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Abstract. On the free loop space of compact symmetric spaces Ziller introduced explicit
cycles generating the homology of the free loop space. We use these explicit cycles to
compute the string topology coproduct on complex and quaternionic projective space. The
behavior of the Goresky-Hingston product for these spaces then follows directly.
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1. Introduction

The central idea in Morse theory is to study the interaction between the critical sets
of a function on a differentiable manifold and the topology of this manifold. While
it is usually easy to understand the local homology around a critical level, it is a
hard question to determine if and how all of the homology of the manifold can be
understood by the individual homologies of the critical sets. In [18] Ziller defines
cycles on the free loop space of a compact globally symmetric space which can be
used to show that the relative cycles from level homology can be completed in the
free loop space. This idea goes back to Bott’s K -cycles, see [3] and [4] as well as
Bott’s and Samelson’s work in [6]. Hingston and Oancea use explicit cycles in the
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path space of complex projective space to compute a Pontryagin-Chas-Sullivan type
product in [8]. There they use the name completing manifold for this construction
of completing relative cycles. We shall use this terminology here as well. The goal
of this article is to use Ziller’s completing manifolds to compute the string topology
coproduct for complex and quaternionic projective space.

The string topology coproduct was introduced by Goresky and Hingston in [7].
It was furthermore studied by Hingston and Wahl in [9] where the authors give
a definition which is equivalent to the one in [7] and which we shall use in this
article. If M is a closed oriented Riemannian manifold of dimension N , the string
topology coproduct is a map

∨: Hi (�M, M) → Hi+1−N (�M × �M,�M × M ∪ M × �M)

where�M is the free loop space ofM andM is considered as a subspace of�M via
the identification of a point with the trivial loop at this point. The string topology
coproduct has been computed for odd-dimensional spheres in [9]. Furthermore,
there are partial computations of the string topology coproduct on Lens spaces,
see [14] and [15]. In particular in [15] Naef, Rivera and Wahl show that the string
topology coproduct is not a homotopy invariant in general. However, as Hingston
and Wahl show in [10] if one only considers homotopy invariances with certain
additional conditions then the string topology coproduct is invariant under these
maps.

The author of this article used Bott’s K -cycles - which can be understood as
completing manifolds - to show that the string topology coproduct is trivial for
compact simply connected Lie groups of rank r ≥ 2, see [17]. In this present
article we use completing manifolds to compute the string topology coproduct on
M = CPn and M = HPn . We are going to explicitly describe a family of closed
manifolds �k and embeddings fk : �k → �M , k ∈ N such that there is a family
of homology classes

Ai
k = ( fk)∗[αi

k] ∈ H•(�M, M;Q) and Bi
k = ( fk)∗[β i

k] ∈ H•(�M, M;Q),

k ∈ N, i ∈ {0, . . . , n−1}which generate all of the homology of the pair (�M, M)

with rational coefficients. Here [αi
k] and [β i

k] are classes in the homology of �k .
We will then show that the string topology coproduct behaves as follows.

Theorem. (Theorem 7.5) Let K be either C or H. The string topology coproduct
on M = KPn satisfies

∨Ai
k =

k−1∑

m=1

i∑

j=0

A j
m × Ai− j

k−m

and

∨Bi
k =

k−1∑

m=1

i∑

j=0

(B j
m × Ai− j

k−m − A j
m × Bi− j

k−m).



The string topology coproduct on complex...

We use this result to compute the Goresky-Hingston product on the manifoldsCPn

and HPn , see Theorem 8.1.
This article is organized as follows. In Sect. 2 we introduce the notion of com-

pleting manifolds and discuss their relevance in Morse theory. The string topology
coproduct is defined in Sect. 3. We study the critical manifolds of the length func-
tional in the free loop space and in the figure eight space in Sect. 4. The complet-
ing manifolds are introduced in Sect. 5 and in Sect. 6 we discuss their cohomol-
ogy ring. The computation of the string topology coproduct is then carried out in
Sect. 7. Finally, in Sect. 8 we use the results of the previous sections to compute the
Goresky-Hingston product on CPn and HPn .

The proof of a central Lemma of Sect. 7 is to be found in Appendix A and in
Appendix B we discuss a relative version of the standard cap product which is used
in the definition of the string topology coproduct.

2. Completing manifolds and Morse theory

We start by introducing the notion of a completing manifold following the exposi-
tions in [8] and [16].

Let X be a Hilbert manifold and let f : X → R be a smooth function on X
satisfying the Palais-Smale condition (C). Let a be a critical value of f and assume
that the set of critical points B at level a is a non-degenerate finite-dimensional
critical submanifold of finite index k with orientable negative bundle. Then the
behavior of the level homology H•(X≤a, X<a) is well known. It holds that

H•(X≤a, X<a) ∼= H•−k(B)

where coefficients can be taken in an arbitrary commutative ring R. In applications
the homology of these critical submanifolds may be much easier to understand than
the homology of X . Therefore, one would like to find conditions which imply that
all of the homology of X is built up by these level homologies.

Definition 2.1. ([16], Definition 6.1) Let X be a Hilbert manifold and let f be a
smooth real-valued function on X satisfying condition (C). Let a be a critical value
of f and assume that B is a non-degenerate connected critical submanifold at level
a of index k and of dimension l = dim(B). Assume that k and l are both finite. A
completing manifold for B is a closed, orientable manifold � of dimension k + l
with an embedding ϕ : � → X≤a such that the following holds. There is an l-
dimensional submanifold L such that ϕ|L maps L homeomorphically onto B and
there is a retraction map p : � → L . Furthermore, the embedding ϕ induces a map
of pairs

ϕ : (�, � \ L) → (X≤a, X<a).

Remark 2.2. (1) This definition of a completing manifold is actually the one of a
strong completing manifold in [16]. Since all cases that we consider in this
article satisfy the assumption of this stronger version we limit our attention to
this situation.
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(2) Note that the above definition can be used for cases where the critical set at
level a consists of several connected critical submanifolds. We can then set up
a completing manifold for each connected component. We will see this in the
case of the figure-eight space in Sect. 4.

Recall that if f : M → N is a map between oriented manifolds then the Gysin
map

f! : H j (N ) → H j+dim(M)−dim(N )(M)

is given by

f! : H j (N )
(PDN )−1

−−−−−→ Hdim(N )− j (N )
f ∗

−→ Hdim(N )− j (M)
PDM−−−→ Hdim(M)−(dim(N )− j)(M).

Here PDB stands Poincaré duality on themanifold B. TheGysinmap p! : Hi (L) →
Hi+k(�) is clearly a right inverse to the Gysin map s! : Hi (�) → Hi−k(L) where
s : L ↪→ � is the embedding of L into � given by the data of the completing
manifold. Up to sign, the Gysin map s! is equal to the composition

Hi (�) → Hi (�, � \ L)
∼=−→ Hi−k(L)

where the first map is induced by the inclusion of pairs and the second is the
Thom isomorphism, see [5, Theorem VI.11.3]. This shows that the map H•(�) →
H•(�, �\L) is surjective. See also [8, Remark 7]. In particular this observation
leads to the following result.

Proposition 2.3. ( [16], Lemma 6.2) Let X be a Hilbert manifold, f a smooth real-
valued function on X satisfying condition (C) and a be a critical value of f . Assume
that the set of critical points at level a is a non-degenerate critical submanifold B
of index k. If there is a completing manifold for B then

H•(X≤a) ∼= H•(X<a) ⊕ H•(X≤a, X<a) ∼= H•(X<a) ⊕ H•−k(B).

If the homology of the sublevel set X≤a is isomorphic to the direct sum

H•(X≤a) ∼= H•(X<a) ⊕ H•(X≤a, X<a) (2.1)

for all critical values a, we say that the function f is a perfect Morse-Bott func-
tion. This property clearly holds if all the connecting morphisms in the long exact
sequenceof the pair (X≤a, X<a)vanish. If every critical submanifold has a complet-
ing manifold, it follows that the function f is perfect. Using completing manifolds
Ziller shows in [18] that the energy function on the free loop space of a compact
symmetric space is a perfect Morse-Bott function. Note that he usesZ2-coefficients
in general, since there are issueswith orientability for some spaces.Wewill describe
these completing manifolds for M = CPn and M = HPn in detail in Sect. 4.

There is also an obvious generalization of the above Proposition if we are in the
situation of the critical set decomposing into several connected components and
each one admitting a completing manifold.
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3. The string topology coproduct

In this section we introduce the string topology coproduct. We closely follow the
definition of the coproduct given in [9]. LetM be an oriented closed N -dimensional
Riemannian manifold. We denote the unit interval by I = [0, 1]. Let

PM = {
γ : I → M | γ absolutely continuous,

∫ 1

0
|γ̇ (t)|2 dt < ∞}

be the set of absolutely continuous curves in M such that their derivative is square
integrable. See [12, Definition 2.3.1] for the definition of absolutely continuous
curves in a manifold. We define the free loop space of M to be

�M = {γ ∈ PM | γ (0) = γ (1)}
and this is in fact a submanifold of PM . The manifold M itself can be embedded
into �M via the trivial loops, see [11, Proposition 1.4.6]. On the path space PM
we consider the length functional

L : PM → [0,∞), L(γ ) =
√∫ 1

0
|γ̇ (t)|2dt (3.1)

which is a continuous function on PM , see [12, Theorem 2.3.20]. Moreover, it is
smooth on PM\M . If we restrict L to the free loop space �M it turns out that the
non-trivial critical points of L are precisely the closed geodesics in M .

We now fix a commutative ring R and consider homology and cohomology
with coefficients in R. Fix an ε > 0 smaller than the injectivity radius of M . Then
the diagonal 
M ⊆ M × M has a tubular neighborhood given by

UM = {(p, q) ∈ M × M | d(p, q) < ε}.
Here, d is the distance function on M induced by the Riemannian metric. For an
ε0 > 0 such that ε0 < ε we set

UM,≥ε0 = {(p, q) ∈ UM | d(p, q) ≥ ε0}.
AsHingston andWahl argue, see [9, Section 1.3], the Thom class inHN (T M, T M\
M) induces a Thom class τM ∈ HN (UM ,UM,≥ε0). On the free loop space we
consider the space

F� = {(γ, s) ∈ �M × I | γ (s) = γ (0)}.
We set

U� = {(γ, s) ∈ �M × I | d(γ (0), γ (s)) < ε} and

U�,≥ε0 = {(γ, s) ∈ U� | d(γ (0), γ (s)) ≥ ε0}.
The set U� is an open neighborhood of F�. Define the evaluation map ev� :
� × I → M × M by

ev�(γ, s) = (γ (0), γ (s)).
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This yields a map of pairs

ev� : (U�,U�,≥ε0) → (UM ,UM,≥ε0).

We define the class

τ� = ev∗
�τM ∈ HN (U�,U�,≥ε0).

Furthermore, there is a retraction map

RGH : U� → F�.

