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Abstract. On any smooth n-dimensional variety we give a pretty precise picture of rank r
Ulrich vector bundles with numerical dimension at most n2 +r−1. Also, we classify non-big
Ulrich vector bundles on quadrics and on the Del Pezzo fourfold of degree 6.

1. Introduction

Let X ⊆ P
N be a smooth irreducible complex closed variety of dimension n ≥ 1.

In this paper we consider the investigation of positivity properties of Ulrich vector
bundles on X . Recall that a vector bundle E on X is Ulrich if Hi (E(−p)) = 0
for all i ≥ 0 and 1 ≤ p ≤ n. The importance of Ulrich vector bundles and the
consequences on the geometry of X are well described for example in [2,4,7] and
references therein.

It was highlighted in our previous work [11,12,14] that most Ulrich vector
bundles should be at least big, unless X is covered by linear spaces of positive
dimension. In particular any Ulrich vector bundle is very ample if X does not
contain lines by [14, Thm. 1]. If n ≤ 3, the classification of non-big Ulrich vector
bundles was achieved in [12]. On the other hand, when studying higher dimensional
varieties, several new difficulties appear. For example, before this paper, as far as we
know, no class of varieties of arbitrary dimension n ≥ 1 for which non-big Ulrich
vector bundles were classified was known except for (Pn,OPn (d)) (in which case
either d = 1 and the only Ulrich vector bundles are O⊕r

Pn
, r ≥ 1 or d ≥ 2 and they

are all very ample by what we said above).
A nice class of n-dimensional varieties, just coming after projective spaces, and

for which Ulrich vector bundles are known, is the one of quadrics Qn ⊂ P
n+1. In
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fact, it follows by [3, Rmk. 2.5(4)] (see also [2, Prop. 2.5], [1, Exa. 3.2]) that the
only indecomposable Ulrich vector bundles on Qn are the spinor bundles S,S ′ and
S ′′ (see Definition 3.1). Note that they are never ample as their restriction to lines
is not ample by [16, Cor. 1.6]. On the other hand, it was not known which of these
are big, unless n ≤ 8, this case following easily from [16, Rmk. 2.9].

Our first result is a classification of non-big Ulrich vector bundles on quadrics.

Theorem 1. An Ulrich vector bundle E on Qn is not big if and only if E is one of
the following

Table 1. Non-big Ulrich bundles on Qn

n E
2 (S ′)⊕r , (S ′′)⊕r , r ≥ 1
3 S
4 S ′,S ′′,S ′ ⊕ S ′′
5 S
6 S ′,S ′′, (S ′)⊕2, (S ′′)⊕2

10 S ′,S ′′

The proof of the above theorem introduces, in fact on any variety X , a new
geometrical estimate on the relation between Ulrich vector bundles and the Fano
variety of some linear subspaces contained in X , see Proposition 4.1. This estimate
and the one given in Proposition 4.6 are of independent interest and might have
several applications. We show this by classifying Ulrich vector bundles of small
numerical dimension ν(E) := ν(OP(E)(1)), a measure of positivity of E . In general,
in the presence of a rank r Ulrich vector bundle E , [14, Thm. 2] shows that we can
find two kinds of linear spaces covering X , namely the fibers of �E : X → G(r −
1,PH0(E)) and the images on X of the fibers of ϕE : P(E) → PH0(OP(E)(1)).
Whenever the dimension of these spaces is at least n

2 , Sato’s classification [17] can
be applied. In [14, Cor. 4] we dealt with the case of small numerical dimension of
det E , corresponding to fibers of �E . Instead, dealing with ν(E), we have that X
is covered by linear spaces of dimension n + r − 1 − ν(E), thus giving rise to the
natural bound ν(E) ≤ n

2 + r − 1, appearing in the theorem below. We have:

Theorem 2. Let X ⊆ P
N be a smooth irreducible variety of dimension n ≥ 1

and let E be a rank r Ulrich vector bundle on X. Then ν(E) > n
2 + r − 1 unless

(X,OX (1)) is either:

(i) (P(F),OP(F)(1)), where F is a rank n − b+ 1 very ample vector bundle over
a smooth irreducible variety B of dimension b with 0 ≤ b ≤ n

2 .
(ii) (Q2m,OQ2m (1))with 1 ≤ m ≤ 3, ν(E) = m+r−1 and E ∼= (S ′)⊕r or (S ′′)⊕r

when m = 1, S ′ or S ′′ when 2 ≤ m ≤ 3.

Moreover, in case (i) with ν(E) ≤ n
2 + r − 1, denoting by p : X ∼= P(F) → B the

projection map, we have two cases:
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(i1) If c1(E)n = 0, then ν(E) = b+r −1 and E ∼= p∗(G(detF)), where G is a rank
r vector bundle on B such that Hq(G ⊗ SkF∗) = 0 for q ≥ 0, 0 ≤ k ≤ b − 1
and c1(G(detF))b �= 0.

(i2) If c1(E)n > 0, then b ≤ n
2 − 1, ν(E) ≥ b + r and if ν(E) = b + r then

E| f ∼= TPn−b (−1) ⊕ O⊕(r−n+b)
Pn−b for any fiber f = P

n−b of p.

Note that the cases (i1) and (i2) actually occur at least in some special instances
(for (i2) see Example 4.5, for (i1) pick any E ∼= p∗(G(detF)) with G as in (i1), see
[11, Lemma 4.1(ii), Prop.’s 6.1 and 6.2], [13, Thm. 1] for some specific examples),
while the cases in (ii) actually occur by Proposition 3.3(ii).

It is usually difficult to compute the numerical dimension of Ulrich vector
bundles, even for simple classes of varieties. Aside from projective spaces, perhaps
the simplest ones are quadrics and linear Pk-bundles. While for quadrics this can
be now done, see Remark 4.2, the same cannot be said for linear Pk-bundles. In
the latter case we have useful information when k ≤ 2 by Lemma 4.4: there are
only two cases: ν(E) = n − k + r − 1 (and this is well known) or n − k + r . A
special but classical example with k = 2 is the Del Pezzo fourfold of degree 6.
Another nice application of the methods in this paper is the classification of non-big
Ulrich vector bundles on it, obtained using Lemma 4.4 and the resolution of Ulrich
bundles given in [15].

