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Abstract. In this paper we study the rationality problem for Fano threefolds X ⊂ P
p+1 of

genus p, that are Gorenstein, with at most canonical singularities. The main results are: (1)
a trigonal Fano threefold of genus p is rational as soon as p � 8 (this result has already
been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an
independent proof); (2) a non-trigonal Fano threefold of genus p � 7 containing a plane is
rational; (3) any Fano threefold of genus p � 17 is rational; (4) a Fano threefold of genus
p � 12 containing an ordinary line � in its smooth locus is rational.

1. Introduction

The problemof rationality of varietieswith ample anticanonical divisor is a classical
one that goes back more than one century ago with the work of Gino Fano. This
problem has been solved only for smooth Fano varieties of dimension 3 (see [11]).
From the modern point of view of the minimal model programme, it is however
important to consider also singular varieties. The rationality problem for singular
Fano threefolds has been considered in a series of papers by Yuri Prokorov.

Let X ⊂ P
p+1 be a Fano threefold of genus p, i.e., a Gorenstein threefold

whose hyperplane divisor is anticanonical, whose general hyperplane section is
thus a K3 surface and its general curve section is a canonical curve of genus p.

In [18,19] Prokhorov classifies non-rational Fano threefold with at worst termi-
nal Gorenstein singularities, rank of the Picard group equal to 1 and genus p � 5.
The outcome of his classification is essentially that such non-rational Fano three-
folds have genus p bounded by 9. In the earlier paper [15] Prokhorov considered
more generally Gorenstein Fano threefold with at worst canonical singularities, and
he proved that, if such a variety has at least one non-compound Du Val singular
point, then it is rational, except for a few cases that he fully described.

In the present paper, inspired by some ideas of Fano (see [7]), we consider
the rationality problem in the general case of Gorenstein Fano threefold with at
most canonical singularities, and no assumption on the Picard group. We prove the
following results. After §2 in which we collect some preliminaries, in §3 we prove
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that any trigonal Fano threefold of genus p � 8 is rational (see Theorem 3.1). This
result can be deduced from the classification of trigonal Gorenstein Fano threefolds
with at most canonical singularities given in [20]. Our proof here however does not
resort to this classification, is rather fast and conceptually easy and relies only on
projective geometric arguments. Then in §4 we prove that any Gorenstein Fano
threefold of genus p � 7 with at most canonical singularities, that is non-trigonal
and contains a plane is rational (see Theorem 4.2). The rationality question of Fano
threfolds of genus p � 6 containing a plane is very interesting and it is discussed
at the end of §4, in which we give various examples. Finally in §5 we give two
applications of Theorem 4.2. The first one is the quite general Theorem 5.1 to the
effect that any non-trigonal Fano threefold of genus p � 17 is rational. The second
one is Theorem 5.9 that says that any Fano threefold of genus p � 12 containing
an ordinary line in its smooth locus is rational (for the definition of ordinary line
see §2.5 below).

As said, our proofs are inspired by beautiful and very geometric ideas of Fano’s
in [7], althoughFano’s original arguments are incomplete and needed serious refine-
ments.

2. Preliminaries

2.1. Fano threefolds

In this paper we will consider Fano threefolds X , i.e., X is an irreducible, Goren-
stein variety of dimension three, with at most canonical singularities, with ample
anticanonical (Cartier) divisor −KX such that the linear system | − KX | is base
point free. We set

p = −K 3
X

2
+ 1

that is an integer, called the genus of X . Then dim(|−KX |) = p+1 and the general
surface in |−KX | is a K3 surface with at worst Du Val singularities.Wewill mainly
focus on the case in which −KX is very ample, so that the morphism associated to
the linear system | − KX | linearly normally embeds X as a non-degenerate variety
into Pp+1. Then the general curve section of X is a canonical curve of genus p and
deg(X) = 2p − 2. In this situation X is arithmetically Gorenstein. The hypothesis
that X has at most canonical singularities implies that X is not a cone.

The following proposition will be useful later:

Proposition 2.1. Let X ⊂ P
r be an irreducible, linearly normal, projective three-

fold such that its general hyperplane section is a K3 surface with at worst Du Val
singularities and its general curve section is canonically embedded. Then X is nor-
mal, Gorenstein,OX (KX ) ∼= OX (−1) and either X has only rational singularities,
in which case it is an anticanonically embedded Fano threefold, or it is a cone.

Proof. By [5, Prop. 1.2], X is normal, Gorenstein, and OX (KX ) ∼= OX (−1).
If X has non-rational singularities, that X is a cone by [9]. If X has
rational singularities, then X has canonical singularities (see [16, Introduction])
and it is a Fano threefold. ��
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2.2. Hyperelliptic Fano threefolds

Let X be a Fano threefold as above but −KX is not very ample. In this case X will
be called hyperelliptic because the curve C , intersection of two general elements of
| − KX |, is hyperelliptic. The hyperelliptic Fano threefolds have been classified in
[20, Thm. 1.5]. Typical examples of such threefolds are double covers of a rational
normal scroll threefold V of degree p−1 in Pp+1, branched along a (Weil) divisor
of a linear system of the form 4H − 2(p− 3)L , where H is the hyperplane class of
V and L is a plane generator of the scroll. We will need the following result which
follows from [20, Thm. 1.5, Prop. 1.10]:

Theorem 2.2. Let X be a hyperelliptic Fano threefold of genus p � 10. Then X is
rational.