We refer to [9, Section 1.5] for its precise definition. Finally, consider the cutting
map

cut : F� → �M × �M

which maps a point (γ, s) ∈ � × I with γ (0) = γ (s) to the pair of loops
(γ |[0,s], γ |[s,1]) and reparametrizes both loops such that they are again defined
on the unit interval I . Note that the cutting map actually factors through maps

F�
c̃ut−→ �M ×M �M ↪→ �M × �M

where �M ×M �M is the figure-eight space

�M ×M �M = {(γ, σ ) ∈ �M × �M | γ (0) = σ(0)}.
With this preparation we can now define the string topology coproduct. Let

[I ] be the positively oriented generator of H1(I, ∂ I ) with respect to the standard
orientation of the unit interval. In order to shorten notation we shall also write �

for the free loop space �M .

Definition 3.1. The string topology coproduct is defined as the map

∨ : H•(�, M)
×[I ]−−→ H•+1(� × I,� × ∂ I ∪ M × I )
τ�∩−−→ H•+1−N (U�,� × ∂ I ∪ M × I )

(RGH )∗−−−−→ H•+1−N (F�,� × ∂ I ∪ M × I )
(cut)∗−−−→ H•+1−N (� × �,� × M ∪ M × �).

Remark 3.2. Let M be a closed oriented manifold.

(1) Note that the cap product with the class τ� is a particular relative cap product.
This relative cap product is defined in Appendix B where we also study some
basic properties. See also [9, Appendix A].

(2) Hingston andWahl define an algebraic loop coproduct, see [9, Definition 1.6],
which is a sign-corrected version of the string topology coproduct. Since we
will later only consider even-dimensional manifolds, this sign correction does
not matter.
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Ifweusefield coefficients, then the string topology coproduct induces a dual product
in cohomology which is known as the Goresky-Hingston product.

Definition 3.3. Let F be a field and assume that the homology of �M is of finite
type. Let α ∈ Hi (�, M;F) and β ∈ H j (�, M;F) be relative cohomology classes,
then the Goresky-Hingston product α ©∗ β is defined to be the unique cohomology
class in Hi+ j+N−1(�, M;F) such that

〈α ©∗ β, X〉 = 〈α × β,∨X〉 for all X ∈ H•(�M, M;F).

Remark 3.4. Let M be a closed oriented manifold.

(1) The Goresky-Hingston product can also be defined intrinsically, see [7]. How-
ever, in this article we shall study properties of this product only via the duality
with the string topology coproduct.

(2) As for the string topology coproduct, Hingston and Wahl define a sign-
correctedversionof theGoresky-Hingstonproduct in [9]. For even-dimensional
manifolds, the above product and its sign-corrected version agree. Hence, in
this article the distinction will not matter.

Remark 3.5. Since the next four sections will deal with the technical details of the
computation of the coproduct we want to sum up the strategy for computing the
string topology coproduct on M = CPn or M = HPn at this point.

• In Sect. 4 we will study the critical manifolds �k , k ∈ N in �M of the length
functional L : �M → R.

• In Sect. 5 we construct the completing manifolds �k .
• Weshall see that themanifold�k , k ∈ N can also serve as a completingmanifold
for critical submanifolds in the figure-eight space �M ×M �M .

• We determine the cohomology ring of �k in Sect. 6. We can then explic-
itly compute the Gysin map and obtain a set of generators for the homology
H•(�M, M).

• In Sect. 7 we will then replicate all the steps in the definition of the coproduct
on the manifold �k .

• We will pull back the class τ� to a class which can be described in terms of the
cohomology of �k and compute the cap product with this class.

• Then one sees that under the cutting map c̃ut : F� → �M ×M �M we get
homology classes whichwe can identify with classes coming from themanifold
�k seen as a completing manifold in the figure-eight space �M ×M �M .

4. Critical manifolds in the free loop space of projective spaces

In this section we describe the completing manifolds on the loop space ofCPn and
HPn in detail. We will first study the critical manifolds of �M and �M ×M �M
with respect to the length functional L. Then we define the completing manifolds
�k , k ∈ N and show that �k can serve as a completing manifold both in �M as
well as in �M ×M �M . Finally, we describe the cohomology ring of �k in detail
and give a set of explicit generators of H•(�M, M).
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From now on let K = C or K = H. In case K = C we set

N = 2n, and λ = 1

and in case K = H we set

N = 4n, and λ = 3.

We consider the free loop space of M = KPn where we consider M as a sym-
metric space. The symmetric Riemannian metric on M induces a length functional
L : �M → R, see Eq. (3.1) and it is well-known that this is a Morse-Bott function
on �M . Moreover, the index and the nullity of all critical manifolds are finite, see
[18]. There is a groupG with a closed subgroup K such thatM = G/K and (G, K )

is a Riemannian symmetric pair. In particular the action of G is a transitive action
by isometries and K is the isotropy group of a fixed basepoint p0 ∈ M . The group
K then acts on M by isometries as well and fixes the basepoint. It is well-known
that all geodesics on M are closed and of the same prime length l. Consequently,
the critical values of the length functional are positive multiples of l. If k ∈ N then
the critical set at level a = kl is diffeomorphic to the unit tangent bundle SM , i.e.

�a ∼=−→ SM, γ �→ γ̇ (0)

|γ̇ (0)|
is a diffemorphism.Moreover, Ziller argues in [18] that the groupG acts transitively
on �a and this action equals the canonical action of G on the unit tangent bundle.
Let γ ∈ �a be a closed geodesic at level a = kl with γ (0) = p0. Then there is an
underlying prime geodesic σ ∈ �l such that γ = σ k . Denote the isotropy group
of γ with respect to the action of G on �a by Kγ . In particular, this is a closed
subgroup of K . Then we have

SM ∼= �a ∼= G/Kγ .

Furthermore, there is an induced action of the group K on �a and the orbit of γ is

K .γ ∼= K/Kγ
∼= S

N−1, (4.1)

which is the fiber of SM over p0. In the following we will always write �k for the
critical submanifold at level kl instead of �kl . The index of �k is

ind(�k) = kλ + (k − 1)(N − 1)

see [7, p. 167] and the nullity is equal to the dimension of �k , i.e.

null(�k) = 2N − 1.

On the figure-eight space �M ×M �M we consider the length function

L2 : �M ×M �M → [0,∞), L2(η1, η2) = L(η1) + L(η2)

for (η1, η2) ∈ �M ×M �M . The critical manifolds in �M ×M �M are the sets
of the form

�m ×M �k−m = �m × �k−m ∩ �M ×M �M, k,m ∈ N0, k ≥ m
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and the critical values are again multiples of l. Here the fiber product is taken with
respect to the evaluation map at time t = 0, i.e.

�m ×M �k−m = {(γ1, γ2) ∈ �m × �k−m | γ1(0) = γ2(0)}.
At level kl the critical set is

M ×M �k � �1 ×M �k−1 � . . . � �k−1 ×M �1 � �k ×M M.

Note that by the relative construction of the coproduct the components M ×M �k

and �k ×M M will not show up in the course of the proof so we will not deal with
them. See also Remark 7.6.

Lemma 4.1. The length function L2 : �M ×M �M → [0,∞) satisfies the Palais-
Smale condition and is a Morse-Bott function. Moreover, we have

ind�×M�(η1, η2) = ind�(η1) + ind�(η2)

and

null�×M�(η1, η2) = null�(η1) + null(η2) − N

for a critical point (η1, η2) ∈ �M ×M �M of the function L2.

Proof. The function

L′ : � × � → [0,∞), (γ1, γ2) �→ L(γ1) + L(γ2)

clearly satisfies the Palais-Smale condition. Since �M ×M �M is a closed sub-
manifold of � × � and since L2 is the restriction of L̃ it therefore follows that L2
also satisfies the Palais-Smale condition.

In order to show thatL2 is aMorse-Bott function, we need to show the following
property. Let (η1, η2) ∈ �M ×M �M be a critical point of L2 and assume that
it belong to the critical submanifold of the form �a ×M �b where �a and �b

are critical submanifolds in �M with respect to the Morse-Bott function L. We
need to show that the null space T 0

(η1,η2)
�M ×M �M is equal to the tangent space

T(η1,η2)�
a ×M �b ⊆ Tη1,η2�M ×M �M . It is clear that we have

T(η1,η2)�
a ×M �b ⊆ T 0

η1,η2
�M ×M �M.

Arguing as in [12, Section 2.5] one can see that T 0
(η1,η2)

�M ×M �M can be char-
acterized as

T 0
(η1,η2)

� ×M � = {(ξ1, ξ2) ∈ Tη1� ⊕ Tη2� | ξ1(0)
= ξ2(0), ξ1, ξ2 periodic Jacobi fields}.

Ziller shows in [18, Section 2] that all periodic Jacobi fields along closed geodesics
in a compact symmetric space are restrictions of Killing vector fields. Let ξ1, ξ2
be periodic Jacobi fields along η1 and η2, respectively. We assume without loss
of generality that η1(0) = η2(0) = p0 is the basepoint. If ξ1(0) = ξ2(0) = 0
then both Jacobi fields are restrictions of Killing fields on M which are induced
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by the action of the group K . Since the action of K × K on M × M clearly
preserves the diagonal 
M it is clear that (ξ1, ξ2) ∈ T(η1,η2)�

a ×M �b. If we
have ξ1(0) = ξ2(0) �= 0 then let us assume that ∇ξ1(0) = ∇ξ2(0) = 0. In this
case one sees as in [18, page 8] that both Jacobi fields are restrictions of the same
Killing field, since the Killing field are determined by the element ξ1(0) in this
case. Hence these Jacobi fields can be understood as restrictions of a Killing field
of the diagonal group action G × M × M → M × M . Therefore in this case we
also see that (ξ1, ξ2) ∈ T(η1,η2)�

a ×M �b. Since the Jacobi fields of the above two
types form a basis of T 0

(η1,η2)
� ×M � this shows the inclusion

T 0
(η1,η2)

� ×M � ⊆ T(η1,η2)�
a ×M �b.

Consequently,L2 is aMorse-Bott function and the claim for the nullity then follows
directly from the dimensions of the critical submanifolds. Finally, for the indices,
note that the index of a closed geodesic in a compact symmetric space is the same
whether we consider it as a critical point in the based loop space or in the free loop
space. Therefore, we get

ind(η1) + ind(η2) = ind�×�((η1, η2))

≤ ind�×M�((η1, η2))

≤ ind�×�((η1, η2))

≤ ind(η1) + ind(η2)

and thus we see that the inequalities are all equalities. This completes the proof. ��
For i, j ≥ 1 such that i + j = k we have

�i ×M � j ∼= SM ×M SM = {(u, v) ∈ SM × SM | pr(u) = pr(v)}
where pr : SM → M is the canonical projection of the unit sphere bundle of M .
Moreover, the projection onto the first factor makes SM ×M SM into a sphere
bundle over SM which admits a global section

SM → SM ×M SM, u �→ (u, u), u ∈ SM.

Since later on we shall use the cohomology ring of SM ×M SM , we prove the
following Lemma.

Lemma 4.2. The rational cohomology ring of SM ×M SM is isomorphic to

H•(SM ×M SM) ∼= Q[α, β, ξ ]
(αn, β2, ξ2)

where deg(α) = λ + 1, deg(β) = N + λ and deg(ξ) = N − 1.

