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Abstract. Let L be a nef and big line bundle on a scheme X . It is well known that if X
is a projective over a field then the augmented base locus and the exceptional base locus
agree. This result is extended to projective schemes over arbitrary excellentNoetherian bases,
assuming the result holds in characteristic zero. In particular the result holds if the base is a
mixed characteristic Dedekind domain or if L is semiample in characteristic 0.

1. Introduction

The augmented base locus is well studied for schemes over a field. An important
characterisation, first noted for smooth varieties of characteristic 0 by Nakayame
[7], is that for a nef line bundle L the augmented base locus B+(L) agrees with the
exceptional locus E(L).

Since then the result has been shown to hold for projective schemes over a field,
first in positive characteristic by Cascini-McKernan-Mustaţǎ [2], and then for R-
divisors over any field by Birkar [1]. Similar results are given for non-nef divisors
in [4] and for Kähler manifolds in [3].

We make use of methods developed in [9] together with ideas from the positive
characteristic proof to show thatB+(L) = E(L) for a nef line bundle on a projective
scheme over an excellent Noetherian base, so long it holds true on the characteristic
zero part the scheme. In particular the result holds in the following cases.

Theorem 1.1. (Corollary 4.8) Let X be a projective scheme over an excellent
Noetherian base S with L a nef line bundle on X. Suppose that one of the fol-
lowing holds:

1. SQ has dimension 0;
2. L|XQ

is semiample;

Then B+(L) = E(L).

We also extend the semiampleness result of [9] to show that there is an equality
of stable base loci when the characteristic 0 part is semiample.
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Theorem 1.2. (Corollary 3.5) Suppose that X is a projective scheme over an excel-
lent Noetherian base with L a nef line bundle on X. Then SB(L) = SB(L|E(L)) so
long as L|XQ

is semiample.

2. Preliminaries

We will work exclusively with line bundles. Since the schemes we work with
need not be normal, line bundles are not the same as Cartier divisors, however we
typically use the traditional notation for divisors as we still sometimes treat line
bundles as Cartier divisors when appropriate. That is we write the tensor product of
L , L ′ as L + L ′, L⊗k is often written kL and given f : Y → X , then f ∗L = L|Y
is often written OY (L), including for Y = X, f = id.

Since the questions considered are local on the base, it suffices to work only
with affine bases. In particular, for notational simplicity, Hi (X, L) will often be
used to denote the higher derived pushforwards of L by X → S.

Definition 2.1. Let L be a line bundle on a projective Noetherian scheme X over
some Noetherian scheme S. Then base locus is given as

B(L) =
⋂

s∈H0(X,L)

Z(s)red

where Z(s) is the zero set of s equipped with the obvious scheme structure. The
stable base locus is then

SB(L) =
⋂

m≥0

B(mL).

Fix an ample line bundle A. The augmented base locus is given as

B+(L) =
⋂

m≥0

SB(mL − A)

and is independent of the choice of A.

We could also write

B+(L) =
⋂

A ample, m≥0

SB(mL − A)

for a definition that involves no choice of ample line bundle. By Noetherianity if
we choose m sufficiently large and divisible then in fact B+(L) = SB(mL − A).

Definition 2.2. Let L be a line bundle on a projective scheme X . The exceptional
locus, E(L), is the union of integral subschemes on which L is not big.

The previous two definitions are invariant under scaling by n ∈ N≥0 and line
bundles will frequently be replaced with higher multiples.
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Theorem 2.3. [9][Theorem 1.10] Suppose that X is a projective scheme over an
excellent Noetherian base S and L is a nef line bundle on X. Then if L|Xred and
L|XQ

are semiample so too is L.

Theorem 2.4. [6][Theorem 1.5] Let X be a projective scheme over a Noetherian
ring,A an ample line bundle and F a coherent sheaf. Then there is some m0 with

Hi (X,F ⊗ Am ⊗ N ) = 0

for all i > 0,m ≥ m0 and all nef line bundles N .

Lemma 2.5. [2][Lemma 2.2] Let X be an n-dimensional projective scheme over a
field k and L a line bundle on X. For every coherent sheaf F on X, there is C > 0
such that h0(X,F ⊗ Lm) ≤ Cmn for every m ≥ 1.

Lemma 2.6. Let X be a reduced projective scheme over a ring R and L , A line
bundles on X with A ample. Then for large m and general s ∈ H0(X,mL − A)

and any irreducible component Y of X with L|Y big we have Y � Z(s).

