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Abstract. We show that for a variety which admits a quasi-finite period map, finiteness
(resp. non-Zariski-density) of S-integral points implies finiteness (resp. non-Zariski-density)
of points over all Z-finitely generated integral domains of characteristic zero. Our proofs
rely on foundational results in Hodge theory due to Deligne, Griffiths, and Schmid, and
Bakker-Brunebarbe-Tsimerman. We give straightforward applications to arithmetic locally
symmetric varieties, the moduli space of smooth hypersurfaces in projective space, and the
moduli of smooth divisors in an abelian variety.
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1. Introduction

The goal of this note is to give arithmetic applications of foundational results in
Hodge theory. Our main abstract result (which is a combination of Theorems 1.6
and 3.7 below) reads as follows (see Definition 1.5 for the definition of admitting
a quasi-finite period map).

Theorem 1.1. (Main Result, I) Let A ⊂ k = Q be a finitely generated subring
and let X be a finite type A-scheme such that Xk is a quasi-projective variety over
k which admits a quasi-finite complex-analytic period map. Then the following
statements are equivalent.

(1) For every finitely generated subring A′ ⊂ k containing A, the setX (A′) is finite
(resp. not Zariski-dense in X (k)).

(2) For every finitely generated integral domain B containing A, the set X (B) is
finite (resp. not Zariski-dense in X (Frac(B))) (where Frac(B) is a choice of
algebraic closure of Frac(B)).
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In other words, for varieties admitting a quasi-finite period map, finiteness
of OK ,S-points (where K ranges over all number fields and S ranges over all
finite collections of finite places of K ) implies finiteness of A-points for all Z-
finitely generated integral domains A of characteristic zero, and a similar statement
(which requires substantially deeper input) holds for non-Zariski-density of ratio-
nal points. Both the finiteness and non-density results require input from Hodge
theory. Arguably, the novel technical result in our proof of Theorem 1.1 is Theorem
3.7.

Weproceed to give various applications of these results, by applying them to var-
ious moduli spaces/stacks. For example, our first result extends Lawrence–Sawin’s
finiteness result for smooth hypersurfaces in an abelian variety from number fields
[36] to finitely generated fields of characteristic zero (see [30] for a further gener-
alization).

Theorem 1.2. (Main Result, II, Lawrence–Sawin + ε) Let K be a number field,
let S be a finite set of finite places of K , and let A be an abelian scheme over
OK ,S. Let D be an ample divisor on AK . Then, for any OK ,S-finitely generated
normal integral domain R of characteristic zero, the set of R-smooth hypersurfaces
H ⊂ AR such that H represents DFrac(R) on AFrac(R) is finite.

We stress that the bulk of the work to prove Theorem 1.2 is contained in the
paper of Lawrence–Sawin [36]. We only combine their work with ours to prove
more general finiteness statements over finitely generated fields of characteristic
zero (as opposed to only number fields).

Note that Theorem 1.2 shows that the Shafarevich conjecture for smooth hyper-
surfaces in an abelian variety over a number field (as proven by Lawrence–Sawin)
persists over finitely generated fields of characteristic zero. Also, note that the
proof of Theorem 1.2 is a straightforward consequence of our main abstract result
(Theorem 1.1) and the following two facts due to Lawrence–Sawin:

(1) Lawrence–Sawin’s main theorem [36, Theorem 1.1] which says that Theorem
1.2 holds whenever dim R = 1;

(2) The moduli space of smooth hypersurfaces in an abelian variety admits a quasi-
finite period map; see [36, Proposition 5.10];

Our next result is of similar nature, but is instead concernedwith the Shafarevich
conjecture for smooth hypersurfaces in projective space (as opposed to smooth
hypersurfaces in a fixed abelian variety).

Theorem 1.3. (Main Result, III) Let d ≥ 3 be an integer and let n ≥ 2. Assume
that, for every number field K and every finite set of finite places S of K , the set of
OK ,S-isomorphism classes of smooth hypersurfaces of degree d in P

n+1
OK ,S

is finite.
Then, for every Z-finitely generated normal integral domain A of characteristic
zero, the set of A-isomorphism classes of smooth hypersurfaces of degree d in
P
n+1
A is finite.

Note that Theorem 1.3 says that the Shafarevich conjecture for smooth hyper-
surfaces over number fields implies the analogous conjecture for smooth hypersur-
faces over all finitely generated fields of characteristic zero; we refer the reader to
[25,27,29] for related results on this conjecture.
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We now briefly discuss our main abstract result (Theorem 1.1); we will dis-
cuss the finiteness and non-Zariski-density statements separately, as the proofs are
somewhat different.

1.1. Finiteness results

For convenience, we rephrase the part of Theorem 1.1 about finiteness in terms
of the notion of arithmetic hyperbolicity. Lang introduced the notion of arithmetic
hyperbolicity over Q(sometimes also referred to as Mordellicity) to appropriately
formalize the property of “having only finitely many rational points”.

Definition 1.4. (Arithmetic hyperbolicity) Let k be an algebraically closed field
of characteristic zero. A finite type separated scheme X over k is arithmetically
hyperbolic over k if there is a Z-finitely generated subring A ⊂ k, a finite type
separated A-scheme X and an isomorphism of schemes Xk ∼= X over k such that,
for allZ-finitely generated subrings A′ ⊂ k containing A, the setX (A′) of A′-points
on X is finite.

For example, by Faltings’s finiteness theorem [13], a smooth quasi-projective
connected curve X over k is arithmetically hyperbolic over k if and only if X is not
isomorphic to P

1
k, A

1
k, A

1
k \ {0}, nor a smooth proper connected genus one curve

over k. Faltings also proved that a closed subvariety X of an abelian variety A over
k is arithmetically hyperbolic over k if and only if X does not contain the translate
of a positive-dimensional abelian subvariety of A; see [14].

A period domain (usually denoted by D) is a classifying space for polarized
Hodge structures of some fixed type.

Definition 1.5. We say that a variety X over k admits a quasi-finite complex-
analytic period map (up to Galois conjugation) if there exists a subfield k0 ⊂ k, an
embedding k0 → C, a variety X0 over k0, an isomorphism of k-schemes X0,k ∼= X ,
a period domain D, a discrete arithmetic subgroup � of Aut(D), and a horizontal
locally liftable holomorphic map X an

0,C → �\D with finite fibres.

We will follow [44] and recall some basics of the theory in Sect. 4.
The part of Theorem 1.1 about finiteness may be rephrased (and slightly gen-

eralized) as:

Theorem 1.6. (Main Result, IV) Let k ⊂ L be an extension of algebraically closed
fields of characteristic zero. Let X be a variety over k such that X admits a quasi-
finite complex-analytic period map. If X is arithmetically hyperbolic over k, then
XL is arithmetically hyperbolic over L.

We note that Lang-Vojta’s conjecture on integral points of varieties (see [49,
Conj. 4.3]) implies that a variety X over Q which admits a quasi-finite complex-
analytic periodmap is in fact arithmetically hyperbolic overQ, as all its subvarieties
are of log-general type by a theorem of Kang Zuo [51].