Proof. From the Gysin sequence for SM → M we know that

H•(SM) ∼= Q[α, β]
(αn, β2)
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with deg(α) = λ + 1 and deg(β) = N + λ. The manifold SM ×M SM is the total
space of a sphere bundle over SM with a global section, therefore it follows from
the corresponding Gysin sequence that

H•(SM ×M SM) ∼= H•(SM) ⊗ �[ξ ]

with a generator ξ of degree deg(ξ) = N − 1. This proves the claim. ��

For i ∈ {0, . . . , n − 1} we denote the homology class dual to the class αi by [ai ]
and the dual of αiβ by [aib].
Before we turn to the completing manifolds, let us note a property of the conjugate
points along the closed geodesics in M . With γ and σ as before, note that there
is precisely one conjugate point σ( 12 ) = a along σ , see [2, Proposition 3.35].
Moreover, the index of σ is equal to λ, since the index of a closed geodesic on
a compact symmetric space is equal to the sum of the multiplicity of the interior
conjugate points, see again [2, Proposition 3.35] and [18]. Denote the isotropy
group of this point with respect to the action of K by Ka . It is well-known that

dim(Ka) > dim(Kγ ),

see [18, Theorem 4], and that dim(Ka) − dim(Kγ ) is equal to the index of σ both
as a geodesic loop in �M as well as a closed geodesic in �M .

Lemma 4.3. The homogeneous space Ka/Kγ is diffeomorphic to the sphere Sλ.

Proof. By [2, Proposition 3.35] the set of first conjugate points along geodesics of
the basepoint p0 is equal to the cut locus of p0. Moreover, we have

Cut(KPn) ∼= KPn−1,

see again [2, Proposition 3.35]. The set of tangent cut points

S = {v ∈ Tp0M | expp0(v) is the cut point of t �→ expp(tv)}

is well-known to be the round sphere SN−1.Moreover, the exponential map induces
a fiber bundle expp0 : SN−1 → KPn−1, see [2, Proposition 3.37]. These are just
the well-known fibrations of spheres over projective space, so it follows that the
fiber is Sλ. See also [2, Theorem 5.29] for details. We can understand these objects
as homogeneous spaces, i.e. as we know from Eq. (4.1) we have K/Kγ

∼= S
N−1

and it is clear that K/Ka is diffeomorphic to the cut locus KPn−1. Therefore we
see that that the fiber Ka/Kγ of the fiber bundle K/Kγ → K/Ka is diffeomorphic
to Sλ. ��



M. Stegemeyer

5. Construction of Ziller’s completing manifolds

In this section we describe Ziller’s completing manifolds, see [18]. We describe the
manifolds and the respective embeddings in detail.

Fix a closed geodesic γ = σ k ∈ �M of multiplicity k starting at the basepoint
p0 ∈ M . Here, σ is the underlying prime closed geodesic. Consider the product

Wk = G × Ka × K × Ka × K . . . × Ka

with 2k factors in total. Throughout this section, we will follow the convention that
the first element in the tuple

(g0, x1, . . . , x2k−1) ∈ Wk

is said to be at zero’th position, the second one at first position and so forth. The
element in zero’th position plays a special role since it lies in G, therefore we will
denote it usually by g0 while the other elements will be denoted by xi . There is a
right action of the 2k-fold product of Kγ on Wk given by

χ : Wk × K 2k
γ → Wk

((g0, x1, . . . , x2k−1), (h0, . . . , h2k−1)) �→ (g0h0, h
−1
0 x1h1, . . . , h

−1
2k−2x2k−1h2k−1).

This action is free and proper and we consider the quotient space

�k = Wk/(K
2k
γ ).

There is an embedding fk : �k → �M given by

fk([g0, x1, . . . , x2k−1])(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g0.γ (t), 0 ≤ t ≤ 1
2k

g0x1.γ (t), 1
2k ≤ t ≤ 2

2k
...

...

g0x1 . . . x2k−1.γ (t), 2k−1
2k ≤ t ≤ 1

.

Note that the critical submanifold �k ∼= G/Kγ can be seen as a submanifold of �k

via the embedding

sL ,k : G/Kγ → �k, sL ,k([g]) = [g, e, . . . , e] for [g] ∈ G/Kγ .

We define Lk = sL ,k(G/Kγ ) and will identify Lk and G/Kγ in the following
possibly without making the identification explicit. There is a submersion

pL ,k : �k → G/Kγ , pL ,k([g0, x1, . . . , x2k−1]) = [g0]
for [g0, x1, . . . , x2k−1] ∈ �k (5.1)

and it is clear that pL ,k ◦ sL ,k = idG/Kγ . Moreover, we see that the composition
fk ◦ sL ,k is given by

fk ◦ sL ,k([g])(t) = g.γ (t) for g ∈ G, t ∈ [0, 1].
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Hence, the map fk ◦ sL ,k is precisely the diffeomorphism G/Kγ
∼= �k . Note that

the only closed geodesics in the image of fk are precisely the closed geodesics in
the critical submanifold �k . All other loops in im( fk) are broken geodesics and
hence they are not critical points of the energy functional. Therefore, the flow of the
energy functional decreases the value of L for all γ ∈ im( fk) which are not in �k .
Consequently, if we compose the embedding fk with an arbitrary short gradient
flow of the length functional, we obtain a map of pairs

(�k, �k \ Lk) → (�M≤kl ,�M<kl).

Since

dim(�k) = N + k(N − 1) + k(dim(Ka) − dim(Kγ ))

= ind(γ ) + 2N − 1 = ind(γ ) + dim(�k)

we have shown that �k is a completing manifold for �k if we prove that it is
orientable. We will see the orientability later.

Remarkably,�k can also serve as a completingmanifold in the Hilbert manifold
�M ×M �M . With k and γ as above, fix 1 ≤ m ≤ k − 1 and consider the critical
point

(γ1, γ2) = (σm, σ k−m) ∈ �M ×M �M,

where σ is the underlying prime geodesic of γ . The component of the critical set
at level k in �M ×M �M that contains (γ1, γ2) is �m ×M �k−m . Note that

ind((γ1, γ2)) = ind(γ1) + ind(γ2) = k ind(σ ) + (k − 2)(N − 1)

= ind(γ ) − (N − 1),

seeLemma4.1.Wewant to see how SM×M SM can be embedded into�k . Consider
the right-action of Kγ × Kγ on G × K

χ ′ : (G × K ) × (Kγ × Kγ ) → G × K

given by

χ ′((g0, x2m), (h0, h2m)) = (g0h0, h
−1
0 x2mh2m)

for g0 ∈ G, x2m ∈ K and h0, h2m ∈ Kγ . Like the action χ above, this is a free
and proper right action and we consider the quotient space V = G × K/χ ′.

Lemma 5.1. The manifold V is diffeomorphic to SM ×M SM.

Proof. Recall that there is a diffeomorphism G/Kγ → SM induced by the transi-
tive action of G on SM . In particular we see that

SM ×M SM ∼= {([g1], [g2]) ∈ G/Kγ × G/Kγ | g−1
1 g2 ∈ K }. (5.2)

Moreover, let E ⊆ G × G be the submanifold

E = {(g1, g2) ∈ G × G | g−1
1 g2 ∈ K }.
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It is clear that there is a submersion E → SM ×M SM given by (g1, g2) �→
([g1], [g2]). Now, define maps

ϕ̃ : G × K → E and ψ̃ : E → G × K

by setting

ϕ̃(g, k) = (g, gk) for g ∈ G, k ∈ K

and

ψ̃(g1, g2) = (g1, g
−1
1 g2) for (g1, g2) ∈ E .

These maps factor through the submersions G × K → V and E → SM ×M SM
and therefore induce smooth maps

ϕ : V → SM ×M SM and ψ : SM ×M SM → V.

It is a direct computation that they are inverses of each other. ��
Observe that there is an embedding

sV,m : V ↪→ �k

given by

sV,m([g0, x2m]) = [g0, e, . . . , e, x2m, e, . . . , e] ∈ �k

where x2m appears at the 2m’th position. We denote the image of V under this
embedding by V . There is a submersion pV,m : �k → V given by

pV,m([g0, x1, . . . , x2k−1]) = [g0, x1x2 . . . x2m] ∈ V.

It is clear that pV,m ◦ sV,m = idV . We define a map Fk,m : �k → �M ×M �M as
follows. Let

Fk,m([g0, x1, . . . , x2k−1]) = (η1, η2) for [g0, x1, . . . , x2k−1] ∈ �k (5.3)

where

η1(t) =

⎧
⎪⎨

⎪⎩

g0.γ1(t), 0 ≤ t ≤ 1
2m

...

g0x1 . . . x2m−1.γ1(t),
2m−1
2m ≤ t ≤ 1

and

η2(t) =

⎧
⎪⎨

⎪⎩

g0x1 . . . x2m−1x2m .γ2(t), 0 ≤ t ≤ 1
2k−2m

...

g0x1 . . . x2k−1.γ2(t),
2k−2m−1
2k−2m ≤ t ≤ 1.

It can be checked directly that Fk,m is a continuous embedding.
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Lemma 5.2. The embedding Fk,m : �k → �M ×M �M maps V homeomorphi-
cally onto the critical set �m ×M �k−m. Moreover, the set of critical points in
�M ×M �M in the image of Fk,m is precisely the set �m ×M �k−m.

Proof. We show that the diagram

V SM ×M SM

�k �M ×M �M

ϕ

sV,m im
Fk,m

commutes, where the map im is the inclusion of SM ×M SM into �M ×M �M
as the critical set �m ×M �k−m . If we identify SM ×M SM with the subspace of
G/Kγ × G/Kγ as in Eq. (5.2) then

im([g1], [g2]) = (g1.γ1, g2.γ2) for [g1], [g2] ∈ G/Kγ with g1g
−1
2 ∈ K .

With this identification the commutativity of the above diagram can be checked
using the respective definitions. The second statement can be checked from the
definition of the map Fk,m . ��

If we compose Fk,m with an arbitrarily short flow of the gradient flow of the
length functional L2 on �M ×M �M we obtain a map of pairs

(�k, �k \ V ) → ((�M ×M �M)≤kl , (�M ×M �M)<kl).

Furthermore, we have

dim(�k) = ind(γ1, γ2) + dim(�m ×M �k−m)

so if we show that �k is orientable we see that �k is a completing manifold for
�m ×M �k−m .