Proof. Let f : X → S be the structure morphism. Suppose for contradiction that
f∗OX (mL − A) → f∗OY (mL − A) is the zero map for infinitely many m.

Let W be the union of the other components of X so that we have a short exact
sequence

0 → OX → OY ⊕ OW → OY∩W → 0

where Y,W are given the reduced subscheme structure. For convenience we write
Z = Y ∩ W

Tensoring and pushing forwards we get

0 → f∗OX (mL − A) → f∗OY (mL − A) ⊕ f∗OW (mL − A) → f∗OZ (mL − A)

In particular if f∗OX (mL − A) → f∗OY (mL − A) is the zero map, we must
have an injection f∗OY (mL − A) ↪→ f∗OZ (mL − A). Let V = f (Y ) and g =
f |Y : Y → V . Then we may view OY (mL − A),OZ (mL − A) as sheaves on Y ,
then there is a corresponding injection g∗OY (mL − A) ↪→ g∗OZ (mL − A) since
the pushforward is left exact. Since Y is irreducible so too is V and hence we may
pull back to the generic point ν of V .

Now we have that Yν is a projective scheme over K (V ) of dimension say n.
Equally Zν is a closed subscheme of Yν of dimension at most n − 1. We now find
a contradiction by counting sections over K (V ).

On the one hand we have an injection

H0(Yν,OYν (mL − A)) ↪→ H0(Zν,OZν (mL − A)),

which ensures that there is C > 0 such that h0(Yν,OYν (mL − A)) ≤ Cmn−1 for
every m ≥ 1 by Lemma 2.5. On the other, kL|Yν is big, and Yν is integral, thus
h0(Yν,OYν (mL − A)) grows like mn by [1, Lemma 4.2]. This is a contradiction
and the result follows.
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Remark 2.7. When X is a reduced scheme and X = X1∪X2 (as topological spaces)
for closed subschemes X1, X2 we have a short exact sequence

0 → OX → OX1 ⊕ OX2 → OX1∩X2 → 0

as used above. In particular if L is a line bundle on X with sections s1, s2 on X1, X2
respectively which agree on X1 ∩ X2 then they glue to a section of L on X .

This is not the case when X is reducible. If X j are given by ideal schemes I j
then it need not be the case that I1 ∩ I2 = 0. However replacing I1 with a higher
power we may suppose that this is the case, see for instance [Stacks, Tag 01YC].
In particular we may always choose subscheme structures such that the short exact
sequence

0 → OX → OX1 ⊕ OX2 → OX1∩X2 → 0

still holds. When we work with components of a reducible scheme we can always
chose the subscheme structure in this fashion, and in particular we will always be
able to glue appropriate sections.

Lemma 2.8. [5][Proposition IV-21] Let X be a scheme and Z ⊆ X a subscheme
with π : Y → X the blowup of X along Z. If f : X ′ → X is any morphism and we
write Z ′ = f −1Z, then the closure W of π−1

X ′ (X ′ \ Z ′) inside X ′ ×X Y is exactly
the blowup of X ′ along Z ′.

Lemma 2.9. [Stacks,Tag0808]Let X bea scheme. Let I ⊆ OX beaquasi-coherent
sheaf of ideals. If X is reduced, then the blowup X ′ of X along I is reduced.

Together these tell us that ’the blowup of the reduction is the reduction of the
blowup’. More precisely we have the following.

Lemma 2.10. Let X be a scheme and Z a proper closed subscheme of Xred . Let
π : X ′ → X be the blowup of X along Z, viewed as a subscheme of X. Let Y be
the blowup of Xred along Z, then we have isomorphisms

Y  X ′ ×X Xred  X ′
red

Proof. First we observe that X ′ ×X Xred  X ′
red . Indeed if f : Z → X ′ is a

morphism froma reduced scheme, thenwe have a composition g = π◦ f : Z → X .
And thus a unique induced morphism Z → Xred . By definition this induces a
unique morphism Z → X ′ ×X Xred and hence X ′ ×X Xred satisfies the universal
property of the reduced subscheme, ensuring that X ′ ×X Xred  X ′

red .
NowbyLemma2.8wehave thatY is the closure of (Xred\Z) inside X ′×X Xred .

However Xred\Z is a dense subscheme and soY is precisely the reduced subscheme
of X ′ ×X Xred , but then in fact they are equal as X ′ ×X Xred is already reduced.

