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Abstract. We establish a connection between continuous K-theory and integral cohomol-
ogy of rigid spaces. Given a rigid analytic space over a complete discretely valued field, its
continuous K-groups vanish in degrees below the negative of the dimension. Likewise, the
cohomologygroups vanish in degrees above the dimension.Themain result provides the exis-
tence of an isomorphism between the lowest possibly non-vanishing continuousK-group and
the highest possibly non-vanishing cohomology group with integral coefficients. A key role
in the proof is played by a comparison between cohomology groups of an admissible Zariski-
Riemann space with respect to different topologies; namely, the rh-topology which is related
to K-theory as well as the Zariski topology whereon the cohomology groups in question rely.

1. Introduction

The negative algebraic K-theory of a scheme is related to its singularities. If X
is a regular scheme, then K−i (X) vanishes for i > 0. For an arbitrary noetherian
scheme X of dimension d we know that

(i) K−i (X) = 0 for i > d,
(ii) K−i (X) ∼= K−i (X × An) for i ≥ d, n ≥ 1, and
(iii) K−d(X) ∼= Hd

cdh(X;Z).

The affine case of (i) was a question of Weibel [52, 2.9] who proved (i) and (ii) for
d ≤ 2 [53, 2.3, 2.5, 4.4]. For varieties in characteristic zero (i)-(iii) were proven
by Cortiñas-Haesemeyer-Schlichting-Weibel [13] and the general case is due to
Kerz-Strunk-Tamme [31]. As an example for the lowest possibly non-vanishing
group K−d(X), the cusp C = {y2 = x3} over a field has K−1(C) = 0 whereas the
node N = {y2 = x3 + x2} over a field (of characteristic not 2) has K−1(N ) = Z;
more generally, for a nice curve the rank is the number of loops [53, 2.3]. The main
result of this article are analogous statements of (i)-(iii) for continuous K-theory of
rigid analytic spaces in the sense of Morrow [38].
There is a long history of versions of K-theory for topological rings that take
the topology into account. For instance, the higher algebraic K-groups of a ring
A can be defined via the classifying space BGL(A) of the general linear group
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GL(A). If A happens to be a Banach algebra over the complex numbers, it also
makes sense to consider GL(A) as a topological group and to define topologi-
cal K-theory Ktop(A) analogously in terms of the classifying space BGLtop(A).
This yields a better behaved K-theory for complex Banach algebras which satisfies
homotopy invariance and excision (which does not hold true in general for alge-
braic K-theory). Unfortunately, a similar approach for nonarchimedean algebras
does not behave well since the nonarchimedean topology is totally disconnected.
Karoubi-Villamayor [33] and Calvo [12] generalised topological K-theory to arbi-
trary Banach algebras (either nonarchimedean or complex) in terms of the ring of
power series converging on a unit disc. A different approach is to study continuous
K-theory which is the pro-spectrum

Kcont(R) = “lim”
n

K(R/I n)

where R is an I -adic ring with respect to some ideal I ⊂ R (e.g. Zp with the p-
adic topology or Fp�t� with the t-adic topology). Such “continuous” objects have
been studied amply in the literature – cf. Wagoner [50,51], Dundas [14], Geisser-
Hesselholt [17,18], or Beilinson [3] – and they were related by Bloch-Esnault-Kerz
to the Hodge conjecture for abelian varieties [4] and the p-adic variational Hodge
conjecture [5]. Morrow [38] suggested an extension of continuous K-theory to
rings A admitting an open subring A0 which is I -adic with respect to some ideal
I of A0 (e.g. Qp = Zp[p−1] or Fp((t)) = Fp�t�[t−1]).1 This notion was recently
studied byKerz-Saito-Tamme [32] and they showed that it coincides in non-positive
degrees with the groups studied by Karoubi-Villamayor and Calvo. For an affinoid
algebra A over a discretely valued field, Kerz proved the corresponding analytical
statements to (i) and (ii); that is replacing algebraic K-theory by continuous K-
theory and the polynomial ring by the ring of power series converging on a unit
disc [28]. Morrow showed that continuous K-theory extends to a sheaf of pro-
spectra on rigid k-spaces for any discretely valued field k. The main result of this
article provides analogous statements of (i)-(iii) above for continuous K-theory of
rigid k-spaces; the statements (i) and (ii) extend Kerz’ result to the global case and
statement (iii) is entirely new.

Theorem A. (Theorem 8.8, Theorem 8.12) Let X be a quasi-compact and quasi-
separated rigid k-space of dimension d over a discretely valued field k. Then:

(i) For i > d we have Kcont−i (X) = 0.
(ii) For i ≥ d and n ≥ 0 the canonical map

Kcont−i (X) → Kcont−i (X × Bn
k )

is an isomorphism where Bn
k := Spm(k〈t1, . . . , tn〉) is the rigid unit disc.

(iii) If d ≥ 2 or if there exists a formal model of X which is algebraic (Defini-
tion 5.1, e.g. X is affinoid or projective), then there exists an isomorphism

Kcont−d (X) ∼= Hd(X;Z)

where the right-hand side is sheaf cohomology with respect to the admissible
topology on the category of rigid k-spaces.

1 Actually, Morrow only talks about affinoid algebras.
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There are several approaches to nonarchimedean analytic geometry. Our proof
uses rigid analytic spaces in the sense of Tate [44] and adic spaces introduced by
Huber [27]. Another approach is the one of Berkovich spaces [6] for which there
is also a version of our main result as conjectured in the affinoid case by Kerz [28,
Conj. 14].

Corollary B. (Corollary 8.10) Let X be a quasi-compact and quasi-separated rigid
analytic space of dimension d over a discretely valued field. Assume that d ≥ 2
or that there exists a formal model of X which is algebraic (e.g. X is affinoid or
projective). Then there is an isomorphism

Kcont−d (X) ∼= Hd(Xberk;Z)

where Xberk is the Berkovich space associated with X.

If X is smooth over k or the completion of a k-scheme of finite type, then there
is an isomorphism

Hd(Xberk;Z) ∼= Hd
sing(X

berk;Z)

with singular cohomology by results of Berkovich [7] and Hrushovski-Loeser [24].
The identification of Corollary B is very helpful since it is hard to actually compute
K-groups whereas the cohomology of Berkovich spaces is amenable for compu-
tations. For instance, the group Hd(Xberk;Z) is finitely generated since Xberk has
the homotopy type of a finite CW-complex; such a finiteness statement is usually
unknown for K-theory.

An important tool within the proof of Theorem A is the admissible Zariski-
Riemann space 〈X〉U which we will associate, more generally, with every quasi-
compact and quasi-separated scheme X with open subscheme U . The admissible
Zariski-Riemann space 〈X〉U is given by the limit of allU -modifications of X in the
category of locally ringed spaces (Definition 3.1). In our case of interest where A is
a reduced affinoid algebra and A◦ is its open subring of power-bounded elements,
then we will set X = Spec(A◦) and U = Spec(A). We shall relate its Zariski
cohomology to the cohomology with respect to the so-called rh-topology, i.e. the
minimal topology generated by the Zariski topology and abstract blow-up squares
(Definition A.2). To every topology τ on the category of schemes (e.g. Zar, Nis,
rh, cdh), there is a corresponding appropriate site Schτ (〈X〉U ) for the admissible
Zariski-Riemann space (Definition 4.10). We show the following statement which
is later used in the proof of Theorem A and which is the main new contribution of
this article.

Theorem C. (Theorem 4.16) For every constant abelian rh-sheaf F on Sch(〈X〉U )

the canonical map

H∗Zar(〈X〉U \U ; F) −→ H∗rh(〈X〉U \U ; F)

is an isomorphism. In particular,

colim
X ′∈Mdf(X,U )

H∗Zar(X ′ \U ; F) = colim
X ′∈Mdf(X,U )

H∗rh(X ′ \U ; F).
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whereMdf(X,U ) is the category of allU-modifications of X and X ′\U is equipped
with the reduced scheme structure. The same statement also holds if one replaces
‘Zar’ by ‘Nis’ and ‘rh’ by ‘cdh’.

We also show an rh-version of a cdh-result of Kerz-Strunk-Tamme [31, 6.3].
This is not a new proof but the observation that the analogous proof goes through.
The statement will enter in the proof of Theorem A.

Theorem D. (Theorem A.15) Let X be a finite dimensional noetherian scheme.
Then the canonical maps of rh-sheaves with values in spectra on SchX

Lrh K≥0 −→ Lrh K −→ KH

are equivalences.

Proofsketch for the main result. We shall briefly sketch the proof of
Theorem A(iii) in the affinoid case (Theorem 6.1). For every reduced affinoid
algebra A and every model X ′ → Spec(A◦) over the subring A◦ of power-bounded
elements with pseudo-uniformiser π there exists a fibre sequence [32, 5.8]

K(X ′ on π) −→ Kcont(X ′) −→ Kcont(A). (∗)

Now let us for a moment assume that A is regular and that resolution of singularities
is available so that we could choose a regular model X ′ whose special fibre X ′/π
is simple normal crossing. In this case, K(X ′ on π) vanishes in negative degrees
and hence we have

Kcont−d (A) ∼=
(1)

Kcont−d (X ′) ∼=
(2)

K−d(X ′/π) ∼=
(3)