Note that in �M ×M �M we can also use the fiber product �m ×M �k−m as a
completing manifold where the fiber product is taken with respect to the evaluation
map

evk : �k → M, [g0, x1, . . . , x2k−1] �→ g0K ∈ G/K ∼= M

for 1 ≤ l ≤ k. Then one takes the map

( fm, fk−m) : �m ×M �k−m → �M ×M �M

as an embedding of �m ×M �k−m and can check that this is again a completing
manifold. To conclude this section we want to show that the completing manifolds
�k and �m ×M �k−m are equivalent. Define a map �m : �k → �m ×M �k−m by

�m([g0, x1, . . . , x2k−1])
= ([g0, x1, . . . , x2m−1], [g0x1 . . . x2m−1x2m, x2m+1, . . . , x2k−1])
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for [g0, x1, . . . , x2k−1] ∈ �k . Note that this is a well-defined and smooth map since
it descends from an equivariant map Wk → Wm × Wk−m . Similarly, we define
�m : �m ×M �k−m → �k by

�([g0, x1, . . . , x2m−1], [g2m, . . . , x2k−1])
= [g0, x1, . . . , x2m−1, (g0x1 . . . x2m−1)

−1g2m, x2m+1, . . . , x2k−1]
for [g0, x1, . . . , x2m−1] ∈ �m, [g2m, . . . , x2k−1] ∈ �k−m with g−1

0 g2m ∈ K . One
checks again that �m is well-defined and smooth.

Lemma 5.3. The completing manifolds �k and �m ×M �k−m for the critical sub-
manifold �m ×M �k−m are equivalent in the sense that the diagrams

SM ×M SM �m ×M �k−m

�M ×M �M

V �k

ψ∼= �m∼=

( fm , fk−m )

sV,m Fk,m

and

�k �m ×M �k−m

V SM ×M SM

�m

pV,m (pL ,m ,pL ,k−m )

ϕ

commute.Here, pL ,m : �m → SM and pL ,k−m : �k−m → SM are the submersions
which are used for the completing manifold structure in the free loop space, see
Eq. (5.1). In particular � is a diffeomorphism.

Proof. This can be checked directly by unwinding the definitions. ��

6. Cohomology of the completing manifolds

Themanifold�k is closely related to the K -cycles in the sense ofBott andSamelson,
see [6]. In this section we shall describe its homology and cohomology following
the discussions of the cohomology of the K -cycles by Bott and Samelson [6] and by
Araki [1]. Recall that�k is defined as the quotient ofW = (G×Ka)×(K ×Ka)

k−1

modulo the action of K 2k
γ via

χ((g0, x1, . . . , x2k−1), (h0, . . . , h2k−1)) = (g0h0, h
−1
0 x1h

−1
1 , . . . , h−1

2k−2x2k−1h2k−1).

If we have any product of subgroups Ki ⊆ G, i ∈ {1, . . . ,m} such that Kγ ⊆ Ki

for all i ∈ {1, . . . ,m} there is an action of (Kγ )m on this product given by

((x1, . . . , xm), (h1, . . . , hm)) �→ (x1h1, h
−1
1 x2h2, . . . , h

−1
m−1xmhm)
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for (x1, . . . , xm) ∈ K1×. . . Km and (h1, . . . , hm) ∈ (Kγ )m .Wedenote the quotient
by

K1 ×Kγ K2 ×Kγ . . . ×Kγ (Km/Kγ ).

Note that we might have that the first group K1 is the group G. All other groups
will be subgroups of K .

Lemma 6.1. Let 0 ≤ i1 < i2 < . . . < im ≤ 2k − 1 be integers and set K0 = G,
K j = K for j even, j ≥ 2 and K j = Ka for j odd. Then the manifold

�i1i2...im = Ki1 ×Kγ Ki2 ×Kγ . . . ×Kγ (Kim/Kγ )

can be embedded into �k via a map si1...im : �i1...im ↪→ �k .

Proof. We define a map σi1...im : Ki1 × Ki2 × . . . Kim → Wk by

σi1...im (xi1 , . . . xim ) = (e, . . . , e, xi1 , e, . . . , e, xi2 , e, . . . , e, xim , e . . . , e)

where xi j is at position i j for each j ∈ {1, . . . ,m}. If
(xi1 , . . . , xim ) ∈ Ki1 × . . . × Kim and (k1, . . . , km) ∈ Km

γ

we have

σi1...im ((xi1 , . . . , xim ).(k1, . . . , km))

= (e, . . . , e, xi1k1, e, . . . , e, k
−1
1 xi2k2, . . .)

= (e, . . . , e, xi1k1, k
−1
1 k1, . . . , k

−1
1 k1, k

−1
1 xi2k2, k

−1
2 k2, . . .)

= χ(σi1...im (xi1 , . . . , xim ), (e, . . . , e, k1, k1, . . . , k1, k2, . . . , k2, . . .)).

Hence, σi1...im is equivariant with respect to the action of Km
γ on Ki1 × . . . × Kim

and the action χ of K 2k
γ on Wk . Therefore this yields a smooth map

si1...im : �i1...im → �k . (6.1)

It is easy to check that this is an embedding. ��
Let P = (i1, i2, . . . , im) with non-negative integers 0 ≤ i1 < i2 < . . . < im ≤

2k − 1. Then we say that �P = �i1...im is a sub-K -cycle of �k . From now on we
will always identify a sub-K -cycle �P with its image in �k under the embeddings
constructed in Lemma 6.1. The manifold V ∼= V which we defined above is an
example of a sub-K -cycle. If P = (0, 1, . . . ,m) for some m ≤ 2k − 2, then there
are submersions

p�,m : �k → �P

given by

p�,m([g0, x1, . . . , x2k−1]) = [g0, x1, . . . , xm] for [g0, x1, . . . , x2k−1] ∈ �k .
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Hence, we get a chain of submersions

�k → �0...2k−2 → . . . → �01 → �0 = G/Kγ .

As shown in [1, Theorem 2.4] all these submersions are fiber bundles. Moreover,
each fiber bundle has a section which is given by the map

�0...m−1 ↪→ �0...m, [g0, x1, . . . , xm−1] �→ [g0, x1, . . . , xm−1, e].

Definition 6.2. Let

E0
π0−→ E1

π1−→ . . .
πm−1−−−→ Em = B

be a sequence of manifolds with each πi : Ei → Ei+1 being a sphere bundle. Then
we say that E0 is an iterated sphere bundle over B.

Proposition 6.3. The K -cycle �k is an iterated sphere bundle via the maps

�k → �0...2k−2 → . . . → �01 → �0 = G/Kγ .

Proof. The fibers of the iterated fiber bundle are either K/Kγ of Ka/Kγ . We know
that K/Kγ

∼= S
N−1 and Ka/Kγ

∼= S
λ, see Lemma 4.3. Hence, �k is an iterated

sphere bundle over SM ∼= G/Kγ . ��
In the situation of an iterated sphere bundle E0 → E1 → . . . → Em = B,

one can compute the cohomology of the total space E0 by considering the Gysin
sequences at each step. In the following we consider homology and cohomology
with rational coefficients. We determine the cohomology ring of �k . Note that
throughout the articlewehavefixedanorientationonM . In particular this induces an
orientation on the ε-sphere around the basepoint p0. We shall denote the generator
of its fundamental class by [SN−1

ε ]. Furthermore, if t ∈ I , define evt : �M → M
to be the map evt (γ ) = γ (t) for γ ∈ �M .

Proposition 6.4. The cohomology ring of �k is isomorphic to

H•(�k) ∼= Q[α, β, ξ1, . . . , ξ2k−1]
(αn, β2, ξ21 , . . . , ξ22k−1)

where deg(α) = λ + 1, deg(β) = N + λ, deg(ξ2i+1) = λ for i = 0, . . . , k − 1 and
deg(ξ2i ) = N − 1 for i = 1, . . . , k − 1. In particular �k is orientable.

Furthermore, the class ξ2i and the dual class [x2i ] in homology for i ∈
{1, . . . , k − 1} can be chosen such that the following holds. For i ∈ {1, . . . , k − 1}
one can choose a fundamental class [SN−1] of SN−1 such that [x2i ] = (s2i )∗[SN−1]
and such that

(evti | fk (�k ) ◦ fk ◦ s2i )∗[SN−1] = [SN−1
ε ]

where evti | fk (�k ) is understood as a map evti | fk (�k ) : fk(�k) → Bp0\{p0} for ti ∈
( ik ,

i
k + δ) for some small δ > 0 and where s2i : SN−1 → �k is the embedding

constructed in Lemma 6.1.
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Proof. As we have seen before it follows from the Gysin sequence of SM → M
that

H•(SM) ∼= Q[α, β]
(αn, β2)

with deg(α) = λ+1 and deg(β) = N+λ. One can now determine the cohomology
ring of �k by induction along the steps of the iterated sphere bundle. Note that for
a k-sphere bundle E → B with k odd and which admits a global section one has

H•(E) ∼= H•(B) ⊗ �Q[ξ ]
where deg(ξ) = k. Thus one iteratively obtains the cohomology ring. For the
orientations we note that at each step in the iterated sphere bundle we are free
to choose the orientation of the new generator ξi . As Araki argues using Gysin
sequences, see [1, Section 2], the homology class dual to the class ξl for l ∈
{1, . . . , 2k−1} can be described as follows. Let sl : Kl/Kγ ↪→ �k be the embedding
as in Lemma 6.1. Then if we consider an orientation class [Kl/Kγ ] ∈ H•(K/Kγ )

we have

(sl)∗[Kl/Kγ ] = ±[xl ].

If l = 2i we have K2i/Kγ
∼= S

N−1. Let ti ∈ ( ik
i
k + δ) with δ > 0 small then it can

be seen directly that the map

evti ◦ fk ◦ s2i : SN−1 → M

maps SN−1 homeomorphically onto S
N−1
ε′ for some small ε′ > 0. Note that this

property holds precisely because all geodesics in M are closed and of the same
prime length.

We can now choose an orientation class [SN−1] and correspondingly the class
ξ2i and its dual [x2i ] such that

[x2i ] = (s2i )∗[SN−1] and (evti ◦ fk ◦ s2i )∗[SN−1] = [SN−1
ε′ ]

where we consider evti ◦ fk ◦ s2i as a map S
N−1 → S

N−1
ε′ . ��

In the previous proposition we saw that the manifolds �k , k ∈ N are orientable.
This completes the proof that the �k are in fact completing manifolds. We sum this
up in the next corollary.

Corollary 6.5. Let M = KPn be a complex or quaternionic projective space and
let k,m ∈ N with k > m.

(1) Themanifold�k with the embedding fk is a completingmanifold for the critical
set �k in �M.

(2) The manifold �k with the embedding Fk,m is a completing manifold for the
critical set �m ×M �k−m in �M ×M �M.
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Note that the Corollary implies the perfectness of the Morse-Bott function L on
�M . This is one of the main results in [18].

Wenowmake the following notation convention for the generators in homology.
As shown above the classes

αiβ jξ
l1
1 . . . ξ

l2k−1
2k−1, i ∈ {0, . . . , n − 1}, j, li ∈ {0, 1} for i ∈ {1, . . . , 2k − 1}

generate the cohomology of �k additively. If li1, . . . , li p = 1 and li = 0 otherwise

then we denote the dual of αiβ jξ
l1
1 . . . ξ

l2k−1
2k−1 in homology by

[ai xi1...i p ] ∈ H•(�k) if j = 0 and [aibxi1...i p ] if j = 1.