Theorem 3. LetP2×P
2 ⊂ P

8 be the Segre embedding and let E be a rank r non-big
Ulrich vector bundle onP2×P

2. ThenE ∼= p∗(OP2(2))
⊕r , where p : P2×P

2 → P
2

is one of the two projections.

Finally, we emphasize that Theorems 1, 2 and 3 will be important in our clas-
sification of non-big Ulrich vector bundles on fourfolds given in [13].

2. Notation and standard facts about (Ulrich) vector bundles

Throughout this sectionwewill let X ⊆ P
N be a smooth irreducible closed complex

variety of dimension n ≥ 1, degree d and H a hyperplane divisor on X .

Definition 2.1. For k ∈ Z : 1 ≤ k ≤ n we denote by Fk(X) the Fano variety of k-
dimensional linear subspaces of PN that are contained in X . For x ∈ X , we denote
by Fk(X, x) ⊂ Fk(X) the subvariety of k-dimensional linear subspaces passing
through x .

Definition 2.2. Given a nef line bundle L on X we denote by

ν(L) = max{k ≥ 0 : c1(L)k �= 0}
the numerical dimension of L.

As is well known (see for example [8, (3.8)]), when L is globally generated,
ν(L) is the dimension of the image of the morphism induced by L.
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Definition 2.3. Let E be a rank r vector bundle on X . We denote by c(E) its Chern
polynomial and by s(E) its Segre polynomial. We set P(E) = Proj(Sym(E)) with
projection map π : P(E) → X and tautological line bundle OP(E)(1). We say that
E is nef (big, ample, very ample) if OP(E)(1) is nef (big, ample, very ample). If E
is nef, we define the numerical dimension of E by ν(E) := ν(OP(E)(1)). When E
is globally generated we define the map determined by E as

� = �E : X → G(r − 1,PH0(E))

and we set φ(E) for the dimension of the general fiber of �E . Moreover, we set

ϕ = ϕE = ϕOP(E)(1) : P(E) → PH0(E)

�y = π(ϕ−1(y)), y ∈ ϕ(P(E))

and

Px = ϕ(P(Ex )).
Note that �(x) = [Px ] is the point in G(r − 1,PH0(E)) corresponding to Px .

Lemma 2.4. Let E be a rank r globally generated vector bundle on X. Let x ∈ X,
so that Pr−1 ∼= Px ⊆ PH0(E). For any y ∈ ϕ(P(E)) we have that

y ∈ Px ⇐⇒ x ∈ �y .

Proof. Since Px = ϕ(P(Ex )) and �y = π(ϕ−1(y)), we have

y ∈ Px ⇐⇒ ∃z ∈ P(Ex ) ∩ ϕ−1(y) ⇐⇒ ∃z ∈ ϕ−1(y) : π(z) = x ⇐⇒ x ∈ �y .

��
We recall the following well-known fact (see for example [6, Prop. 10.2]).

Lemma 2.5. Let E be a rank r globally generated vector bundle on X. Then

ν(E) = r − 1 + max{k ≥ 0 : sk(E) �= 0}. (2.1)

In order to check bigness of direct sums we will use the ensuing

Lemma 2.6. Let E,F be two globally generated vector bundles on X. Then
si (E∗)sn−i (F∗) ≥ 0 for all 0 ≤ i ≤ n. Moreover E ⊕ F is big if and only if
si (E∗)sn−i (F∗) > 0 for some i ∈ {0, . . . , n}. In particular, if E is big then E ⊕ F
is big.

Proof. Set ξ := OP(E)(1). First, note that the Segre classes si (E∗) and si (F∗) are
effective and nef. In fact, si (E∗) = π∗ξ r−1+i is effective because ξ is globally
generated. Also si (E∗) is nef because for every subvariety Z ⊆ X of dimension i
we have that

si (E∗) · Z = ξ r−1+i · π∗Z ≥ 0.
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Therefore si (E∗)sn−i (F∗) ≥ 0 for all 0 ≤ i ≤ n. Since c(E ⊕ F) = c(E)c(F) we
get that

s(E)s(F)c(E ⊕ F) = s(E)s(F)c(E)c(F) = 1

hence s(E ⊕ F) = s(E)s(F). It follows that

sn((E ⊕ F)∗) =
n∑

i=0

si (E∗)sn−i (F∗).

HenceE⊕F is big if andonly if sn((E⊕F)∗) > 0, if andonly if si (E∗)sn−i (F∗) > 0
for some i ∈ {0, . . . , n}. Also, if E is big then sn(E∗) > 0, hence E ⊕ F is big. ��

Definition 2.7. Let E be a vector bundle on X ⊆ P
N . We say that E is an Ulrich

vector bundle if Hi (E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ n.

The following properties will be often used without mentioning.

Remark 2.8. Let E be a rank r Ulrich vector bundle on X ⊆ P
N and let d = deg X .

Then

(i) E is 0-regular in the sense of Castelnuovo-Mumford, hence E is globally gen-
erated (by [10, Thm. 1.8.5]).

(ii) E|Y is Ulrich on a smooth hyperplane section Y of X (by [2, (3.4)]).

Remark 2.9. On (Pn,OPn (1)) the only rank r Ulrich vector bundle is O⊕r
Pn

by [7,
Prop. 2.1], [2, Thm. 2.3].

3. Ulrich bundles on quadrics

For n ≥ 2 we let Qn ⊂ P
n+1 be a smooth quadric. We let S (n odd), and S′, S′′ (n

even), be the vector bundles on Qn , as defined in [16, Def. 1.3].

Definition 3.1. The spinor bundles on Qn are S = Sn = S(1) if n is odd and
S ′ = S ′

n = S′(1), S ′′ = S ′′
n = S′′(1), if n is even. They all have rank 2� n−1

2 �.

