficiently small. As a matter of fact,
for c < 1, by the monotonicity of γ , the minimum value �(−c, c) of the functional
can be bounded below as follows:

�(−c, c) ≥ (1 − t1 + t0)(1 − c)2.

At the same time, by Corollary 3.4, we have

�(−c, c) → �(0, 0) = 0, as c → 0+.

Therefore, t1 > t0, provided that we choose c small enough.
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Example 3.14. (Degenerate shocks) Take h = id, δ = 1, d = 2, K =
{(1, 0), (0, 1), (−1, 0)}, x0 = (0,−1), x1 = (0, 0). Here we notice that the two dis-
tinct Voronoi cells V{(1,0),(0,1),(−1,0)} = {(0, 0)} and V{(1,0),(−1,0)} = {0}×(−∞, 0)
share the same potential zone Qη = {0}× (−∞, 0] with η = (0, 0). We claim that
everyminimizer γ of I δ

fK ,x0,xδ
must live in Qη. As a consequence, wewould deduce

that the first time τ at which γ (τ) = (0, 0) has to be a degenerate shock for γ . To
prove the claim we test the minimality of γ against the competitor δ(t) = π(γ (t)),
where π denotes the projection on Qη. It can be easily checked via π(K ) = {η}
and the contractivity of π that, for every t ,

|∇ f (δ(t))| = |η(δ(t)) − δ(t)| = |η − δ(t)|
= |π(η(γ (t))) − π(γ (t))| ≤ |η(γ (t)) − γ (t)| = |∇ f (γ (t))|.

Moreover, again by the contractivity of γ : |δ̇| ≤ |γ̇ | a.e., with equality if and only
if γ = δ. Comparing the actions of γ and δ and imposing the minimality of γ , we
see that necessarily γ = δ, that is to say γ lives in Qη.

3.2. Regularity results

Here we state and prove our main regularity results. Recall that K = {p1, . . . , pN }
is a finite collection of points in R

d , and h : [0,+∞) → [0,+∞) is a C1 potential
shape.

Theorem 3.15. (C1,1-regularity out of a finite number of non-degenerate shock
times) Let γ be a local minimizer of I δ

fK ,x0,xδ
. Suppose that h is strictly increasing.

Then:

(i) The set N DS(γ ) of non-degenerate shock times of γ is finite. That is to say,
there is a finite number of times 0 ≤ t1 < · · · < t� ≤ δ such that η(γ ) is
constant in each connected component of [0, δ]\ {t1, . . . , t�}.

(ii) Setting t0 = 0 and t�+1 = δ, then γ is C1,1-regular in the interval [ti , ti+1] for
every i ∈ {0, . . . , �}.Moreover, if we letηi ∈ E be such that γ ((ti , ti+1)) ⊆ Qηi ,
then we can estimate

|γ̈ (r)| ≤ h′(|γ (r) − ηi |2)|γ (r) − ηi | for a.e. r ∈ (ti , ti+1).

Actually, if K is balanced and h is smooth, Theorem 3.15 can be improved to reach
piecewise smooth regularity for any local minimizer γ . In fact, since K is balanced,
the equality NDS(γ ) = S(γ ) holds and point i) of Theorem 3.15 implies that γ

has a finite number of shock times. On the other hand, Corollary 3.9 together with
the smoothness of h ensures that γ is smooth in each connected component of
[0, δ]\S(γ ), where clearly opt(γ (t)) is constant.

Corollary 3.16. (C∞-regularity out of a finite number of shock times) Let γ be a
local minimizer of I δ

fK ,x0,xδ
. Suppose that K is balanced and h is C∞ and strictly

increasing. Then:
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(i) The set S(γ ) of shock times of γ is finite. That is to say, there is a finite number
of times 0 ≤ t1 < · · · < t� ≤ δ such that the optimality class opt(γ ) is constant
in each connected component of [0, δ]\ {t1, . . . , t�}.