Theorem 1.6 can be applied to curves of genus at least two, as such curves
admit a quasi-finite period map up to a finite étale cover [39]. However, in this
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case, Faltings already remarked that the statement follows from Grauert-Manin’s
finiteness theorem (formerly the function field analogue of Mordell’s conjecture);
see [13, VI.4, p.215]. Similarly, if g > 0 is an integer and X is the moduli space of
principally polarized abelian varieties of dimension g over Qwith level 3 structure,
then Faltings showed that Xk is arithmetically hyperbolic over k by “re-doing” part
of his proof that X is arithmetically hyperbolic over Q; the fact that X is arithmeti-
cally hyperbolic over Q is precisely Shafarevich’s arithmetic finiteness conjecture
for principally polarized abelian schemes over Z-finitely generated subrings of Q.
Around the same time, in Szpiro’s seminar [47],Martin-Deschamps gave a different
proof of the arithmetic hyperbolicity of Xk by using a specialization argument on
the moduli stack of principally polarized abelian schemes; see [38]. We stress that
our proof of Theorem 1.6 is very close to Martin-Deschamps’s line of reasoning.
Indeed, Martin-Deschamps’ proof crucially relies on Faltings’s function field ana-
logue of the Shafarevich conjecture for abelian varieties [12] and Grothendieck’s
theorem on monodromy representations of abelian schemes [18]. In our proof of
Theorem 1.6, we replace these results of Faltings andGrothendieck by foundational
results of Deligne, Griffiths, and Schmid in Hodge theory.

In fact, our proof of Theorem 1.6 relies on the following consequence of
Deligne’s finiteness theorem for monodromy representations [10] and the “Rigidity
Theorem” in Hodge theory (see Theorem 4.1).

Theorem 1.7. (Deligne +Rigidity Theorem)Let X be a variety over k which admits
a quasi-finite period map (up to Galois conjugation). Then, for every variety Y over
k, every y in Y (k), and every x in X (k), the set of morphisms f : Y → X with
f (y) = x is finite.

Note that Theorem 1.7 is a finiteness statement about maps of pointed varieties
to a period domain. It is crucial that we consider pointed maps here; see Remark
5.2 for a discussion of this.

Besides applying our results for varieties with a quasi-finite period to themoduli
space of smooth hypersurfaces, we also give further applications to arithmetic
locally symmetric varieties and Shimura varieties.

1.2. Non-density results

It is also natural to study the non-Zariski-density (as opposed to the finiteness) of
integral points on certain moduli spaces. Our main novel result on non-density is
Theorem 3.7.

We can apply Theorem 3.7 to give conditional results on the non-density of
integral points on the Hilbert scheme Hilbd,n of smooth hypersurfaces of degree d
in P

n+1 over Z.
By Vojta’s extension of Lang’s conjecture on non-density of integral points

[49, Conj. 4.3], the finiteness of integral points on a variety is conjecturally closely
related to its subvarieties being of log-general type. However, as the Hilbert scheme
of smooth hypersurfaces has subvarieties which are not of log-general type, it is not
reasonable to expect finiteness of integral points on this moduli space (and it is not
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hard to see that Hilbd,n has infinitely many Z[1/d]-points). Nonetheless, it follows
from [26] that there is a finite étale cover H ′ → Hilbd,n such that H ′ dominates a
positive-dimensional variety of log-general type. Therefore, the integral points of
Hilbd,n should not be dense (even though they can be infinite).

The expectation that the integral points on Hilbd,n should not be dense was
investigated by Lawrence–Venkatesh [37] for large enough d and n (see also [5]).
The current state-of-the-art can be stated as follows (see [37, Proposition 10.2]).
(Note that the following statement provides a non-density statement only for
Z[1/S]-points.)
Theorem 1.8. (Lawrence–Venkatesh) There is an integer n0 and a function D0(n)

such that, for every n ≥ n0, every d ≥ D0(n), and every positive integer S ≥ 1,
the set Hilbd,n(Z[1/S]) is not dense in Hilbd,n,Q.

Motivated by Lawrence–Venkatesh’s recent breakthrough, we show that the
non-density of integral points on the Hilbert scheme Hilbd,n valued in a number
field persists to non-density over finitely generated fields.

Theorem 1.9. (Main Result, V) Let d ≥ 3 be an integer and let n ≥ 2 be an integer.
Suppose that, for every number field K and every finite set of finite places S of K ,
the set Hilbd,n(OK ,S) is not dense in Hilbd,n. Then, for every Z-finitely generated
regular integral domain of characteristic zero A, we have that Hilbd,n(A) is not
dense in Hilbd,n.

The proof of Theorem 1.9 is more involved than the proof of Theorem 1.3. For
example, due to the fact that the Hilbert scheme does not admit any periodmapwith
finite fibres, we are forced to argue on the stack [PGLn+2\Hilbd,n] and to relate the
non-density of the integral points on the stack to that on the Hilbert scheme using
finiteness results for PGLn+2-torsors over number rings.

Conventions. We let k be an algebraically closed field of characteristic zero. A
variety over k is a finite type separated scheme over k. If X is a variety over k and
A ⊂ k is a subring, then a model for X over A is a pair (X , φ) with X a finite type
separated scheme over A and φ : Xk → X an isomorphism of schemes over k. We
will usually omit φ from our notation and simply refer to X as a model for X over
A.

If K is a number field and S is a finite set of finite places of K , we letOK ,S be
the ring of S-integers of K .

If k ⊂ L is a field extension and X is a variety over k, we denote X ×k Spec L
by XL .

2. Arithmetic hyperbolicity and geometric hyperbolicity

To prove Theorems 1.3 and 1.6 on the arithmetic hyperbolicity of certain varieties
(as defined in Definition 1.4), we will use a geometric criterion for the persistence
of arithmetic hyperbolicity of a variety along field extensions proven in [22]. To
state this criterion, we introduce the notion of geometric hyperbolicity. We view
this property as a “function field” analogue of arithmetic hyperbolicity.
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Definition 2.1. A variety X over k is geometrically hyperbolic over k if, for every
smooth integral curve C over k, every c in C(k), and every x in X (k), the set
Homk((C, c), (X, x)) of morphisms of k-schemes f : C → X with f (c) = x is
finite.

More generally, a finite type separated Deligne–Mumford algebraic stack X
over k is geometrically hyperbolic if, for every smooth integral curve C over k,
every c in C(k), and every x in (the groupoid) X (k), the set Homk((C, c), (X, x))
of isomorphism classes of morphisms f : C → X with f (c) = x is finite. (Here
f (c) = x means that f (c) and x are isomorphic in X (k).)