Hcdh(X
′/π;Z)

where (1) follows from Kcont−i (X ′ on π) = 0 for i > 0, (2) from nil-invariance
of K-theory in degrees ≥ d (Lemma 6.3), and (3) is (iii) above resp. [31, Cor.
D]. Let (Di )i∈I be the irreducible components of X ′/π . As X ′/π is simple nor-
mal crossing, all intersections of the irreducible components are regular, hence
their cdh-cohomology equals their Zariski cohomology which is Z concentrated
in degree zero; hence Hd

cdh(X
′/π;Z) can be computed by the Čech nerve of the

cdh-cover D := ⊔
i∈I Di → X/π . On the other hand, the Berkovich space Spb(A)

associated with A is homotopy equivalent to its skeleton which is homeomorphic
to the intersection complex �(D) [40, 2.4.6, 2.4.9]. Putting these together yiels
Kcont−d (A) ∼= Hd(Spb(A);Z) ∼= Hd(Spa(A, A◦);Z).
In the general case where X ′ is an aribtrary model, we have do proceed differently.
Forn < 0 andα ∈ Kn(X ′ on π) there exists byRaynaud-Gruson’splatification par
éclatement an admissible blow-up X ′′ → X ′ such that the pullback of α vanishes
in Kn(X ′′ on π) [28, 7]. In the colimit over all models this yields that Kcont

n (A) ∼=
Kcont
n (〈A0〉A). For d = dim(A) we have Kcont

d (〈A0〉A) ∼= Kd(〈A0〉A/π) and the
latter is isomorphic to Hd

rh(〈A0〉A/π;Z) via a descent spectral sequence argument
(Theorem A.20). Using Theorem C (Theorem 4.16) we can pass to Zariski coho-
mology. Now the result follows from identifying 〈A◦〉A with the adic spectrum
Spa(A, A◦) (Theorem 5.8).
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Leitfaden. InSect. 2we recall the definitionof and somebasic facts about continuous
K-theory. Then we introduce admissible Zariski-Riemann spaces in Sect. 3 and we
establish a comparison between their rh-cohomology and their Zariski cohomology
(Theorem 4.16) in Sect. 4. Subsequently we recall the connection between formal
Zariski-Riemann spaces and adic spaces in Sect. 5; this causes the adic spaces
showing up in the main result. In Sect. 6 we prove the main result in the affine
case (Theorem 6.1). In Sect. 7 we present, following Morrow, a global version of
continuous K-theory and in Sect. 8 we prove the main result in the global case
(Theorem 8.8). Finally, there is an Appendix A about the rh-topology and rh-
versions of results for the cdh-topology.
Notation. Discrete categories are denoted by upright letters whereas genuine∞-
categories are denoted by bold letters. We denote by Spc the∞-category of spaces
[34, 1.2.16.1] and by Sp the∞-category of spectra [35, 1.4.3.1]. Given a scheme
X we denote by SchX the category of separated schemes of finite type over X . If
X is noetherian, then every scheme in SchX is noetherian as well.

2. Continuous K-theory for Tate rings

In this section we recall the definition of continuous K-theory as defined byMorrow
[38] and further studied by Kerz-Saito-Tamme [32].

Definition 2.1. Let X be a scheme. We denote by K(X) the nonconnective K-
theory spectrum K(Perf(X)) à la Blumberg-Gepner-Tabuada associated with the
∞-category Perf(X) of perfect complexes on X [9, 7.1, 9.1]. For a ring A, we
write K(A) denoting K(Spec(A)). For i ∈ Z we denote by Ki (X) and Ki (A) the
i-th homotopy group of K(X) and K(A), respectively.

Remark 2.2. For a scheme X the homotopy category Ho(Perf(X)) is equivalent
to the derived category of perfect complexes Perf(X) and the K-theory spectrum
K(X) is equivalent to the one constructed by Thomason-Trobaugh [46, 3]. Every
relevant scheme in this article is quasi-projective over an affine scheme, hence
admits an ample family of line bundles. Thus K-theory can be computed in terms
of the category Vec(X) of vector bundles (i.e. locally free OX -modules). In view
of Bass’ Fundamental Theorem, for n ≥ 1 the group K−n(X) is a quotient of
K0(X ×Gn

m) wherein elements coming from K0(X × An) vanish.

In order to define continous K-theory for adic rings, we give some reminders
about adic rings and pro-objects.

Reminder 2.3. Let A0 be be a ring and let I be an ideal of A0. Then the ideals
(I n)n≥0 form a basis of neighbourhoods of zero in the so-called I -adic topology.
An adic ring is a topological ring A0 such that its topology coincides with the I -
adic topology for some ideal I of A0. We say that I is an ideal of definition. Note
that adic rings have usuallymore than one ideal of definition. If the ideal I is finitely
generated, the completion Â0 is naturally isomorphic to the limit limn≥1 A0/I n .
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Reminder 2.4. We briefly recall the notion of pro-objects and, in particular, of
pro-spectra. For proofs or references we refer to Kerz-Saito-Tamme [32, 2].

Given an∞-category C which is assumed to be accessible and to admit finite
limits, one can built its pro-category

Pro(C) = Funlex,acc(C,Spc)op

where Funlex,acc(C,Spc) is the full subcategory of Fun(C,Spc) consisting of func-
tors which are accessible (i.e. preserve κ-small colimits for some regular cardinal
number κ) and left-exact (i.e. commute with finite limits). The category Pro(C)

has finite limits and, if C has, also finite colimits which both can be computed
level-wise. If C is stable, then also Pro(C) is.

As a matter of fact, a pro-object in C can be represented by a functor X : I → C
where I is a small cofiltered∞-category. In this case, we write “lim”i∈I Xi for the
corresponding object in Pro(C). In our situations, the index category I will always
be the poset of natural numbers N.

Our main example of interest is the category Pro(Sp) of pro-spectra whereas
we are interested in another notion of equivalence. For this purpose, let ι : Sp+ ↪→
Sp be the inclusion of the full stable subcategory spanned by bounded above spec-
tra (i.e. whose higher homotopy groups eventually vanish). The induced inclu-
sion Pro(ι) : Pro(Sp+) ↪→ Pro(Sp) is right-adjoint to the restriction functor
ι∗ : Pro(Sp) → Pro(Sp+).

A map X → Y of pro-spectra is said to be a weak equivalence iff the induced
map ι∗X → ι∗Y is an equivalence in Pro(Sp+). This nomenclature is justified
by the fact that the map X → Y is a weak equivalence if and only if some
truncation is an equivalence and the induced map on pro-homotopy groups are
pro-isomorphisms. Similarly, one defines the notions of weak fibre sequence and
weak pullback.

Definition 2.5. Let A0 be a complete I -adic ring for some ideal I of A0. The
continuous K-theory of A0 is defined as the pro-spectrum

Kcont(A0) = “lim”
n≥1 K(A0/I

n)

where K is nonconnective algebraic K-theory (Definition 2.1). This is independent
of the choice of the ideal of definition.

Definition 2.6. A topological ring A is called a Tate ring if there exists an open
subring A0 ⊂ A which is a complete π -adic ring (i.e. it is complete with respect
to the (π)-adic topology) for some π ∈ A0 such that A = A0[π−1]. We call
such a subring A0 a ring of definition of A and such an element π a pseudo-
uniformiser. A Tate pair (A, A0) is a Tate ring together with the choice of a ring
of definition and a Tate triple (A, A0, π) is a Tate pair together with the choice of
a pseudo-uniformiser.2

2 One should not confuse our notion of a Tate pair with the notion of an affinoid Tate
ring (A, A+), i.e. a Tate ring A together with an open subring A+ of the power-bounded
elements of A which is integrally closed in A. The latter one is used in the context of adic
spaces.
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Example 2.7. Every affinoid algebra A over a complete nonarchimedean field k
is a Tate ring. One can take A0 to be those elements x which have residue norm

|x |α ≤ 1 with respect to some presentation k〈t1, . . . , tn〉 α
� A and any π ∈ k with

|π | < 1 is a pseudo-uniformiser.

Definition 2.8. Let (A, A0, π) be a Tate triple.We define the continuousK-theory
Kcont(A) of A as the pushout

K(A0) K(A)

Kcont(A0) Kcont(A)

in the∞-category Pro(Sp) of pro-spectra.

Remark 2.9. In the situation of Definition 2.8 we obtain a fibre sequence

K(A0 on π) −→ Kcont(A0) −→ Kcont(A)

of pro-spectra. If A = A′0[λ−1] for another complete λ-adic ring A′0, one obtains
a weakly equivalent pro-spectrum, i.e. there is a zig-zag of maps inducing pro-
isomorphisms on pro-homotopy groups [32, Prop. 5.4].

For regular rings algebraic K-theory vanishes in negative degrees. For contin-
uous K-theory this may not be the case since it sees the reduction type of a ring of
definition.

Example 2.10. Let (A, A0) be a Tate pair. By definition there is an exact sequence

. . . → K−1(A0) → Kcont−1 (A0)⊕ K−1(A) → Kcont−1 (A) → K−2(A0)→ . . . .

If both A and A0 are regular, it follows that Kcont−1 (A) ∼= K−1(A0). If A0 is a π -adic
ring, then Kcont−1 (A0) = K−1(A0/π) due to nilinvariance of negative algebraic K-
theory (which follows from nilinvariance of K0 [54, II. Lem. 2.2] and the definition
of negative K-theory in terms of K0 [54, III. Def. 4.1]). Now let k be a discretely
valued field and let π ∈ k◦ be a uniformiser.

(i) If A ∼= k〈x, y〉/(x3 − y2 + π), we can choose A0 := k◦〈x, y〉/(x3 − y2 + π)

so that both A and A0 are regular. The reduction A0/π ∼= k̃〈x, y〉/(x3 − y2) is
the “cusp” over k̃. Thus Kcont−1 (A) = K(A0/π) = 0 [53, 2.4].

(ii) If A ∼= k〈x, y〉/(x3+ x2− y2+π), we can choose A0 := k◦〈x, y〉/(x3+ x2−
y2+π) so that both A and A0 are regular. The reduction A0/π ∼= k̃〈x, y〉/(x3+
x2 − y2) is the “node” over k̃. If char(k) �= 2, then Kcont−1 (A) = K(A0/π) = Z
does not vanish [53, 2.4].

For the reader’s intuition we state some properties of continuous K-theory.

Proposition 2.11. (Kerz-Saito-Tamme) Let (A, A0, π) be a Tate triple.

(i) The canonical map K0(A)→ Kcont
0 (A) is an isomorphism.
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(ii) Kcont
1 (A) ∼= “lim”

n
K1(A)/(1+ πn A0).

(iii) Continuous K-theory satifies an analytic version of Bass Fundamental Theo-
rem; more precisely, for i ∈ Z there is an exact sequence

0→ Kcont
i (A) → Kcont

i (A〈t〉)⊕ Kcont
i (A〈t−1〉) → Kcont

i (A〈t, t−1〉)
→ Kcont

i−1 (A) → 0.