(ii) Setting t0 = 0 and t�+1 = δ, then γ is C∞ in the interval [ti , ti+1] for every
i ∈ {0, . . . , �}. Moreover, if ti+1 > ti , denoting by Hi the optimality class of γ
in the interval (ti , ti+1), and defining ηHi = η(VHi ), then γ solves

γ̈ = h′(|γ − ηHi |2)(γ − pHi )

in (ti , ti+1).

Remark 3.17. Corollary 3.16 offers a generalization of [2, Theorem 13], in which
smooth regularity out of a finite number of shock times was derived for solutions
of a one-dimensional version of the discrete MAG model. In their framework, h
was simply the identity, while K consisted of all the m! points of R

d obtainable
by permuting the components of a fixed vector A = (a1, . . . , ad) ∈ R

d , with
a1 < · · · < ad . Exploiting the rearrangement inequality provided by the order
structure of R, it is not difficult to show that hypothesis (3.7) holds in this case,
therefore implying that K is balanced.

The rest of the paper is devoted to the proof of Theorem 3.15, which is organized
as follows.We first prove the two Lemmas 3.18 and 3.19. As a byproduct of Lemma
3.19 we deduce that a local minimizer is C1,1-regular as long as it stays in a single
potential zone (see Corollary 3.20). From this the implication point i) �⇒ point
ii) in Theorem 3.15 easily descends. Finally, we prove point i) in the form of the
equivalent local statement given by Claim (3.14).

TwoLemmas. Thefirst Lemmahas a stronggeometric flavour, highlighting ametric
property of two given intersecting polytopes. It will be a crucial ingredient in the
proof of point i) of Theorem 3.15.

Lemma 3.18. (Reciprocal distance of intersecting polytopes) Let A, B ⊂ R
d be

two polytopes with A∩B �= ∅. Then there exists a sufficiently large constant M > 0
such that

distA∩B(x) ≤ M distB(x) for every x ∈ A.

Proof. Let P ⊂ R
d be a polytope endowed with a representation of the form (3.4),

where we assume without loss of generality that each of the affine functions Tj has
Lipschitz constant equal to 1. Let us consider the associated vector-valued function
zP : R

d → [0,+∞)� defined by

zP (x) = (
T1(x)

+, . . . , T�(x)
+)

. (3.8)

As a first step we show that there exists a constant cP > 0 such that

Tj (x)
+ ≤distP (x)≤cP |zP (x)|1 for every j ∈{1, . . . , �} and every x ∈ R

d .

(3.9)
(recall that the 1-norm of a vector z = (z1, . . . , z�) ∈ R

� is defined as |z|1 :=
|z1| + · · · + |z�|). The left inequality follows by the 1-Lipschitz assumption on
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Tj , while the right one can be obtained using a compactness argument as follows.
Suppose by contradiction that there exists a sequence of points xn ∈ R

d\P such
that

distP (xn) ≥ n|zP (xn)|1.
Up to replacing xn with

πP (xn) + xn − πP (xn)

distP (xn)
,

we can assume that distP (xn) = 1. Now, if x is any cluster point for xn , we obtain
that distP (x) = 1 and zP (x) = 0, which is clearly a contradiction. We are now in
the position to prove the Lemma. Let � ∈ N be the number of affine functions in
a representation of B of the form (3.4), with 1-Lipschitz affine functions Tj . By
exploiting the estimates in (3.9), for every x ∈ A we can bound

distA∩B(x) ≤ cA∩B |zA∩B(x)|1 ≤ �cA∩B distB(x),

where cA∩B is a positive constant. The thesis follows by choosing M = �cA∩B . ��
The second Lemma, of independent interest, concerns the regularity of local min-
imizers of action functionals restricted to curves living in a given closed convex
set. Because of boundary effects, such constrained minimizers are in general not
C2, even if the Lagrangian is smooth. Nevertheless, they must be at least C1,1,
whenever the Lagrangian is C1.