2.3. The ideal of a Fano threefold

The following result is well known and it is a consequence of the classical Enriques–
Petri theorem for canonical curves (see, e.g., [20, Thm. 2.14]):

Proposition 2.3. Let X ⊂ P
p+1 be an anticanonically embedded Fano threefold of

genus p. Then either the ideal of X is generated by quadrics or one of the following
happens:

(i) p = 3 and X is a quartic fourfold in P
4;

(ii) p = 4 and X is a complete intersection of a quadric and a cubic in P5;
(iii) p � 5, any smooth curve section of X is trigonal, the ideal of X is gener-

ated by quadrics and cubics, the intersection of all quadrics containing X is
a 4-dimensional variety V of minimal degree p − 2 that is swept out by a 1-
dimensional rational family F of 3-dimensional linear spaces and X is cut out
on V by a cubic hypersurface containing p − 4 linear spaces of the family F;

(iv) p = 6, any smooth curve section of X is the canonical image of a smooth plane
quintic, the ideal of X is generated by quadrics and cubics, the intersection of
all quadrics containing X is a 4-dimensional variety V of minimal degree 4
that is a cone with vertex a line � over a Veronese surface of degree 4 in P

5,
and X is cut out on V by a cubic hypersurface containing a rank 3 quadric on
V that is the cone over a conic of the Veronese surface with vertex �.

The Fano threefolds of type (ii) and (iii) in the above proposition are said to be
trigonal. The Fano threefolds of type (iv) are said to present the plane quintic case.
Note that, as soon as p � 5, a trigonal Fano threefold is swept out by a pencil P of
cubic surfaces contained in the 3-dimensional linear spaces of the family F .

In the paper [20] there is a full classification of trigonal Fano threefolds: there
are 67 types of them.

2.4. Reducible hyperplane sections of a Fano threefold

Proposition 2.4. Let X ⊂ P
r be an anticanonically embedded Fano threefold. Let

S0 be a hyperplane section of X that is reducible as S0 = A + B, with A, B
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irreducible, distinct and reduced surfaces, with A rational. Then B is also rational.
Moreover, if C is the intersection curve C of A and B, then its strict transform on
the minimal desingularizations of A and B is anticanonical.

Proof. We can consider a family f : S −→ D, whereD is a disc, the fibre of f over
0 is S0 and the general fibre of f is a general hyperplane section of X , that is a K3
surface S. Let φ : X −→ D be the semistable reduction of f : S −→ D. Clearly
φ : X −→ D must be a type II degeneration (see [12,14]), hence the assertion
immediately follows. ��

2.5. Lines on Fano threefolds

In this section we first prove the following result due to Fano (see [7, §2]):

Proposition 2.5. (Fano’s Lemma) Let X ⊂ P
p+1 be an anticanonically embedded

Fano threefold and let R be any irreducible family of lines contained in X. Then
either R has dimension 2, in which case the lines in R fill up a plane, or R has
dimension at most 1.

Proof. First of all we notice that the dimension of R is at most 2. Indeed, the
dimension ofR can be at most 4 and if it is 4 then X isP3 (see [22]), a contradiction.
If the dimension ofR is 3, then X can either be a quadric or a scroll in planes (see
again [22]), and both cases are not possible. Let us now assume that the dimension
ofR is 2. If the closure of the union of the lines ofR is a surface, then this surface,
containing a two-dimensional family of lines, is a plane. So we may assume that
the closure of the union of the lines ofR is not a surface, so that it is the whole X .

Suppose first that, if P ∈ X is a general point, then there is a unique line
of R passing through P . Let S and S′ be two general hyperplane sections of X
intersecting along a smooth canonical curve C . There is an obvious birational map
π : S ��� S′, that maps a general point P ∈ S to the point P ′ ∈ S′, such that
the line 〈P, P ′〉 belongs to R. Since S, S′ are minimal K3 surfaces, π is actually
a morphism. Moreover C is pointwise fixed by π . This implies that π is in fact
induced by a projectivity between the hyperplanes spanned by S and S′, that by
abuse of notation we still denote by π : 〈S〉 −→ 〈S′〉. In fact this projectivity is
a perspective, since π fixes C and therefore it fixes the subpace 〈C〉 = 〈S〉 ∩ 〈S′〉
spanned by C . This immediately implies that X is a cone, a contradiction.

Suppose next that if P ∈ X is a general point, there is more than one line ofR
passing through P . Let us fix a general line � in R, two general points P, P ′ ∈ �

and the two tangent spaces TX,P , TX,P ′ to X at P, P ′ respectively. Then the join
� := 〈TX,P , TX,P ′ 〉 has dimension at most 5. We assume dim(�) = 5, otherwise
the proof runs in a similar way (and the details can be left to the reader).

Claim 2.6. The linear space � contains the tangent space TX,Q for all points Q of
� that are smooth for X.

Proof of the Claim. The family R can be interpreted as a surface � on the Grass-
mannian G(1, r) of lines in P

r , and � as a general point of �. Take any tangent
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vector t to � at �. As well know t can be interpreted as a projective map

τ : � −→ P�

where P� is the projective space of dimension r − 2 whose points are the planes
passing through �. The projective space P� contains the linear subspace P�,� of
dimension 3 whose points are the planes passing through � and contained in �.
Since � contains TX,P , TX,P ′ , it is immediate that τ(P) and τ(P ′) both belong to
P�,�, and therefore τ is a projectivity

τ : � −→ P�,�.

This immediately implies the assertion. ��
Let now R� be the scroll described by all lines in R that intersect �. By Claim

2.6, R� is contained in �. We may assume that R� is irreducible, otherwise we
substitute R� with an irreducible component of it. Now we have two possibilities:

(i) if T is a general point of R�, all lines of R passing through T are contained in
R�;

(ii) we are not in case (i), and then as T varies in R�, the lines ofR passing through
T fill up the whole ofR.