(iv) Continuous K-theory coincides in negative degrees with the groups defined by
Karoubi-Villamayor [33, 7.7]3 and Calvo [12, 3.2].

Proof. The statements (i), (iii), and (iv) are [32, 5.10] and (ii) is [32, 5.5]. ��
There are not always rings of definition which behave nice enough so that we

will have to deal with other models which may not be affine. Hence we define
similarly to Definition 2.8 the following.

Definition 2.12. Let X be a scheme over aπ -adic ring A0. Its continuousK-theory
is

Kcont(X) := “lim”
n≥1 K (X/πn)

where X/πn := X ×Spec(A0) Spec(A0/π
n).

Proposition 2.13. (Kerz-Saito-Tamme [32, 5.8]) Let (A, A0, π) be a Tate triple
such that A0 is noetherian and let X → Spec(A0) be an admissible blow-up, i.e. a
proper morphism which is an isomorphism over Spec(A). Then there exists a weak
fibre sequence

K(X on π) −→ Kcont(X) −→ Kcont(A)

of pro-spectra.

For a more detailed account of continuous K-theory we refer the reader to [32,
6].

3. Admissible Zariski-Riemann spaces

Using a regular model X ′ of a regular affinoid algebra A makes the fibre sequence
(Proposition 2.13)

K(X ′ on π) −→ Kcont(X ′) −→ Kcont(A)

much easier as the left-hand term vanishes in negative degrees, cf. the proofsketch
for the main result (p. 3). Unfortunately, resolution of singularities is not available
at the moment in positive characteristic. A good workaround for this inconvenience
is to work with a Zariski-Riemann type space which is defined as the inverse limit
of all models, taken in the category of locally ringed spaces. This is not a scheme

3 Unfortunately, Karoubi-Villamayor call these groups “positive”.
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anymore, but behaves in the world of K-theory almost as good as a regular model
does. For instance Kcont

n (A) ∼= Kcont
n (〈A0〉A) for negative n where 〈A0〉A is the

admissible Zariski-Riemann space associated with A (Definition 3.6).
The key part of this article is a comparison of rh-cohomology and Zariski

cohomology for admissible Zariski-Riemann spaces (Theorem 4.16). Furthermore,
wewill see later that Zariski-Riemann spaces for formal schemes are closely related
to adic spaces (Theorem 5.8).

Notation. In this section let X be a reduced quasi-compact and quasi-separated
scheme and let U be a quasi-compact open subscheme of X .

Definition 3.1. A U-modification of X is a projective morphism X ′ → X of
schemes which is an isomorphism over U . Denote by Mdf(X,U ) the category
of U -modifications of X with morphisms over X . We define the U-admissible
Zariski-Riemann space of X to be the limit

〈X〉U = lim
X ′∈Mdf(X,U )

X ′

in the category of locally ringed spaces; it exists due to [15, ch. 0, 4.1.10].

Lemma 3.2. The underlying topological space of 〈X〉U is coherent and sober and
for any X ′ ∈ Mdf(X,U ) the projection 〈X〉U → X ′ is quasi-compact.

Proof. This is a special case of [15, ch. 0, 2.2.10]. ��
The notion of a U -admissible modification is quite general. However, one can

restrict to a more concrete notion, namely U -admissible blow-ups.

Definition 3.3. A U-admissible blow-up is a blow-up BlZ (X) → X whose centre
Z is finitely presented and contained in X \ U . Denote by Bl(X,U ) the category
of U -admissible blow-ups with morphisms over X .

Proposition 3.4. The inclusion Bl(X,U ) ↪→ Mdf(X,U ) is cofinal. In particular,
the canonical morphism

〈X〉U = lim
X ′∈Mdf(X,U )

X ′ −→ lim
X ′∈Bl(X,U )

X ′.

is an isomorphism of locally ringed spaces.

Proof. Since a blow-up in a finitely presented centre is projective and an isomor-
phism outside its centre, Bl(X,U ) lies in Mdf(X,U ). On the other hand, every
U -modification is dominated by a U -admissible blow-up [45, Lem. 2.1.5]. Hence
the inclusion is cofinal and the limits agree.4 ��
Lemma 3.5. The full subcategory Mdf red(X,U ) spanned by reduced schemes is
cofinal inMdf(X,U ).

4 Cf. the proof of Lemma A.13.
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Proof. As U is reduced by assumption, the map X ′red ↪→ X ′ is a U -admissible
blow-up for every X ′ ∈ Mdf(X,U ). ��

The remainder of this section is merely fixing notation for the application of
admissible Zariski-Riemann spaces to the context of Tate rings.

Definition 3.6. Let (A, A0, π) be a Tate triple (Definition 2.6). Setting X =
Spec(A0) andU = Spec(A), we are in the situation ofDefinition 3.1. For simplicity
we denote

Adm(A0) := Mdf(Spec(A),Spec(A0))

and call its objects admissible blow-ups. Furthermore, we call the locally ringed
space

〈A0〉A := 〈Spec(A0)〉Spec(A) = lim
X∈Adm(A0)

X

the admissible Zariski-Riemann space associated to the pair (A, A0).

Remark 3.7. The admissible Zariski-Riemann space 〈A0〉A depends on the choice
of the ring of definition A0. However, if B0 is another ring of definition, then also
the intersection C0 := A0 ∩ B0 is. Hence we get a cospan

Spec(A0) −→ Spec(C0)←− Spec(B0)

which is compatible with the inclusions of Spec(A) into these. Hence every admis-
sible blow-up X → Spec(C0) induces by pulling back an admissible blow-up
XA0 → Spec(A0) and a morphism X → XA0 . Precomposed with the canonical
projections we obtain a map 〈A0〉A → X . Hence the universal property yields a
morphism 〈A0〉A → 〈C0〉A. The same way, we get a morphism 〈B0〉A → 〈C0〉A.
One checks that the category of all admissible Zariski-Riemann spaces associated
with A is filtered.

4. Cohomology of admissible Zariski-Riemann spaces

This section is the heart of this article providing the key ingredient for the proof of
our main result; namely, a comparison of Zariski cohomology and rh-cohomology
for admissible Zariski-Riemann spaces (Theorem 4.16). This will be done in two
steps passing through the biZariski topology.

Definition 4.1. Let S be a noetherian scheme. The biZariski topology is the topol-
ogy generated by Zariski covers as well as by closed covers, i.e. covers of the form
{Zi → X}i where X ∈ SchS and the Zi are finitely many jointly surjective closed
subschemes of X . This yields a site SchbiZarS .

Lemma 4.2. The points on the biZariski site (in the sense of Goodwillie-
Lichtenbaum [20, 2]) are precisely the spectra of integral local rings.
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Proof. This follows from the fact that local rings are points for the Zariski topology
and integral rings are points for the closed topology [19]. ��
Lemma 4.3. Let X be a noetherian scheme. The cover of X by its irreducible
components refines every closed cover.

Proof. Let (Xi )i be the irreducible components of X with generic points ηi ∈ Xi .
Let X =⋃

α Zα be a closed cover. For every i there exists an α such that ηi ∈ Zα ,
hence Xi = {ηi } ⊆ Zα = Zα . By maximality of the irreducible components we
have equality. ��
Lemma 4.4. Let S be a noetherian scheme. Every constant Zariski sheaf on SchS
is already a bi-Zariski sheaf.

Proof. Let A be an abelian group. For an open subsetU of X ∈ SchS , the sections
over U are precisely the locally constant functions f : U → A. By Lemma 4.3, it
suffices to check the sheaf condition for the cover ofU by its irreducible components
(Ui )i . We only have to show the glueing property. If fi : Ui → A are locally
constant functions which agree on all intersections, then they glue to a function
f : U → A. We have to show that f is locally constant. If x ∈ U , for every i such
that x ∈ Ui there exists an open neighbourhood Vi of x in U such that f becomes
constant when restricted toUi ∩Vi . Hence f becomes also constant when restricted
to the intersection of all these Vi . Thus f is locally constant. ��
Lemma 4.5. Let S be a noetherian scheme and let X ∈ SchS. For any constant
sheaf A on SchZarS we have H∗Zar(X; A) ∼= H∗biZar(X; A).

Proof. Let u : SchbiZarS → SchZarS be the change of topology morphism of sites.
Using the Leray spectral sequence

Hp
Zar(X; Rqu∗A)⇒ Hp+q

biZar(X; A)

it is enough to show that the higher images Rqu∗A vanish for q > 0. We know that
Rqu∗A is the Zariski sheaf associated with the presheaf

SchZarS � U �→ Hq
biZar(U ; A)

and that its stalks are givenbyHq
biZar(X; A) for X a local scheme (i.e. the spectrumof

a local ring). As the biZariski sheafification of Rqu∗A is zero and using Lemma 4.3,
we see that Hq

biZar(X; A) = 0 for every irreducible local scheme X . For a general
local scheme X we can reduce to the case where X is covered by two irreducible
components Z1 and Z2.

First, let q = 1. We have an exact Mayer-Vietoris sequence

0→ A(X) → A(Z1)× A(Z2)
α→ A(Z1 ∩ Z2)

∂→
(�)

∂→ H1
biZar(X; A) → H1

biZar(Z1; A)× H1
biZar(Z2; A) → H1

biZar(Z1 ∩ Z2; A).
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Since local schemes are connected, the map α is surjective, hence ∂ = 0 and the
second line remains exact with a zero added on the left. Thus H1

biZar(X; A) = 0 for
any local scheme, hence R1u∗A vanishes. For q > 1 we proceed by induction. Let

0→ A→ I → G → 0

be an exact sequence of biZariski sheaves such that I is injective. This yields a
commutative diagram with exact rows and columns

I (Z1)× I (Z2) I (Z1 ∩ Z2) 0

G(Z1)× G(Z2)
β

G(Z1 ∩ Z2)

H1
biZar(Z1 ∩ Z2; A).