Lemma 3.19. (Regularity for a problem with a convex constraint) Let P ⊆ R
d be

a closed convex set, and let � : R
d → [0,+∞) be of class C1 in a neighborhood

of P. Given two points x0, xδ ∈ P, we consider the functional G : C([0, δ], R
d) →

[0,+∞] defined by

G(γ ) =
⎧⎨
⎩

∫ δ

0
|γ̇ |2 + �(γ ) if γ ∈ AC([0, δ], R

d ), γ (0) = x0, γ (δ) = xδ, γ ([0, δ]) ⊆ P,

+∞ otherwise.

Then every local minimizer γ of G is of class C1,1 and we can estimate

|γ̈ (r)| ≤ 1

2
|∇�(γ (r))| for a.e. r ∈ (0, δ).

Proof. We call πP the projection on P . We start by defining, for each point x ∈ P ,
the “blow up” of P at x , namely the closed convex cone Px defined by the formula

Px + x =
{

R
d if x ∈ P̊,⋂ {H half space : P ⊂ H, x ∈ ∂H} if x ∈ ∂P.

We then call Sx the projection on Px , which turns out to be positive homogeneous
and 1-Lipschitz. It is not difficult to realize that

P − x

ε

ε→0+−−−→ Px (3.10)
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in the sense of Hausdorff on every compact set. Since the inclusion (P−x)/ε ⊆ Px
always holds, in order to show the convergence (3.10), we only need to check, using
a separation argument, that, for every ε j → 0+, and every point z ∈ Px , there exists
a sequence y j ∈ (P − x)/ε j converging to z. Hence, the projection on (P − x)/ε
pointwise converges to Sx as ε → 0+. By exploiting also the homogeneity of Sx
we eventually obtain that, for every v ∈ R

d ,

πP (x + εv) = x + εSx (v) + o(ε), as ε → 0+. (3.11)

Now, let γ be a local minimizer for the functional G. Given a test function ϕ ∈
C∞
c ((0, δ); R

d), we consider the following competitors:

γε := πP (γ + εϕ), for ε > 0.

Since πP is 1-Lipschitz, we have |γ ′
ε | ≤ |γ ′ + εϕ′|. Then

G(γε) ≤ G(γ ) + 2ε
∫ δ

0
γ ′ · ϕ′ + �(γε) − �(γ )

2ε
+ ε2

∫ δ

0
|ϕ′|2.

Using the previous pointwise expansion (3.11), as well as the dominated conver-
gence Theorem, we obtain

lim sup
ε→0+

G(γε) − G(γ )

2ε
≤

∫ δ

0
γ ′ · ϕ′ + 1

2
∇�(γ ) · Sγ (ϕ). (3.12)

From the local minimality of γ , it follows immediately that the right-hand side in
(3.12) is non-negative. Finally, we can use the contractivity of the projections Sx
to get the inequality

〈γ ′′, ϕ〉 ≤
∫ δ

0

1

2
|∇�(γ )||ϕ| for every ϕ ∈ C∞

c ((0, δ); R
d),

and the thesis follows. ��
To conclude this paragraph we propose the following easy consequence of Lemma
3.19.

Corollary 3.20. (Regularity in a potential zone) Let h be a non-decreasing poten-
tial shape, and let γ be a local minimizer of I δ

fK ,x0,xδ
. Suppose that there exists an

η ∈ E such that γ ((s, t)) ⊆ Qη, where (s, t) ⊂ [0, δ]. Then γ is C1,1-regular on
[s, t] and the following estimate holds

|γ̈ (r)| ≤ h′(|γ (r) − η|2)|γ (r) − η| for a.e. r ∈ (s, t).

Proof. We clearly have the inclusion γ ([s, t]) ⊂ Pη. Then we observe that, for
every absolutely continuous curve ρ : [s, t] → Pη, due to the monotonicity of h
and inequality (3.6), the following inequality holds:∫ t

s
|ρ̇|2 + h(|∇ f |2(ρ)) ≤

∫ t

s
|ρ̇|2 + h(|η − ρ|2). (3.13)