Example 2.2. (Urata’s theorem) A proper variety X over C which is Brody hyper-
bolic (i.e., has no entire curves) is geometrically hyperbolic. Indeed, as X an is a
compact complex-analytic space with no entire curves, it follows from Brody’s
theorem that X an is Kobayashi hyperbolic (as defined in [35]). Therefore, as X an

is a compact Kobayashi hyperbolic complex-analytic space, we conclude that X is
geometrically hyperbolic from Urata’s theorem [35, Theorem 5.3.10] (or the orig-
inal [48]). (Note that Urata’s theorem has been extended to the logarithmic case in
[28].)

Example 2.3. Let M be the locally finite type separated Deligne-Mumford alge-
braic stack of smooth proper canonically polarized varieties over Q. That is, for
a scheme S over Q, the objects of M(S) are smooth proper morphisms X → S
whose geometric fibres are connected and have ample canonical bundle. (For exam-
ple, for every g ≥ 2, the stack of smooth proper genus g curvesMg is an open and
closed substack of M. In fact, M is the disjoint union of the stacks Mh , where h
runs over all polynomials in Q[t] andMh is the substack of smooth proper canon-
ically polarized varieties with Hilbert polynomial h.) Let X be a quasi-projective
scheme over C such that there exists a quasi-finite morphism X → MC. (In other
words, there is a smooth proper morphism f : Y → X whose geometric fibres
are canonically polarized varieties such that, for every x in X (C), the set of y in
Y (C) with Yx ∼= Yy is finite. In particular, the family f : Y → X of canoni-
cally polarized varieties has “maximal variation in moduli”.) Then, it follows from
Viehweg–Zuo’s theorem (see [50]) that X is Brody hyperbolic. In particular, if X
is projective, then Urata’s theorem (Example 2.2) implies that X is geometrically
hyperbolic over C. (It seems reasonable to suspect that the assumption that X is
projective is unnecessary; see [31] for recent progress.)

We will prove the geometric hyperbolicity of some (not necessarily proper)
varieties over C by appealing to their complex-analytic properties. The following
lemma will then be applied to deduce the geometric hyperbolicity of these varieties
over every algebraically closed field of characteristic zero.

Lemma 2.4. Let k ⊂ L be an extension of algebraically closed fields of charac-
teristic zero. If k is uncountable and X is a finite type separated geometrically
hyperbolic Deligne-Mumford algebraic stack over k, then XL is geometrically
hyperbolic over L.
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Proof. Assume that XL is not geometrically hyperbolic over L . We show that X
is not geometrically hyperbolic over k. To do so, let C be smooth affine con-
nected curve over L , let c ∈ C(L), and let x ∈ X (L) be such that the set
HomL((C, c), (XL , x)) of (isomorphism classes of) morphisms f : C → XL

with f (c) = x is infinite. Let f1, f2, . . . be a sequence of pairwise distinct (non-
isomorphic) elements in HomL((C, c), (XL , x)). Let S be an integral variety over
k and let (C, P) be a model for (C, c) over S. That is, the morphism C → S is
a smooth affine geometrically connected morphism of relative dimension one and
P ∈ C(S) is a section such that there is a (fixed) isomorphism CL ∼= C and PL = c.
We now recursively descend every fi : C → X to some “étale neighbourhood”
of S (using for instance [43, Appendix B]). Thus, let A1 ⊂ L be a finitely gen-
erated k-algebra with S1 = Spec A1, let S1 → S be an étale morphism and let
F1 : CS1 → X ×k S1 be a morphism with F1(P) = {x} × S1 such that the mor-
phism f1 : C → XL coincides with F1,L : C ∼= CL → XL . Now, we construct
integral affine varieties S2, S3, . . . over k recursively, as follows. Assume Si−1 has
been constructed. Then, for every i = 2, 3, . . ., we choose a finitely generated k-
algebra Ai ⊂ L with Si = Spec Ai , an étale morphism Si → Si−1 and a morphism
Fi ∈ HomSi ((Ci , Pi ), (X ×k Si , x ×{Si })) with Ci = CSi , Pi = PSi , and Fi,L = fi
such that, for every 1 ≤ j < i , every s in S j (k) and every s′ in Si (k) lying over s,
the morphism Fi,s′ does not equal Fj,s . Let Zi be the (non-empty and open) image
of Si → S. Since k is uncountable and every Zi is a non-empty open of S, there
is an s in S(k) contained in ∩∞

i=1Zi . Now, for every i = 1, 2, . . ., let si be a point
of Si (k) lying over s in S(k). Define D := Cs and note that D ∼= CSi ,si . Moreover,
the morphisms Fi,si : D ∼= CSi ,si → X × {s1} ∼= X are, by construction, pairwise
distinct. Finally, as Fi,si (Psi ) = x , we see that X is not geometrically hyperbolic
over k, as required. ��

The notion of geometric hyperbolicity is studied in more generality in [32]
building on [23] (see also [4,21]) in the case of varieties. We indicate how to
extend some results needed in this note to the case of stacks.

Lemma 2.5. (From pointed curves to pointed varieties) Let k be an uncountable
algebraically closed field of characteristic zero, and let X be a finite type sep-
arated Deligne-Mumford geometrically hyperbolic algebraic stack over k. Then,
for every integral variety Y over k, every y in Y (k), and every x in X (k), the set
Homk((Y, y), (X, x)) of morphisms f : Y → X with f (y) = x is finite.

Proof. Suppose that f1, f2, . . . are pairwise distinct morphisms from Y to X which
map y to x . Let Y i, j ⊂ Y be the closed subset of points P such that fi (P) = f j (P).
Let w be a point of Y (k) such that, for every i = j , the point w does not lie in Y i, j .
(Such a point exists as k is uncountable and Y i, j = Y whenever i = j .) Let C be a
smooth connected curve, and let C → Y be a morphism whose image contains w

and y. (Such a curve exists as Y is integral.) Then the morphisms f1|C , f2|C , . . .

are pairwise distinct morphisms from C to X and send y to x . This shows that X is
not geometrically hyperbolic, as required. ��
Lemma 2.6. (Descending along coverings) Let X → Y be a finite étale mor-
phism of finite type separated Deligne-Mumford algebraic stacks over k. Then X is
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geometrically hyperbolic over k if and only if Y is geometrically hyperbolic over
k.

Proof. This is proven when X and Y are projective schemes in [23, 5], and the
arguments in loc. cit. easily adapt to prove the more general statement for stacks. ��

The relation between geometric hyperbolicity and arithmetic hyperbolicity is
provided by the following consequence of the results proven in [22, 4].

Proposition 2.7. Let k ⊂ L be an extension of algebraically closed fields of char-
acteristic zero, and let X be an arithmetically hyperbolic variety over k such that
XL is geometrically hyperbolic over L. Then, XL is arithmetically hyperbolic over
L.

3. Weakly bounded varieties and persistence of non-density

To prove Theorem 1.3 on the arithmetic hyperbolicity of the moduli of smooth
hypersurfaces, we will use the geometric hyperbolicity of the moduli stack of
smooth hypersurfaces. However, to prove Theorem 1.9 (which is concerned with
the non-density of integral points on a certain Hilbert scheme), we will require an
additional property of the moduli space. Namely, we will need that it is “weakly
bounded”. Here we follow the terminology of Kovács-Lieblich; see [34]. To be
precise, we use the notion of “weak boundedness” to give a criterion for extending
results on non-density of integral points valued in number fields to non-density of
integral points valued in finitely generated fields (see Theorem 3.7).