Claim 2.7. Case (i) above cannot happen.

Proof of the Claim. Suppose we are in case (i). Then either R� is a plane or R�

would be a scroll surface such that through its general point there is more than
one line passing, and this can happen only if R� is a quadric. But then X would
be swept out by a 1-dimensional family of planes or of quadrics, and therefore
its general hyperplane section would contain a 1-dimensional family of rational
curves, a contradiction. ��

So we are left with case (ii). In this case let T be a general point of R� and �′
a line of R passing through T and not contained in R�. Set �′ = 〈�, �′〉 that has
dimension at most 6. Then �′ contains the ruled surface R�′ , because any line of
R intersecting �′ intersects also R�, hence it intersects �. But then, since �′ is also
a general line ofR, all lines inR intersect also R�′ , hence they must lie in �′, thus
X is contained in �′. We conclude that p+ 1 � 6, hence p � 5. On the other hand
the Fano threefolds of genus p � 5 are well known and they do not contain a two
dimensional family of lines.

We will also need the following:

Proposition 2.8. Let X ⊂ P
r be an anticanonically embedded Fano threefold and

let � be a line contained in the smooth locus of X. Then for the normal bundle N�,X

of � in X there are only the following possibilities

either N�,X ∼= O� ⊕ O�(−1) or N�,X ∼= O�(−2) ⊕ O�(1). (1)

Proof. This has been proved in [10, Lemma (3.2)] under the hypothesis that X is
smooth. The proof runs exactly in the same way in our case. ��

If for a line � contained in the smooth locus of X the first of the two alternatives
in (1) occurs, one says that � is an ordinary line of X .
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3. Rationality of trigonal Fano threefolds

As already said, in the paper [20] there is a full classification of trigonal Fano
threefolds, and moreover in that paper the authors, going through the classification,
also determine which of these Fano threefolds are rational or not. In this section,
following ideas of Fano in [7], we will prove the following result:

Theorem 3.1. Let X ⊂ P
p+1 be a trigonal Fano threefold of genus p � 8. Then

X is rational.

This theorem could be deduced from the results in [20]. However the proof
presented here is independent form the one in [20], is conceptually rather easy,
very geometric, and does not resort to the full classification of [20].

Proof of Theorem 3.1. Recall that X is contained in a rational normal 4-dimensional
scroll in 3-dimensional spaces V of degree p−2. If we denote by H the hyperplane
class of V and by � the class of a 3-dimensional space of the rational family F ,
one has the linear equivalence of Weil divisors on V

X ∼ 3 H − (p − 4)�.

First we consider the case in which V is a cone. Note that the vertex of the
cone V cannot have dimension 2. In fact, if the vertex P of V is a plane, a cubic
hypersurface cutting out X on V , that has to contain p − 4 spaces of the family F ,
must contain P , and therefore the spaces of the family F would cut out on X , off
P , surfaces of degree at most 2, and this would imply that the general hyperplane
section of X is swept out by rational curves, a contradiction. Hence the vertex of
V is either a point or a line.

Suppose first the vertex O of V is a point. By the same argument we made
before, a cubic hypersurface F cutting out X on V must contain O , because it has
to contain p − 4 spaces of the family F . We will prove that F must be singular at
O . This immediately implies that X is rational, because then the cubic surfaces cut
out by the spaces in F on X are singular at the fixed point O . Then, by projecting
X from O to a hyperplane, we have a birational map of X to the hyperplane section
of V that is rational. So we dispose of this case by proving the:

Claim 3.2. In the above setting F is singular at O.

Proof of the Claim. Suppose, by contradiction, that F is smooth at O . We may
suppose that F contains p − 4 distinct spaces �i , 1 � i � p − 4, of the family F .
Then�1, . . . ,�p−4 have to be contained in the tangent hyperplane to F at O . This
hyperplane cuts out on V , off �1, . . . ,�p−4, a residual 3-dimensional variety Q
of degree 2. If Q is irreducible, then it is a quadric that intersects the linear spaces
of F in planes of a ruling, i.e., Q is a quadric of rank 4 in P4, with vertex O . So Q
is cut out by the cubic F along p − 4 � 4 planes of a ruling, which implies that F
has to contain Q, a contradiction, because this would imply that Q is a component
of X . If Q is reducible, then it splits in two 3-dimensional spaces, one of which
P intersects the linear spaces of F in planes. Then the same argument as above
proves that F should contain P, a contradiction. ��
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Next, we assume that the vertex of V is a line �. Again a cubic hypersurface F
cutting out X on V must contain �. As in the previous case the rationality of X is
a consequence of the following:

Claim 3.3. The cubic form F is singular in some point on �.

Proof of the Claim. Suppose, by contradiction, that F is smooth all along �. Then a
direct computation, that can be left to the reader, shows that the tangent hyperplane
to F at a point P ∈ � varies with P . Again we may suppose that F contains p − 4
distinct spaces�i , 1 � i � p−4, of the familyF . Since�1, . . . , �p−4 have to be
contained in the tangent hyperplane � to F at every point P ∈ �, then the span of
�1, . . . ,�p−4 has dimension not larger than p − 1. Hence we can find a pencil of
hyperplanes of Pp+1 containing �1, . . . ,�p−4. The hyperplanes of this pencil cut
out on V , off �1, . . . ,�p−4, a 1-dimensional family Q of residual 3-dimensional
varieties of degree 2.