Recall that at level kl the level homology H•(�M≤kl ,�M<kl) is isomorphic to
the homology of the critical submanifold Lk ∼= SM . Moreover, as we have seen in
Sect. 2 the map

(pL ,k)! : Hi−λk (Lk) → Hi (�k)

is injective, where

λk = ind(γ ) = kλ + (k − 1)(N − 1).

Hence, we obtain the generators of H•(�M) which come from level k by consid-
ering the map (pL ,k)!. Recall that Lk ∼= SM and as we have seen its cohomology
ring is

H•(Lk;Q) ∼= Q[α, β]
(αn, β2)

with deg(α) = λ+1 and deg(β) = N +λ. In homology we choose dual generators
and denote them by [a0], . . . , [an−1] ∈ H•(SM;Q) with deg([ai ]) = (λ + 1)i
and [a0b], . . . , [an−1b] ∈ H•(SM;Q) with deg([aib]) = N + λ + i(λ + 1). In
particular, we can choose these generators such that under the embedding

sL ,k : G/Kγ
∼= SM ↪→ �k

we have

(sL ,k)∗[ai ] = [ai ] and (sL ,k)∗[aib] = [aib]
and in cohomology

(pL ,k)
∗αi = αi and (pL ,k)

∗β = β (6.2)

where pL ,k : �k → Lk is the retraction. The above formulas also justify the mis-
use of notation, since e.g. the cohomology class α has a double meaning, but as
(pL ,k)∗ : H•(Lk) → H•(�k) is injective, it is reasonable to identify α ∈ H•(Lk)

with its image under this injection.We choose the orientation of Lk by choosing the
class [an−1b] ∈ H2N−1(Lk) as fundamental class for all k ∈ N and as fundamental
class for �k we choose the class

[an−1bx1...2k−1] ∈ H2N−1+λk (�k).
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Recall that the Gysin map (pL ,k)! : H•(Lk) → H•+λ(�k) is defined as the compo-
sition

(pL ,k)! : H j (Lk)
(PDLk )−1

−−−−−−→ Hdim(Lk )− j (Lk)
p∗
L ,k−−→ Hdim(Lk )− j (�k)

PD�k−−−→ H j+λ(�k).

Using Proposition 6.4 we can now compute the map (pL ,k)!.
Lemma 6.6. With the above notation the following equations hold

(pL ,k)!([ai ]) = −[ai x1...2k−1] ∈ Hλk+i(λ+1)(�k)

and

(pL ,k)!([aib]) = [aibx1...2k−1] ∈ Hλk+(i+1)(λ+1)+N−1(�k).

Proof. We just consider the first case, the second case is analogous. The Poincaré
dual of [ai ] ∈ H•(Lk) is the cohomology class αn−1−iβ ∈ H•(Lk). By Eq. (6.2)
we have

(pL ,k)
∗(αn−1−iβ) = αn−1−iβ ∈ H•(�k).

We now need to compute the Poincaré dual X = PD�k (α
n−1−iβ) of this latter

class. We compute the Kronecker pairing

〈αiξ1 . . . ξ2k−1, X〉 = 〈αiξ1 . . . ξ2k−1, αn−1−iβ ∩ [�k]〉
= 〈αiξ1 . . . ξ2k−1 ∪ αn−1−iβ, [�k]〉.

Now, since α is of even degree and β is of odd degree we get by graded commuta-
tivity

αiξ1 . . . ξ2k−1 ∪ αn−1−iβ = −αn−1βξ1 . . . ξ2k−1

and therefore

〈αiξ1 . . . ξ2k−1, X〉 = −1.

It follows that X = −[aibx1...2k−1]. ��
We define classes

Ai
k = ( fk)∗

( − [ai x1...2k−1]
) ∈ Hλk+i(λ+1)(�M)

and

Bi
k = ( fk)∗

([aibx1...2k−1]
) ∈ Hλk+(i+1)(λ+1)+N−1(�M)

for k ∈ N and i ∈ {0, . . . , n − 1}. Note that the degree of all Ai
k is odd, while

the degree of all Bi
k is even. The following is then clear by the construction of the

completing manifolds.

Proposition 6.7. The homology of the free loop space relative to the constant loops
is generated by the image of the set

{Ai
k ∈ H•(�M) | k ∈ N, i ∈ {0, . . . , n − 1}} ∪

{Bi
k ∈ H•(�M) | k ∈ N, i ∈ {0, . . . , n − 1}}

in the relative homology H•(�M, M).
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7. Computation of the coproduct

In this section we explicitly compute the string topology coproduct. As we have
seen in the previous section we can explicitly describe a set of generators of the
homology H•(�M, M) via the completing manifolds �k , k ∈ N. We therefore
express all the steps in the definition of the coproduct in intrinsic terms of the
manifolds �k .

First, we want to pull back the class τ� ∈ HN (U�,U�,≥ε0) via fk to a class
which can be described in terms of the cohomology of�k .We consider the preimage
( fk, idI )−1(U�) ⊆ �k × I . This set can be described explicitly as follows. Since
all loops in the image fk(�k) are broken geodesics, there is a small δ > 0 such that

( fk, idI )
−1(U�)

= �k ×
(
[0, δ) ∪ ( 2

2k − δ, 2
2k + δ) ∪ . . . ∪ ( 2k−2

2k − δ, 2k−2
2k + δ) ∪ (1 − δ, 1]

)
.

This is because every other conjugate point on a closed geodesic starting at the
basepoint is the basepoint itself. Clearly, δ > 0 is so small that the open intervals
are disjoint. Similarly, there is a δ0 > 0 with δ0 < δ such that

( fk, idI )
−1(U�,≥ε0) = �k ×

(
[δ0, δ) ∪ ( 2

2k − δ, 2
2k − δ0] ∪ [ 2

2k + δ0,
2
2k + δ) ∪

. . . ∪ ( 2k−2
2k − δ, 2k−2

2k − δ0] ∪ [ 2k−2
2k + δ0,

2k−2
2k + δ) ∪ (1 − δ, 1 − δ0]

)
.

To make the bookkeeping easier, let us define

Im = ( 2m2k − δ, 2m
2k + δ)

and

Jm = ( 2m2k − δ, 2m
2k − δ0] ∪ [ 2m2k + δ0,

2m
2k + δ)

for m = 1, . . . , k − 1. We set

U�k = ( fk, idI )
−1(U�) and U�k ,≥ε0 = ( fk, idI )

−1(U�,≥ε0),

then we have

(U�k ,U�k ,≥ε0)

= �k ×
(
([0, δ), [δ0, δ)) �

k−1⊔

m=1

(Im, Jm) � ((1 − δ, 1], (1 − δ, 1 − δ0])
)
.

The pairs

([0, δ), [δ0, δ)) and ((1 − δ, 1], (1 − δ, 1 − δ0])
have trivial homology for obvious reasons. For m ∈ {1, . . . , k − 1} we have

Hi (Im, Jm) ∼=
{
Q, i = 1
0 else.
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We choose positively oriented generators [Im] of H1(Im, Jm) and dual cohomology
classes

ηm ∈ H1(Im, Jm).

Wenowwant express the cohomologyclass τk = ( fk, idI )∗τ� ∈ HN (U�k ,U�k ,≥ε0)

in terms of the cohomology of �k . Recall that the cap product which we use in the
definition of the string topology coproduct is a particular relative version of the
ordinary cap product. We refer to Appendix B for details, see also [9, Appendix
A].

Lemma 7.1. The pullback of the class τ� ∈ HN (U�,U�,≥ε0) under the map

( fk, idI ) : (U�k ,U�k ,≥ε0) → (U�,U�,≥ε0)

is given by

τk = ( fk, idI )
∗τ� =

k−1∑

m=1

ξ2m × ηm .

This key lemma is proved in Appendix A. In the following let Y be one of the
classes

Ai
k = ( fk)∗

( − [ai x1...2k−1]
) ∈ H•(�M)

or

Bi
k = ( fk)∗

([aibx1...2k−1]
) ∈ H•(�M)

for k ∈ N, i ∈ {0, . . . , n − 1}. We write

Y = ( fk)∗X

where X ∈ H•(�k) is the respective homology class in �k . In order to compute ∨Y
we need to consider

τ� ∩ (Y × [I ]) = ( fk, id I )∗(( fk, idI )∗τ� ∩ (X × [I ]))
= ( fk, id I )∗(τk ∩ (X × [I ]))

by naturality of the cap product, see Proposition B.1. As seen in Lemma 7.1, we
obtain

τk ∩ (X × [I ]) =
k−1∑

m=1

(
(ξ2m × ηm) ∩ (X × [I ])).

By the compatibility of the cross and the cap product, see Proposition B.2, we have

(ξ2m × ηm) ∩ (X × [I ]) = (−1)deg(X)(ξ2m ∩ X) × (ηm ∩ [I ]).
By the construction of the relative cap product we see that

ηm ∩ [I ] = [tm] ∈ H0(Im)

where [tm] is a generator of H0(Im), see Example B.3.
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Lemma 7.2. The relative cap product yields

(ξ2m × ηm) ∩ ( − [ai x1...2k−1] × [I ]) = −[ai x1...2m−1 2m+1...2k−1] × [tm]
and

(ξ2m × ηm) ∩ ([aibx1...2k−1]) × [I ]) = −[aibx1...2m−1 2m+1...2k−1] × [tm]
Proof. Using Proposition 6.4 we have

ξ2m ∩ ( − [ai x1...2k−1]
) = [ai x1...2m−1 2m+1...2k−1]

and

ξ2m ∩ [aibx1...2k−1] = −[aibx1...2m−1 2m+1...2k−1]
and this yields the claim. ��
For convenience of notation we shall write

(ξ2m × ηm) ∩ (X × [I ]) = Xm × [tm]
and plug in the respective classes later using the above Lemma. Then we have

τk ∩ (X × [I ]) =
k−1∑

m=1

Xm × [tm].

Fix an m ∈ {1, . . . , k − 1}. To finish the computation of ∨Y , we need to determine
the effect of the retraction map RGH and of the cutting map on Xm × [tm]. First
note that the diagram

H•(�k × Im) H•(U�) H•(U�, M × I ∪ � × ∂ I )

H•(�k × { 2m2k }) H•(U�) H•(U�, M × I ∪ � × ∂ I )

H•(�k × { 2m2k }) H•(F�) H•(F�, M × I ∪ � × ∂ I )

( fk ,idI )∗

(id�k ,σm )∗ = =
( fk ,idI )∗

= (RGH )∗ (RGH )∗
( fk ,idI )∗

commutes, where σm : Im → { 2m2k } is the constant map. To complete the computa-
tion, we need to characterize

cut∗( fk, idI )∗(Xm × [ 2m2k ]) ∈ H•(�M × �M,�M × M ∪ M × �M).