By a comparison argument, knowing that γ is a local minimizer of the functional
on the left-hand side of (3.13), and that ρ = γ saturates the inequality, we deduce
that γ is a local minimizer for the functional on the right-hand side of (3.13), if
one restricts to curves living in the closed convex set Pη. At this point the proof is
easily concluded by invoking Lemma 3.19. ��
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Proof of the regularity result. In this paragraphwe prove ourmain regularity result,
Theorem 3.15. Point (ii) is immediately derived from point (i) via Corollary 3.20.
Thus, only point (i) remains to be proved. To do so, we can restrict to prove the
following equivalent local statement:

Claim : for each time t ∈ (0, δ],
there exists ε > 0 such that η(γ ) is constant in (t − ε, t). (3.14)

In fact, from Claim (3.14) and the analogous one for right intervals (obtainable by
exploiting the autonomicity of the functional), it clearly descends that NDS(γ )

is discrete. Then, by compactness, we derive that NDS(γ ) is finite. The proof of
Claim (3.14) will be elementary accomplished by a quite intricated series of “cut
and paste” constructions of competitors. Let us first outline the general heuristic
idea before entering in the details of the rigorous proof in the forthcoming pages.
We will divide the proof in a few steps:
Step 1. Suppose by contradiction that t is a cluster point for the “jumps” in the
potential. Then, approaching t from the left, γ would infinitely often visit high and
low potential zones. If only one low potential zone were visited asymptotically,
then it would be convenient to stay in it definitely. Therefore we can assume that
γ infinitely often visits at least two different low potential zones, approaching t
from the left. Moreover, in alternating between different low potential zones, γ

necessarily spends a non-negligible amount of time in high potential ones.
Step 2. Approaching t from the left, the percentage of time spent by γ in high
potential zones tends to zero, thus enforcing at least two different low potential
zones to be very near to each other in order to make it possible for the Lipschitz
curve γ to jump from one to the other in a short time.
Step 3. By Lemma 3.18 we will be eventually allowed to slightly deviate γ to reach
an even lower potential zone (the interface between the two), hence contradicting
the local optimality of γ and reaching the desired absurdum.

Proof of Claim (3.14). Throughout the proof, γ will be a fixed local minimizer of
I δ
fK ,x0,xδ

and L the Lipschitz constant of γ . Moreover, for the sake of simplicity, we

indicate I δ
fK ,x0,xδ

as F . As a preliminary observation, notice that we can choose an
R > 0 large enough such that γ ([0, δ]) ⊂ BR , and then, by point (v) in Proposition
3.6, we can find an α > 0 small enough such that

|η̄ − x | ≥ |η − x | + α for every x ∈ B2R ∩ Qη ∩ Pη̄ and every distinct η, η̄ ∈ E .

(3.15)
By translation invariance, we can assume without loss of generality that γ (t) =
0, thus simplifying some further computations. Then we consider the asymptotic
lowest potential threshold

a := lim inf
s→t−

|η(γ (s))|.

We call Ẽ the subset of E indexing the potential zones that are visited infinitely
often before t . Namely,

Ẽ :=
{
η ∈ E : γ −1(Qη) ∩ (0, t) accumulates in t

}
.
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Notice that the thesis is equivalent to #Ẽ = 1. The set Ẽ can be partitioned into two
subsets Ẽ1 and Ẽ2 defined by

Ẽ1 :=
{
η ∈ Ẽ : |η| = a

}
,

Ẽ2 :=
{
η ∈ Ẽ : |η| > a

}
.

The set Ẽ1, which is clearly non-empty by the definition of a, corresponds to those
potential zones which are infinitely often visited by γ before t and that share the
asymptotic lowest potential threshold a. We expect the curve γ to spend most of
the time there.

We make the following technical choices of constants in order to simplify later
arguments.We fix r, μ, ε > 0 small enough so that these requirements are satisfied:

R1) For every x ∈ Br we have opt(x) ⊆ opt(0).
R2) γ ((t − ε, t)) ⊂ Br .
R3) For every x ∈ Br , and for every η ∈ E , we have |η|−μ < |x −η| < |η|+μ.
R4) 3μ ≤ α.
R5) For every choice of η, η̄ ∈ E , exactly one of the following holds:

|η| = |η̄|, min {|η|, |η̄|} ≤ max {|η|, |η̄|} − 3μ.