Being a closed subscheme of a local scheme, Z1∩ Z2 is also a local scheme. By the
case q = 1, the group H1

biZar(Z1 ∩ Z2; A) vanishes. Hence the map β is surjective.
Using the analogous Mayer-Vietoris sequence (�) above for G instead of A, we
can conclude that R2u∗A ∼= R1u∗G = 0. Going on, we get the desired vanishing
of Rqu∗A for every q > 0. ��

The remainder of the sections dealswith the rh-topology defined byGoodwillie-
Lichtenbaum [20]. We freely use results which are treated in a more detailed way
in Appendix A.

Definition 4.6. An abstract blow-up square is a cartesian diagram of schemes

E X̃

Z X

(abs)

where Z → X is a closed immersion, X̃ → X is proper, and the inducedmorphism
X̃ \ E → X \ Z is an isomorphism. For any noetherian scheme S, the rh-topology
on SchS is the topology generated by Zariski squares and covers {Z → X, X̃ → X}
for every abstract blow-up square (abs) as well as the empty cover of the empty
scheme.

Notation. For the rest of this section, let X be a reduced quasi-compact and
quasi-separated schemeand letU be aquasi-compact dense open subschemeof
X .We denote by Z the closed complement equipped with the reduced scheme
structure.

Definition 4.7. For anymorphism p : X ′ → X weget an analogous decomposition

X ′Z −→ X ′ ←− X ′U
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where X ′Z := X ′×X Z and X ′U := X ′×X U . By abuse of nomenclature, we call XZ

the special fibre of X ′ and XU the generic fibre of X ′. An (abstract) admissible

blow-up of X ′ is a proper map X ′′ → X ′ inducing an isomorphism X ′′U
∼=−→ X ′U

over X . In particular, one obtains an abstract blow-up square

X ′′Z X ′′

X ′Z X ′.

At the end of this section, we will see that the Zariski cohomology and the rh-
cohomology on the Zariski-Riemann space coincide for constant sheaves (Theorem
4.16). The following proposition will be used in the proof to reduce from the rh-
topology to the biZariski topology.

Proposition 4.8. Assume X to be noetherian and let X ′ ∈ SchX . Then for every
proper rh-cover of the special fibre X ′Z there exists an admissible blow-up X ′′ → X ′
such that the induced rh-cover of X ′′Z can be refined by a closed cover.

Proof. Wemay assume that X ′ is reduced. Every proper rh-cover can be refined by
a birational proper rh-cover (Lemma A.6). Thus a cover yields a blow-up square
which can be refined by an honest blow-up square

E ′ Y ′

V ′ X ′Z

i.e. an abstract blow-up square where Y ′ = BlV ′(X ′Z ) (Lemma A.13). We
consider the honest blow-up square

V ′′ X ′′ := BlV ′(X ′)

V ′ X ′

which is an admissible blow-up as V ′ ⊆ X ′Z and decomposes into two cartesian
squares

V ′′ X̃ ′′Z X ′′

V ′ X ′Z X ′
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where all the horizontal maps are closed immersions. By functoriality of blow-ups,
we obtain a commutative diagram

BlV ′′(X ′′Z ) BlV ′′(X ′′) = X ′′

X ′′Z X ′′

wherein both horizontal maps are closed immersions and the right vertical map
is an isomorphism by the universal property of the blow-up. Thus BlV ′′(X ′′Z ) →
X ′′Z is a closed immersion [21, Rem. 9.11]. Functoriality of blow-ups yields a
commutative square

BlV ′′(X ′′Z ) BlV ′(X ′Z ) = Y ′

X ′′Z X ′Z .

By the universal property of the pullback, there exists a unique map
BlV ′′(X ′′Z ) → Y ′′ := Y ′ ×X ′Z X ′′Z such that following diagram commutes.

BlV ′′(X ′′Z )

E ′′ Y ′′

V ′′ X ′′Z X ′′ = BlV ′(X ′)

E ′ Y ′

V ′ X ′Z X ′

To sum up, we have shown that the pullback of the proper rh-cover V ′ � Y ′ → X ′Z
along X ′′Z → X ′Z can be refined by the closed cover V ′′ �BlV ′′(X ′′Z )→ X ′′Z which
was to be shown. ��

Given a topology on (some appropriate subcategory of) the category of schemes,
we want to have a corresponding topology on admissible Zariski-Riemann spaces.
For this purpose, we will work with an appropriate site.

Remark 4.9. Let τ be a topology on the category SchX . It restricts to a topol-
ogy on the category SchqcX of quasi-compact X -schemes. One obtains compatible
topologies on the slice categories SchqcX ′ = (SchqcX )/X ′ for all U -modifications
X ′ ∈ Mdf(X,U ).
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Definition 4.10. Consider the category

Schqc(〈X〉U ) := colim
X ′∈Mdf(X,U )

SchqcX ′ .

More precisely, the set of objects is the set of morphisms of schemes Y ′ → X ′ for
some X ′ ∈ Mdf(X,U ). The set of morphisms between two objects Y ′ → X ′ and
Y ′′ → X ′′ is given by

colim
X̃

HomSch(Y
′ ×X ′ X̃ ,Y ′′ ×X ′′ X̃)

where X̃ runs over all modifications X̃ ∈ Mdf(X,U ) dominating both X ′ and X ′′.
Analogously, define the category

Schqc(〈X〉U \U ) := colim
X ′∈Mdf(X,U )

SchqcX ′\U

where the X ′ \U are equipped with the reduced scheme structure.

Definition 4.11. Let Y ′ → X ′ be an object of Schqc(〈X〉U ). We declare a sieve
R on Y ′ to be a τ -covering sieve of Y ′ → X ′ iff there exists a U -modification
p : X ′′ → X ′ such that the pullback sieve p∗R lies in τ(Y ′ ×X ′ X ′′). Analogously
we define τ -covering sieves in Schqc(〈X〉U \U ).

Lemma 4.12. The collection of τ -covering sieves in Definition 4.11 defines topolo-
gies on the categories Schqc(〈X〉U ) and Schqc(〈X〉U \ U ) which we will refer to
with the same symbol τ .

Proof. This follows immedeately from the construction. ��
Remark 4.13. In practice, for workingwith the site (Schqc(〈X〉U ), τ ) it is enough to
consider τ -covers in the category SchqcX and identifying them with their pullbacks
along U -modifications.

Caveat 4.14. The category Schqc(〈X〉U ) is not a slice category, i.e. a scheme Y
together with a morphism of locally ringed spaces Y → 〈X〉U does not necessarily
yield an object of Schqc(〈X〉U ). Such objects were studied e.g. by Hakim [23].
In contrast, an object of Schqc(〈X〉U ) is given by a scheme morphism Y → X ′
for some X ′ ∈ Mdf(X,U ) and it is isomorphic to its pullbacks along admissible
blow-ups.

In the proof of the main theorem we will need the following statement which
follows from the construction of our site.

Proposition 4.15. Let F be a constant sheaf of abelian groups on Schqc(〈X〉U ).
Then the canonical morphism

colim
X ′∈Mdf(X,U )

H∗τ (X ′; F) −→ H∗τ (〈X〉U ; F)

is an isomorphism. Analogously, if F is a constant sheaf of abelian groups on
Schqc(〈X〉U \U ), then the canonical morphism

colim
X ′∈Mdf(X,U )

H∗τ (X ′Z ; F) −→ H∗τ (〈X〉U \U ; F)

is an isomorphism.
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Proof. This is a special case of [42, Tag 09YP] where the statement is given for
any compatible system of abelian sheaves. ��
Theorem 4.16. For any constant sheaf F on Schqcrh (〈X〉U ), the canonical map

H∗Zar(〈X〉U \U ; F) −→ H∗rh(〈X〉U \U ; F)

is an isomorphism.

Proof. By construction, any rh-cover of 〈X〉U \U is represented by an rh-cover of

X ′Z for some X ′ ∈ Adm(A0). We find a refinement Ṽ
q→ Ỹ

p→ X ′Z where p is a
proper rh-cover and q is a Zariski cover (Proposition A.14). The rh-cover Ỹ → X ′Z
is given by Y ′ � V ′ → X for an abstract blow-up square

E ′ Y ′

V ′ X ′Z .

This is the situation of Proposition 4.8. Thus there exists an admissible blow-
up X ′′ → X ′ and a refinement V ′′ � BlV ′′(X ′′Z ) → X ′′Z of the pulled back cover
which consists of two closed immersions. Hence we have refined our given cover
of 〈X〉U \U by a composition of a Zariski cover and a closed cover which yields a
bi-Zariski cover. This implies that H∗rh(〈X〉U \U ; F) equals HbiZar(〈X〉U \U ; F).
Now the assertion follows from Lemma 4.5. ��
Corollary 4.17. For any constant sheaf F, we have

colim
X ′∈Mdf(X,U )

H∗Zar(X ′Z ; F) = colim
X ′∈Mdf(X,U )

H∗rh(X ′Z ; F).

Proof. This is a formal consequence of the construction of the topology on
Schqc(〈X〉U ) since the cohomology of a limit site is the colimit of the cohomologies
[42, Tag 09YP]. ��

5. Formal Zariski-Riemann spaces and adic spaces

In this section we deal with Zariski-Riemann spaces which arise from formal
schemes. According to a result of Scholze they are isomorphic to certain adic
spaces (Theorem 5.8). This identification is used in the proof of the main theorem
(Theorem 6.1) to obtain the adic spectrum Spa(A, A◦) in the statement. We start
with some preliminaries on formal schemes; for a detailled account of the subject
we refer to Bosch’s lecture notes [10, pt. II].

Notation. In this section, let R be a ring of one of the following types (cf. [10,
7.3]):

(V) R is an adic valuation ring with finitely generated ideal of definition I .



Continuous K-theory and cohomology... 135

(N) R is a noetherian adic ring with ideal of definition I such that R does not have
I -torsion.

An R-algebra is called admissible iff it is of topologically finite presentation and
without I -torsion [10, 7.3, Def. 3]. A formal R-scheme is called admissible iff it has
a cover by affine formal R-schemes of the form Spf(A0) for admissible R-algebras
A0, cf. [10, 7.4, Def. 1].