A direct computation shows that the map

c̃ut ◦ fk : �k × { 2m2k } → �M ×M �M

is equal to the map Fk,m : �k → �M ×M �M , which was defined in Eq. (5.3), up
to the obvious identification �k ∼= �k × { 2m2k }. This shows that

c̃ut∗( fk, idI )∗(Xm × [ 2m2k ]) = (Fk,m)∗Xm .
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Here and in the following [ 2m2k ] ∈ H0({ 2m2k }) denotes the canonical generator. We
now want to express the class (ι ◦ Fk,m)∗Xm ∈ H•(�M × �M) as a product of
the generators Ai

k and Bi
k . Here, ι : �M ×M �M ↪→ �M × �M is the inclusion

of the figure-eight space. In order to do so we need the following lemma.

Lemma 7.3. The following diagram commutes

Hi−λk+(N−1)(V ) Hi (�k)

Hi−λk+(N−1)(SM ×M SM) Hi (�m ×M �k−m) Hi (�M ×M �M)

Hi−λk+(N−1)(SM × SM) Hi (�m × �k−m) Hi (�M × �M)

(pV,m )!

ϕ∗∼= �∗∼=
(Fk,m )∗

(pL ,m ,pL ,k−m )! ( fm , fk−m )∗

(pL ,m ,pL ,k−m )! ( fm , fk−m )∗

where the vertical arrows in the lower row are induced by the respective inclusions.

Proof. The commutativity of all subdiagrams is clear apart from the lower left
square. In order to show that the lower left square commutes, we first consider the
diagram

Hi−λk+(N−1)(SM ×M SM) Hi (�m ×M �k−m)

Hi−λk+(N−1)(SM × SM) Hi (�m × �k−m)

Th′

Th

where Th : Hi (�m × �k−m) is the map

Hi (�m × �k−m) −−−−−→ Hi (�m × �k−m, �m × �k−m \ SM × SM)

excision−−−−→ Hi (U,U \ SM × SM)

Thom−−−−→ Hi−λk+(N−1)(SM × SM).

Here, U is a tubular neighborhood of SM × SM in �m × �k−m and

Thom : H•(U,U \ SM × SM) → H•−λk+(N−1)(SM × SM)

is theThom isomorphism.ThemapTh′ is defined analogously. In particular,wenote
that the normal bundle of SM×M SM ↪→ �m×M�k−m is the pullback of the normal
bundle of SM×SM ↪→ �m×�k−m along the inclusion SM×M SM ↪→ SM×SM .
Therefore the above diagram commutes. Now, note that the map Th agrees with the
Gysin map (sm, sk−m)!. This follows from [5, Theorem VI.11.3]. Note that in this
reference it is only claimed that the twomaps agree up to sign, but one can determine
the sign from the proof. Applied to our present case the sign is (−1)c(λk−(N−1)) for
some integer c ∈ Z. Recall that the index λk is odd for all k ∈ N. Consequently,
the codimension

codim(SM × SM ↪→ �m × �k−m) = λk − (N − 1)
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is even for all k ∈ N, so we see that the sign (−1)c(λk−(N−1)) is even and thus the
maps Th and (sL ,m, sL ,k−m)! agree. Now, let Z ∈ H•(SM ×M SM). Then we have

Z = ((pL ,m, pL ,k−m) ◦ (sL ,m, sL ,k−m))! Z = (sL ,m, sL ,k−m)! ◦ (pL ,m, pL ,k−m)! Z .

Moreover, let us denote the inclusion SM ×M SM ↪→ SM × SM by i1 and denote
the inclusion �m ×M �k−m ↪→ �m × �k−m by i2. Then we get

(pL ,m , pL ,k−m)! ◦ (i1)∗Z = (pL ,m , pL ,k−m)! ◦ (i1)∗(sL ,m , sL ,k−m)! ◦ (pL ,m , pL ,k−m)!Z
= (pL ,m , pL ,k−m)! ◦ (sL ,m , sL ,k−m)! ◦ (i2)∗ ◦ (pL ,m , pL ,k−m)!Z
= (i2)∗ ◦ (pL ,m , pL ,k−m)!Z

and this shows the commutativity of the lower left square. ��
Recall that�k togetherwith the embedding Fk,m is a completingmanifold for the

critical set �m ×M �k−m ∼= V . In Lemma 4.2 we determined the cohomology ring
of V . We make the following choice of orientation. The generator ξ ∈ HN−1(V )

is chosen in such a way that it pulls back to the generator ξ2m under the map pV,m .
Note that by the choice of orientations for the classes ξ2i , i ∈ {1, . . . , k − 1} in
Proposition 6.4 this is a consistent choice. We choose the orientation for V such
that αn−1βξ is a fundamental cohomology class.

Lemma 7.4. Using the notation for the generators of H•(SM ×M SM) as in the
paragraph following Lemma 4.2 we have

(pV,m)![ai ] = −[ai x1...2m−1 2m+1...2k−1]
and

(pV,m)![aib] = −[aibx1...2m−1 2m+1...2k−1].
Proof. We only consider the first case, the second one is analogous. The Poincaré
dual of [ai ] is the class αn−1−iβξ ∈ H•(V ). Moreover, by our orientation conven-
tion, the pullback of this cohomology class is

(pV,m)∗(αn−1−iβξ) = αn−1−iβξ2m .

Now we need to compute the Poincaré dual of this class in �k , i.e.

PD�k (α
n−1−iβξ2m) = αn−1−iβξ2m ∩ [�k].

By using the graded commutativity of the cup product, we see that

〈αiξ1 . . . ξ2m−1ξ2m+1 . . . ξ2k−1, α
n−1−1βξ2m ∩ [�k]〉

= 〈−αn−1βξ1 . . . ξ2k−1, [�k]〉 = −1.

Therefore we see that

αn−1−1βξ2m ∩ [�k] = −[ai x1...2m−1 2m+1...2k−1].
��
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By the above Lemma we see that we can write every class which shows up in
Lemma 7.2 as a class in the image of (pV,m)!. Thus, the commutative diagram in
Lemma 7.3 enables us to express the classes in the coproduct through the generators
Ai
k and Bi

k . Thus we need to understand the effect of the map

ω : H•(V )
ϕ∗−→ H•(SM ×M SM) → H•(SM × SM)

on the classes [ai ] and [aib]. Note that these classes can be described as push-
forward of the classes [ai ] and [aib] in H•(SM) under the embedding SM ↪→ V
given by

[g] �→ [g, e] ∈ V, where [g] ∈ G/Kγ
∼= SM,

see also Lemma 4.2. The composition

SM ↪→ V
ϕ−→ SM ×M SM ↪→ SM × SM

is just the diagonal map d : SM → SM × SM . Hence, we obtain

ω([ai ]) = d∗[ai ] and ω([aib]) = d∗[aib]
where d : SM → SM × SM is the diagonal map. Via the cup ring of SM , it is easy
to figure out the effect of the diagonal map in homology. We have

d∗[ai ] =
i∑

j=0

[a j ] × [ai− j ] and d∗[aib] =
i∑

j=0

[a j ] × [ai− j b] + [a jb] × [ai− j ].

We obtain the following final result.

Theorem 7.5. Let K be C or H and consider M = KPn. The string topology
coproduct on M behaves as follows. We have

∨Ai
k =

k−1∑

m=1

i∑

j=0

A j
m × Ai− j

k−m

and

∨Bi
k =

k−1∑

m=1

i∑

j=0

(B j
m × Ai− j

k−m − A j
m × Bi− j

k−m).

Proof. If Y = Ai
k , we have

Y = ( fk)∗(−[ai x1...2k−1]).
By Lemmas 7.1 and 7.2, we have

τ� ∩ (Y × [I ]) =
k−1∑

m=1

( fk)∗(−[ai x1...2m−1 2m+1...2k−1]) × [ 2m2k ].
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Then by Lemmas 7.3 and 7.4 we see that

cut∗
( k−1∑

m=1

( fk)∗(−[ai x1...2m−1 2m+1...2k−1]) × [ 2m2k ])

=
k−1∑

m=1

( fm, fk−m)∗
(
(pL ,m, pL ,k−m)!d∗[ai ]

)
.

Hence we are left with computing the Gysin map of the retraction (pL ,m, pL ,k−m).
By [5, Proposition VI.14.3] we see that

(pL ,m, pL ,k−m)!(x × y) = (−1)(dim(SM)+dim(�m ))(dim(�k−m )−deg(y))

(pL ,m)!(x) × (pL ,k−m)!(y)

for homology classes x, y ∈ H•(SM). Noting that

dim(SM) + dim(�m) = 2(N − 1) + λm

is odd for all m ∈ N and that dim(�k−m) is even for all m, k ∈ N, m < k we can
figure out the sign. The computation of ∨Bi

k is analogous. ��
Remark 7.6. Note at this point that it is sufficient to consider the critical manifolds
with respect to the length function L2 of the form

�1 ×M �k−1, . . . , �k−1 ×M �1 ⊆ �M ×M �M.

There are two other connected components at level kl, namely M ×M �k and�k ×
M . However, as we saw now the corresponding homology classes in H•(�M ×M

�M) do not show up in the process of computing the coproduct, therefore we did
not consider these components.

8. The cohomology product

In this section we briefly describe the Goresky-Hingston product onKPn . We take
cohomology with rational coefficients. Define classes

σ i
k ∈ H•(�M, M) and μi

k ∈ H•(�M, M)

as follows. For k ∈ N and i ∈ {0, . . . , n − 1} the class σ i
k is defined to be the dual

of Ai
k and the class μi

k is defined to be the dual of Bi
k . Consequently,

deg(σ i
k ) = λk + i(λ + 1) and deg(μi

k) = λk + (i + 1)(λ + 1) + N − 1.

In particular, note that deg(σ i
k ) is odd and deg(μi

k) is even for all k ∈ N, i ∈
{0, . . . , n − 1}. It is clear that the set

{σ i
k | k ∈ N, i ∈ {0, . . . , n − 1}} ∪ {μi

k | k ∈ N, i ∈ {0, . . . , n − 1}}
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generates the cohomology H•(�M, M) additively. Using Theorem 7.5 we see that

σ i
k ©∗ σ

j
l = σ

i+ j
k+l , if i + j ≤ n − 1 and σ i

k ©∗ σ
j
l = 0 else

and

μ
j
l ©∗ σ i

k = μ
i+ j
k+l , if i + j ≤ n − 1 and μ

j
l ©∗ σ i

k = 0 else

for k, l ∈ N and i, j ∈ {0, . . . , n − 1}. Moreover, we have

μi
k ©∗ μ

j
l = 0 for k, l ∈ N, i, j ∈ {0, . . . , n − 1}.

We want to mention at this point that the Goresky-Hingston product satisfies the
following commutativity property. If x ∈ Hi (�M, M) and y ∈ H j (�M, M), then

x ©∗ y = (−1)(i+dim(M))( j+dim(M))+1 y ©∗ x,

see [9, Theorem 2.14]. In particular, we get

σ i
k ©∗ σ

j
l = σ

j
l ©∗ σ i

k and σ i
k ©∗ μ

j
l = −μ

j
l ©∗ σ i

k

which is consistent with the signs in Theorem 7.5.

Theorem 8.1. Let K be C or H and consider the projective space M = KPn.
The Goresky-Hingston ring (H•(�M, M), ©∗ ) is multiplicatively generated by the
classes

σ 0
1 , . . . , σ n−1

1 and μ0
1, . . . , μ

n−1
1

whose products are subject to the above relations. In particular, the ring is finitely
generated and the element σ 0

1 is non-nilpotent.