R6) (t − ε, t) ⊆ ⋃
η∈Ẽ

γ −1(Qη).

Notice that thanks to R1), for every x ∈ Br the segment [x, 0) will be entirely
contained in the Voronoi cell Vopt(x), while R2) assures us that the curve belongs to
this good area. Conditions R3), R4) and R5) will be useful to effectively distinguish
between different potential zones. Finally, condition R6) implies that the potential
zones touched by γ in the interval (t−ε, t) are exactly those touched asymptotically.
Thus, in particular, we have

a = min
s∈(t−ε,t)

|η(γ (s))|.

By condition R6), the interval (t − ε, t) can be partitioned into the following two
sets:

C1 := (t − ε, t) ∩
⋃
η∈Ẽ1

γ −1(Qη),

C2 := (t − ε, t) ∩
⋃
η∈Ẽ2

γ −1(Qη).

Weobserve thatC1 is closed in (t−ε, t). In fact, if s j ∈ C1 and s j → s∞ ∈ (t−ε, t),
then by lower semicontinuity of the modulus of the extended gradient, we have
|η(γ (s∞))| ≤ a+μ, whence |η(γ (s∞))| ≤ a+2μ, which implies |η(γ (s∞))| = a,
that is s∞ ∈ C1. ThenC2 is open and can bewritten as a finite or countable (possibly
empty) union of open intervals.
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Remember that the thesis is equivalent to #Ẽ = 1. We now assume that #Ẽ ≥ 2
and try to find a contradiction.
Step 1. (Reduction to the case in which #Ẽ2 ≥ 1 and #Ẽ1 ≥ 2).
Wefirst show that #Ẽ2 ≥ 1. If thiswere not the case, thenwewould have |η(γ (s))| =
a for every s ∈ (t − ε, t) and #Ẽ1 ≥ 2. Then we could find two distinct η, η̄ both
belonging to Ẽ1 and a time s ∈ (t − ε, t) such that x := γ (s) ∈ Qη ∩ Pη̄. Now, by
(3.15), this would imply that

|x − η| ≤ |x − η̄| − α,

and we reach a contradiction through the following chain of inequalities:

a = |η| ≤ |x − η| + μ ≤ |x − η̄| − α + μ

≤ |η̄| + 2μ − α = a + 2μ − α ≤ a − μ < a.

We now show that #Ẽ1 ≥ 2. Suppose by contradiction that Ẽ1 = {η}. Then we can
build a better competitor γ̃ by performing arbitrarily small perturbations of γ in
the following way. We choose s ∈ (t − ε, t) as close to t as we want, such that
γ (s) ∈ Qη. Then we modify γ only in the interval [s, t], by replacing it with its
projection on the closed convex set Pη. Namely, denoting by πη the projection on
Pη, we define

γ̃ (u) =
{

γ (u) for u < s or u > t,
πη(γ (u)) for u ∈ [s, t].

Now, we clearly have | ˙̃γ | ≤ |γ̇ |, by the 1-Lipschitz property of πη. On the other
hand, for what concerns the potential, in the interval [s, t] it holds

|∇ f (γ (u))| = |∇ f (γ̃ (u))| if u ∈ C1,

|∇ f (γ (u))| > |∇ f (γ̃ (u))| if u ∈ C2.

The second expression easily follows from the fact that if s ∈ C2, then |η(γ (s))| ≥
a + 3μ. From these estimates, the strict monotonicity of the potential shape h, and
the local minimality of γ , we obtain that C2 ∩ (s, t) must be negligible for the
one-dimensional Lebesgue measure. But this contradicts the fact that C2 ∩ (s, t) is
open and accumulates in t . Thus Step 1 is completed.