Definition 5.1. For a scheme X over Spec(R)we denote by X̂ its associated formal
scheme colimn X/I n over Spf(R). A formal scheme which is isomorphic to some
X̂ is called algebraic. Setting U := X \ (X/I ), for every U -admissible blow-up
X ′ → X the induced morphism of X̂ ′ → X̂ is an admissible formal blow-up [1,
3.1.3]. An admissible formal blow-up X ′ → X̂ of an algebraic formal scheme is
called algebraic whenever it is induced from a U -admissible blow up of X .

Example 5.2. (i) Any quasi-affine formal scheme is algebraic. Indeed, an affine
formal scheme Spf(A0) is isomorphic to the formal completion of Spec(A0).
The quasi-affine case is Lemma 5.5 below.

(ii) For a nonarchimedean field k, every projective rigid k-space has an alge-
braic model. In fact, any closed subspace of the rigid analytic space Pn,an

k
is the analytification of a closed subspace of Pn

k by a GAGA-type theorem
[16, 4.10.5]. Since Pn,an

k can be obtained by glueing n + 1 closed unit discs
Bn
k = Spm(k〈t1, . . . , tn〉) along algebraic maps [16, 4.3.4], the rigid space

Pn,an
k is (isomorphic to) the generic fibre of the formal completion (Pn

k◦)
∧ of

the k◦-scheme Pn
k◦ ; this argument also holds for closed subspaces. Hence every

projective rigid k-space has an algebraic model.

Lemma 5.3. Let X be an R-scheme locally of finite type. Assume that R is of type
(N) or that X is without I -torsion (e.g. flat over R). Then every admissible formal
blow-up of X̂ is algebraic.

Proof. If R is of type (N), then R〈t1, . . . , tn〉 is noetherian [10, 7.3 Rem. 1] so
that X̂ is locally of topologically finite presentation. If X is without I -torsion, then
X̂ is locally of topologically finite presentation [10, 7.3, Cor. 5]. Hence in both
cases the notion of an admissible formal blow-up [10, 8.2, Def. 3] is defined. Set
X/I := X ×Spec(R) Spec(R/I ) and let I be the ideal sheaf of OX defining X/I .
Let X ′ → X̂ be an admissible formal blow-up defined by an open ideal A of
OX̂ . In particular, there exists an n ∈ N such that InOX̂ ⊂ A. Let Zn := X/I n

be the closed subscheme of X defined by In . This yields a surjective map ϕ =
i# : OX → i∗OZn of sheaves on X where i : Zn → X denotes the inclusion. Let
Ã := ϕ−1

(A/(InOX̂ )
)
. By construction, i−1Ã = A since both have the same

pullback to Zk = (Z ,OX/Ik) = (Z ,OX̂/Ik). Thus X = X̂Ã. ��
Lemma 5.4. For every R-algebra A0, the family

(
Spf(A0〈 f −1〉

)
f ∈A0

is a basis of
the topology of Spf(A0).

Proof. The family
(
(Spec(A0[ f −1])

)
f ∈A0

forms a basis of the topology of
Spec(A0). Topologically, Spf(A0) is a closed subspace of Spec(A0). Thus the
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induced family
(
Spec (A0[ f −1]) ∩ Spf (A0)

)
f ∈A0

is a basis of the topology of

Spf(A0). As topological spaces, Spf(A0〈 f −1〉) = Spec(A0[ f −1]) ∩ Spf(A0).
Hence we are done. ��
Lemma 5.5. Every admissible formal blow-up of a quasi-affine admissible formal
scheme is algebraic.

Proof. Let j : U ↪→ X = Spf(A0) be the inclusion of an open formal subscheme.
and let U ′ → U be an admissible formal blow-up defined by a coherent open ideal
AU ⊆ OU . Then there exists a coherent open idealA ⊆ OX such thatA|U ∼= AU

and A|V ∼= OV whenever V ∩ U = ∅ [10, 8.2, Prop. 13]. In particular, U ′ → U
extends to an admissible formal blow-up X ′ → X . By Lemma 5.3, this blow-up
comes from an admissible blow-up p : X ′ → X = Spec(A0). By Lemma 5.4, we
can write U = ⋃n

i=1 Ui with Ui = Spf(A0〈 f −1i 〉) for suitable f1, . . . , fn ∈ A0.
Setting Ui := Spec(A0[ f −1i ]) and U ′i := p−1(Ui ) and U ′ := ⋃n

i=1U ′i the union
in X ′, then we obtain that

U ′ =
n⋃

i=1
Ûi = Û ′

which finishes the proof. ��
Definition 5.6. For a formal scheme X locally of topologically finite presentation
over R its associated formal Zariski-Riemann space is defined to be the limit

〈X 〉 := lim
X ′∈Adm(X )

XA

in the category of locally topologically ringed spaces where Adm(X ) denotes the
category of all admissible formal blow-ups of X .

Lemma 5.7. Assume that the ideal I is principal, say generated by π . Let X
be an R-scheme locally of finite type. Assume that R is of type (N) or that X is
without π -torsion (e.g. flat over R). Then its formal completion X̂ is homeomor-
phic to the special fibre X/π = X ×Spec(R) Spec(R/π). Consequently, the for-

mal Zariski-Riemann space 〈X̂〉 is homeomorphic to 〈X〉U/π = 〈X〉U \U where
U = Spec(R[π−1]).
Proof. This is a direct consequence of the definition of a formal scheme [10, 7.2]
and Lemma 5.3. ��
Theorem 5.8. ( [41, 2.22]) Let k be a complete nonarchimedean field, i.e. a topo-
logical field whose topology is induced by a nonarchimedean norm, and let k◦ be its
valuation ring. Let X ad be a quasi-compact and quasi-separated adic space locally
of finite type over k. Then there exists an admissible formal model X of X ad and

there is a homeomorphism X ad
∼=→ 〈X 〉 which extends to an isomorphism

(X ad,O+
Xad )

∼=−→ lim
X ′∈Adm(X )

(X ′,OX ′)

of locally ringed spaces.
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6. Main result: affinoid case

Notation. In this section let k be a complete discretely valued field with valuation
ring k◦ and uniformiser π . This implies that the ring k◦ is noetherian.

Theorem 6.1. Let A be an affinoid k-algebra of dimension d. Then there is an
isomorphism

Kcont−d (A) ∼= Hd(Spa(A, A◦);Z)

where Spa(A, A◦) is the adic spectrum of A with respect to its subring A◦ of
power-bounded elements [26, 3] and the right-hand side is sheaf cohomology.

Before proving the result, we first deduce an immediate consequence.

Corollary 6.2. Let A be an affinoid k-algebra of dimension d. Then there is an
isomorphism

Kcont−d (A) ∼= Hd(Spb(A);Z)

where Spb(A) is the Berkovich spectrum of A [6, Ch. 1] and the right-hand side is
sheaf cohomology.

Proof. The category of overconvergent5 sheaves on an adic spectrum is equivalent
to the category of sheaves on the Berkovich spectrum [47, 5, Thm. 6]. The locally
constant sheaf Z is overconvergent and admits a flasque resolution by overconver-
gent sheaves, hence the claim follows from Theorem 6.1. ��
Proof of Theorem 6.1. We may assume that A is reduced as the statement is nilin-
variant. Let A◦ be the subring of A consisting of power-bounded elements of A.
Then the pair (A, A◦) is a Tate pair [8, 6.2.4, Thm. 1] and A◦ is noetherian [8,
6.4.3, Prop. 3 (i)]. For any X ∈ Adm(A◦) one has XA = Spec(A) and thus by
Proposition 2.13 there is a fibre sequence

K(X on π) −→ Kcont(X) −→ Kcont(A).

Passing to the colimit over all admissible models we obtain a fibre sequence of
pro-spectra

colim
X∈Adm(A◦)

K(X on π) −→ colim
X∈Adm(A◦)

Kcont(X) −→ Kcont(A).

For i < 0 we have that colimX∈Adm(A◦) Ki (X on π) = 0 [28, Prop. 7] and hence

Kcont
i (A) ∼= colim

X∈Adm(A◦)
Kcont
i (X).

Lemma 6.3 below and Theorem A.20 yield

colim
X∈Adm(A◦)

K cont
i (X) ∼= colim

X∈Adm(A◦)
K−d(X/π)

∼= colim
X∈Adm(A◦)

H d
rh(X/π;Z)

5 Cf. [47, 4, p. 94] for the definition of overconvergent sheaves.
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where the last isomorphism uses that d = dim(X/π) if X ∈ Adm(A◦) is reduced.
Corollary 4.17 says that

colim
X∈Adm(A◦)

H∗rh(X/π;Z) ∼= colim
X∈Adm(A◦)

H∗Zar(X/π;Z).

The Zariski cohomology is just ordinary sheaf cohomology. The latter one com-
mutes with colimits of coherent and sober spaces with quasi-compact transition
maps [15, ch. 0, 4.4.1]. Since the admissible Zariski-Riemann space is such a col-
imit we obtain

colim
X∈Adm(A◦)

H∗Zar(X/π;Z) ∼= H∗(〈A◦〉A/π;Z).

where the right-hand side is sheaf cohomology. Finally we get that

H∗
(〈A◦〉A/π;Z) ∼= H∗

(
Spa(A, A◦);Z)

.

since the admissible Zariski-Riemann space 〈A◦〉A is homeomorphic to the formal
Zariski-Riemann space 〈Spf(A◦)〉 (Lemma 5.7) which is isomorphic to the adic
spectrum Spa(A, A◦) (Theorem 5.8). ��

Lemma 6.3. Let Y be a noetherian scheme of finite dimension d. Then for n ≥ d
we have

K−n(Y ) ∼= K−n(Yred).

Proof. This follows by using the Zariski-descent spectral sequence and nilinvari-
ance of negative algebraic K-theory for affine schemes. ��

7. Continous K-theory for rigid spaces

In this section we see that continuous K-theory, as defined for algebras in Defini-
tion 2.8, satisfies descent and hence defines a sheaf of pro-spectra for the admissible
topology. The result and its proof are due toMorrow [38]; we present here a slightly
different argument. For the general theory on rigid k-spaces we refer the reader to
Bosch’s lecture notes [10, pt. I].