Lemma 3.2. With the above notation we have:

(i) s(S) = c(S), s(S ′) = c(S′′), s(S ′′) = c(S′).
(ii) ν(S) = 2

n−1
2 − 1 + max{k ≥ 0 : ck(S) �= 0}, ν(S ′) = ν(S ′′) = 2

n−2
2 − 1 +

max{k ≥ 0 : ck(S′) �= 0}.
(iii) The spinor bundles on Qn are Ulrich.
(iv) The only indecomposable Ulrich vector bundles on Qn are the spinor bundles.
(v) Spinor bundles are not ample.
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Proof. By [16, Thm. 2.8] there are exact sequences

0 → S → O⊕2� n+1
2 �

Q → S → 0 (3.1)

0 → S′ → O⊕2� n+1
2 �

Q → S ′′ → 0, 0 → S′′ → O⊕2� n+1
2 �

Q → S ′ → 0.(3.2)

From (3.1) we get c(S)c(S) = 1, hence s(S) = c(S). Similarly, from (3.2) we
get that s(S ′′) = c(S′) and s(S ′) = c(S′′). This gives (i). Now (ii) follows by (i),
(2.1) and the fact that if n is even and f is an automorphism of Qn exchanging
the n

2 -planes in Qn , then f ∗S′ ∼= S′′ and f ∗S′′ ∼= S′ (see [16, page 304]). (iii)
follows by [16, Thms. 2.3 and 2.8]. (iv) follows by [9] (see also [3, Rmk. 2.5(4)],
[2, Prop. 2.5], [1, Exa. 3.2]). As for (v), we know that S ′

2
∼= OP1(1) � OP1 and

S ′′
2

∼= OP1 � OP1(1), while for n ≥ 3, [16, Cor. 1.6] gives that S|L ,S ′|L ,S ′′|L all

decompose as O⊕2� n−3
2 �

P1
⊕ OP1(1)

⊕2� n−3
2 �

for any line L contained in Qn , hence
S,S ′ and S ′′ are not ample. ��

Wecollect a preliminary result about the numerical dimension of spinor bundles.

Proposition 3.3. With the above notation we have:

(i) Sn is big if and only if cn(S) �= 0, S ′
n or S ′′

n is big if and only if cn(S′) �= 0.
(ii) For 2 ≤ n ≤ 10 we have:

n ν(S) n ν(S ′) = ν(S ′′)

3 3 2 1
5 6 4 3
7 14 6 6
9 24 8 15

10 24

(iii) For 2 ≤ n ≤ 10 the vector bundles in Table 1 of Theorem 1 are the only non-big
Ulrich vector bundles E on Qn.

Proof. Using Lemma 3.2(i) we have that S is big if and only if

0 < sn(S∗) = (−1)nsn(S) = (−1)ncn(S)

and we get (i) for S. Similarly, (i) holds for S ′ and S ′′.
To see (ii), for n �= 7, 9, 10, just use Lemma 3.2(ii) and [16, Rmk. 2.9]. If n = 7

we have by [16, Thm. 1.4] that S = (S′
8)|Q7 and picking H ∈ |OQ8(1)| we deduce

by [16, Rmk. 2.9] that

c7(S) = c7(S
′
8) · H = −H8 = −2.

Thus we get (ii) by Lemma 3.2(ii).



Non-big Ulrich bundles: the classification… 523

If n = 10, by [16, Thm. 2.6(ii)], on any P5 in one of the families of 5-planes in
Q10, we have that

(S′)|
P5

=
2⊕

i=0

	2i
P5

(2i), (S′′)|
P5

=
2⊕

i=0

	2i+1
P5

(2i + 1)

and, in the other family

(S′′)|
P5

=
2⊕

i=0

	2i
P5

(2i), (S′)|
P5

=
2⊕

i=0

	2i+1
P5

(2i + 1).

This allows to compute the first five Chern classes of S′ and S′′. In the standard
basis {e0, . . . , e4, e5, e′

5, e6, . . . , e10} of the cohomology ring of Q10 one gets that
for S′ (respectively for S′′):

c1 = −8e1, c2 = 32e2, c3 = −84e3, c4 = 160e4,

c5 = −244e5 − 220e′
5(resp. c5 = −220e5 − 244e′

5).

To get ci , i > 5, recall that any automorphism of Q10 interchanging its two families
of 5-planes provides an isomorphism between S′ and S′′, hence ci (S′) = ci (S′′)
for i �= 5. From the exact sequence

0 → S′ → O⊕25
Q10

→ S′(1) → 0

and the isomorphism (S′)∗ ∼= S′(1) (see [16, Thm. 2.8]), we get the following
relations in the Chern polynomials of S′ and S′′:

c(S′)c((S′)∗) = 1 (3.3)

and

c((S′)∗) = c(S′′(1)). (3.4)

By (3.3) one gets inductive formulae for the even Chern classes:

c2k = (−1)k+1 c
2
k

2
+

k−1∑

i=1

(−1)k+1ci c2k−i .

Respectively, (3.4) leads to inductive formulae for the odd ones:

c2k+1 = −1

2

2k∑

i=0

(
16 − i

2k + 1 − i

)
ci e

2k+1−i
1 .

Hence, in coordinates in the standard basis quoted above, and recalling the relations
ei1 = 2ei for 6 ≤ i ≤ 10, e25 = (e′

5)
2 = 0 and e5e′

5 = e10, the Chern classes of S′
(resp. S′′) can be computed to give:

c1 = −8, c2 = 32, c3 = −84, c4 = 160, c5 = (−244,−220)

(resp.c5 = (−220,−244)),

c6 = 528, c7 = −484, c8 = 352, c9 = −176, c10 = 0.

(3.5)
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If n = 9, since (S′
10)|Q9

∼= S by [16, Thm. 1.4], we get that c9(S) = −176, thus S
is big and ν(S) = 24.

To see (iii) note that Lemma 3.2(iv) gives that

E ∼= (S ′)⊕a ⊕ (S ′′)⊕b when n is even, with a ≥ 0, b ≥ 0, a + b ≥ 1

and

E ∼= S⊕a when n is odd, with a ≥ 1.

If n = 2 then S ′ = OP1 � OP1(1),S ′′ = OP1(1) � OP1 and det E = aS ′ +
bS ′′, c2(E) = ab. Hence

s2(E∗) = c1(E)2 − c2(E) = (aS ′ + bS ′′)2 − ab = ab.