Remark 8.2. The existence of a non-nilpotent element is already shown in [7, Theo-
rem14.2]. The fact that theGoresky-Hingston ring is finitely generated is analogous
to behaviour of the Goresky-Hingston product on spheres, see [7].
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Appendix A. Proof of Lemma 7.1

In this appendixwe prove Lemma 7.1.Wewill use the notation established through-
out the paper. We shall show that the pullback of the class τ� ∈ HN (U�,U�,≥ε0)

under the map

( fk, idI ) : (U�k ,U�k ,≥ε0) → (U�,U�,≥ε0)

is given by

τk = ( fk, idI )
∗τ� =

k−1∑

m=1

ξ2m × ηm .

First, let us consider the generators of HN−1(�k). The classes

ξ2, . . . , ξ2k−2

are generators of HN−1(�k), so are the classes

αm ∪ ξi1 ∪ . . . ∪ ξil ∈ HN−1(�k) with m ∈ {0, . . . , n − 1},
1 ≤ i1 < . . . il ≤ 2k − 1, i j odd

where necessarily

m(λ + 1) + l λ = N − 1.

One can check that these are the only generators. Hence, we have

τk =
k−1∑

j=1

k−1∑

m=1

λ j,mξ2 j × ηm +
∑

m, 1≤i1<...<il≤2k−1

k−1∑

s=1

ρm,i1...il ,s(α
m ∪ ξi1 ∪ . . . ∪ ξil ) × ηs

where λ j,m ∈ Q and ρm,i1,...,il ,s ∈ Q are coefficients and where the sum in the
second term is taken over those combinations of m, i1, . . . , il such that

m(λ + 1) + l λ = N − 1 and all i j odd.

We want to show that

λ j,m = 1, if j = m ∈ {1, . . . , k − 1} and λ j,m = 0 else

and that all coefficients ρm,i1...il ,s = 0.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Claim. The coefficients λ j,m ∈ Q satisfy

λ j,m = 1, if j = m and λ j,m = 0 else.

Proof. Fix j,m ∈ {1, . . . , k − 1}. We have

λ j,m = 〈τk, [x2 j ] × [Im]〉. (A.1)

Recall that τ� = ev∗
�τM . Hence, we get

〈τk, [x2 j ] × [Im]〉 = 〈( fk, id I )∗ev∗
�τM , [x2 j ] × [Im]〉

= 〈τM , (ev� ◦ ( fk, idI ))∗([x2 j ] × [Im])〉. (A.2)

Thus we consider

gm = ev� ◦ ( fk, idIm ) : �k × (Im, Jm) → (UM ,UM,≥ε0).

Recall that the class [x2 j ] can be described as follows. Let s2 j : K/Kγ ↪→ �k be
the embedding as constructed in Lemma 6.1, i.e.

s2 j ([x]) = [e, . . . , e, x, e . . . , e], for [x] ∈ K/Kγ .

Here, the x appears at position 2 j . Then [x2 j ] = (s2 j )∗[SN−1], where [SN−1] is
the fundamental class of K/Kγ

∼= S
N−1. Let [C] ∈ HN−1(UM ,UM,≥ε0) be the

class dual to τM . We want to show that

(gm)∗([x2 j ] × [Im]) = [C] if and only if j = m and 0 otherwise.

Set

Bp0 = {q ∈ M | d(p0, q) < ε} and Bp0,≥ε0 = {q ∈ Bp0 | d(q, p0) ≥ ε0}.
Note that if

i : (Bp0 , Bp0,≥ε0) ↪→ (UM ,UM,≥ε0), i(q) = (p0, q)

for q ∈ Bp0 is the inclusion of the fiber of the normal tubular neighborhood then
we have

[C] = i∗[B], where [B] ∈ HN−1(Bp0 , Bp0,≥ε0)

is a positively oriented generator. We define the map

hm = gm ◦ (s2 j , idIm ) : K/Kγ × (Im, Jm) → (UM ,UM,≥ε0).

Note that this factors through maps

(K/Kγ × Im, K/Kγ × Jm) (UM ,UM,≥ε0)

(Bp0 , Bp0,≥ε0)
h′
m

hm

i
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Define ev : � × I → M by ev(γ, s) = γ (s). In order to show that

(gm)∗([x2m] × [Im]) = [C]
it thus suffices to shows that

(h′
m)∗([x2m] × [Im]) = [B]

where (gm)′ = ev ◦ ( fk, idIm ). We have that h′
m = g′

m ◦ (s2 j , idIm ). Recall that
the orbit of a point q ∈ Bp0 under K is the distance-sphere around p0 of radius
d(p0, q). We compute the map h′

m explicitly. Let x ∈ K . In case that m < j , we
have

h′
m([x], t) =

{
γ (t) t < 2m

2k
γ (t) t ≥ 2m

2k
(A.3)

in case m = j , we get

h′
m([x], t) =

{
γ (t) t < 2m

2k
x .γ (t) t ≥ 2m

2k

and in case m > j , we obtain

h′
m([x], t) =

{
x .γ (t) t < 2m

2k
x .γ (t) t ≥ 2m

2k .

Now, consider the following commutative diagram

HN−1(S
N−1) ⊗ H1(Im, Jm) HN−1(S

N−1) ⊗ H0(Jm)

HN (SN−1 × Im,SN−1 × Jm) HN−1(S
N−1 × Jm)

HN (Bp0 , Bp0,≥ε0) HN−1(Bp0,≥ε0)

HN (DN ,SN−1) HN−1(S
N−1)

id⊗∂

∼= ∼=
∂

(h′
m )∗ (h′

m )∗
∼=

∼= ∼=

∼=
∂

where themaps ∂ are the respective connecting homomoprhisms. Themiddle square
is

Q Q ⊕ Q

Q Q

x �→(−x,x)

h1m, j h2m, j

id

with h1m, j and h
2
m, j the maps induced by (h′

m)∗. In case m < j , it is clear that h2m, j

is the trivial map, so h1m, j = 0. This can be seen from Eq. (A.3) since the map
h′
m is homotopic to a locally constant map. If m > j , we have by the orientation
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convention of Proposition 6.4 that h2m, j (x, y) = x + y, so again h1m, j is trivial.

Finally, for m = j , we see that h2m,m(x, y) = y, so we get

h1m,m = id .

Here we use again the orientation convention established in Proposition 6.4. This
shows that

(h′
m)∗([x2m] × [Im]) = [B] and (h′

m)∗([x2 j ] × [Im]) = 0 for j �= m.

The claim then follows from Eqs. (A.1) and (A.2). ��
Claim. All coefficients ρm,i1...il ,s vanish.

Proof. Fix m ∈ {0, . . . , n − 1} and odd integers i1, . . . , il with 1 ≤ i1 < . . . <

il ≤ 2k − 1 such that

m (λ + 1) + l λ = N − 1.

We also fix s ∈ {1, . . . , k − 1}. We begin by describing a dual class to the coho-
mology class

αm ∪ ξi1 ∪ . . . ∪ ξil ∈ HN−1(�k).

Let κ = m(λ+1). Recall that πL : Lk ∼= SM → M is the unit sphere bundle of the
underlying manifold. Since κ < N we see from the Gysin sequence of this sphere
bundle that there is an isomorphism

(πL)∗ : Hκ(SM)
∼=−→ Hκ(M).

We know that Hκ(M) ∼= Q. Note that a generator of Hκ(M) can be described as
follows. It is well-known that there is an inclusion of KPm into M = KPn which
maps a fundamental class of KPm to a generator of Hκ(M). In particular we can
choose this inclusion in such a way that the basepoint p0 ∈ M is also the basepoint
of KPm . Denote this inclusion by j : KPm → KPn . We pull back the unit sphere
bundle along j . Since the dimension of the fiber of this bundle is greater than the
dimension of the base the Euler class vanishes and hence this bundle has a section
s : KPm → j∗SM . We compose this with the canonical map j∗SM → SM to get
a section σ : KPm → SM . It is clear that we have

πL ◦ σ = j,

so we see that we obtain an isomorphism

σ∗ : Hκ(KPm)
∼=−→ Hκ(SM).

Hence, we can represent a generator in degree κ by the image of a fundamental
class of KPm under the map σ .
Consider the manifold �0i1...il where we use the notation of Lemma 6.1. We have

�0i1...il = G ×Kγ Ka ×Kγ . . . ×Kγ (Ka/Kγ ).
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In Lemma 6.1 we saw that this embeds into the manifold �k via a map
s0i1...il : �0i1...il → �k . Moreover, as in the discussion after the proof of Lemma 6.1
one sees that this manifold is an iterated sphere bundle over SM and the fiber at
each step of the iterated sphere bundle is the sphere Sλ. We now pull back this fiber
bundle along the embedding σ : KPm ↪→ SM to get a pull-back space X which is
clearly a manifold. We have a commutative diagram

X �0i1...il �k

KPm SM SM

ιm

s0i1 ...il

σ =

where the left square is just the pullback diagram. The manifold X is also an
iterated sphere bundle with baseKPm . Moreover, from the Gysin sequences of X ,
�0i1...il and �k one can see that (ιm)∗[X ] is indeed the dual homology class to the
cohomology class αm ∪ ξi1 ∪ . . . ∪ ξil . Consequently, we obtain

ρm,i1...il ,s = 〈τk, (ιm, idIs )∗([X ] × [Is])〉
= 〈τM , (g ◦ (ιM , id Is ))∗([X ] × [Is])〉 (A.4)

where we have g = ev� ◦ ( fk, id Is ) as before. We define

hm,s = g ◦ (ιM , idIs ) : X × (Is, Js) → (UM ,UM,≥ε0).

If we show that the class

(hm,s)∗([X ] × [Is]) ∈ HN (UM ,UM,≥ε0)

vanishes, then by Eq. (A.4) we have shown that the coefficients ρm,i1,...,il ,s vanish.
Let us compute the map hm,s explicitly. There is a number o ∈ {1, . . . , l} such that

i1 < . . . < io < 2s < io+1 < . . . il .

Let [g, k1, . . . , kl ] ∈ �0i1...il with σ(x) = [g] ∈ G/Kγ
∼= SM for some x ∈ KPm .

Furthermore, let t ∈ Is , then we have

hm,s([g, k1, . . . , kl ], t) = (g.γ (0), gk1 . . . ko.γ (t)) = (x, gk1 . . . ko.γ (t)).

We see from the above expression that the map hm,s factors as follows

X × (Is, Js) (UM ,UM,≥ε0)

(t∗UM , t∗UM,≥ε0)

hm,s

h′
m,s
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where t : KPm ↪→ KPn = M is the inclusion. We now consider the following
commutative diagram

HN−1(X) ⊗ H1(Is , Js) HN−1(X) ⊗ H0(Js).