More abstractly one can argue that Lemma 2.10 holds by appealing directly
to the universal properties of the reduction, [Stacks, Tag 0356] and the blowup,
[Stacks, Tag 0806].
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Lemma 2.11. (Elimination of Indeterminacy by blowups) Let f : X ��� Y be
a rational map of S schemes associated to an S-linear system |V | ⊆ H0(X, L)

without fixed part, then there is Z with maps φ1 : Z → X, φ2 : Z → Y such that
φ∗
1 L = M + F for M a line bundle globally generated by φ∗

1 |V |. Here F ≥ 0
is such that OY (−F) is a line bundle, φ1(F) = B|V | as reduced schemes and
φ2 = f ◦ φ1. Further we may construct Z → X as a blowup of X.

Proof. Consider the following morphism of line bundles V ⊗ L−1 → OX and let
I be the image. Then I⊗ L is the image of V ⊗OX → L , in particular the support
of I is exactly B|V |.

Let π : Z → X be the blowup of X along I. We then have π−1I · OZ =
OZ (−F) for some F an effective Cartier divisor. Hence we have

π∗(V ⊗ L) � OZ (−F) ↪→ OZ

where the firstmap is surjective by right exactness of the pullback functor. Tensoring
by π∗L then gives the following.

π∗(V ⊗ Oz) � π∗L(−F) ↪→ π∗L

In particular the line bundle in the middle, which we may write M is globally
generated by sections indexed by π∗|V | and we have M = π∗L(−F) by con-
struction. Clearly π(F) is the support of I, which is nothing but B|V |. Since M is
globally generated it defines a morphism φ2 := φπ∗|V | : Z → Y and as φ1 := π

is an isomorphism away from F the sections in π∗|V | agree with those of |V | on
this locus. Hence φ2 agrees with f here, that is φ2 = f ◦ φ1 as required.

Lemma 2.12. Let X be an S scheme and let H be a very ample divisor on X. Sup-
pose that |V | ⊆ H0(X, H) is an S-linear system which induces a closed immersion
X → P

V
S .

Then for k sufficiently large we have that V⊗k = H0(X, kH).

Proof. Thought of as a subscheme of P
V
S , X is cut out by an ideal sheaf I. Hence

we have

0 → I ⊗ OPV
S
(k) → OPV

S
(k) → OX (kH) → 0.

Since H1(PV , I ⊗ OPV (k)) = 0 for large k, we get a surjection

H0(PV ,OPV (k)) → H0(X, kH).

However, the image of thismap is precisely V⊗k sincewe have H0(PV ,OPV (k)) =⊗k
1 H

0(PV ,OPV (1)).

Remark 2.13. They key point of this lemma is the following. Suppose we take |V |
as in Lemma 2.11 on X . Then we have a blowup φ∗

1 : Z → X such that φ∗
1 |V | is

basepoint free inside H0(Z , M). Take the induced morphism φ2 : Z → Y and let
H be the very ample divisor on Y induced by |V |. Then we have φ∗

2H
0(Y, kH) ⊆

φ∗
1 |V |⊗k for k >> 1.
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This may not be true for k = 1, even without the resolution of indeterminacy.
Consider for example X = P

1 and L = OX (4). If we take

|V | =< x4, x3y, y3x, y4 >

thenweget an inducedmorphism X → P
3. The image,Y , is not projectively normal

however, since X → Y is an isomorphism but dim |V | = 4 and dim H0(X, L) = 5.
In this example k = 3 suffices.

3. Stable base loci

In this section we will examine the stable base locus of line bundles which are
semiample over Q. This is then applied to the case of a big and nef line bundle
restricted to its exceptional locus.We begin with an extension of [9, Theorem 1.10].
The proof follows the same structure, however more care is needed to keep track
of sections.

If L is a line bundle on X , semiample over Q, we would like to claim that
SB(L) = SB(L|Xred ). If L|Xred is semiample then this follows from [9, Thereom
1.10]. We would then like to prove the general case by blowing up the base
locus of L|Xred and reducing to the case that the line bundle is semiample on
the reduction. Unfortunately if Y → X is a blowup then the pullback map
H0(X, L) → H0(Y, π∗L) is, in general, neither injective nor surjective if X is
not integral. It is the lack of surjectivity that causes the issues, since we ultimately
wish to show the existence of sections on the original scheme.