Definition 3.1. (Kovács-Lieblich) Let X be a projective scheme over k, let L be an
ample line bundle on X , and let X ⊂ X be a dense open subscheme. We say that
X is weakly bounded over k in X with respect to L if, for every integer g ≥ 0, and
every d ≥ 0, there is a real number α(X, X ,L, g, d) such that, for every smooth
projective connected curve C over k of genus g and every dense open subscheme
C ⊂ C with #(C \ C) = d and every morphism f : C → X , the following
inequality

degC f
∗L ≤ α(L, g, d) (3.1)

holds, where f : C → X is the unique morphism restricting to f : C → X .

For Y and X projective schemes over k, we let Homk(Y, X) be the moduli
scheme parametrizing morphisms Y → X ; recall that Homk(Y, X) is a disjoint
union of quasi-projective schemes over k (see [8, 2]). We will make use of the
following basic proposition.

Proposition 3.2. Let X be a projective variety over k, letL be an ample line bundle
on X, and let X ⊂ X be a dense open subscheme. Let C be a smooth projective
curve and let C ⊂ C be a dense open subscheme. If X is weakly bounded over k in
X with respect to L, then Homk(C, X) is a quasi-compact constructible subset of
Homk(C, X)(k).
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Proof. Let g be the genus of C and let d := #(C \ C). Let α := α(L, g, d) be the
real number in Definition 3.1, and note that Homk(C, X) is a subset of the scheme
Hom≤α

k (C, X) parametrizing morphismsC → X of degree at most α (with respect
to L).

Consider the natural morphisms of finite type schemes

ev : C × Hom≤α
k (C, X) → X , pr : C × Hom≤α

k (C, X) → Hom≤α
k (C, X).(3.2)

Let � be the boundary of X in X . Let �′ := ev−1� be the (closed) inverse image
of � in the finite type k-scheme C ×Hom≤α

k (C, X). Let Z := pr(�′) be the image
of �′ in Hom≤α

k (C, X), and note that Z is constructible [46, Tag 054J]. As the
complement of Z is a constructible subset of the finite type k-schemeHom≤α

k (C, X)

whose k-points equal Homk(C, X), this shows that Homk(C, X) is a finite union
of locally closed subschemes of Hom≤α

k (C, X). ��
Definition 3.3. A quasi-projective scheme X over k is weakly bounded over k if
there exists a projective scheme X over k, an ample line bundle L on X , and an
open immersion X ⊂ X such that X is weakly bounded over k in X with respect
to L.
Remark 3.4. (The choice of an ample line bundle) Let X be a projective scheme
over k, let L be an ample line bundle on X , and let X ⊂ X be a dense open
subscheme such that X is weakly bounded in X over k with respect to L. Then,
for every ample line bundle L′ on X , the quasi-projective scheme X is weakly
bounded over k in X with respect toL′. To prove this, choose an integer n such that
L⊗n ⊗ L∨ is effective. Let C ⊂ C and f : C → X be as in Definition 3.1. Since
degC f

∗
(L⊗n ⊗ L′,∨) ≥ 0, it follows that

degC f
∗L′ ≤ n degC f

∗L.

Thus, the lefthandside is bounded by a constant depending only on g, d, L and L′.
This implies that X is weakly bounded over k in X with respect to L′.

Proposition 3.5. Let X be a weakly bounded quasi-projective scheme over k, and
let C ⊂ C be a dense open of a smooth projective connected curve C over k. Then,
for every projective variety X over k and every open immersion X → X, the subset
Homk(C, X) of Homk(C, X)(k) is quasi-compact and constructible.

Proof. Let X
′
be such that X is weakly bounded in X

′
with respect to some ample

line bundle. Then, Hom(C, X) is quasi-compact constructible in Homk(C, X
′
)(k)

by Proposition 3.2. Now, to prove the proposition, we choose a projective variety
Z , an open immersion X ⊂ Z , a proper birational morphism Z → X

′
which is an

isomorphism over X , and a proper birational morphism Z → X which is an iso-
morphism over X . Note that, the inverse image of the quasi-compact constructible
subset Homk(C, X) ⊂ Homk(C, X

′
)(k) in Homk(C, Z)(k) along the finitely pre-

sented morphism of k-schemes Homk(C, Z) → Homk(C, X
′
) is again a quasi-

compact constructible subset and equals Homk(C, X). Moreover, the image of the
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latter quasi-compact constructible subset in Homk(C, X)(k) along the finitely pre-
sented morphism of k-schemes is again equal to Homk(C, X) and quasi-compact
constructible (by Chevalley’s theorem). This concludes the proof.

Lemma 3.6. Let Z ⊂ A be a finitely generated integral domain of characteristic
zero and let X be a finite type scheme over A. Let k := Frac(A) be an algebraic
closure of Frac(A). Let k ⊂ L be an extension of algebraically closed fields with L
of transcendence degree one over k. Assume that X := Xk is quasi-projective over
k. Assume the following two properties hold.

1. The variety XL is weakly bounded and geometrically hyperbolic over L.
2. For every finitely generated subalgebra A′ ⊂ k containing A, the set

X (A′) = HomA(Spec A′,X )

is not dense in X.

Then, for any finitely generated subring B ⊂ L containing A, the set X (B) is not
dense in X (L).

Proof. To prove the statement, let B ⊂ L be a finitely generated subring containing
A and define K := Frac(B). We now show that X (B) is not dense in X (L).

Note that if K has transcendence degree zero over Frac(A), then it follows from
(2) thatX (B) is not dense in X (L). Therefore, to prove the lemma, we may and do
assume that K = Frac(B) has transcendence degree one over Frac(A). Moreover,
replacing A by a finitely generated sub-A-algebra of k, we may and do assume
that the scheme C := Spec B over Spec A has a section σ : Spec A → C and that
C → Spec A is a smooth morphism.

Define C := Ck = C ×A k, and note that C is a smooth affine curve over
k. Furthermore, since C(A) = ∅ and C is an integral scheme, it follows that C
is connected. We let σk be the k-rational point of C induced by the section σ :
Spec A → C; we will also view this as an L-point of CL . Let C be the smooth
projective connected model of C over k. Now, let � be the closure of the subset
Im[X (A) → X (k)] in X with the reduced closed subscheme structure, and note
that � � X is a proper closed subscheme by our second assumption (2).

Let X be a projective variety over k with X ⊂ X an open immersion. Since
XL is weakly bounded over L , it follows that HomL(CL , XL) is a quasi-compact
constructible subset of HomL(CL , XL)(L); see Proposition 3.5. We define Z ⊂
HomL(CL , XL)(L) to be the closure of

Im[X (C) → HomL(CL , XL)(L)]
in HomL(CL , XL)(L). Since Z ⊂ HomL(CL , XL)(L) is closed, it follows that Z
is a quasi-compact constructible subset of HomL(CL , XL)(L).