Thus E is not big if and only if s2(E∗) = 0, that is if and only if a = 0 or b = 0.
If n = 3 it is proved in [12, Rmk. 2.7] that E is not big if and only if a = 1.
If n = 4 we need to show that E is not big if and only if (a, b) ∈

{(0, 1), (1, 0), (1, 1)}. We know by (ii) that S ′ and S ′′ are not big since their numer-
ical dimension is less than n + r − 1 = 5. Consider now E = S ′ ⊕ S ′′. By Lemma
2.6 and Lemma 3.2(i) we need to prove that ci (S′)c4−i (S′′) = 0 for all 0 ≤ i ≤ 4.
Since they have rank 2 we just need the case i = 2. By [16, Rmk. 2.9] we know that
c2(S′) = 
, c2(S′′) = h2 − 
 where h is the class of a hyperplane section and 
 of a
plane in Q4, with h2
 = 
2 = 1. Hence c2(S′)c2(S′′) = 
(h2 −
) = 0 and E is not
big. Vice versa, to conclude the case n = 4, using Lemma 2.6, it remains to show
that (S ′)⊕2 and (S ′′)⊕2 are big. This follows as above since c2(S′)2 = 
2 = 1 and
c2(S′′)2 = (h2 − 
)2 = 1.

If n = 5 we know by (ii) that S is not big. Proceeding as above, we need to
show that S⊕2 is big. Now [16, Rmk. 2.9] gives that c2(S)c3(S) = (2h2)(−h3) =
−4 �= 0, hence S⊕2 is big.

If n = 6 we need to show that E is not big if and only if (a, b) ∈
{(0, 1), (1, 0), (0, 2), (2, 0)}. To see that these are not big note that the case (2, 0)
implies the case (1, 0) and the case (0, 2) implies the case (0, 1) by Lemma 2.6.
Consider E = (S ′)⊕2 or (S ′′)⊕2. By Lemma 2.6 and Lemma 3.2(i) we need
to prove that ci (S′′)c6−i (S′′) = 0 or ci (S′)c6−i (S′) = 0, for all 0 ≤ i ≤ 6.
On the other hand [16, Rmk. 2.9] gives that ci (S′) = ci (S′′) = 0 for all
4 ≤ i ≤ 6 and c3(S′) = −2
, c3(S′′) = −2(h3 − 
), where h is the class of
a hyperplane section and 
 of a 3-plane in Q6, with h3
 = 1, 
2 = 0. Hence
c3(S′′)2 = 4
2 = 0, c3(S′′)2 = 4(h3 − 
)2 = 0 and E is not big. Vice versa, to
conclude the case n = 6, using Lemma 2.6, it remains to show that S ′ ⊕S ′′, (S ′)⊕3

and (S ′′)⊕3 are big. Since c3(S′)c3(S′′) = 4
(h3 − 
) = 4 we get, as above, that
S ′ ⊕ S ′′ is big. Now Lemma 3.2(i) gives

s3((S ′)⊕2)s3(S ′) = 2(s3(S ′) + s1(S ′)s2(S ′))c3(S′′) = −8(
 − 3h3)(h3 − 
) = 16

and Lemma 2.6 implies that (S ′)⊕3 is big. Similarly, (S ′′)⊕3 is big.
If n = 7, 8, 9 the spinor bundles are big by (ii), hence so is E by Lemma 2.6.



Non-big Ulrich bundles: the classification… 525

Finally, if n = 10 (see (3.5)) we have the following values of the Chern classes
of S′ and S′′:

c1 = −8, c9 = −176 and c10 = 0,

thusS ′ andS ′′ are not big by (i). On the other hand, c1(S′)c9(S′) = c1(S′′)c9(S′′) =
c1(S′)c9(S′′) = c1(S′′)c9(S′) = 1408 �= 0 so thatE is big if (a, b) /∈ {(1, 0), (0, 1)}
by Lemma 2.6 and Lemma 3.2(i). ��

4. Behaviour of Ulrich bundles on linear subspaces

We start by analyzing the behaviour on lines.

Proposition 4.1. Let X ⊆ P
N be a smooth irreducible variety of dimension n ≥ 2.

Let E be a non-big rank r Ulrich vector bundle on X. Let x ∈ X and let

h(E, x) = max{h ≥ 1 : ∃L ∈ F1(X, x) such that O⊕h
P1

is a direct summand of E|L}.
Then

dim F1(X, x) + h(E, x) ≥ r. (4.1)

Moreover, if h(E) = max{h(E, x), x ∈ X}, then
ν(E) ≤ dim F1(X) + h(E) − 1. (4.2)

Proof. Set ϕ = ϕE . We will use the fact, following by [14, Lemma 3.3], that for
any line L ⊂ X , we have that H0(E) → H0(E|L) is surjective, hence the restriction
of ϕ to P(E|L) is the tautological morphism ϕ(E|L ) associated to OP(E|L )(1).

For any L ∈ F1(X, x) we can write

E|L ∼= O⊕hL
P1

⊕ OP1(a1,L) ⊕ . . . ⊕ OP1(ar−hL ,L)

for some integers 0 ≤ hL ≤ r and ai,L ≥ 1 for 1 ≤ i ≤ r − hL . Suppose
that hL ≥ 1. Then ϕ(P(E|L)) ⊆ PH0(E|L) is either a rational normal scroll with
vertex VL ∼= P

hL−1 when hL ≤ r − 1 (including the case hL = r − 1, a1,L = 1,
in which ϕ(P(E|L)) = PH0(E|L)) or ϕ(P(E|L)) = P

r−1 when hL = r . In the
latter case we define VL = ϕ(P(E|L)). Moreover P(O⊕hL

P1
) ⊆ P(E|L) and if we

call ψL : P(O⊕hL
P1

) → VL the map associated to the tautological line bundle on

P(O⊕hL
P1

), the fibers of ψL are the curves ψ−1
L (y), y ∈ VL . Note that they all

intersect P(Ex ) in one point.
Consider the incidence correspondence

I = {(z, L) ∈ P(Ex ) × F1(X, x) : hL ≥ 1 and ∃y ∈ VL with z ∈ ψ−1
L (y) ∩ P(Ex )}

together with its projections

I
p1 p2

P(Ex ) F1(X, x).
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We claim that p1 is surjective.
Let z ∈ P(Ex ), so that x = π(z). Let y = ϕ(z). Since E is not big, we have

that dim ϕ(P(E)) < dim P(E), hence all fibers of ϕ are positive dimensional. Thus
dim ϕ−1(y) > 0, hence we can find z′ ∈ ϕ−1(y) with z′ �= z. Let x ′ = π(z′). Note
that x �= x ′, because otherwise z, z′ ∈ P(Ex ), contradicting the fact that ϕ|P(Ex ) is
an embedding. Consider the line L = 〈x, x ′〉. If L �⊂ X , then [14, Lemma 3.2]
implies that Px ∩ Px ′ = ∅. On the other hand, since z, z′ ∈ ϕ−1(y), we have that
x, x ′ ∈ �y . Therefore Lemma 2.4 implies that y ∈ Px ∩ Px ′ , a contradiction. Thus
we have proved that L ⊂ X , that is L ∈ F1(X, x).