Suppose for example X is the union of two normal projective schemes X1,
X2. Then if π : Y → X is the blowup of X2, the map factors through the closed
immersion X1 ↪→ X . Of course if L is a line bundle on X then H0(X, L) →
H0(X1, L|X1)  H0(Y, π∗L) is typically not a surjection.

The idea in [9, Thereom 1.10] is essentially to show that L is semiample by
producing a candidate morphism via pushout. Then one can lift sections back to L
by building them from suitable sections of L|Xred and L|XQ

, up to perhaps replacing
the line bundle with a higher power. The key remedy, then, is to show that if we
blow up the base locus of L|Xred via π : Y → X , we may build sections of π∗L
on Y using only those coming from Xred and XQ.

Theorem 3.1. Let S be an excellent, Noetherian scheme, take X a projective scheme
over S and L a line bundle on X.Write i : Xred → X for the inclusion of the reduced
scheme. Suppose that L|XQ

is semiample. Then SB(L) = SB(L|Xred ).

Proof. We always have SB(L|Xred ) ⊆ SB(L) since we can pull back sections
of L , so it suffices to show the converse. We may also freely localise on S and
assume that it is an affine, Noetherian Z(p) scheme. After replacing L with a suf-
ficiently high mulitple, we assume that SB(L) = B(L), SB(L|Xred ) = B(L|Xred )

and SB(L|XQ
) = B(L|XQ

) as reduced schemes.
Step 1: Blow-up the base locus.
Fix a generating set si of H0(Xred , L|Xred ). By Lemma 2.11 the blowupW →

Xred along a subscheme Z eliminates the indeterminacy of Lred , where Z =
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B(L|Xred ) = SB(L|Xred ) as reduced schemes. Let π : Y → X be the blowup along
Z , viewed here a subscheme of X . Then the reduction of Y is Yred  W by Lemma
2.10.

Let F be the exceptional divisor and M = π∗L(−F). Note that since L is
semiample on XQ, we have that YQ = XQ and M |YQ = L|XQ

under this identifi-
cation. We fix a generating set ti of of H0(YQ, M |YQ), which induces a morphism
φQ : YQ → Z ′

Q
.

Bydefinition thebasis si ofH0(Xred , L|Xred )now induces ŝi inH0(Yred , M |Yred )
which globally generate the line bundle. These sections induce a morphism
ψ : Yred → Z over S. Note that this may not be the same as the morphism
induced by the full basepoint free linear system H0(Yred , M |Yred ) since we need
not have H0(Yred , M |Yred )  H0(Xred , L|Xred ) when X is not irreducible.

We then have an induced morphism ZQ → Z ′
Q

which is a finite universal

homeomorphism by [Stacks, Tag 02OG]. We write S = π∗
red H

0(X, L|Xred ) ⊆
H0(Yred , M |Yred ), which is generated by the ŝi by construction.

Now by [9, Theorem 1.7, Corollary 4.20 and Lemma 2.20], there is a
scheme Z ′, a universal homeomorphism Z → Z ′ and a line bundle H ′ on
Z such that the following diagram commutes at the level of line bundles.

(Y,M) (YQ,M |YQ
)

(Yred,M |Yred
) (Yred,Q,M |Yred,Q

)

(Z,H) (ZQ, H|ZQ
)

(Z ′, H ′) (Z ′
Q, H

′|Z′
Q
)

φQψ ψQ

Step 2: Find compatible sections.
Since ψ is not induced by the full linear system on Yred , it need not be

the case that sections of H0(Z , H) pull back to sections inside the linear sys-
tem S ⊂ H0(Yred , M |Yred ) which defines ψ . By Lemma 2.12 however, we may
replace M, L , S, H, H ′ with higher multiples so that ψ∗H0(Z , H) ⊆ S. and
φ∗
Q
H0(Z ′

Q
, H ′|Z ′

Q
) ⊆ H0(YQ, M |YQ). Taking further powers as needed, we may

suppose also that H ′ is very ample.
We fix ui a generating set for H0(Z ′, H ′), then let vi = ui |Z and wi = ui |ZQ

.
By construction we have π∗vi ⊆ S so we can choose xi ∈ H0(Xred , L|Xred ) with
π∗xi = ψ∗vi . Similarly we have yi ∈ H0(XQ, L|XQ

) = H0(XQ, M |XQ
) with

φ∗
Q
ti = yi . Since the above diagram commutes we have the following identifica-

tions.

