Erratum to: On homogeneous polynomials determined by their Jacobian ideal

Published online: 19 December 2022

Erratum to: manuscripta math. 146, 559-574 (2015)

https://doi.org/10.1007/s00229-014-0703-9
This is a corrigendum for the proof of [3, Corrollary 6.1]. We follow the notations in [3]. In the proof of [3, Corrollary 6.1], we claimed that the set \mathscr{G}_{1}, which is the set of homogeneous polynomials of ST type, is a Zariski closed subset of $\mathbb{P}\left(S_{n, d}\right)$. This is incorrect, since, for instance, the polynomial $f=x^{2} y-y^{2} z=$ $y(x y-y z) \in \mathbb{P}\left(S_{2,3}\right)$ lies in $\overline{\mathscr{G}}_{1} \backslash \mathscr{G}_{1}$, as is proved in [1, Example 1.4]. In fact, in our proof of [3, Corrollary 6.1], an error arises when we obtain the equality (6.3) by letting $i \rightarrow \infty$ which says

$$
g_{\infty}\left(x_{0}, \cdots, x_{n}\right)=h_{\infty}\left(x_{0}^{\prime}, \cdots, x_{l}^{\prime}\right)+k_{\infty}\left(x_{l+1}^{\prime}, \cdots, x_{n}^{\prime}\right) \quad \text { in } \mathbb{P}\left(S_{n, d}\right) ;
$$

however, it may happen that

$$
h_{\infty}\left(x_{0}^{\prime}, \cdots, x_{l}^{\prime}\right)+k_{\infty}\left(x_{l+1}^{\prime}, \cdots, x_{n}^{\prime}\right)=0
$$

thus the right-hand side does not make sense.
On the other hand, the result stated in [3, Corollary 6.1] is correct. Indeed, using [1, Theorem 4.5] and the remark following [2, Theorem 3.2], we obtain $\overline{\mathscr{G}}_{1} \backslash \mathscr{G}_{1} \subset \mathscr{G}_{2}$, the notation in [3] being used. Then [3, Corollary 6.1] immediately follows from this.

The author would like to thank Professor Hualin Huang and Professor Yu Ye. They asked him to give a talk about the Zariski closedness of \mathscr{G}_{1} and after the talk, they told him they had a counterexample at hand. The author eventually found out the error in his original proof.

References

[1] Buczyńska, W., Buczyński, J., Kleppe, J., Teitler, Z.: Apolarity and direct sum decomposability of polynomials. Mich. Math. J. 64, 675-719 (2015)

The original article can be found online at https://doi.org/10.1007/s00229-014-0703-9. Z. Wang (\boxtimes) : Institute of Geometry and Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, Anhui, China
e-mail: wzhj@ustc.edu.cn
[2] Fedorchuk, M.: Direct sum decomposability of polynomials and factorization of associated forms. Proc. Lond. Math. Soc. (3) 120(3), 305-327 (2020)
[3] Wang, Z.: On homogeneous polynomials determined by their Jacobian ideal. Manuscr. Math. 146(3-4), 559-574 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