Since z and z′ are not separated by ϕ(E|L ), we have that hL ≥ 1, z ∈ P(O⊕hL
P1

)

and y = ϕ(z) = ψL(z) ∈ VL . Therefore z ∈ ψ−1
L (y) ∩ P(Ex ) and then (z, L) ∈ I,

giving that z ∈ Imp1. Hence p1 is surjective, h(E, x) is well defined and let us see
that

ϕ(P(E)) =
⋃

L∈F1(X):hL≥1

VL . (4.3)

In fact, on one side, the inclusion VL ⊆ ϕ(P(E)) follows by definition. Now let
y ∈ ϕ(P(E)). Then there is z ∈ P(E) such that y = ϕ(z) and set x = π(z). Then
z ∈ P(Ex ) and the surjectivity of p1 implies that there is a line L ∈ F1(X, x) such
that (z, L) ∈ I, hence hL ≥ 1 and y = ϕ(z) = ψL(z) ∈ VL . This proves (4.3).

Now observe that the nonempty fibers of p2 are all isomorphic to VL for some
L ∈ F1(X, x). In fact, if L ∈ F1(X, x) is such that p−1

2 (L) �= ∅, then there is
z0 ∈ P(Ex ) such that (z0, L) ∈ I, hence hL ≥ 1. Then, for any (z, L) ∈ p−1

2 (L),
there exists y ∈ VL with z ∈ ψ−1

L (y)∩P(Ex ), that isψL(z) = y ∈ VL . This defines
a morphism f : p−1

2 (L) → VL by f ((z, L)) = ψL(z). We have that f is injective
since all the fibers ψ−1

L (y), y ∈ VL intersect P(Ex ) in one point. Also, if y ∈ VL ,
let {z} = ψ−1

L (y) ∩ P(Ex ). Then (z, L) ∈ p−1
2 (L) and y = ψL(z). Thus f is also

surjective.
Let W be an irreducible component of I such that W dominates P(Ex ). We

have, for a general L ∈ p2(W ),

dimW = dim p2(W ) + hL − 1 ≤ dim F1(X, x) + h(E, x) − 1.

Therefore we deduce that

r − 1 = dim P(Ex ) ≤ dimW ≤ dim F1(X, x) + h(E, x) − 1

and (4.1) holds. Now consider the incidence correspondence

I ′ = {(y, L) ∈ PH0(E) × F1(X) : hL ≥ 1 and y ∈ VL}
together with its projections

I ′
p′
1 p′

2

PH0(E) F1(X) .
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Then Imp′
1 = ϕ(P(E)) by (4.3). Also, the nonempty fibers of p′

2 are isomorphic to
VL ∼= P

hL−1, since if (p′
2)

−1(L) �= ∅ then hL ≥ 1 and (p′
2)

−1(L) = {(y, L) : y ∈
VL} ∼= VL . Therefore, choosing an irreducible component W ′ of I ′ such that W ′
dominates ϕ(P(E)), we get, for a general L ∈ p2(W ′), that

ν(E) = dim ϕ(P(E)) ≤ dimW ′ ≤ dim F1(X) + hL − 1 ≤ dim F1(X) + h(E) − 1

and we get (4.2). ��
We can now prove our first theorem.

Proof of Theorem 1. The vector bundles in Table 1 are Ulrich and non-big by
Proposition 3.3(iii).Vice versa, by the sameproposition,we can assume thatn ≥ 11.

Let E be a spinor bundle on Qn . Note that r = 2� n−1
2 � and h(E, x) = 2� n−3

2 � by
[16, Cor. 1.6] for any x ∈ Qn . We claim that E is big. In fact, if not, we get by
Proposition 4.1 that

n − 2 + 2� n−3
2 � ≥ 2� n−1

2 �

contradicting n ≥ 11. Now just apply Lemma 2.6 together with Lemma 3.2(iv) to
get that any Ulrich vector bundle on Qn, n ≥ 11 is big. ��
Remark 4.2. It follows by Theorem 1 that the numerical dimension of any rank r
Ulrich vector bundle E on Qn is known. In fact, if E does not belong to Table 1,
then ν(E) = n + r − 1. Now suppose that E is as in Table 1. Then ν(E) is given in
Proposition 3.3(ii) if E is a spinor, ν(E) = n + r − 2 if E is not a spinor.

Remark 4.3. The example E = S ′ ⊕S ′′ on Q4 shows that, even when Pic(X) ∼= Z,
the fibers of ϕ can have different dimensions. In fact, ν(E) = 6 so that a general
fiber is 1-dimensional, while ν(S ′) = 3 hence the fibers over points in P(S ′) are
2-dimensional.

Under a suitable hypothesis, we will now study Ulrich vector bundles with
minimal numerical dimension on linear Pk-bundles and determine their restriction
to fibers in the next case. We will use the notation in Definition 2.3.

The following lemma allows us to identify E| f for all f , rather than on a general
f , thus giving a better description of E . This is needed, in the present paper, in
Theorem 2(i2) and in the proof of [13, Thm. 1] (for example in case (xii)).

Lemma 4.4. Let (X,OX (1)) = (P(F),OP(F)(1)), where F is a rank n − b + 1
very ample vector bundle over a smooth irreducible variety B of dimension b with
1 ≤ b ≤ n − 1. Let E be a rank r Ulrich vector bundle on X, let p : X → B be the
projection morphism and suppose that

p|�y : �y → B is constant for every y ∈ ϕ(P(E)). (4.4)

Then, for every fiber f of p we have ν(E) = b + dim ϕ(π−1( f )) ≥ b + r − 1.
Moreover we have the following two extremal cases:
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(i) If ν(E) = b + r − 1 there is a rank r vector bundle G on B such that E ∼=
p∗(G(detF)) and H j (G ⊗ SkF∗) = 0 for all j ≥ 0, 0 ≤ k ≤ b − 1.