π∗vi |Yred,Q
= ψ∗

Q(ui |Zred,Q
) = yi |Yred,Q

Since H ′ is very ample the yi must generate a basepoint free linear system. Sim-
ilarly theφ∗vi are basepoint free on Yred . Then asπ−1 : X ��� Y is an isomorphism
away from SB(L|Xred ), the xi are basepoint free away from it also.
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Finally note that since H0(Xred,Q, L|Xred,Q
) → H0(Yred,Q, M |Yred,Q

) is an
isomorphism, we must have xi |Xred,Q

= yi |Xred,Q
.

Step 3: Glue sections on the original scheme.
By [9, Proposition 3.5], we have the following commutative diagram.
H0(X,L)perf H0(XQ, L|XQ

)perf

H0(Xred, L|Xred
)perf H0(Xred,Q, L|Xred,Q

)perf

Hence we can again replace L with a higher power, and xi , yi with the cor-
responding multiples, such that there are ri ∈ H0(X, L) with ri |Xred = xi and
ri |XQ

= yi .Once again then L is globally generated by the ri away fromSB(L|Xred ),
so we must have that SB(L) ⊆ SB(L|Xred ) as claimed.

Remark 3.2. In principle the condition that L|XQ
is semiample is not completely

necessary. The blowup of B(L|Xred ), π : Y → X induces an injection

H0(X |red,Q, L|Xred,Q
) → H0(Y |red,Q, L|Yred,Q

)

which is sufficient to allow us to glue sections on the base. Much more care must
be taken when replacing L with a higher power in this case, however, to ensure that
the pullback remains injective on the considered sections.

This would extend the result to the case that L|XQ
becomes basepoint free after

we blowup the base locus of L|Xred . However, it is not clear how this condition
could be verified in practice.

We now consider the stable base locus of a big and nef line bundle on restriction
to its exceptional locus, under the assumption that the characteristic 0 part of the
line bundle is semiample.

Lemma 3.3. Let L be a nef line bundle on X projective over an excellentNoetherian
base S with and D an effective Cartier divisor such that L(−D) is an ample line
bundle. If L|DQ

is semiample then

SB(L) = SB(L|D).

Proof. Clearly SB(L) ⊆ D as L is ample away from D and we have SB(L|D) ⊆
SB(L) by restriction. Consider the following short exact sequence.

0 → OX (kL − mD) → OX (kL) → OmD(kL) → 0

By Theorem 2.4, we may choose m >> 0 such that

H1(OX , kL − mD = mA + (k − m)L) = 0

for k ≥ m. Then by Theorem 3.1 and the semiampleness assumption, we have
SB(L|D) = SB(L|mD) and may pick k >> m with SB(L|D) = B(kL|mD) as
reduced subschemes of X . In particular if P is any closed point of D, we may
find a section of kL|mD avoiding it, and then lift this to a section of kL . Thus
SB(L) ∩ D ⊆ SB(L|D) and the result follows.
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Lemma 3.4. Suppose that X is a reduced projective scheme over an excellent
Noetherian base. Suppose that L , A are line bundles with L nef and A ample. Take
Z = Z(s) for some section s of L−A. If L|DQ

is semiample thenSB(L) = SB(L|Z ).

Proof. Let Y1 be the union of components of X contained in Z and Y2 the union of
those not contained in Z . If either are empty the result is clear so suppose otherwise.
As in Remark 2.7, we give them a subscheme structure and replace L , A, s with
higher powers to ensure we may glue appropriate sections.

Let D = Z ∩ Y2 and L2 = L|Y2 . By assumption D is a Cartier divisor on Y2
with D = (L − A)|Y2 . As above we have

0 → OY2(kL2 − mD) → OY2(kL2) → OmD(kL2) → 0

and choosing k > m >> 0 this allows us to lift sections from kL2|mD . We then
have B(kL|mZ ) = SB(L|mZ ) = SB(L|Z ) = B(kL|Z ) for large enough k by
Theorem 3.1. Now, given any section t of kL|mZ we may restrict it to D and then
lift it to t ′ a section of kL2. By construction t ′ agrees with t on D = Z ∩ Y2, and
since Y1 ⊆ Z it follows we may glue t |Y1 and t ′. In particular then we must have
SB(L) ∩ Z = SB(L|Z ), but since L is ample away from Z the result follows.

Corollary 3.5. Suppose that X is a projective scheme over an excellent Noetherian
base with L a nef line bundle on X. Then SB(L) = SB(L|E(L)) so long as L|XQ

is
semiample.