Suppose the general variety Q ∈ Q is irreducible, so that it is a rank 3 quadric
with vertex the line �. By projecting down from �, V maps to a rational normal scroll
surface � ⊂ P

p−1 of degree p − 2, that has a 1-dimensional family of irreducible
conics, and this implies right away that p − 2 = deg(�) � 4, a contradiction,
because we are assuming p � 8.

If the general variety Q ∈ Q is reducible, then V has to contain a 3-dimensional
linear space P intersecting the linear spaces of F in planes. Then the same argu-
ment as in the proof of Claim 3.2 shows that p − 4 � 3, which leads again to a
contradiction. ��

So we can assume now that V is smooth, hence

V = P(OP1(d1) ⊕ OP1(d2) ⊕ OP1(d3) ⊕ OP1(d4))

with

d1 � d2 � d3 � d4 > 0

and

d1 + d2 + d3 + d4 = p − 2.

We examine separately the three different cases:

(i) d1 = d2 = d3 = d4 = d;
(ii) d1 > d2 = d3 = d4 = d;
(iii) all other cases, i.e., d1 � d2 > d3 � d4.

Claim 3.4. In case (i) the only possibility is d = 2, hence p = 10 and the resulting
Fano threefolds are rational.

Proof. In this case V is nothing else thanP1×P
3 embedded via the linear system of

divisors of bidegree (d, 1). Hence V contains a 3-dimensional family C of rational
normal curves of degree d = p−2

4 parametrized by P3, which are the images of the
lines P1 × {x}, with x ∈ P

3.
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Let F be a cubic hypersurface that cuts out X on V off p − 4 distinct spaces
�i , 1 � i � p − 4, of the family F . Since F cannot contain all the curves of C,
one must have

p − 4 � 3d = 3
p − 2

4
which implies p � 10. But since p − 2 ≡ 0 modulo 4, the only possibility is
p = 10 and d = 2. In this case it is immediate that X is isomorphic to P

1 × S,
where S is the cubic surface cut out by F on a 3-dimensional space of the family
F , proving the assertion. ��
Claim 3.5. In case (ii) there are no Fano threefolds with p � 8.

Proof of the Claim. As in the proof of Claim 3.4, we must have

p − 4 � 3d � 3
p − 3

4

i.e., p � 7, a contradiction. ��
To examine case (iii), and finish the proof of the theorem, we do the following.

Let � be a general 3-dimensional linear space of the family F of V . Let us project
down X and V from � to a Pp−3. In this projection V maps birationally to V ′ and
X maps to X ′. The variety V ′ is the rational normal scroll of degree p − 6 that is
the image of

P(OP1(d1 − 1) ⊕ OP1(d2 − 1) ⊕ OP1(d3 − 1) ⊕ OP1(d4 − 1))

in Pp−3 via its O(1) line bundle.
We have:

(a) V ′ is smooth as soon as d4 � 2 and in this case the projection of V to V ′ induces
an isomorphism V −→ V ′ that restricts to an isomorphism X −→ X ′;

(b) V ′ is a cone with vertex a single point O if d3 > d4 = 1;
(c) V ′ is a cone with vertex a line �, if d3 = d4 = 1.

In case (b) the projection of V to V ′ induces a morphism V −→ V ′, that
contracts a line r to O and it is an isomorphism between V \ r and V ′ \ {O}. In
case (c) the projection of V to V ′ induces a morphism V −→ V ′, that contracts a
smooth quadric Q to � and it is an isomorphism between V \ Q and V ′ \ �.

In either case the projection ofV toV ′ induces a birationalmorphism X −→ X ′.
This implies that, if A is a general cubic surface in the pencil P cut out on X by
the linear subspaces of the family F , then the general hyperplane section of X
containing A is of the form A + B, with B also irreducible. By Proposition 2.4, B
is also rational, and it is birationally mapped to the general hyperplane section of
X ′, whose general hyperplane section is thus rational. Then by the results in [4],
X ′ ⊂ P

p−3, with p − 3 � 5, is rational, hence X is rational, finishing our proof. ��
Remark 3.6. Theorem 3.1 is sharp. Indeed, in [20] there are examples of non-
rational Fano threefolds of genus p � 7 that are not cut out by quadrics.

Remark 3.7. It is possible that the same ideas as in the proof of Theorem 3.1 can
be used to prove Theorem 2.2, but we do not dwell on this here.
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4. Fano threefolds containing a plane

In this section we will consider the rationality question for Fano threefolds con-
taining a plane. In view of Theorem 3.1 we can focus on the case in which the Fano
threefold is cut out by quadrics. First we prove the following:

Lemma 4.1. Let X ⊂ P
p+1, with p � 5, be an anticanonically embedded Fano

threefold of genus p that is non-trigonal and does not present the plane quintic
case and contains a plane �. Then the projection from � induces a birational map
π : X ��� X ′ ⊂ P

p−2.

Proof. Let P ∈ X be a general point. Consider the 3-dimensional linear space
�P = 〈P,�〉. Let us look at the intersection of �P with X . Since X is cut out by
quadrics (see Proposition 2.3), the intersection of X with �P consists of � plus a
linear subspace L of �P containing P . The subspace L cannot be a plane, since
otherwise X would be a scroll in planes, its general hyperplane section would be
a scroll, and this is not possible. Moreover L cannot be a line, by Fano’s Lemma
2.5. So L = {P} and the assertion follows. ��

Next we can prove the:

Theorem 4.2. Let X ⊂ P
p+1, be an anticanonically embedded Fano threefold of

genus p � 7 that is non-trigonal and contains a plane �. Then X is rational.