Notation. In this section let k be a complete discretely valued field with valuation
ring k◦ and uniformiserπ . This implies that the ring k◦ is noetherian. For an affinoid
k-algebra A denote by Spm(A) its associated affinoid k-space [10, 3.2].6 Denote by
FSchk◦ the category of formal schemes over k◦ and by FSchlftk◦ its full subcategory
of formal schemes that are locally finite type over k◦; we consider these as sites
equipped with the Zariski-topology.

6 Bosch uses the notation Sp(A).
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Lemma 7.1. Let X be a formal scheme over k◦ which is assumed to be covered
by two open formal subschemes X1 and X2. Setting X3 := X1 ∩ X2 we obtain a
cartesian square

Kcont(X ) Kcont(X1)

Kcont(X2) Kcont(X3)

in the category Pro(Sp).

Proof. For every n ≥ 1, the special fibre X /πn is covered by X1/π
n and X2/π

n

with intersectionX3/π
n .Applying algebraicK-theory oneobtains cartesian squares

by Zariski descent. Now the claim follows as finite limits in the pro-category can
be computed levelwise (Reminder 2.4). ��
Corollary 7.2. The presheaf Kcont on the site FSchk◦ is a sheaf of pro-spectra and
satisfies Kcont(Spf(A0)) � Kcont(A0) for every k◦-algebra A0.

Proof. This is a standard consequence for topologies which are induced by cd-
structures [2, Thm. 3.2.5]. ��
Lemma 7.3. ( [38, 3.4]) Let Spm(A) be an affinoid k-space which is assumed to
be covered by two open affinoid subdomains Spm(A1) and Spm(A2). We set

A3 := A1⊗̂A A
2 := k ⊗k0 (A1+ ⊗A+ A2+)∧

where A0, A1+, A2+ are respective subrings of definition of A, A1, A2 and (A1+⊗A0

A2+)∧ denotes the π -adic completion. Then the square

Kcont(A) Kcont(A1)

Kcont(A2) Kcont(A3)

(�)

is weakly cartesian in Pro(Sp), i.e. cartesian in Pro(Sp+).

Proof. We note that the definition of the ring A3 is independent of the choices of
the rings of definition A1+ and A2+ and we forget about these choices. According
to Raynaud’s equivalence of categories between quasi-compact admissible formal
k◦-schemes localised by admissible formal blow-ups and quasi-compact and quasi-
separated rigid k-spaces we find an admissible formal blow-up X → Spf(A0) and
an open cover X = X1 ∪ X2 whose associated generic fibre is the given cover
Spm(A) = Spm(A1) ∪ Spm(A2) [10, 8.4]. Since every admissible blow-up of the
algebraic formal scheme Spf(A0) is algebraic (Lemma 5.3), we find an admissible
blow-up X → Spec(A0) and an open cover X = X1∪X2 whose formal completion
is the cover X = X1 ∪ X2. We set X3 := X1 ∩ X2 and note that for i ∈ {1, 2, 3}
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there exist rings of definition Ai
0 of Ai , respectively, and admissible blow-ups

Xi → Spec(Ai
0). By Zariski descent have two cartesian squares

K(X on π) K(X1 on π) Kcont(X) Kcont(X1)

K(X2 on π) K(X3 on π) Kcont(X2) Kcont(X3)

where the right square is cartesian since it is levelwise cartesian (Reminder 2.4).
There is map from the left square to the right square. By Proposition 2.13, the
square of cofibres is weakly equivalent to the square (�) which is therefore weakly
cartesian. ��

The following statement is a standard result about extending sheaves from local
objects to global ones and permits us to extend continuous K-theory to the category
of rigid k-spaces.

Proposition 7.4. The inclusion ι : Rigaffk ↪→ Rigk of affinoid k-spaces into rigid
k-spaces induces an equivalence

ι∗ : Sh(Rigk)
�−→ Sh(Rigaffk ).

Moreover, for every∞-category D which admits small limits, the canonical map

ι∗ : ShD(Rigk)
�−→ ShD(Rigaffk ).

is an equivalence.

Proof. This follows from applying twice an ∞-categorical version of the “com-
parison lemma” [25, C.3]: first to the inclusion Rigaffk ↪→ Rigsepk of affinoid spaces
into separated spaces and secondly to the inclusion Rigsepk ↪→ Rigk . ��

Corollary 7.5. ( [38, 3.5]) There exists a unique sheaf Kcont on the category Rigk
(equipped with the admissible topology) that has values in Pro(Sp+) and satisfies
Kcont(Spm(A)) � Kcont(A) for every affinoid k-algebra A.

Corollary 7.6. The functor

Kcont((_)η) : (FSchk◦)
op → (Rigk)

op → Pro(Sp+), X �→ Xη �→ Kcont(Xη)

is a sheaf.

Proof. This follows from the fact that Zariski covers of formal schemes induce on
generic fibres admissible covers of rigid spaces. ��
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8. Main result: global case

In this section we conjecture that an analogous version of our main result (The-
orem 6.1) for rigid spaces is true. We prove this conjecture in the algebraic case
(e.g. affinoid or projective) and in dimension at least two (Theorem 8.8). The con-
structions in this section are ad-hoc for our purposes and a full development of the
formalism which will be based on adic spaces needs to be examined in future work.

Notation. In this section let k be a complete discretely valued field with valuation
ring k◦ and uniformiser π .

Conjecture 8.1. Let X be a quasi-compact and quasi-separated rigid k-space of
dimension d. Then there is an isomorphism

Kcont−d (X) ∼= Hd(X;Z)

of pro-abelian groups. In particular, the pro-abelian group Kcont−d (X) is constant.

Definition 8.2. For an affine formal scheme Spf(A0) with associated generic fibre
Spm(A) where A = A0⊗k◦ k there is by definition a map Kcont(A0) → Kcont(A).
This map can be seen as a natural transformation FSchaff → Pro(Sp+) which
extends to a natural transformation

Kcont(_) → Kcont((_)η) : (FSchlftk◦)
op −→ Pro(Sp+).

For a formal scheme X locally of finite type over k◦ we define

Kcont(X on π) := fib
(
Kcont(X )→ Kcont(Xη)

)

where Xη is the associated generic fibre. By construction and by Corollary 7.2 and
Corollary 7.6 the induced functor

Kcont(_ on π) : (FSchlftk◦)
op → Pro(Sp+)

is a sheaf.

Lemma 8.3. Let X be a k◦-scheme locally of finite type. Then there is a canonical
equivalence

K(X on π)
�−→ Kcont(X̂ on π).

In particular, Kcont(X̂ on π) is equivalent to a constant pro-spectrum.

Proof. If X = Spec(A0) is affine we have by Definition 2.8 a pushout square

K(A0) K(A0[π−1])

Kcont(A0) Kcont(A0[π−1]).
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Since the category Sp is stable, this also holds for Pro(Sp). Thus the square is
also a pullback and we have an equivalence K(A0 on π) � Kcont(A0 on π) of the
horizontal fibres. If X is quasi-compact and separated, choose a finite affine cover
(Ui )i which yields a commutative diagram

K(X on π) lim
�

K(Ǔ• on π)

Kcont(X̂ on π) lim
�

Kcont(
ˇ̂U• on π)

where Ǔ• and ˇ̂U• are the Čech nerves of the cover (Ui )i of X respectively the
induced cover (Ûi )i of X̂ . Thus the horizontal maps are equivalences. By the affine
case the right vertical map is an equivalence, hence also the left vertical map as
desired. For the quasi-separated case we reduce analogously to the separated case.

��
Corollary 8.4. Let X be a k◦-scheme locally of finite type. Then the square

K(X) K(Xk)

Kcont(X̂) Kcont(X̂η)

is cartesian in Pro(Sp+) where Xk := X ×Spec(k◦) Spec(k).

Proof. By design there is a commutative diagram of fibre sequences

K(X on π) K(X) K(Xk)

Kcont(X̂ on π) Kcont(X̂) Kcont(X̂η)

where the left vertical map is an equivalence due to Lemma 8.3. ��
Corollary 8.5. Let X be a reduced k◦-scheme locally of finite type. For n ≥ 1 we
have

colim
X ′ Kcont−n (X ′ on π) = 0

where X ′ runs over all admissible formal blow-ups of X̂ .7

7 There is no trouble with this colimit since the pro-spectrum in question is constant by
Lemma 8.3. In general, colimits in pro-categories are hard to compute.



Continuous K-theory and cohomology... 143

Proof. Since every admissible formal blow-up of an algebraic formal scheme is
algebraic (Lemma 5.3), due to Lemma 8.3, and by [28, Prop. 7] we have

colim
X ′ Kcont−n (X ′ on π) ∼= colim

X ′
Kcont−n (X̂ ′ on π) ∼= colim

X ′
K−n(X ′ on π) = 0

where the latter two colimits are indexed by all Xk-admissible blow-ups of and
where Xk := X ×Spec(k◦) Spec(k). ��
Lemma 8.6. LetX be a quasi-compact admissible formal scheme. For n ≥ 2 have

colim
X ′ Kcont−n (X ′ on π) = 0

where X ′ runs over all admissible formal blow-ups of X .