Proof. By Noetherian induction we may suppose that this holds on every proper
closed subscheme. By Theorem 3.1 we may suppose that X is reduced and then
we may also assume E(L) �= X , else the result is trivial. Let X ′ be the union of
components on which L is big and X ′′ the union of those on which it is not.

Let A be an ample line bundle and s a general section ofmL−A, then Z = Z(s)
must contain E(L). By Lemma 2.6 we have that Z �= X , since s does not vanish
on any component of X ′. Since E(L|Z ) = E(L) ∩ Z = E(L) we must have
SB(L) = SB(L|Z ) = SB(L|E(L)) by the induction hypothesis.

4. Augmented base loci

This section considers the augmented base locus of a nef line bundle and its relation
to the exceptional locus. This is done largely under the assumption that they are
equal in characteristic 0, before showing this assumption is satisfied in two key
cases.

Lemma 4.1. Let X be a projective scheme, L a line bundle and A a very ample
line bundle. Then for m >> 0 large and divisible we have that

B+(L) = B(mL − A).

Proof. Certainlywe have n such thatB+(L) = SB(nL−A) and thus alsoB+(L) =
B(nkL−k A) for large divisible k. Conversely howeverB(nkL−A) ⊆ B(nkL−k A)

as A is very ample. Since B+(L) ⊆ B(nkL − A) by definition, taking m = kn
suffices.
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Lemma 4.2. Let X be a projective scheme over an excellent Noetherian base with
L a nef line bundle on X. If D is an effective Cartier divisor with L(−D) an ample
line bundle and B+(L|kD) = B+(L|D) for all k > 0 then B+(L) = B+(L|D).

Proof. Since D = L − A we must have that B+(L) ⊆ D, and conversely
B+(L|D) ⊆ B+(L) since we may always pullback sections. It suffices to show
then that B+(L) ⊆ B+(L|D) and we need only check this on points inside D.

By taking multiples we may freely assume L − D = 2A for A very ample.
Consider the short exact sequence

0 → OX (k(mL − D − A)) → OX (kmL − k A) → OkD(mkL − k A) → 0.

We have that H1(X, kmL−kD−k A) = H1(X, (k−1)mL+k A) = 0 for k >> 0
which we now fix and for all m > 0.

In particular we may lift sections from OkD(mkL − k A) for any m > 0. By
assumption we have B+(L|kD) = B+(L|D) and so we have that B+(L|D) =
B((mkL − k A)kD) for sufficiently large and divisible m. Given this choice of m
we may lift sections avoiding B((mkL − k A)kD) and thus B+(L) ⊆ B+(L|D).

Lemma 4.3. Let X be a projective scheme over an excellent Noetherian basewith L
a nef line bundle on X and A an ample line bundle. If Z = Z(s) for some s a section
of mL − A and B+(L|kZ ) = B+(L|Z ) for all k ≥ 1 then B+(L) = B+(L|Z ).

Proof. As above we need only prove that B+(L) ⊆ B+(L|Z ). Let Y1 the union
of components on which Z is non-zero and Y2 the union of those on which it
is not. From above we may assume that Y1 �= ∅ else Zred = Xred and the result
follows. Let D = Z |Y1 and write L|Y1 = L ′, A|Y1 = A′. As in the proof of previous
theorem, after possibly replacing L , D with a multiples, we may find k such that
every section of (mkL ′ − k A′)|kD lifts to one of mkL ′ − k A′.

Similarly for n >> 0 sufficiently divisible we have B((nL − k A)|kZ ) =
B+(L|kZ ) = B+(L|Z ) by assumption. Taking any section s of (mkL − k A)|kZ ,
we may restrict to a section on kD and then lift to s′ a section of k(mL ′ − A′). By
construction s|Y2 , s′ glue along Y1 ∩ Y2 ⊆ D to give a corresponding section of
k(mL − A) and the result follows. We may perform this gluing by Remark 2.7.

Lemma 4.4. Let X be a projective scheme over an excellent Noetherian base with
L a nef line bundle on X. Suppose that B+(L) = E(L) and that Z is closed
subscheme of X with E(L) ⊆ Z. Then B+(L|Z ) = E(L|Z ).

Proof. Choose m > 0, and A ample on X with B+(L) = B(mL − A) and
B+(L|Z ) = B((mL− A)|Z ). Then we have thatB((mL− A)|Z ) ⊆ B(mL− A)∩ Z
by restriction.