(ii) If ν(E) = b + r then either b = n − 1 and E is big or b ≤ n − 2 and
E| f ∼= TPn−b (−1) ⊕ O⊕(r−n+b)

Pn−b for any fiber f = P
n−b of p.

Proof. Set fv = p−1(v), v ∈ B. Let x, x ′ ∈ X be such that p(x) �= p(x ′). If
there exists an y ∈ Px ∩ Px ′ , then x, x ′ ∈ �y by Lemma 2.4, contradicting (4.4).
Therefore Px ∩ Px ′ = ∅. It follows that

ϕ(P(E)) =
⊔

v∈B
ϕ(π−1( fv)). (4.5)

Consider the incidence correspondence

I = {(y, v) ∈ ϕ(P(E)) × B : y ∈ ϕ(π−1( fv))}
together with its two projections p1 : I → ϕ(P(E)) and p2 : I → B. Then (4.5)
implies that p1 is bijective, hence I is irreducible and dim I = dim ϕ(P(E)) =
ν(E). Since p2 is surjective, it follows that for any v ∈ B we have that

dim ϕ(π−1( fv)) ≥ ν(E) − b.

On the other hand, for every y ∈ ϕ(π−1( fv)) there is a z ∈ π−1( fv) such that
y = ϕ(z), hence π(z) ∈ �y ∩ fv and (4.4) gives that p(�y) = {v}. Hence
�y ⊆ fv and therefore ϕ−1(y) ⊆ π−1( fv). Picking a general y ∈ ϕ(π−1( fv)) we
deduce that

dim ϕ(π−1( fv)) = dim π−1( fv) − dim ϕ−1(y)

≤ n − b + r − 1 − (n + r − 1 − ν(E)) = ν(E) − b.

Therefore dim ϕ(π−1( f )) = ν(E) − b for every fiber f of p : X → B. In
particular, being ϕ(π−1( fv)) union of linear spaces Px = P

r−1 for x ∈ fv , we see
that ν(E) ≥ b + r − 1.

Now consider the morphism �| f : f = P
n−b → G(r − 1,PH0(E)). Observe

that �| f is constant if and only if Px = Px ′ for any x, x ′ ∈ f , that is if and only if
ϕ(π−1( f )) = Px = P

r−1, or, equivalently, if and only if ν(E) = b+ r −1. Hence,
when ν(E) = b + r − 1, we get that det(E)| f is trivial. This implies that there is a
globally generated line bundle M on B such that det E = p∗M and therefore E is
as in (i) by [11, Lemmas 5.1 and 4.1].

On the other hand, if ν(E) = b + r , then �| f is finite-to-one onto its image. If
b = n−1 then ν(E) = n+r−1 andE is big. Ifb ≤ n−2 thenϕ(π−1( f )) ⊆ PH0(E)

is swept out by a family {Px , x ∈ f } of dimension n − b ≥ 2 of linear Pr−1’s.
Therefore

ϕ(π−1( f )) = P
r for every fiber f of p : X → B. (4.6)

This gives that E| f can be generated by r + 1 global sections and we get an exact
sequence

0 → O f (−a) → O⊕(r+1)
f → E| f → 0 (4.7)
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where c1(E| f ) = O f (a). Note that H1(O f (−a−1)) = 0 since f = P
n−b, n−b ≥

2 and then (4.7) implies that

H0(E| f (−1)) = 0. (4.8)

Since ϕ(π−1( f )) = P
r , there must be two points x, x ′ ∈ f such that Px �= Px ′ and

(4.6) gives thatϕ(π−1(L)) = P
r , where L is the line in f joining x and x ′. Now [14,

Lemma 3.2] gives that H0(E) → H0(E|L) is surjective, hence ϕ|π−1(L) = ϕE|L .
Since c1(E|L) = OL(a) we get that

a = degϕE|L (π
−1(L)) = degϕ(π−1(L)) = degPr = 1

where the degrees are meant as subvarieties of PH0(E).
Now for any line L ′ ⊂ f we have that c1(E|L ′) = OL ′(1), hence, being E

globally generated, we get that (E| f )|L ′ ∼= OP1(1)⊕O⊕(r−1)
P1

. Then [5, Prop. IV.2.2]

implies that E| f ∼= TPn−b (−1)⊕O⊕(r−n+b)
Pn−b orOPn−b (1)⊕O⊕(r−1)

Pn−b or 	Pn−b (2)⊕
OPn−b (1)⊕(r−n+b). Now the second case is excluded by (4.8). On the other hand, if
the third case occurs, thenO f (1) = c1(E| f ) = O f (r−1), hence 2 = r ≥ n−b ≥ 2,
therefore equality holds, and this is also the first case. Thus E is as in (ii). ��

We now give an example showing that the restriction of E in Lemma 4.4(ii)
actually occurs. For an example with b = 2 see [13, Ex. 5.11].

Example 4.5. Let n ≥ 3, let X = P
1 ×P

n−1 and letOX (1) = OP1(1) �OPn−1(1).
It is easily seen that, for every r ≥ n − 1, the vector bundle

E = [OP1(n − 2) � TPn−1(−1)] ⊕ [OP1(n − 1) � OPn−1 ]⊕(r−n+1)

is Ulrich, c1(E)n > 0, ν(E) = r + 1 and E| f = TPn−1(−1) ⊕ O⊕(r−n+1)
Pn−1 on any

fiber f of the first projection p : X → P
1.

A first use of Lemma 4.4 is the following.