Proof. Let α ∈ Kcont−n (X on π). We choose a finite affine cover (Ui )i∈I ofX where
I = {1, . . . , k}. By the affine case, we find for every i ∈ I an admissible formal
blow-up U ′i → Ui such that the map Kcont−n (Ui ) → Kcont−n (U ′i ) sends α|Ui to zero.
There exists an admissible formal blow-upX ′ → X locally dominating these local
blow-ups, i.e. for every i ∈ I the pullback X ′ ×X Ui → Ui factors over U ′ → U
[10, 8.2, Prop. 14].Wemay assume thatX ′×X Ui = U ′i . Setting V := U2∪ . . .∪Uk

one obtains a commutative diagram

Kcont−n+1(U1 ∩ V on π) Kcont−n (X on π) Kcont−n (U1 on π)⊕ Kcont−n (V on π)

Kcont−n+1(U ′1 ∩ V ′ on π) Kcont−n (X ′ on π) Kcont−n (U ′1 on π)⊕ Kcont−n (V ′ on π)

of Mayer-Vietoris sequences. By the affine case and by induction on the cardinality
of the affine cover, α maps to zero in Kcont−n (U ′1) ⊕ Kcont−n (V ′). Hence its image in
Kcont−n (X ′ on π) comes from an element α′ in Kcont−n+1(U ′1 ∩ V ′). As an admissible
formal blow-up of the quasi-affine admissible formal scheme U1 ∩ V , the formal
schemeU ′1∩V ′ is algebraic according to Lemma 5.5. Hence there exists an admissi-
ble formal blow-up ofU ′1∩V ′ where α′ vanishes. As above this can be dominated by
an admissible formal blow-up X ′′ → X ′ so that the image of α in Kcont−n (X ′′ on π)

vanishes. ��
Next we do another similar reduction to the affinoid case.

Lemma 8.7. For every quasi-compact admissible formal schemeX and every con-
stant rh-sheaf F the canonical map

colim
X ′ H∗Zar(X ′/π; F) −→ colim

X ′ H∗rh(X ′/π; F)

is an isomorphism.

Proof. This is similar to the proof of Proposition 8.6. By aMayer-Vietoris argument
and by induction on the number of affine formal schemes needed to cover X , we
can reduce to one degree less. Fortunately, this also works in degree 0 due to the
sheaf condition. ��
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We now prove Conjecture 8.1 in almost all cases.

Theorem 8.8. Let X be a quasi-compact and quasi-separated rigid k-space of
dimension d. Assume that d ≥ 2 or that there exists a formal model which is alge-
braic (Definition 5.1, e.g. X is affinoid or projective). Then there is an isomorphism

Kcont−d (X) ∼= Hd(X;Z)

where the right-hand side is sheaf cohomology with respect to the admissible topol-
ogy on the category of rigid k-spaces.

Proof. LetX be an admissible formal model of X . By Definition 8.2 there is a fibre
sequence

Kcont(X on π) −→ Kcont(X ) −→ Kcont(X).

If colimX ′ Kcont−n (X ′ on π) = 0 for n ∈ {d − 1, d}, then the induced map

colim
X ′ Kcont−d (X ′) −→ Kcont−d (X)

is an isomorphism; this is the case if X is algebraic (Corollary 8.5; note that the
reducedness assumption does not harm due to Lemma 6.3) or if dim(X) ≥ 2
(Lemma 8.6). By Lemma 6.3 and Theorem A.20 we conclude

Kcont−d (X) ∼= colim
X ′ Kcont−d (X ) ∼= colim

X ′ K−d(X /π) ∼= colim
X ′ Hd

rh(X /π;Z).

By Lemma 8.7 we have that

colim
X ′ H∗rh(X /π;Z) ∼= colim

X ′ H∗Zar(X ′/π;Z).

Since every formal scheme is homeomorphic to its special fibre, the latter one iden-
tifies with colimX ′ Hd(X ′;Z) as sheaf cohomology only depends on the topology.
Since the formal Zariski-Riemann space 〈X 〉 = limX ′ X ′ is a colimit of coherent
and sober spaces with quasi-compact transition maps, it commutes with cohomol-
ogy [15, ch. 0, 4.4.1]. Hence we conclude that

colim
X ′ Hd(X ′;Z) ∼= Hd(〈X 〉;Z)) ∼= Hd(X ad;Z) ∼= Hd(X;Z)

by using Theorem 5.8 for the middle isomorphism. ��
Remark 8.9. The cases of Conjecture 8.1 which are not covered by Theorem 8.8 are
curves which are not algebraic. In particular, they must not be affine nor projective
nor smooth proper (cf. [37, 1.8.1]).

As the constant sheaf Z is overconvergent we infer the following.

Corollary 8.10. Let X be a quasi-compact and quasi-separated rigid analytic
space of dimension d over a discretely valued field. Assume that d ≥ 2 or that
there exists a formal model of X which is algebraic (e.g. X is affinoid or projec-
tive). Then there is an isomorphism

Kcont−d (X) ∼= Hd(Xberk;Z)

where Xberk is the Berkovich space associated with X.
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Remark 8.11. If Xberk is smooth over k or the completion of a k-scheme of finite
type, then there is an isomorphism [11, III.1.1]

Hd(Xberk;Z) ∼= Hd
sing(X

berk;Z)

with singular cohomology since the Berkovich space Xberk is locally contractible.
For smooth Berkovich spaces this is a result of Berkovich [7, 9.1] and for comple-
tions of k-schemes of finite type this was proven by Hrushovski-Loeser [24].

Finally, we prove vanishing and homotopy invariance of continous K-theory
in low degrees. The corresponding statement for affinoid algebras was proven by
Kerz [28, Thm. 12].

Theorem 8.12. Let k be a complete discretely valued field and let X be a quasi-
compact and quasi-separated rigid k-space of dimension d. Then:

(i) Kcont−i (X) = 0 for i > d.
(ii) The canonical map Kcont−i (X) → Kcont−i (X × Bn

k ) is an isomorphism for i ≥ d
and n ≥ 1 where Bn

k := Spm(k〈t1, . . . , tn〉) is the rigid unit disc.
Proof. Let i ≥ 1. We have an exact sequence

colim
X

Kcont−i (X on π)→ colim
X

Kcont−i (X )→ Kcont−i (X) → colim
X

Kcont−i−1(X on π)

whereX runs over all admissible formal models of X . The last term in the sequence
vanishes due to Lemma 8.6. For i > d, we have Kcont−i (X ) = K−i (X /π) = 0 by
Lemma 6.3 and vanishing of algebraic K-theory as dim(X /π) = d. This shows
(i). For (ii) this works analogously for N cont−i,n(X) := coker

(
Kcont−i (X) → Kcont−i (X×

Bn
k )

)
which is enough as the map in question is injective. ��
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Appendix A The rh-topology

In this section we examine the rh-topology introduced by Goodwillie-Lichtenbaum [20,
1.2]. We use a different definition in terms of abstract blow-up squares and show that both
definitions agree (CorollaryA.9). In the end,wewill prove some rh-versions of known results
for the cdh-topology; most importantly, that the rh-sheafification of K-theory is KH-theory
(Theorem A.15).

Notation. Every scheme in this section is noetherian of finite dimension. Under these cir-
cumstances, a birational morphism is an isomorphism over a dense open subset of the target
[42, Tag 09YP].

Definition A.1. An abstract blow-up square is a cartesian diagram of schemes

E X̃

Z X

(abs)

where Z → X is a closed immersion, X̃ → X is proper, and the induced morphism
X̃ \ E → X \ Z is an isomorphism.

Definition A.2. Let S be a noetherian scheme. The rh-topology on SchS is the topology
generated by Zariski squares and covers {Z → X, X̃ → X} for every abstract blow-up
square (abs) as well as the empty cover of the empty scheme. The cdh-topology (completely
decomposed h-topology) is the topology generated by Nisnevich squares and abstract blow-
up squares as well as the empty cover of the empty scheme.

Remark A.3. The cdh-topology relates to the Nisnevich topology in the same way as the
rh-topology relates to the Zariksi topology. Thus a lot of results in the literature concerning
the cdh-topology are also valid for the rh-topology. Possible occurences of the Nisnevich
topology may be substituted by the Zariski topology. Hence the same proofs apply almost
verbatim by exchanging only the terms “cdh” by “rh”, “Nisnevich” by “Zariksi”, and “étale
morphism” by “open immersion”.

Remark A.4. Our definition of an abstract blow-up square coincides with the one given
in [31]. Other authors demand instead the weaker condition that the induced morphism
(X̃ \ E)red → (X \ Z)red on the associated reduced schemes is an isomorphism, e.g. [39,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Def. 12.21]. Indeed, both notions turn out to yield the same topology. To see this, first note
that the map Xred → X is a rh-cover since

∅ ∅

Xred X

is an abstract blow-up square in the sense of Definition A.1 since Xred → X is a closed
immersion, ∅ → X is proper, and the induced map on the complements ∅ → ∅ is an
isomorphism. Now we consider the following situation as indicated in the diagram

X̃red (X̃U )red

∼=X̃ X̃U

Zred Xred Ured

Z X U

where U := X \ Z and X̃U := X̃ ×X U . The morphism Z � X̃ → X is a cover in the
sense of [39] but not a priori in the sense of Definition A.2. However, it can be refined by
the composition Zred � X̃red → Xred → X in which both maps are rh-covers.

Definition A.5. A morphism of schemes X̃ → X satisfies the Nisnevich lifting property
iff every point x ∈ X has a preimage x̃ ∈ X̃ such that the induced morphism κ(x) → κ(x̃)
on residue fields is an isomorphism.

Lemma A.6. Let p : X̃ → X be a proper map satisfying the Nisnevich lifting property and
assume X to be reduced. Then there exists a closed subscheme X ′ of X̃ such that the restricted
map p|X ′ : X ′ → X is birational.

Proof. Let η be a generic point of X . By assumption, there exists a point η̃ of X̃ mapping to
η. Since p is a closed map, we have p

( {η̃} ) ⊃ p({η̃}) = {η} and hence equality holds. Thus
the restriction {η̃} → {η} is a morphism between reduced and irreducible schemes inducing
an isomorphism on the stalks of the generic points, hence it is birational. Thus setting X ′ to
be the (finite) union of all {η̃} for all generic points η of X does the job. ��

Lemma A.7. ( [49, 2.18]) A proper map is an rh-cover if and only if it satisfies the Nisnevich
lifting property.

Definition A.8. A proper rh-cover is a proper map which is also an rh-cover, i.e. a proper
map satisfying the Nisnevich lifting property. By Lemma A.6, every proper rh-cover of a
reduced scheme has a refinement by a proper birational rh-cover.

Corollary A.9. The rh-topology equals the topology which is generated by Zariski covers
and by proper rh-covers.
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Definition A.10. We say that a set-valued presheaf F satisifes rh-excision iff for every
abstract blow-up square (abs) as in Definition A.1 the induces square

F(X) F(Z)

F(X̃) F(E)

is a pullback square.