Proof. Let S be a general hyperplane section of X containing �. Then, by Lemma
4.1, we have S = � + F , where F is irreducible and reduced. By Proposition 2.4,
F is rational, and this implies that if X ′ ⊂ P

p−2 is the image of the projection of
X from �, then the general hyperplane section of X ′ is rational. Since p − 2 > 4,
by the results in [4], X ′ is rational, and therefore, by Lemma 4.1, X is rational. ��
Remark 4.3. Let X ⊂ P

p+1 be an anticanonically embedded Fano threefold of
genus p � 5 that is non-trigonal, does not present the plane quintic case, and
contains a plane �. If p = 5, then X is rational by Lemma 4.1. If p = 6 instead,
it could be the case that the image X ′ ⊂ P

4 of the projection of X from � is a
smooth cubic threefold, in which case X , that is birational to X ′, is unirational but
not rational. This can actually occur, as the following example (due to Fano, see
[6]) shows.

Let X ′ ⊂ P
4 be a smooth cubic hypersurface and let C ⊂ X ′ be a sufficiently

general rational normal cubic curve contained in X ′. Note that the span of C is a
hyperplane in P

4, so that C sits on a unique hyperplane section Y of X ′, that, by
generality, we may assume to be smooth. The linear system |IC,P4(2)| of quadrics
passing through C has dimension 7, and it determines a rational map φ : X ′ ���
X ⊂ P

7, with X a threefold. It is immediate to see that X is an anticanonically
embedded Fano threefold of genus 6. It contains a plane �, that is the image of
the cubic surface Y via the map φ. The projection of X from � is exactly X ′. The
reader will check that X has six double points (that are the images via φ of the
six chords of C lying on Y ) all located on the plane �. If S denotes a hyperplane
section of X , the linear system |S − �| of surfaces of degree 9 on X , cuts out on
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� the complete linear system of dimension 3 of cubics with six base points at the
double points of X on �. This implies that there is a unique hyperplane that is
tangent to X all along �.

However, there are also anticanonically embedded Fano threefolds of genus 6
containing a plane that are rational, as the following example (again due to Fano,
see [6]) shows.

Let X ′ ⊂ P
4 be a smooth quadric hypersurface. Let Y be a smooth complete

intersection of X ′ with another quadric, so that Y is a Del Pezzo surface of degree
4 in P4, that is the image of P2 via the linear system (3; 15) of cubic curves passing
through 5 points in general position. We can consider a smooth curve C of degree 9
and genus 6 on Y . This is the image of a general curve in the linear system (6; 24, 1)
of sextics with 4 double base points and one simple base point at the base points of
the system (3; 15). The linear system L := |IC,X ′(3)| cut out on X ′ by the cubic
hypersurfaces passing through C has dimension 7, and it determines a rational map
ψ : X ′ ��� X ⊂ P

7, with X an anticanonically embedded Fano threefold of genus
6. It contains a plane �, that is the image of the quartic surface Y via the map ψ .
The projection of X from� is exactly X ′. One checks that X has five double points
(that are the images via ψ of the five three-secant lines of C lying on Y ) all on �.
If S denotes a hyperplane section of X , the linear system |S−�| cuts out on � the
complete linear system of dimension 4 of cubics with five base points at the double
points of X on �.

Remark 4.4. As we saw in Remark 4.3, Theorem 4.2 is sharp, since there are Fano
threefolds of genus 6 cut out by quadrics, containing a plane and not rational,
whereas, as we saw, Fano threefolds of genus 5, complete intersection of three
quadrics, containing a plane are rational.More precisely (see [6]), consider a smooth
cubic surface Y in P3 that is the image of P2 via the linear system (3; 16) of cubic
curves passing through 6 points in general position. Consider a smooth curve C
of degree 9 and genus 9 on Y . This is the image of a general curve in the linear
system (7; 26) of septics with double base points at the base points of the system
(3; 16). Consider the linear system |IC,P3(4)|, that has dimension 6. It determines
a rational map η : P3 ��� X ⊂ P

6, where X is an anticanonically embedded Fano
threefold of genus 5 containing a plane � that is the image of the cubic Y . This X
is the most general Fano threefold of genus 5 containing a plane �. It has exactly
six double points along the plane �, corresponding to the contraction of the six
4–secant lines to C contained in the surface Y .

It is interesting to look at the cases 3 � p � 4, in which an anticanonically
embedded Fano threefold is never cut out by quadrics.

The case p = 4 is well known. Let X ⊂ P
5 be a general Fano threefold of genus

4 containing a plane �. Remember that X is a complete intersection of type (2, 3).
The projection from � to a plane endowes X with a birational structure of conic
bundle. Actually (see [1, Ex. 4.10.3]), X is birational to a standard conic bundle
(see [17, Def. 3.1]) on P

2 with discriminant curve of degree 7, and therefore X is
not rational (see [1, Thm. 4.9]).

The case p = 3 of a quartic threefold X in P
4 containing a plane � is still

rather mysterious. A general such quartic X has exactly 9 ordinary double points



On the rationality of certain Fano threefolds 213

along the plane � and no other singularity. Such an X is unirational (see [13, Thm
1.1]), but it is in general not rational (see [2, Thm. 6]). However there are special
such quartics that are rational. Consider in fact the following example.

Look again at a general anticanonically embedded Fano threefold X of genus
5 containing a plane �. There are lines of X not intersecting �. If we think to X
as the image of the map η : P3 ��� X ⊂ P

6 we considered above, we get such
lines as images of trisecant lines to the curve C of degree 9 and genus 9 on Y . If �

is such a line, project X down to P4 from �. One checks that the image is a quartic
hypersurface X ′ containing a plane �′ which is the image of �, and it is rational
as well as X . Note that, besides the plane �′, X ′ contains also a scroll, that is the
image of the exceptional divisor of the blow–up of X along �.