Proof of Theorem 3. If c1(E)4 = 0 we have by [14, Cor. 4.9] that E ∼=
p∗(OP2(2))

⊕r , where p : P2 × P
2 → P

2 is one of the two projections.
Assume now that c1(E)4 > 0. First, we claim that we can apply Lemma 4.4(ii)

with one of the two projections p : P
2 × P

2 → P
2 or q : P

2 × P
2 → P

2. In
fact, [14, Cor. 2] implies that r + 3 − ν(E) = 1, so that ν(E) = r + 2. Also,
for any y ∈ ϕ(P(E)), we have that �y is a linear subspace in P

8 of dimension
k ≥ r + 3 − ν(E) = 1, hence, as is well known, �y is contained in a fiber of
p or in a fiber of q. Let U ⊆ ϕ(P(E)) be the non-empty open subset on which
dim ϕ−1(y) = 1 for every y ∈ U . This gives a morphism γ : U → F1(X) defined
by γ (y) = �y . Since F1(X) has two irreducible disjoint components, namelyWp,
the lines contained in a fiber of p and Wq the lines contained in a fiber of q, we
get that either γ (U ) ⊆ Wp or γ (U ) ⊆ Wq . In the first case, by specialization, we
deduce that �y is contained in a fiber of p for every y ∈ ϕ(P(E)). In the second
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case the same happens for q. Therefore we can assume that (4.4) holds for p. Then
Lemma 4.4(ii) applies to p and we get that

E| f ∼= TP2(−1) ⊕ O⊕(r−2)
P2

(4.9)

on any fiber f ∼= P
2 of p. Let A = p∗(OP2(1)) and B = q∗(OP2(1)), so that we

can write

det E = αA + βB, c2(E) = γ A2 + δA · B + εB2

for some α, β, γ, δ, ε ∈ Z. Now (4.9) implies that α = γ = 1. Moreover, if C is
the curve section of X ⊂ P

8, then C ⊂ P
5 is an elliptic curve of degree 6 and E|C

is a rank r Ulrich vector bundle on C by Remark 2.8(ii). Hence χ(E|C (−1)) = 0,
that is deg(E|C ) = 6r and we get

3 + 3β = (A + βB)(A + B)3 = c1(E|C ) = 6r

that is β = 2r − 1 and this gives

det E = A + (2r − 1)B, c2(E) = A2 + δAB + εB2. (4.10)

Let now Y be the hyperplane section of X , so that E|Y is a rank r Ulrich vector
bundle on Y by Remark 2.8(ii). By [15, Thm. 5.1], setting p1 = p|Y : Y →
P
2, p2 = q|Y : Y → P

2 and Gi = p∗
i (	P2(1)), i = 1, 2, there is a resolution

0 → p∗
1(OP2(1))

⊕d ⊕ p∗
2(OP2(1))

⊕c → G1(1)⊕b ⊕ G2(1)⊕a → E|Y → 0.

(4.11)

Computing rank and the first Chern class in (4.11) and using (4.10) we get the three
equations

2a + 2b = c + d + r, 1 = b + 2a − d, 2r − 1 = 2b + a − c

which imply that a + c = 1, thus giving the only possible solutions (a, b, c, d) =
(0, r, 1, r − 1) or (1, r − 1, 0, r). Now computing the second Chern class in (4.11)
and using (4.10) we have two possibilities. In the first case we get that r = 1, a
contradiction sinceE is not big. In the second caseweget that r = 2, det E = A+3B
and c2(E) = A2 + AB + 4B2, but then s4(E∗) = 6 > 0, a contradiction since E is
not big. ��

Next we prove a useful result that will later allow to give an upper bound on
the rank. We will use the notation in Definition 2.3.

Proposition 4.6. Let X ⊆ P
N be a smooth irreducible variety of dimension n ≥ 2

and letE bea rankr Ulrich vector bundle on X such thatE is not big and c1(E)n > 0.
Assume that for a general point x ∈ X we have that Fn+r−ν(E)(X, x) = ∅. Then
there is a morphism, finite onto its image,

ψ : Pr−1 ∼= Px → Fn+r−1−ν(E)(X, x)

and

dim Fn+r−1−ν(E)(X, x) ≥ r − 1.
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Proof. By [14, Thm. 2] and Lemma 2.4, for any y ∈ Px we have that �y is a linear
subspace in P

N of dimension k ≥ n + r − 1 − ν(E) ≥ 1 such that x ∈ �y ⊆ X .
Since Fn+r−ν(E)(X, x) = ∅ we get that k = n + r − 1− ν(E) and we can define a
morphism

ψ : Pr−1 ∼= Px → Fk(X, x)

by ψ(y) = �y . If ψ is constant, we claim that for any y ∈ Px we have that

�y ⊆ �−1(�(x)).

In fact, let x ′ ∈ �y . For every y′ ∈ Px , since �y = �y′ , we have that x ′ ∈ �y′ ,
that is y′ ∈ Px ′ by Lemma 2.4. Hence Px ⊆ Px ′ and we deduce that Px = Px ′ and
therefore

�(x) = [Px ] = [Px ′ ] = �(x ′)

and the claim is proved. Now �y has dimension k ≥ 1, hence the fibers of � have
dimension at least 1. This implies that det E is not big, a contradiction. Therefore
ψ is finite onto its image and we deduce that dim Fk(X, x) ≥ r − 1. ��

We can now prove our second theorem.

Proof of Theorem 2. Suppose that ν(E) ≤ n
2 + r − 1.

If n = 1 then ν(E) ≤ r − 1. But ϕ(P(Ex )) = Px = P
r−1, hence ν(E) = r − 1

and Px = Px ′ for every x �= x ′ ∈ X , that is �(x) = �(x ′). Hence [14, Thm. 2]
gives that (X,OX (1)) ∼= (P1,OP1(1)) and we are in case (i). Vice versa, if we are
in case (i) then b = 0 and (X,OX (1)) ∼= (P1,OP1(1)). It follows by Remark 2.9
that E ∼= O⊕r

P1
, hence ν(E) = r − 1.

Suppose from now on that n ≥ 2.
Let x ∈ X . By [14, Thm. 2], for any y ∈ Px we have that �y is a linear

subspace of dimension k in P
N such that, using Lemma 2.4, x ∈ �y ⊆ X and

k ≥ n + r − 1 − ν(E) ≥ n
2 .

Assume that we are not in case (i).
Then [17, Main Thm.] implies that (X, H) is one of the following:

(1) (Q2m,OQ2m (1)).
(2) (G(1,m + 1),OG(1,m+1)(1)) (the Plücker line bundle).