Proposition A.11. A Zariski sheaf is an rh-sheaf if and only if it satisfies rh-excision.

Proof. The proof is analogous to the proof of the corresponding statement for the Nisnevich
topology [39, 12.7], cf. Remark A.3. ��
Definition A.12. The hrh-topology (honest rh-topology) (resp. the hcdh-topology) is the
topology generated by honest blow-up squares

E BlZ (X)

Z X

andZariski squares (resp.Nisnevich squares) aswell as the empty cover of the empty scheme.

Lemma A.13. Let S be a noetherian scheme. On SchS the hrh-topology equals the rh-
topology and the hcdh-topology equals the cdh-topology.

Proof. Every hrh-cover is an rh-cover. We have to show conversely that every rh-cover can
be refined by an hrh-cover. Let X ∈ SchS . It suffices to show that a cover coming from
an abstract blow-up square over X can be refined by an hrh-cover. As BlXred (X) = ∅, the
map Xred → X is an hrh-cover. Hence we can assume that X is reduced since pullbacks of
abstract blow-up squares are abstract blow-up squares again. Let X = X1 ∪ . . .∪ Xn be the
decomposition into irreducible components. For a closed subscheme Z of X one has

BlZ (X) = BlZ (X1) ∪ . . . ∪ BlZ (Xn).

If Z = Xn , then BlXn (Xn) = ∅ and BlXn (Xi ) is irreducible for i ∈ {1, . . . , n − 1}
[21, Cor. 13.97]. By iteratively blowing up along the irreducible components, we can hence
reduce to the case where X is irreducible. Let

E X̃

Z X

be an abstract blow-up square. As X is irreducible, the complementU := X \ Z is schemat-
ically dense in X . As p : X̃ → X is proper and birational, also X̃ is irreducible and p−1(U )

is schematically dense in X̃ . Thus p is a U -modification and a result of Temkin tells us that
there exists a U -admissible blow-up factoring over X̃ [45, Lem. 2.1.5].8 That means that
there exists a closed subscheme Z ′ of X which lies in X \U = Z such that BlZ ′(X) → X
factors over X̃ → X . Thus the rh-cover {Z → X, X̃ → X} can be refined by the hrh-cover
{Z ′ → X,BlZ ′(X)→ X} which was to be shown. The second part has the same proof. ��
8 Even though most parts of Temkin’s article [45] deal with characteristic zero, this is not

the case for the mentioned result.
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Proposition A.14. Let S be a noetherian scheme and let X ∈ SchS. Every rh-cover of X

admits a refinement of the form U
f→ X̃

p→ X where f is a Zariski cover and p is a proper
rh-cover.

Proof. The proof is analogous to the corresponding result for the cdh-topology due to Suslin-
Voevodsky [43, 5.9] or the proof given in [39, 12.27,12.28], cf. Remark A.3. ��
The following theorem and its proof are just rh-variants of the corresponding statement for
the cdh-topology by Kerz-Strunk-Tamme [31, 6.3]. The theorem goes back to Haesemeyer
[22]. Another recent proof for the cdh-topology which also works for the rh-topology was
recently given by Kelly-Morrow [29, 3.4].

Notation. Let S be a scheme and let ShAb(Sch
rh
S ) be the category of rh-sheaves on SchS

with values in abelian groups. Its inclusion into the category PShAb(SchS) of presheaves on
SchS with values in abelian groups admits an exact left adjoint arh. Similarly, the inclusion
ShSp(SchrhS ) ↪→ PShSp(SchS) of rh-sheaves on SchS with values in the ∞-category of
spectra Sp admits an exact left adjoint Lrh.

Theorem A.15. Let S be a finite-dimensional noetherian scheme. Then the canonical maps
of rh-sheaves with values in spectra on SchS

Lrh K≥0 −→ Lrh K −→ KH

are equivalences.

In the proof of the theorem we will make use of the following lemma.

Lemma A.16. Let S be a finite dimensional noetherian scheme and let F be a presheaf of
abelian groups on SchS. Assume that

(i) for every reduced affine scheme X and every element α ∈ F(X) there exists a proper
birational morphism X ′ → X such that F(X)→ F(X ′) maps α to zero and that

(ii) F(Z) = 0 if dim(Z) = 0 and Z is reduced.

Then arh F = 0.

Proof. It suffices to show that for every affine scheme X the map

F(X) −→ arh F(X)

vanishes as this implies that the rh-stalks are zero. Consider the diagram

F(X) arh F(X)

F(Xred) arh F(Xred).

As Xred → X is an rh-cover, the right vertical map is an isomorphism. Thus we can assume
that X is reduced. For any α ∈ F(X) there exists, by condition (i), a proper birational
morphism f : X ′ → X such thatαmaps to zero in F(X ′). LetU be an open dense subscheme
of X over which f is an isomorphism and set Z := (X \ U )red. Then dim(Z) < dim(X)

as U is dense. By condition (ii) we can argue by induction that α maps to zero in arh F(Z).
Since X ′ � Z → X is an rh-cover by construction, α vanishes on some rh-cover of Y . Thus
the map F(X) → arh F(X) maps every element to zero which finishes the proof. ��
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Example A.17. (i) For i < 0, the functor F = Ki satisfies the conditions of Lemma A.16.
Zero-dimensional reduced schemes are regular and hence their negative K-theory vanishes,
and condition (i) was proven by Kerz-Strunk [30, Prop. 5].
(ii) Another example is the functor F = N Ki for i ∈ Z which is defined by N Ki (X) :=
Ki (A1

X )/Ki (X). The K-theory of regular schemes is homotopy invariant, and condition (i)
was proven by Kerz-Strunk-Tamme [31, Prop. 6.4].

The following proposition is just a recollection from the literature which will be used in the
proof of Theorem A.15.

Proposition A.18. (Voevodsky, Asok-Hoyois-Wendt) Let S be a noetherian scheme of finite
dimension. Then:

(i) The∞-topos Shrh(SchS) of space-valued rh-sheaves on SchS is hypercomplete.
(ii) The∞-category ShrhSp(SchS) of spectrum-valued rh-sheaves on SchS is left-complete.

(ii) A map in ShrhSp(SchS) is an equivalence if and only if it is an equivalence on stalks.

Proof. The rh-topology is induced by a cd-structure [48,Def. 2.1]which is complete, regular,
and bounded [49, Thm. 2.2]. Hence a space-valued presheaf is a hypercomplete rh-sheaf if
and only if it is rh-excisive; this follows from [48, Lem. 3.5]. On the other hand, as the
cd-structure is complete and regular, a space-valued presheaf is an rh-sheaf if and only if it is
rh-excisive; this follows from [2, Thm. 3.2.5]. Together this implies (i), cf. [2, Rem. 3.2.6].
The∞-category ShrhSp(SchS) is equivalent to the∞-category ShrhSp(Shrh(SchS)) of sheaves

of spectra on the ∞-topos Shrh(SchS) [36, 1.3.1.7]. Hence the ∞-topos ShrhSp(SchS) of
connective objects is Postnikov complete. As we can write every object F as the colimit
colimn∈N F≥−n of objects which are (up to a shift) connective, this implies (ii) and (iii). ��
Proof of Theorem A.15. As the∞-topos of space-valued sheaves onSchrhS is hypercomplete,
we can test the desired equivalences on stalks (Proposition A.18). Since spheres are compact,
taking homotopy groups commutes with filtered colimits and we can check on the sheaves of
homotopy groups of the stalks whether the maps are equivalences. Thus the first equivalence
follows directly by applying Lemma A.16 and Example A.17 (i) and since the connective
cover has isomorphic non-negative homotopy groups.
For the second equivalence we assume for a moment the existence of a weakly convergent
spectral sequence

E1
p,q = arh N

p Kq ⇒ arh KHp+q

in ShAb(Sch
rh
S ). It suffices to show that arh N p Kq = 0 for p ≥ 1 which follows from

Lemma A.16 and Example A.17 (ii). Thus the proof is finished by the following lemma. ��
Lemma A.19. There is a weakly convergent spectral sequence

E1
p,q = arh N

p Kq ⇒ arh KHp+q
of rh-sheaves of abelian groups on SchX .

Proof. For every ring R there is a weakly convergent spectral sequence [54, IV.12.3]

E1
p,q = N p Kq (R) ⇒ KHp+q (R).

This yields a spectral sequence E1
p,q = N p Kq on the associated presheaves of abelian

groups on SchX and hence a spectral sequence E1
p,q = arh N p Kq of the associated rh-

sheafifications. We have to check that the latter one converges to arh KHp+q . This can be
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tested on rh-stalks which are filtered colimits of the weakly convergent spectral sequence
above. As filtered colimits commute with colimits and finite limits, a filtered colimit of
weakly convergent spectral sequence yields a weakly convergent spectral sequence. Hence
we are done. ��
Theorem A.20. Let X be a d-dimensional noetherian scheme. Then there exists a canonical
isomorphism

K−d (X) ∼= Hd
rh(X;Z).

Proof. As KH is an rh-sheaf, the Zariski descent spectral sequence appears as

E p,q
2 = Hp

rh(X, arh(K−q ))⇒ KH−p−q (X).

We know the following:

• E p,q
2 = 0 for p > d as the rh-cohomological dimension is bounded by the dimension

[49, 2.27].
• arh(K≥0)0 = Z since (K≥0)0(R) = K0(R) = Z for any local ring R.
• K−d (X) ∼= KH−d (X) by K−d -regularity and the vanishing of K−i for i > dim(X)

[31, Thm. B] together with the spectral sequence relating K-theory and KH-theory [54,
IV.12.3].

• arh K−q = 0 for q > 0 by Lemma A.16 and Example A.17.

This implies that in the 2-page only the term Ed,0
2 = Hd

rh(X;Z) contributes on the line

−p − q = −d and that already Ed,0
2 = Ed,0∞ since all differentials of all Ed,0

i for i ≥ 2
come from or go to zero. Hence the theorem follows. ��
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