HN (X × Is , X × Js) HN−1(X × Js)

HN (t∗UM ) HN (t∗UM , t∗UM,≥ε0 ) HN−1(t∗UM,≥ε0 ) HN−1(t∗UM ).

id⊗ ∂

∼= ∼=
∂

(h′
m,s )∗ (h′

m,s )∗
∂

Note that the space t∗UM is homeomorphic to a disk bundle overKPm and is there-
fore homotopy equivalent to KPm itself. Clearly, the dimension of KPm satisfies
dim(KPm) ≤ N − 2 and therefore the homology groups on the very left and the
very right in the lower row of the above diagram vanish. Therefore the connecting
homomorphism in the lower row is an isomorphism.
Moreover, note that Js is adisjoint union of two intervals, hence it is homotopy
equivalent to a union of two points, i.e. we have a homotopy equivalence

� : X × {t−} ∪ X × {t+} �−−→ X × Js

where t− ∈ ( 2 s2k − δ, 2 s
2k + δ0] and t+ ∈ [ 2 s2k + δ0,

2 s
2k + δ). We can choose t− and

t+ such that they are equidistant to 2s
2k , i.e. |t+ − 2 s

2k | = |t− − 2 s
2k |. This implies that

δ1 := d(γ (t+), γ (0)) = d(γ (t−), γ (0)).

We thus consider the maps

km,s,− : X × {t−} −→ X × Js
h′
m,s−−→ t∗UM,≥ε0

and

km,s,+ : X × {t+} −→ X × Js
h′
m,s−−→ t∗UM,≥ε0 .

Note that X ∼= X ×{t±}, so we can understand both maps as maps X → t∗UM,≥ε0 .
We now show that they induce the same map in homology.
First, we define a map ϕ : X → X . Note that since M is a symmetric space there is
an isometry S : M → M which fixes the basepoint p0 = γ (0) and acts as−idTp0M
on the tangent space. This isometry reverses geodesics going through the basepoint.
Since the point a ∈ M is the unique conjugate point in the interior of the prime
closed geodesic σ we have

S.a = S.γ ( 12 ) = γ (− 1
2 ) = a.

Consequently, the isometry satisfies S ∈ Ka . Therefore, we can define a map

� : G × (Ka)
l → G × (Ka)

l

by setting

�(g, k1, . . . , kl) = (g, k1, . . . , kl S) for g ∈ G, k1, . . . , kl ∈ Ka .
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Note that the element S commutes with all elements in K . This is because the
isotropy representation of a symmetric space is faithful and the element −id ∈
O(N ) is clearly in the center of O(N ). Hence, one sees that the map � is indeed
equivariant with respect to the (Kγ )l+1-action and therefore induces a smooth map
ϕ′ : �0i1...il → �0i1...il . Since thismap squares to the identity it is a diffeomorphism.
Moreover it clearly respects the fiber bundle structure, so it restricts to a map
ϕ : X → X . We consider this map for the following reason. Since the isometry S
reverses geodesics through the basepoint we have

S.γ (t−) = γ (t+)

by our choice of t− and t+. Therefore we see by definition of km,s,− and km,s,+
that

km,s,+ = km,s,− ◦ ϕ.

Hence, if we show that ϕ∗ : Hκ(X) → Hκ(X) is the identity, it follows that km,s,+
and km,s,− induce the same map in homology. We shall argue that the degree of ϕ is
1. Since ϕ is a diffeomorphism it suffices to check whether the differential at a given
point is orientation-preserving or orientation-reversing. Let [e, e, . . . , e] ∈ �0i1...il .
There is an open neighborhood of [e, . . . , e] ∈ �0i1...il−1 such that the fiber bundle
p : �0i1...il → �0i1...il−1 is trivial over U , i.e.

p−1(U ) ∼= U × S
λ.

But in this local trivialization it is very easy to understand the effect of the map ϕ.
We have

ϕ|p−1(U ) : p−1(U ) → p−1(U ) satisfies ϕ(u, x) = (u,−x)

for u ∈ U , x ∈ S
λ. Now, the identity onU is clearly orientation-preserving as is the

antipodal map on an odd-dimensional sphere. Therefore we get that ϕ∗ = idHκ (X).
Now, consider again the class

[X ] × [Is] ∈ HN (X × Is, X × Js).

It is well-known that the connecting homomorphism maps this to

∂([X ] × [Is]) = [X ] × [t+] − X × [t−].
But as we have seen now

(h′
m,s)∗([X ] × [t+]) = (km,s,+)∗([X ]) = (km,s,−)∗([X ]) = (h′

m,s)∗([X ] × [t−])
so this shows that

(h′
m,s)∗ ◦ ∂ ([X ] × [Is]) = 0.

Consequently, we obtain ρm,i1...il ,s = 0. ��
Note that the strategy of the proof of the last claim is very similar to the methods
employed in [13, Section 7]. The proof of the two claims completes the proof of
Lemma 7.1.
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Appendix B. Relative cap product

In this section we review the construction of the relative cap product which is used
in the definition of the string topology coproduct. We closely follow [9, Appendix
A].
Assume that X is a topological space with subspaces A, B ⊆ X such that

C•(A) + C•(B) ↪→ C•(A ∪ B)

is a quasi-isomorphism. Then there is a relative cap-product

∩ : Hk(X, A) ⊗ Hm(X, A ∪ B) → Hm−k(X, B). (B.1)

The condition on the subspaces is satisfied if e.g. both A and B are open. See [5,
Section VI.5] for details.
Assume now thatU0 ⊆ U1 ⊆ X are open subsets of X such thatU = {U1, int(Uc

0 )}
is an open cover of X . Here we use the notationUc

0 = X\U0. Furthermore, assume
that A ⊆ X is another subset which is not necessarily required to be a subset of
U0 or U1. We assume that the intersections U1 ∩ Uc

0 and U1 ∩ A are such that the
relative cap-product

∩: Hk(U1,U1 ∩Uc
0 ) ⊗ Hmk(U1,U1 ∩Uc

0 ∪U1 ∩ A) → Hm−k(U1,U1 ∩ A)

as in Eq. (B.1) is defined. Then if t ∈ Ck(U1,U1 ∩Uc
0 ), we define a map

t ∩′ : Cm(X, A) → Cm−k(U1,U1 ∩ A)

as the composition of the maps

Cm(X, A) −→ Cm(X,Uc
0 ∪ A)

ρ−→ CU
m(X,Uc

0 ∪ A) −→ Cm(U1,U1 ∩Uc
0 ∪U1 ∩ A)

t ∩−−→ Cm−k(U1,U1 ∩ A)

where ρ is a map that subdivides chains with respect to the open cover U , e.g.
barycentric subdivision, see e.g. [5, Section IV.17]. The cap product in the last step
is then a chain-level version of the cap product in Eq. (B.1). This composition is a
chain map and therefore induces a map in homology

∩′ : Hk(U1,U1 ∩Uc
0 ) ⊗ Hm(X, A) → Hm−k(U1,U1 ∩ A)

which we will refer to as cap product as well. From now on, we will also denote
it by ∩ and from the context it will be clear whether we are referring to this cap
product or to the one of Eq. (B.1). We now state a naturality statement for the cap
product.

Proposition B.1. Let (X,U1,U0) and (Y, V1, V0) be triples of spaces and let A ⊆
X and B ⊆ Y be subsets such that the inclusion

C•(U1 ∩Uc
0 ) + C•(U1 ∩ A) ↪→ C•(U1 ∩ (Uc

0 ∪ A))
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is a quasi-isomorphism and similarly for V1, V0 and B. Then if f : (X,U1,U0) →
(Y, V1, V0) is a map of triples such that f (A) ⊆ B and if τ ∈ Hk(V1, V1 ∩ V c

0 ) is
a cohomology class then the diagram

Hm(X, A) Hm(Y, B)

Hm−k(U1,U1 ∩ A) Hm−k(V1, V1 ∩ B)

f∗

f ∗(τ )∩ τ∩
f∗

commutes.

Proof. The proof can be done analogously to the one of [9, Lemma A.1] since the
restriction A ⊆ U0 in the proof of [9, Lemma A.1] is not necessary. ��
We also need a statement about the compatibility of the relative cap product and
the usual cross products.

Proposition B.2. Let X and Y be topological spaces. Furthermore, let A,U0,U1 ⊆
X be subspaces such that (X,U1,U0) is a triple of spaces and such that the inclu-
sion

C•(U1 ∩Uc
0 ) + C•(U1 ∩ A) ↪→ C•(U1 ∩ (Uc

0 ∪ A))

is a quasi-isomorphism. Let ξ ∈ Hi (Y ), η ∈ H j (U1,U1 ∩ Uc
0 ), y ∈ Hm(Y ) and

z ∈ Hn(X, A). Then

(ξ × η) ∩ (y × z) = (−1) jm(ξ ∩ y) × (η ∩ z).

Proof. If

C•(U1 ∩Uc
0 ) + C•(U1 ∩ A) ↪→ C•(U1 ∩ (Uc

0 ∪ A))

is a quasi-isomorphism then clearly the same property holds for

C•(Y × (U1 ∩Uc
0 )) + C•(Y × (U1 ∩ A)) ↪→ C•(Y × (U1 ∩ (Uc

0 ∪ A))).

Consequently, the proof of the analogous property for the usual cap product carries
over, see [5, Theorem VI.5.4]. ��
Example B.3. Take X = I to be the unit interval with A = ∂ I = {0, 1}. Fur-
thermore, choose a small δ > 0 and a number δ0 > 0 with δ0 < δ. Clearly, the
homology group H1(I, ∂ I ) is generated by a class [I ] which is represented by the
relative cycle

σ : I → I, σ = idI .

Now, choose

U1 = ( 12 − δ, 1
2 + δ) and U0 = ( 12 − δ0,

1
2 + δ0).
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We have Uc
0 ∩ A = Uc

0 . Note that the subdivision with respect to the cover U =
{U1, int(Uc

0 )}, i.e. the map

C1(I,U
c
0 ) → CU

1 (I,Uc
0 )

can be chosen as follows. It maps σ to σ1 + σ2 + σ3 where

σ1 : I → [0, a1], σ2 : I → [a1, a2] and σ3 : I → [a2, 1]
are the respective affine linear maps and where

a1 ∈ ( 12 − δ, 1
2 − δ0) and a2 ∈ ( 12 + δ0,

1
2 + δ).

We now want to determine the cap product with a representative of a generator of

H1(U1,U1 ∩Uc
0 ) = H1(( 12 − δ, 1

2 + δ), ( 12 − δ, 1
2 − δ0] ∪ [ 12 + δ0,

1
2 − δ)

)
.

If we choose a cocycle τ ∈ C1(U1,U1 ∩ Uc
0 ) representing a generator of

H1(U1,U1 ∩ Uc
0 ) which is dual to σ2 ∈ C1(U1,U1 ∩ Uc

0 ) then it is clear that
we get

τ ∩ σ2 = t0 ∈ C0(U1)

for some point t0 ∈ U1. Therefore in homology, we see that the relative cap product
[τ ] ∩ [I ] is

[τ ] ∩ [I ] = [t0] ∈ H1(U1).

We use this example in Sect. 7.
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