Another interesting example is due to Fano (see again [6]). Consider in P
6 a

smooth rational normal scroll R of degree 3 in a codimension 2 linear subspace T .
Then consider an anticanonically embedded Fano 3-fold X of genus 5 containing
R, obtained as the complete intersection of three general quadrics in P6 containing
R. The pencil of hyperplanes through T cuts out on X , off R, a pencilP of surfaces
of degree 5, that are rational (see Proposition 2.4), and are, in general, smooth Del
Pezzo surfaces. The pencil P cuts out on R a pencil of anticanonical curves (see
again Proposition 2.4), that are curves of genus 1 and degree 5, with 8 base points
that are double points for X . Now let us project X down to P

4 from a general
line generator � of R. The image of the projection is a quartic hypersurface X ′,
containing a plane � that is the image of R under the projection. Along �, the
hypersurface X ′ has, as expected, 9 double points, i.e., the images of the 8 double
points of X along R and one further double point arising from the contraction of
the line directrix of R. The pencil P is mapped via the projection to the pencil P ′
of cubic surfaces cut out on X ′ off � by the hyperplanes through �. Each quintic
surface 
 ∈ P intersects � in two points, because an anticanonical curve of R
intersects � in two points. In the projections these two points produce a pair of skew
lines r, r ′ on the image 
′ of 
. Since, as it is well known, 
′ is rational in the
field of rationality of r and r ′, we conclude that X ′ is rational, hence X is rational.
Of course X ′ contains also a scroll, that is the image of the exceptional divisor of
the blow–up of X along �.

5. Two applications

In this section, inspired by arguments of Fano in [7], we will give two applications
of Theorem 4.2 to rationality of non-hyperelliptic and non-trigonal Fano threefolds
of large enough genus. The first one is the following:

Theorem 5.1. Let X ⊂ P
p+1 be an anticanonically embedded, non-trigonal Fano

threefold of genus p � 17. Then X is rational.

Proof. Let P ∈ X be a general point. What we will do is to consider the tangential
projection at P , i.e., the projection of X from the tangent space TX,P to X at P . To
do this we need a few preliminary facts. First of all we prove the:

Claim 5.2. In the above set up, TX,P intersects X only at P.
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Proof of the Claim. Suppose, by contradiction that TX,P intersects X at some point
P ′ �= P . Then the line 〈P, P ′〉 has intersection multiplicity 2 with X at P and
contains also P ′, so it sits on X , because X is cut out by quadrics (see Proposition
2.3). This contradicts Fano’s Lemma 2.5. ��

Consider next the second fundamental form I IP of X at P (see [8, p. 263 and
ff.]). Remember that I IP can be considered as a linear system of conics on the
exceptional divisor E ∼= P

2 of the blow–up of X at P . This linear system has no
base points. In fact the base points of the second fundamental form correspond to
asymptotic directions to X at P , i.e., the directions of lines having with X at P
intersection multiplicity at least 3 (see [21, p. 63]). There is no such a direction by
Fano’s Lemma 2.5. All this implies the following:

Claim 5.3. Consider the linear system HP of hyperplane sections of X that are
tangent to X at P, i.e., sections made with hyperplanes that contain TX,P . Then
the general member of HP has a double point of type A1 at P and no other
singularity except the intersections with the singular locus of X. Moreover three
general members of HP have intersection multiplicity 8 at P. Finally the strict
transform of HP on the blow–up of X at P has no base points and its general
member is a K3 surface.

Next we make the:

Claim 5.4. The Fano threefold X is not defective, i.e., the variety of secant lines to
X has the expected dimension 7.

Proof of the Claim. Defective threefolds have been classified (see [3, Thm. 1.1]).
An irreducible, non degenerate, projective threefold, not a cone, in P

r is defective
if and only if r � 6 and it is of one of the following types:

(1) it sits in a 4-dimensional cone over a curve;

(2) r = 7 and it sits in a 4-dimensional cone over a Veronese surface in P5;
(3) it is the 2–Veronese image of P3 in P9 or a projection of it in P8 or P7;
(4) r = 7 and it is the hyperplane section of the Segre embedding of P2 ×P

2 in P8.

Since p � 17, our X cannot be of types (2), (3), (4). Suppose it is of type
(1). Then it sits in a 4-dimensional cone over a curve, that is swept out by a
1-dimensional family V of linear spaces of dimension 3. Since X is cut out by
quadrics, the intersection of X with the spaces of V are surfaces of degree at most
2. Then the general hyperplane sections of X would be swept out by rational curves,
a contradiction. ��

It is a consequence of the classical Terracini’s Lemma that, if X is not defective,
then the tangential projection of X at a general point P ∈ X is generically finite to
its image (see [21, Thm. 1.4.1, Prop. 1.4.10]). We denote by τ : X ��� X ′ ⊂ P

p−3

the tangential projection in question and we let ν be its degree.

Claim 5.5. One has ν � 2. If ν = 2, then X ′ is a threefold of minimal degree d −5
in Pp−3.
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Proof of the Claim. Since deg(X) = 2p−2, by Claim 5.3 we have that the degree
of X ′ is

2p − 2 − 8

ν
� p − 5

which implies that ν � 2 and if ν = 2 the equality holds, proving the assertion. ��
We first examine the case ν = 2. In this case the blow–up ˜X of X at P turns

out to be a hyperelliptic Fano threefold, of genus p − 4. Under our hypotheses, we
have p−4 � 10, hence ˜X is rational by Theorem 2.2, thus X is rational, as wanted.