To make the point, after Step 1 the situation is the following. There must exist

• Two elements η, η̄ ∈ Ẽ1, with η �= η̄;
• Two distinct Voronoi cells VH and VH̄ , with VH ⊆ Qη and VH̄ ⊆ Qη̄;
• A sequence of open intervals (s�, r�) ⊂ (t − ε, t) accumulating in t and such
that, for every �, the following conditions hold:
– r� < s�+1;
– γ (s�) ∈ VH ;
– γ (r�) ∈ VH̄ ;
– (s�, r�) ⊂ C2.
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Step 2. (We have (r� − s�) = O((t − s�)2)).
This will be handled once again by comparison with a suitably chosen competitor.
We define, for every �, the competitor γ�, obtained by modifying γ only in the
interval [s�, t], where γ is replaced with its projection on the segment [γ (s�), 0].
That is to say, calling π� the projection on [γ (s�), 0], we set

γ�(u) =
{

γ (u) for u < s� or u > t,
π�(γ (u)) for u ∈ [s�, t].

Then |γ̇�| ≤ |γ̇ | as before. Regarding the potential part, we have the following
estimates, for u ∈ (s�, t):

|∇ f (γ (u))|2 ≥ |η(γ (u))|2 − 2|η(γ (u))||γ (u)| − |γ (u)|2
≥ |η(γ (u))|2 − L(2S + r)(t − u),

|∇ f (γ�(u))|2 ≤ |η(γ�(u))|2 + 2|η(γ�(u))||γ�(u)| + |γ�(u)|2
≤ |η(γ�(u))|2 + L(2S + r)(t − u),

where we set S := max{|η| : η ∈ Ẽ}. We now show that |η(γ�(u))| ≤ a for every
u ∈ (s�, t). By the definition of γ� it is enough to show that |η(x)| ≤ a for every
x ∈ [γ (s�), 0]. Remember that, by condition R1), opt(γ (s�)) ⊆ opt(0) so that
0 ∈ VH ⊆ Pη. In particular, [γ (s�), 0) ⊆ VH , hence η(x) = η and |η(x)| = a for
every x ∈ [γ (s�), 0). Moreover, since 0 ∈ Pη, |η(0)| ≤ |η| = a. This justifies the
following estimates:

|η(γ (u))|2 ≥ a2 ≥ |η(γ�(u))|2 for u ∈ (s�, t),

|η(γ (u))|2 ≥ a2 + 9μ2 ≥ |η(γ�(u))|2 + 9μ2 for u ∈ (s�, r�).

After renaming the constant c0 := L(2S + r), we obtain, for sufficiently large �:

0 ≥ F(γ ) − F(γ�)

≥
∫ r�

s�

{
h(a2 + 9μ2 − c0(t − u)) − h(a2 + c0(t − u))

}

+
∫ t

r�

{
h(a2 − c0(t − u)) − h(a2 + c0(t − u))

}

≥ c1(r� − s�) − c2(t − s�)
2.

Here c1 := h(a2+8μ2)−h(a2+μ2) > 0 and � is large enough so that c0(t−s�) ≤
μ2. The constant c2 is instead defined as

c2 := c0 Lip
(
h; [a2 − μ2, a2 + μ2]

)

By defining c3 := c2/c1, we eventually get

(r� − s�) ≤ c3(t − s�)
2 for � large enough.

Step 3. (A slight deviation of γ through VH ∩ VH̄ reduces the action, thus contra-
dicting its local minimality).
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Notice that VH and VH̄ are two polyhedra whose intersection contains 0. Possibly
replacing them with their intersection with a large d-dimensional cube, we can
assume that they are polytopes. Then we can apply Lemma 3.18 to deduce the
existence of a constant M > 0 and a sequence of points x� ∈ VH ∩ VH̄ such that

|x� − γ (s�)| ≤ M |γ (r�) − γ (s�)| ≤ MLc3(t − s�)
2 = c4(t − s�)

2.

We call ε� := c4(t − s�) and assume that � is large enough so that ε� ∈ (0, 1). We
crucially consider the following competitor:

δ�(u) =

⎧⎪⎨
⎪⎩

γ (u) for u < s� or u > t,
γ (s�) + x�−γ (s�)

ε�(t−s�)
(u − s�) for u ∈ [s�, s� + ε�(t − s�)),

x� + −x�

(1−ε�)(t−s�)
(u − s� − ε�(t − s�)) for u ∈ [s� + ε�(t − s�), t].