Note that the evaluation map Z → X (L) which sends f to f (σk) has finite
fibres by the geometric hyperbolicity of XL over L . Moreover, since the dense
subset Im[X (C) → HomL(CL , XL)] of Z lands in �, we see that the evaluation
map Z → X (L) factors through �(L). In particular, it follows that

dim Z ≤ dim�.
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Therefore, since dim� < dim X , we see that

dim Z < dim X.

Consider the Cartesian diagram of morphisms of schemes

HomL(CL , XL) X ×k Spec L

Homk(C, X) ×k C X × C,

where the bottom horizontal arrow is given by the universal evaluation morphism
( f, c) �→ ( f (c), c), and the right vertical morphism is induced by the geometric
generic point Spec L → C ofC . Since Z is a quasi-compact constructible subset of
the L-pointsHomL(CL , XL)(L) of the schemeHomL(CL , XL), its image Z ′ along
the morphism HomL(CL , XL) → XL is a quasi-compact constructible subset of
X(L). Note that Z ′ ⊂ X (L) and that dim Z ′ ≤ dim Z < dim X . Since Im[X (C) →
X (L)] is contained in Z ′ and dim Z ′ < dim X , we conclude that X (C) is not
dense in X (L), as the dimension of the closure of Z ′ is at most that of Z ′, by
constructibility. ��

The following result provides a general criterion for proving the persistence
of non-density of integral points on an algebraic variety. In fact, in Theorem 5.4,
we verify that a variety with a quasi-finite period map verifies the first property
necessary to apply this result.

Theorem 3.7. Let A be a finitely generated integral domain of characteric zero
and let X be a finite type scheme over A. Let k := Frac(A) be an algebraic
closure of Frac(A), and let k ⊂ L be an extension of algebraically closed fields.
Let X := X ×A k. Assume the following two properties hold.

1. The variety XL is weakly bounded and geometrically hyperbolic over L.
2. For every finitely generated subring A′ ⊂ k containing A, the set

X (A′) = HomA(Spec A′,X )

is not dense in X.

Then, for any finitely generated subring B ⊂ L containing A, the set X (B) is not
dense in XL .

Proof. Let K be the algebraic closure of Frac(B) in L , and note that K has finite
transcendence degree over k. We proceed by induction on the transcendence degree
d of K over k. If d = 0, then the required non-density statement holds by (2). Now,
assume d > 0 and let K0 ⊂ K be an algebraically closed subfield of transcendence
degree d−1 over k. Define Y := XK0 . Now, as XL is weakly bounded and geomet-
rically hyperbolic over L , we have that YK is weakly bounded and geometrically
hyperbolic over K .Moreover, writeY = X (for the sake of clarity) and note that, by
the induction hypothesis, for every finitely generated subring A′ ⊂ K0 containing
A, the set Y(A′) is not dense in Y . Therefore, as K has transcendence degree one
over K0, we conclude that XK = YK satisfies the required non-density statement
(Lemma 3.6). This concludes the proof. ��
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4. Hodge theory

We set notation by recalling the definition of a period domain, following [44,
Sect. 3]. Let H be a finitely-generated free Z-module, k an integer, and {h p,k−p} a
collection of non-negative integers with h p,k−p = hk−p,p for all p, such that

∑

p

h p,k−p = rkZH.

Let F̂ be the flag variety parametrizing decreasing, exhaustive, separated filtrations
of HC, (F•), with dim F p = ∑

i≥p h
i,k−i .

Let F ⊂ F̂ be the analytic open subset of F̂ parametrizing those filtrations
corresponding to Z-Hodge structures of weight k, i.e. those filtrations with

HC = F p + Fk−p+1

for all p.
Now suppose q is a non-degenerate bilinear form on HQ, symmetric if k is even

and skew-symmetric if k is odd. Let D ⊂ F be the locally closed analytic subset
ofF consisting of filtrations corresponding to polarized Hodge structures (relative
to the polarization q), i.e. the set of filtrations (F•) inF with

qC(F p, Fk−p+1) = 0 for all p

and
qC(Cv, v̄) > 0

for all nonzero v ∈ HC, where C is the linear operator defined by C(v) = i p−qv

for
v ∈ H p,q := F p ∩ Fq .

Let G = O(q) be the orthogonal group of q; it is a Q-algebraic group. We
abuse notation to denote GZ = G(Q) ∩ GL(H). Let � ⊂ GZ be a finite index
subgroup. Let h be a point of the complex-analytic space �\D.

Let X be an integral variety over k. A complex-analytic map to f : X → �\D
is locally liftable if it locally factors through the quotient map D → �\D. If X is
smooth and f is locally liftable, we say f is horizontal if for each x ∈ X and each
tangent vector v in Tx X , we have that for a local lifting f̃ of f , f̃∗(v) ∈ T f̃ (x)D

sends F p

f̃ (x)
into F p−1

f̃ (x)
, for each p. Here we regard the tangent space to D at a point

d as an element of
End(HC)/Lie(StabGC

(F•
d )).

Horizontality is equivalent to the statement that the associated variation of Hodge
structure satisfies Griffiths transversality. See [44, Sect. 3] for details.

If X is smooth, then we say that a holomorphic map X an → �\D is a period
map if it is locally liftable and horizontal (i.e., satisfies Griffiths transversality).
More generally, a holomorphic map X an → �\D is a period map if there is a
desingularization X̃ → X such that the composed morphism X̃ an → X an → �\D
is a period map.
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Since � does not act freely on D, the fundamental group of �\D might be
trivial (e.g., D = H and � = SL2(Z). To study period maps, it is more natural
to consider the orbifold fundamental group of �\D, i.e., the fundamental group
of the stacky quotient [�\D] in the category of complex-analytic stacks. Note that
the orbifold fundamental group is the image of � in the group of biholomorphic
automorphisms Bihol(D) of D. In particular, since the kernel of � → Bihol(D) is
finite (Selberg’s Lemma REFERENCE), the orbifold fundamental group of �\D
is the quotient of � by the finite subgroup of elements acting trivially on D.

Given a period map p : X an → �\D and a point x in X an, we refer to
the induced homomorphism of orbifold fundamental groups p∗ : π1(X an, x) →
πorb
1 (�\D, p(x)) as the monodromy representation of p. Two period maps with

the same monodromy representation are equal if they also agree at a point; this is
the content of the Rigidity Theorem.

Proposition 4.1. (Rigidity Theorem) Let D, �, h, and X be as above. Let f :
X an → �\D be a period map and let g : X an → �\D be a period map. Let
x ∈ X an such that f (x) = g(x) = h. Assume that the monodromy representation
f∗ : π1(X, x) → πorb

1 (�\D, h) of f is equal to the monodromy representation
g∗ : π1(X, x) → π1(�\D, h) of g. Then, we have that f = g.