Assume next ν = 1, i.e., the tangential projection is birational.

Claim 5.6. In this setting, X ′ is an anticanonically embedded Fano threefold of
genus p − 4.

Proof of the Claim 5.6. The general hyperplane section S′ of X ′ is the birational
image under the tangential projection τ of a general tangent hyperplane section S
of X at P , and this is a K3 surface with at worst Du Val singularities. Precisely,
S′ is isomorphic to the (partial) desingularization of S at the A1 singular point that
S has at P . By Proposition 2.1, X ′ is normal and to prove the claim, it suffices to
show that X ′ is not a cone. We argue by contradiction and suppose that X ′ is a cone,
with vertex a point O .

We first note that O must be a fundamental point of the inverse of the tangential
projection τ : X ��� X ′ from P ∈ X . Otherwise therewould be a point Q ∈ X such
that τ(Q) = O and τ would induce an isomorphism between the neighborhoods
of Q ∈ X and O ∈ X ′. This is a contradiction, because it would imply that Q is a
non-rational singularity of X , which is impossible by Proposition 2.1 because X is
a Fano threefold.

Since O is a fundamental point of the inverse of the tangential projection, its
inverse image γ via τ is positive dimensional and connected, by Zariski’s Main
Theorem, and it is contained in the 4-dimensional linear space spanned by TX,P

and any point of γ . By Claim 5.2, γ can only be a curve that intersects TX,P only
at P .

The partial desingularization ˜X ′ −→ X ′ obtained by blowing up at O , has
exceptional divisor over O isomorphic to the general hyperplane section of X ′,
that is a K3 surface. On the other hand it is possible to obtain such a partial desin-
gularization also by blowing up X along γ . This gives a contradiction because
in this way we would never get an exceptional divisor over O birational to a K3
surface. ��

The tangential projection has an indeterminacy point at P , that we can resolve
by blowing up P . So it becomes a morphism τ : ˜X −→ X ′. Then X ′ contains the
image� of the exceptional divisor E of ˜X over P , via the second fundamental form
I IP . Since I IP has no base points, we have 5 � dim(I IP ) � 2, and we examine
separately the various cases.

The case dim(I IP ) = 2 does not happen. Indeed in this case � would be a
plane of quadruple points for X ′, which is not possible, since the general hyperplane
section of X ′ is a K3 surface with at most Du Val singularities.
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The case dim(I IP ) = 3 does not happen either. In fact in this case � would
be a Roman Steiner surface of degree 4 in a 3-dimensional linear space, i.e., the
projection in P

3 of a Veronese surface in P
5. Since X ′ is cut out by quadrics and

cubics (at most), this cannot be the case.
Suppose dim(I IP ) = 4. Then � is a projection of a Veronese surface in a

4-dimensional linear space. Such a surface is not contained in any quadric. So
any quadric containing X ′ has to contain the whole 4-dimensional linear space
containing �. This implies that X ′ is trigonal. Since in our case p − 4 � 8, then,
by Theorem 3.1, X ′ is rational, and therefore also X is rational.

Suppose finally that dim(I IP ) = 5. Then � is a Veronese surface in a 5-
dimensional linear space. Note that, by what we have seen above, a general hyper-
plane section S′ of X ′ (that is aK3 surface) intersects� along an irreducible rational
normal quartic curve D along which S′ is smooth: D is the (−2)–curve that is the
resolution of the A1 double point that the general tangent hyperplane section of X
at P has at P . Accordingly, if there are singular points of X ′ on �, they do not fill
up a curve (because there are no such singular points of D), so there can be at most
finitely many singular points of X ′ along �.

Let now  be a general conic of �. By the above considerations, X ′ is smooth
along . If X ′ is trigonal, then as above X ′ is rational and so also X is rational. So
we can assume X ′ is not trigonal, hence it is cut out by quadrics. Then the plane �

spanned by  intersects X ′ scheme theoretically only along , otherwise it would
be contained in X ′, and then, by the genericity of  in �, X ′ would contain the
whole secant variety of � that has dimension 4, a contradiction.

Claim 5.7. The general hyperplane section of X ′ containing  is smooth along 

and it is a K3 surface.

Proof of the Claim. We imitate the proof of [10, Lemma (3.2)(i)]. Consider the
linear systemH of hyperplane sections of X ′ containing . By what we have seen
above, the base locus scheme of H is just . By Bertini’s theorem, the general
surface inH is irreducible and it has singular points only at the intersection with
the singular locus of X ′ and perhaps along. Howeverwewill show that the general
surface inH is smooth along , and this will prove the claim.

Consider the projection π : X ′ ⊂ P
p−3 ��� X ′′ ⊂ P

p−6 of X from the plane
� spanned by , that is given by the linear system H . Let σ : P′ −→ P

p−3 be
the blow–up of . Then the composition π ◦ σ is a morphism f : P′ → P

p−6. If
σ ′ : ˜X ′ → X ′ is the blow–up of X ′ along, then ˜X ′ ⊂ P

′ and ˜X ′ is smooth along the
exceptional divisor E of the blow–up.We have themorphism f̃ that is the restriction
of f to ˜X ′. If H ′ denotes the general hyperplane section of X ′, then f̃ is given by
the linear system |(σ ′)∗(H ′) − E |. This linear system has no base points, because
it is the restriction to ˜X ′ of a linear system on P′ with the same properties, i.e., the
linear system that determines the morphism f . The restriction of |(σ ′)∗(H ′) − E |
to E has also no base points, and it consists of sections of the map σ ′ : E −→ .
Hence the general surface S′′ ∈ |(σ ′)∗(H ′) − E | intersects E along a smooth,
irreducible section ′ of σ ′ : E −→ . Then the map σ : S′′ → S′ := σ(S′′) is an
isomorphism, and since S′ has no singular points along ′, then S′ is smooth along
, as wanted. ��
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The projection π : X ′ ��� X ′′ is generically finite. In fact, let P ′ ∈ X ′ be a
general point and let us consider the linear space of dimension 3 generated by �

and P ′. If the fibre of P ′ via π is positive dimensional, since it has to be cut out in
〈�, P ′〉 by quadrics passing through , it could only be either a quadric or a plane
or a line or a conic. The first two cases are impossible because then the general
hyperplane section of X ′ containing  would be swept out by rational curves, a
contradiction to Claim 5.7. It is also impossible that the fibre is a line, because of
Fano’s Lemma 2.5. If the general fibre is a conic we also come to a contradiction
because then the general hyperplane section of X ′ containing  would be swept
out by conics, a contradiction again to Claim 5.7.

Let ˜X ′ be the blow–up of X ′ along  and let E be the exceptional divisor. LetH
be the transform on ˜X ′ of a general hyperplane section of X ′. Then one computes
(H − E)3 = 2p − 16. Let μ be the degree of the map π : X ′ ��� X ′′. Then the
degree of X ′′ is

2p − 16

μ
� p − 8

that, given the hypothesis on p, implies μ � 2. Suppose μ = 2, that yields that X ′′
has degree p− 8, i.e., X ′′ is a threefold of minimal degree and ˜X ′ is a hyperelliptic
Fano threefold of genus p − 7. Since p � 17, ˜X ′ is rational by Theorem 2.2, and
therefore X is rational, as wanted.

Suppose next that μ = 1.

Claim 5.8. If μ = 1, then X ′′ is an anticanonically embedded Fano threefold.

Proof of Claim 5.8. By Claim 5.7, the general hyperplane section of X ′′ is a K3
surface with at worst Du Val singularities. By Proposition 2.1, X ′′ is normal and
to prove the claim it suffices to show that X ′′ has only rational singularities. To
prove this, let O ∈ X ′′ be any singular point. If the inverse of the projection
π : X ′ ��� X ′′ is defined at O , then O is locally isomorphic to a point of X ′, that is
a rational singularity by Proposition 2.1, and we are done. Suppose that the inverse
of π : X ′ ��� X ′′ is not defined at O . Then the positive dimensional inverse image
Z of O via π sits in the 3-dimensional linear space spanned by the plane � and
any point of Z . As we have seen above, Z can only be either a quadric or a plane or
a line or a conic. In any event, the singularity of X ′′ at O is rational, as wanted. ��

Now, if X ′′ is trigonal, it is rational because p � 17 (see Theorem 3.1). Suppose
then X ′′ is non-trigonal. It contains the image of� via the projectionπ : X ′ ��� X ′′,
and this image is a plane. Then X ′′ is rational because of Theorem 4.2. So X is
rational as desired. ��

The second application is the following:

Theorem 5.9. Let X ⊂ P
p+1 be an anticanonically embedded Fano threefold of

genus p � 12 containing an ordinary line � in its smooth locus. Then X is rational.

Proof. Because of Theorem 3.1 we may assume that X is non-trigonal. Then the
projection σ : X ��� X ′ ⊂ P

p−1 from the line � is birational to the image X ′.
Indeed, let P ∈ X be a general point and let � be the plane spanned by � and P .
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The fibre of σ through P is cut out on�, off � by quadrics containing �. So this fibre
can either be a line or the single point P . The former case cannot happen because
of Fano’s Lemma 2.5. This proves that σ : X ��� X ′ is birational. Similarly as
in Claim 5.7 (or arguing as in [10, Lemma (3.2)(i)]) one proves that the general
hyperplane section of X containing � is smooth along � and it is a K3 surface.
Then, arguing as in Claim 5.8, we see that X ′ is also an anticanonically embedded
Fano threefold of genus p − 2. If it is trigonal, then it is rational by Theorem 3.1
and X is also rational. Suppose then it is not trigonal. Let ˜X be the blow–up of X
along the line � and let R be the exceptional divisor. The rational map σ extends
to a morphism σ̃ : ˜X −→ X ′, and we can consider the image R′ of R via σ̃ .
Since a general codimension 2 linear space passing through � intersects X , off �,
along a curve that intersects � in three points, we see that deg(R′) = 3 and, by
Proposition 2.8, R′ ∼= R is a smooth rational normal scroll of degree 3 in its 4-
dimensional linear space. If S is a general hyperplane section of X containing �, its
strict transform ˜S ∼= S on ˜X intersects R along a hyperplane section C of R in its
4-dimensional linear ambient space. Since S is smooth along �, ˜S is smooth along
C and S′ = σ(S) is smooth along its intersection with R′ that, in the isomorphism
R ∼= R′, is identified with the hyperplane sectionC of R′. This implies that, if there
are singular points of X ′ along R′, they are only finitely many.

Now consider a general line �′ of the ruling on R′. By the above argument, �′
is contained in the smooth locus of X ′. Since we are assuming X ′ non-trigonal,
as above the projection σ ′ : X ′ ��� X ′′ ⊂ P

p−3 is birational and, by the same
argument as above, X ′′ is a Fano threefold of genus p− 4. If it is trigonal, then it is
rational because of Theorem 3.1, hence X is rational. If it is not trigonal, it contains
the image of R′ via the projection σ ′, and this image is a plane. Then X ′′ is rational
by Theorem 4.2, hence X is rational again, as desired. ��
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