We can assume thatm ≥ 2, for otherwise, whenm = 1, case (2) is also case (i) and
in case (1) we know that E ∼= (S ′)⊕r or (S ′′)⊕r by Proposition 3.3(iii), thus giving
case (ii). Note that det E is globally generated and big by [11, Lemma 3.2], since we
are excluding (i). In particular r ≥ 2. Now n = 2m and Fm+1(X, x) = ∅. Hence
m ≥ k ≥ 2m + r − 1 − ν(E) ≥ m and we get that k = m and ν(E) = m + r − 1.
Then dim Fm(X, x) ≥ r − 1 by Proposition 4.6. In case (1) we know by Lemma
3.2(iv) that r ≥ 2m−1 and dim Fm(X, x) = m(m−1)

2 , thus the only possibilities are
for 2 ≤ m ≤ 3 and r = 2m−1. Hence E is a spinor bundle by Lemma 3.2(iv) and
we get case (ii). In case (2) we can assume that m ≥ 3 for otherwise we are in case
(1). We know that dim Fm(X, x) = 1, hence r = 2 and ϕ(P(E)) has dimension



532 A. F. Lopez et al.

ν(E) = m + 1. Moreover ϕ(P(E)) is covered by a family of dimension 2m of
lines {Px , x ∈ X}: the family has dimension 2m because c1(E)n > 0, hence � is
birational onto its image. Therefore ϕ(P(E)) = P

m+1 = PH0(E) = P
2d−1 where

d = deg X . But d = (2m)!
m!(m+1)! giving the contradiction m + 1 = 2d − 1.

Assume now that we are in case (i).
If b = 0 then (X,OX (1)) ∼= (Pn,OPn (1)) and Remark 2.9 gives that E ∼= O⊕r

Pn
,

hence ν(E) = r − 1.
Now suppose that b ≥ 1. By [17, Main Thm.] we have that �y ⊆ P

n−b for a
general y.

If c1(E)n = 0 we have by [14, Cor. 3] that �y is a general fiber F of � and
therefore �|Pn−b must be constant. Thus F = �y = P

n−b, ν(E) = b + r − 1 and
det E is trivial on the fibers of p. Hence there is a globally generated line bundle
M on B such that det E = p∗M and E is as in (i1) by [11, Lemmas 5.1 and 4.1].

If c1(E)n > 0 we know by [14, Cor. 2] that through a general point x ∈ X we
can find infinitely many linear spaces �y , hence n + r − 1 − ν(E) ≤ n − b − 1,
that is ν(E) ≥ b + r and then b ≤ n

2 − 1. Also, if ν(E) = b + r we have, for every
y ∈ ϕ(P(E)),

dim�y ≥ n + r − 1 − ν(E) = n − b − 1 ≥ b + 1.

Since �y is a linear space, we deduce that p|�y : �y → B is constant. Thus we

can apply Lemma 4.4(ii) and find that E| f ∼= TPn−b (−1) ⊕ O⊕(r−n+b)
Pn−b . This gives

case (i2). ��

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Funding Open access funding provided by Università degli Studi Roma Tre within the
CRUI-CARE Agreement.

References

[1] Aprodu, M., Huh, S., Malaspina, F., Pons-Llopis, J.: Ulrich bundles on smooth projec-
tive varieties of minimal degree. Proc. Am. Math. Soc. 147(12), 5117–5129 (2019)

[2] Beauville, A.: An introduction to Ulrich bundles. Eur. J. Math. 4(1), 26–36 (2018)
[3] Buchweitz, R.O., Greuel, G.M., Schreyer, F.O.: Cohen-Macaulay modules on hyper-

surface singularities II. Invent. Math. 88(1), 165–182 (1987)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Non-big Ulrich bundles: the classification… 533

[4] Costa, L., Miró-Roig, R.M., Pons-Llopis, J.: Ulrich bundles. In: De Gruyter Studies in
Mathematics, De Gruyter, vol. 77 (2021)

[5] Ellia, P.: Sur les fibrés uniformes de rang (n+1) sur Pn . Mém. Soc. Math. France (N.S.)
7, 60pp (1982)

[6] Eisenbud, D., Harris, J.: 3264 and all that—a second course in algebraic geometry, pp.
xiv+616. Cambridge University Press, Cambridge (2016)

[7] Eisenbud, D., Schreyer, F.-O.: Resultants and Chow forms via exterior syzygies. J. Am.
Math. Soc. 16(3), 537–579 (2003)

[8] Fujita, T.: Semipositive line bundles. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(2),
353–378 (1983)

[9] Knörrer, H.: Cohen–Macaulay modules on hypersurface singularities I. Invent. Math.
88(1), 153–164 (1987)

[10] Lazarsfeld, R.: Positivity in algebraic geometry, I. Ergebnisse derMathematik und ihrer
Grenzgebiete, 3. Folge, vol. 48, Springer, Berlin (2004)

[11] Lopez, A.F.: On the positivity of the first Chern class of an Ulrich vector bundle.
Commun. Contemp. Math. 24(9), 2150071 (2022)

[12] Lopez, A.F., Munoz, R.: On the classification of non-big Ulrich vector bundles on
surfaces and threefolds. Int. J. Math. 32(14), 2150111 (2021)

[13] Lopez, A.F., Muñoz, R., Sierra, J.C.: On the classification of non-big Ulrich vector
bundles on fourfolds. Preprint (2022). arXiv:2205.10143. To appear on Ann. Scuola
Norm. Sup. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.202208_024

[14] Lopez, A.F., Sierra, J.C.: A geometrical view of Ulrich vector bundles. Int. Math. Res.
Not. IMRN 11, 9754–9776 (2023)

[15] Malaspina, F.: Ulrich bundles on the degree six Segre fourfold. J. Algebra 553, 154–174
(2020)

[16] Ottaviani, G.: Spinor bundles on quadrics. Trans. Am. Math. Soc. 307(1), 301–316
(1988)

[17] Sato, E.: Projective manifolds swept out by large-dimensional linear spaces. Tohoku
Math. J. 49(3), 299–321 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://arxiv.org/abs/2205.10143
https://doi.org/10.2422/2036-2145.202208_024

	Non-big Ulrich bundles: the classification on quadrics and the case of small numerical dimension
	Abstract.
	1 Introduction
	2 Notation and standard facts about (Ulrich) vector bundles
	3 Ulrich bundles on quadrics
	4 Behaviour of Ulrich bundles on linear subspaces
	References