Proof. This is the so-called rigidity theorem of Deligne-Griffiths-Schmid [44,
7.24]. (This was proven in [9, Sect. 4] in the case that the variation of Hodge
structures comes from geometry.) ��

The following result is based on “Arakelov’s inequality”. Historically, this
started with Arakelov-Parshin [1] for families of curves of genus at least two, and
was then subsequently generalized to more general variations of Hodge structures
by Deligne, Faltings, Peters, and Jost-Zuo; see [12,33,41]. However, to obtain the
desired statement for varieties with a quasi-finite period map, we need in addition
to the aforementioned results the recently established algebraization theorem of
Bakker-Brunebarbe-Tsimerman [2].

Theorem 4.2. (ConsequenceofArakelov’s inequality)Let D,�, and X beas above.
Assume X is quasi-projective over C and let p : X an → �\D be a period map
with finite fibres. Then X is weakly bounded over C (see Definition 3.3).

Proof. If X is smooth, then Theorem 4.2 can be deduced directly from recent
results of Deng [11]. Indeed, in loc. cit. Deng shows that X is in fact "algebraically
hyperbolic". If X is singular, we argue as follows.

Let g : C → X be amap as inDefinition 3.3. Themap f ◦g classifies a variation
of Hodge structure on C ; let V p,k−p be the graded pieces of the associated Hodge
bundle, and let F p be the associated filtration. Consider the Griffiths bundle

L =
⊗

i

det(F i ).

By [2, Theorem 6.2], the line bundle L is ample. Thus, to conclude the proof, it
suffices to show that X is weakly bounded (in some compactification) with respect
toL .
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To show that the desired bound exists, we first appeal to a result of Peters. In
fact, by [42, Theorem 3.1], we have that, for each p, the integer degV p,k−p is
bounded in terms of only the genus of C and #(C \C) (as well as invariants of the
variation of Hodge structure on X , which is fixed).

Now, it follows from the aforementioned result of Peters that the degree of
C with respect to the auxiliary variation of Hodge structures ⊗p∈Z	rpV with
rp = rank F p is bounded by a constant depending only on C , #(C \ C), n, and
invariants of V . In particular, since the Griffiths line bundle L is the lowest piece
of the Hodge filtration of ⊗p∈Z	rpV , the same holds for the degree of C → X
with respect to L. We conclude that X is weakly bounded, as required. ��
Remark 4.3. In the proof of Theorem 4.2 we appeal to the recent work of Bakker-
Brunebarbe-Tsimerman [2] to guarantee the ampleness of L . If X is smooth, we
expect that this fact can also be deduced from the methods of Sommese’s classical
paper [45].

5. Proof of Theorems 1.6 and 1.7

The geometric finiteness propertywe require in this paper to prove the persistence of
arithmetic hyperbolicity for varieties with a quasi-finite period map is provided by
the following finiteness theorem; see Definition 2.1 for the definition of geometric
hyperbolicity.

We stress that the following theorem is proven by combining Deligne’s finite-
ness result for monodromy representations [10] with Deligne-Grifitths-Schmid’s
‘Rigidity Theorem” (Proposition 4.1). Deligne’s finiteness theorem formonodromy
representations used below generalizes the result of Faltings for weight one mon-
odromy representations [12], but itself does not immediately imply the desired
finiteness result we require.

Theorem 5.1. [Deligne +Rigidity Theorem]Let X be a variety over k which admits
(up to Galois conjugation) a quasi-finite period map. Then X is geometrically
hyperbolic over k.

Proof. We may and do assume that k = C (by Lemma 2.4) and that X admits a
period map X an → �\D with finite fibres. We wish to show that for each c in C
and x in X , the set Hom((C, c), (X, x)) of maps φ : C → X with φ(c) = x is
finite. The map

Hom((C, c), (X, x)) → Hom((C, c), (�\D, f (x)))

has finite fibers, because f is quasi-finite. Thus it is enough to show that there are
finitely many locally liftable, horizontal analytic maps

f ′ : (C, c) → (�\D, f (x)).

We denote the set of such maps by

Homper ((C, c), �\D, f (x)).
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By Proposition 4.1 above, the map

Homper ((C, c), �\D, f (x)) → Hom(π1(C, c), π1(�\D, f (x)))

has finite fibers, so it suffices to show that it has finite image. But this is precisely
Deligne’s finiteness theorem [10]. ��
Remark 5.2. Let g ≥ 8 be an integer, and let X be the fine moduli space of princi-
pally polarized g-dimensional abelian varieties with full level 3 structure overC. In
[12] Faltings showed that there is a smooth curveC such that the set of non-constant
morphisms f : C → X is infinite. Therefore, as X admits a quasi-finite period
map, this shows that one can not expect a strengthening of Theorem 5.1 for maps
C → X . That is, in Theorem 5.1 one needs to consider maps of pointed varieties
to obtain finiteness.

Remark 5.3. Suppose that X is a proper scheme over C and that X admits a quasi-
finite period map. In this case (as X is proper), there is a different proof of Theorem
5.1. Indeed, if X admits a quasi-finite period map, then X has no entire curves
[19, Corollary 9.4]. Therefore, as X is also proper, it follows from Urata’s theorem
(Example 2.2) that X is geometrically hyperbolic.

Theorem 5.4. (Deligne +Rigidity Theorem+Arakelov inequality) If X is a variety
over k which admits a quasi-finite complex-analytic period map (Definition 1.5),
then X is weakly bounded over k and, for every variety Y over k, every y ∈ Y (k),
and every x ∈ X (k), the set of morphisms f : Y → X with f (y) = x is finite.

Proof. We first prove that X is geometrically hyperbolic over k.
If k = C, then Theorem 5.1 says that X is geometrically hyperbolic over C. By

a standard specialization argument and Lemma 2.4, we have that XL is geometri-
cally hyperbolic over any algebraically closed field extension L of k (without any
additional assumption on k).

Choosing L to be an uncountable algebraically closed field extension of k, it
follows from Lemma 2.5 that, for every variety Y over L , every y ∈ Y (L), and
every x ∈ X (L), the set of morphisms f : Y → XL with f (y) = x is finite. (As
this holds over L , it certainly also holds over k, as required.)

To conclude the proof, it suffices to note that X is weakly bounded over k by
Theorem 4.2. ��
Proof (Proof of Theorem 1.7). This is part of the statement of Theorem 5.4. ��
Proof (Proof of Theorem 1.6). Combine Proposition 2.7 and Theorem 5.4. ��
Proof (Proof of Theorem 1.2). Replacing K by a finite field extension if neces-
sary, we may choose an ample divisor D in A such that DK = D. Let M be the
(fine) moduli space of smooth hypersurfaces in A over OK ,S representing D, and
note that M is a quasi-projective scheme over OK ,S . Lawrence–Sawin showed
that M

Q
is arithmetically hyperbolic over Q and that MC admits a quasi-finite

periodmap (see [36, Theorem 1.1] and [36, Proposition 5.10], respectively). There-
fore, by Theorem 1.6, the variety Mk is arithmetically hyperbolic over any alge-
braically closed field k of characteristic zero. This implies that M(R) is finite, as
required. ��
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6. Arithmetic locally symmetric varieties

A (smooth connected) variety X over C is an arithmetic locally symmetric if there
exists a bounded symmetric domain D, a torsionfree arithmetic subgroup ofAut(D)

and an isomorphism of complex analytic spaces X an ∼= �\D (see [6, Definition 4.3]
for a precise definition). By Baily-Borel’s theorem, an arithmetic locally symmetric
variety is quasi-projective over C.