Notice that in the interval [s�, t], the curve δ� is simply a piecewise linear modifi-
cation of γ , going from γ (s�) to x� in time ε�(t − s�), and then from x� to 0 in the
remaining time.Wewill see that δ� has strictly less action than γ for � large enough,
thus reaching the desired contradiction. We first want to be sure that VH ∩ VH̄ is a
very low potential zone, so that we can lower the action of γ by a slight deviation
through it. This can be seen as follows. For sure η and η̄ both belong to ∂g(x�),
thus also η+η̄

2 ∈ ∂g(x�). But then

|η(x�)| ≤ |η(x�) − x�| + |x�| ≤
∣∣∣∣η + η̄

2
− x�

∣∣∣∣ + |x�| ≤
∣∣∣∣η + η̄

2

∣∣∣∣ + 2|x�|

=
(
a2 −

∣∣∣∣η − η̄

2

∣∣∣∣
2
) 1

2

+ 2|x�|,

where we used in the very last equality that |η| = |η̄| = a. Therefore, for � large
enough, we can assume that x� ∈ Br , and |η(x�)| < a. The last one in particular
implies that

|η(x)| ≤ a − 3μ for every x ∈ [x�, 0] and � large enough.

We can also estimate

|x�|2 ≤ (|γ (s�)| + |x� − γ (s�)|)2 ≤ |γ (s�)|2 + 2Lε�(t − s�)
2 + ε2� (t − s�)

2.

Let us then compare the action of δ� with the one of γ . We start from the kinetic
part:

|δ̇�(u)|2 =
( |x� − γ (s�)|

ε�(t − s�)

)2

≤ 1 for u ∈ [s�, s� + ε�(t − s�)),

|δ̇�(u)|2 =
( |x�|

(1 − ε�)(t − s�)

)2

≤ |γ (s�)|2
(1 − ε�)2(t − s�)2

+ 2Lε�

(1 − ε�)2
+ ε2�

(1 − ε�)2
for u ∈ [s� + ε�(t − s�), t).
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Whence, integrating:

∫ t

s�
|γ̇ |2 ≥ |γ (s�)|2

t − s�
,

∫ t

s�
|δ̇�|2 ≤ ε�(t − s�) + |γ (s�)|2

(1 − ε�)(t − s�)
+ 2Lε�(t − s�)

(1 − ε�)
+ ε2� (t − s�)

(1 − ε�)

= |γ (s�)|2
(1 − ε�)(t − sl)

+ O(ε2� ).

On the other hand, for the potential part, computations very similar to the ones of
Step 2 give

|∇ f (γ (u))|2 ≥ a2 − c0(t − u) for u ∈ [s�, t),
|∇ f (δ�(u))|2 ≤ a2 + c0(t − u) for u ∈ [s�, s� + ε�(t − s�)),

|∇ f (δ�(u))|2 ≤ a2 − 9μ2 + c0(t − u) for u ∈ [s� + ε�(t − s�), t).

Integration yields

∫ t

s�
h(|∇ f (γ )|2) ≥ h(a2)(t − s�) − c5(t − s�)

2,

∫ t

s�
h(|∇ f (δ�)|2) ≤ h(a2)(t − s�) + c5(t − s�)

2 − c6(1 − ε�)(t − s�).

Here � is chosen large enough so that c0(t − s�) ≤ μ2. Moreover, we set

c5 := c0
2
Lip

(
h; [a2 − μ, a2 + μ]

)
, c6 := h(a2) − h(a2 − 8μ2) > 0.

Finally, collecting all the estimates together, we obtain

F(γ ) − F(δ�) ≥ |γ (s�)|2
t − s�

( −ε�

(1 − ε�)

)
+ c6(1 − ε�)(t − s�) + O(ε2� )

≥
(

− L2

c4(1 − ε�)
ε� + c6

c4
(1 − ε�) + O(ε�)

)
ε�.

Now the contradiction comes from the fact that the right term is strictly positive for
� large enough. This concludes the proof.
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