If X is a variety over k, then X is an arithmetic locally symmetric variety over
k if there exists a subfield k0 ⊂ k, an embedding k0 → C, a variety X0 over k0,
and an isomorphism of k-schemes X0,k ∼= X such that X0,C is an arithmetic locally
symmetric variety over C (as defined above).

Let k ⊂ L be an extension of algebraically closed fields of characteristic zero,
and let X be an arithmetic locally symmetric variety over k. Then, as X admits a
quasi-finite period map (see [40, p. 40-43]), by combining Theorems 1.6, 3.7, and
5.4, we obtain the following result.

Theorem 6.1. The following statements hold.

1. The arithmetic locally symmetric variety XL is geometrically hyperbolic over
L and weakly bounded over L.

2. If X is arithmetically hyperbolic over k, then XL is arithmetically hyperbolic
over L.

3. Let A ⊂ k be a finitely generated Z-algebra, and let X be a model for X over
A. Assume that, for every finitely generated subring A′ ⊂ k containing A, the
set X (A′) is not dense in X. Then, for any finitely generated subring B ⊂ L
containing A, the set X (B) is not dense in XL .

Remark 6.2. By the work of Margulis, most examples of arithmetic locally sym-
metric quasi-projective varieties are Shimura varieties (associated to a torsionfree
congruence subgroup of Aut(D)).

7. The moduli of smooth hypersurfaces

In this section we prove Theorem 1.3. Throughout this section, let d ≥ 3 be an
integer, let n ≥ 2 be an integer, and let Cd;n = [PGLn+2\Hilbd,n] be the stack of
smooth hypersurfaces in P

n+1 of degree d. The stack Cd;n is a finite type separated
Deligne-Mumford algebraic stack over Z with affine coarse space; see [3]. More-
over, by [26], the stack Cd;n,Q is uniformisable, i.e., there is a smooth affine scheme
U := Ud,n overQ and a finite étale morphismU → Cd;n,Q. Now, if (d, n) = (3, 2)
the natural period map on the smooth affine scheme U an

C
is injective on tangent

spaces by a theorem of Griffiths [15] (see also [17]), as smooth hypersurfaces of
degree d in P

n+1 satisfy the infinitesimal Torelli property (as (d, n) = (3, 2)). This
implies that the associated period map onU an

C
has finite fibres (see [25, Thm. 2.8]).

The next result says that, for k an algebraically closed field of characteristic
zero, the stack Cd;n,k is geometrically hyperbolic over k. That is, the moduli space
of pointed maps from any given pointed variety into the stack is finite, i.e., such
maps to Cd;n,k are rigid and form a bounded moduli space.
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Theorem 7.1. Let k be an algebraically closed field of characteristic zero, and let
X be a smooth hypersurface of degree d in P

n+1
k over k. Let Y be an integral

variety over k and let y in Y (k). Then, the set of Y -isomorphism classes of smooth
hypersurfaces X of degree d in P

n+1
Y such that Xy is isomorphic to X over k is

finite.

Proof. Replacing k by a field extension if necessary, we may and do assume that k
is uncountable. Let U be a smooth affine scheme over k such that there is a finite
étale morphism U → Cd;n,k of stacks (see [26]).

Assume that (d, n) = (3, 2). Then U admits a quasi-finite complex-analytic
period map (up to Galois conjugation) by Griffiths’s theorem (see for instance
[15]). Thus, it follows from Theorem 5.4 that U is geometrically hyperbolic over
k. Now, by a standard descent argument (Lemma 2.6), we deduce that the finite
type separatedDeligne-Mumford algebraic stack Cd;n,k is geometrically hyperbolic
over k. In particular, as k is uncountable, it follows from Lemma 2.5 that, for every
integral normal variety Y over k, every point y in Y (k), and every x in Cd;n(k), the
set of morphisms f : Y → Cd;n,k with f (y) isomorphic to x is finite.

Now, suppose that d = 3 and n = 2. We use the cyclic covering trick to deduce
the desired finiteness statement from the case of cubic threefolds. Namely, by the
cyclic covering trick, there is a μ3-gerbeH → C3;2,k (see [29, Example 3.25]) and
a quasi-finite (even unramified) morphismH → C3;3,k (see [29, Proposition 4.2]).
Moreover, the μ3-gerbe H → C3;2,k has a section [29, Proposition 3.26.(3)], so
that there exists a quasi-finite morphism C3;2,k → C3;3,k . (On the level of k-points,
this morphism associates to the isomorphism class of a cubic surface defined by
F(x0, x1, x2, x3) = 0 the isomorphism class of the cubic threefold defined by x44 =
F(x0, x1, x2, x3).) Since C3;3,k is geometrically hyperbolic and C3;2,k → C3;3,k is
quasi-finite, it follows that C3;2,k is geometrically hyperbolic, as required. ��

We now use the geometric hyperbolicity of the stack to show that its arithmetic
hyperbolicity persists over field extensions. Concerning arithmetically hyperbolic
stacks, we follow the conventions of [24, 4].

Theorem 7.2. Let L be an algebraically closed field of characteristic zero. The
stackCd;n,Q is arithmetically hyperbolic overQ if and only ifCd;n,L is arithmetically
hyperbolic over L.

Proof. Let U := Ud,n → Cd;n,Q be a finite étale surjective morphism with U a

smooth affine scheme over Q (see [26]). Since Cd;n,Q is arithmetically hyperbolic

over Q (by assumption) and U → Cd;n,Q is quasi-finite, it follows from [24,

Proposition 4.16] that U is arithmetically hyperbolic over Q. Since U admits a
quasi-finite period map (as explained above), it follows from Theorem 5.4 that
UL is geometrically hyperbolic over L . Thus, as U is arithmetically hyperbolic
over k := Q and UL is geometrically hyperbolic over L , we conclude that UL

is arithmetically hyperbolic over L (Proposition 2.7). Now, as UL → Cd;n,L is
finite étale, it follows from stacky Chevalley-Weil [24, Theorem 5.1] that Cd;n,L is
arithmetically hyperbolic over L . ��
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Lemma 7.3. Let K be a number field and let S be a finite set of finite places of
K . Then, for every finite type affine group scheme G over OK ,S, the set of OK ,S-
isomorphism classes of G-torsors over OK ,S is finite.

Proof. This is [16, Proposition 5.1]. ��
We now show that the Shafarevich conjecture for hypersurfaces over number

fields [25, Conjecture 1.4] implies a finiteness result for hypersurfaces over finitely
generated fields of characteristic zero.

Proof (Proof of Theorem 1.3). The assumption is that, for every number field K
and every finite set S of finite places of K , the set of OK ,S-isomorphism classes
of smooth hypersurfaces of degree d in P

n+1
OK ,S

is finite. Now, an object of the
groupoid Cd;n(OK ,S) is given by the data of a Brauer-Severi scheme P over OK ,S

and a smooth hypersurface of degree d in P (see [29, Lemma 4.1] for a detailed
explanation of this).

Our assumption says that, for every number field K and every finite set of finite
places S of K , the set of OK ,S-isomorphism classes of smooth hypersurfaces in
P
n+1
OK ,S

is finite. The proof of (4) �⇒ (1) in [29, Proposition 4.5] shows that Cd;n,Q

is arithmetically hyperbolic over Q.
Now, let A be a Z-finitely generated normal integral domain of characteristic

zero with fraction field K and let k := K be an algebraic closure of K . Since
Cd;n,Q is arithmetically hyperbolic over Q, it follows that Cd;n,k is arithmetically
hyperbolic over k by Theorem 7.2. Therefore, since A is normal and Cd;n is a finite
type separated Deligne-Mumford algebraic stack over Z, we conclude that the set
of isomorphism classes of objects of Cd;n(A) is finite from the twisting lemma [24,
4.3]; here we use that A is integrally closed in its fraction field. In particular, the set
of A-isomorphism classes of smooth hypersurfaces of degree d in P

n+1
A is finite.

This concludes the proof. ��

8. Non-density of integral points on the Hilbert scheme

In this section we prove Theorem 1.9 (which is a statement about integral points
on the Hilbert scheme) by using that the stack of smooth hypersurfaces is weakly
bounded and geometrically hyperbolic.

Recall that Hilbd,n denotes the Hilbert scheme of smooth hypersurfaces of
degree d in P

n+1 over Z, and that this is a smooth affine scheme over Z. As before,
wewrite Cd;n = [PGLn+2\Hilbd,n] for the stack of smooth hypersurfaces of degree
d in P

n+1. In our proof of Theorem 1.9 we will use Lemma 7.3 to relate the non-
density of integral points on the Hilbert scheme to the non-density of integral points
on the stack.

Lemma 8.1. Assume that, for every number field K and finite set of finite places S
of K , the set Hilbd,n(OK ,S) is not dense in Hilbd,n. Then, for every number field
K and finite set of finite places S of K , the set of isomorphism classes of objects of
Cd;n(OK ,S) is not dense in Cd;n.



Integral points on algebraic subvarieties... 41

Proof. Let K be a number field and let S be a finite set of finite places of K . Suppose
that Cd;n(OK ,S) is dense in Cd;n . Note that the set of OK ,S-isomorphism classes
of PGLn+2-torsors over OK ,S is finite. Let r ≥ 1 be an integer, and let T1, . . . , Tr
be representatives for all the PGLn+2-torsors overOK ,S , up toOK ,S-isomorphism.
Let L be a number field over K and let T be a finite set of finite places containing
all the places of L lying over S such that, for every i = 1, . . . , r , the PGLn+2-
torsor Ti is trivial over OL ,T . For every x in Cd;n(OK ,S), the fibre of the torsor
Hilbd,n → Cd;n over x has a dense set of OL ,T -points. This implies that the set of
OL ,T -points Hilbd,n(OL ,T ) of Hilbd,n is dense. ��
Lemma 8.2. (Non-density à la Chevalley–Weil) Let X → Y be a finite étale sur-
jective morphism of varieties over k. Assume that, for every Z-finitely generated
subring A ⊂ k and every (finite type separated) model X for X over A, the set
X (A) is not dense. Then, for every Z-finitely generated subring A ⊂ k and every
model Y for Y over A, the set Y(A) is not dense in Y .

Proof. We follow the pf of the Chevalley–Weil theorem (see for example [7, The-
orem 3.8]).

We argue by contrapositive and assume that there is a Z-finitely generated
subring A ⊂ k and a model Y for Y over A such that the set Y(A) is dense in
Y . Replacing A by a larger Z-finitely generated subring of k, we may assume that
there is a model X for X over A and a finite étale surjective morphism X → Y
extending the morphism X → Y . Let Spec A → Y be an A-point. Note that its
pull-back alongX → Y is a B-point, where B → Spec A is a finite étale surjective
morphism of degree at most the degree of X → Y .

Now, recall the following well-known extension of Hermite’s finiteness theo-
rem: if D ≥ 1 is an integer and A is aZ-finitely generated normal integral domain of
characteristic zero, then the set of A-isomorphism classes of finite étale morphisms
T → Spec A of degree at most D is finite [20, Theorem, p.1].

In particular, it follows that there is a Z-finitely generated extension (even finite
étale) of A contained in k, say A ⊂ B ⊂ k, such that every A-point of Y lifts to
a B-point of X . This implies that X (B) is dense. Since Y(A) is dense, it follows
that X (B) is dense, as required. ��
Proof (Proof of Theorem 1.9). By [26], there is an integer D ≥ 3, a smooth affine
scheme U over Z[1/D] and a finite étale Galois morphism U → Cd;n,Z[1/D] of
stacks over Z[1/D]. The assumption on the non-density of integral points on the
Hilbert scheme Hilbd,n implies by Lemma 8.1 that, for every number field K and
every finite set of finite places S of K , we have that Cd;n(OK ,S) is not dense in Cd;n .
Then, as U → Cd;n,Z[1/D] is surjective, we conclude that, for every number field
K and every finite set of finite places S of K , the set U (OK ,S) is not dense in U .
Note that UC is a smooth affine scheme over C which admits a quasi-finite period
map (Sect. 7). Therefore, it follows from Theorem 3.7 and Theorem 5.4 that the
non-density of integral points on U persists over finitely generated fields, i.e., for
every Z-finitely generated integral domain A of characteristic zero, the set U (A)

is not dense in U . Let H ′ := Hilbd,n,Z[1/D] ×C U , where C := Cd;n,Z[1/D]. Note
that H ′ → H is a finite étale morphism of schemes over Z[1/D]. Since H ′ → U
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is surjective, it follows that, for every Z-finitely generated integral domain A of
characteristic zero, the set H ′(A) is not dense in H ′. Therefore, by Lemma 8.2, as
H ′ → Hilbd,n,Z[1/D] is finite étale, we conclude that, for everyZ-finitely generated
integral domain A of characteristic zero, the set Hilbd,n(A) is not dense. ��
Remark 8.3. One may wonder whether arguing on the stack (or onU ) is necessary
and whether one could simply argue only on the Hilbert scheme in the proof of
Theorem 1.9. The problem is that the Hilbert scheme Hilbd,n,C (over the complex
numbers) does not admit a quasi-finite periodmap, is not geometrically hyperbolic,
and is not weakly bounded. Thus, to use our results on varieties with a quasi-finite
period map, one is forced (in our proof of Theorem 1.9) to argue on the moduli
stack of smooth hypersurfaces (or its finite étale atlas U ).
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