On the other hand, since E(L) ⊆ Z , we have that E(L|Z ) = E(L). Hence we
have that

B+(L|Z ) ⊆ B((mL − A)|Z ) ⊆ B(mL − A) ∩ Z = E(L) ∩ Z = E(L|Z ).

It is always the case that E(L|Z ) ⊆ B+(L|Z ) and hence equality holds.
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Theorem 4.5. Let X be a projective scheme over an excellent Noetherian base S
with L a nef line bundle on X. Suppose that B+(L|XQ

) = E(L|XQ
). Then in fact

B+(L) = E(L) = B+(L|Xred ).

Proof. It is immediate that E(L) ⊆ B+(L). Since E(L) = E(L|Xred ) it suffices to
show only that B+(L) ⊆ E(L). We may assume therefore that E(L) �= X and L is
big, or the result follows immediately.

The proof will be by Noetherian induction. So we assume that the result holds
on every proper closed subscheme of X . The question is local on the base, so we
may assume that S is a Z(p) scheme for some p > 0. Note that by Lemma 4.4 we
have that E(L|Xred,Q

) = B+(L|Xred,Q
)

Step 1: Find a non-vanishing section t of mL − A.
Take A ample andm > 0withSB(mL−A) = B+(L) andSB((mL−A)|Xred ) =

B+(L|Xred ). Then we have E(L|Xred,Q
) = SB((mL − A)|Xred,Q

) also. Suppose first
that SB((mL − A)|XQ

) �= XQ. Then there is some non-zero section t of mL − A
which does not vanish everywhere on Xred .

Otherwise we have E(L) = SB((mL − A)|Xred,Q
) = Xred , that is

H0(Xred,Q, k(mL − A)|Xred,Q
) = 0

for all k. Since E(L|Xred ) = E(L) �= X , L|Xred is still big. Now by Lemma 2.6
there is a section s ∈ H0(Xred , (mL − A)|Xred ) which does not vanish on any
component on which L|Xred is big. In particular it does not vanish everywhere.
Then since H0(Xred,Q, (mL − A)|Xred,Q

) = 0 we may use [9, Proposition 3.5] to

lift s to a section t of H0(X, pe(mL − A)) for some e > 0 with t |Xred = s p
e
. After

replacing L and A with their pe
th
powers, t is precisely the non-vanishing section

we seek.
Step 2: Reduce to Z = Z(t).
By construction we have E(L) ⊆ Z , since B+(L) ⊆ Z . By Lemma 4.4,

then, we have that B+(L|kZQ
) = E(L|kZQ

) for k ≥ 1, so the hypotheses of the
theorem are still satisfied by kZ . Hence by the induction hypotheseswemay assume
B+(L|kZ ) = E(L|kZ ) = B+(L|Zred ) for all k ≥ 1. Therefore we can apply Lemma
4.3 to deduce the result.

Remark 4.6. It is not clear inwhat generality the assumptions of this theorem should
hold. Certainly if SQ is a field they hold by [1]. Even when SQ is of finite type over a
field however it is not known whether the condition holds. The arguments of [1] do
not hold in this relative setting as they rely heavily on certain cohomology groups
being vector spaces over a field. One possible remedy, when SQ is of finite type
over a field, is to find a suitable compactification and reduce to the case that XQ is
projective over a field.

Lemma 4.7. Let X be a projective scheme over an excellent base S. Suppose that
L is a semiample line bundle, inducing π : X → Y with π∗OX = OY . Then we
have equalities

E(L) = B+(L) = Exc(π)



634 L. Stigant

where Exc(π) is the union of closed, integral subschemes Z ⊆ X such that Z →
π(Z) is not an isomorphism at the generic point.

Proof. The morphism π is proper and it’s own Stein factorisation. So by Zariski’s
Main Theorem [Stacks, Tag 03GW], Exc(π) is precisely the complement of the
locus on which π is finite, or equally the locus on which it has finite fibres.

After replacing L with a multiple we have L = π∗A for some ample A on Y .
Take any hyperplane H on X , let I = π∗OX (−H) be the ideal sheaf induced

on Y , so that we have π∗(OX (kL − H)) = OY (k A) ⊗ I.
Suppose that x ∈ X \Exc(π), then wemay assume H does not contain x and so

the co-support of I does not contain π(x). Choose k >> 0 such thatOY (k A)⊗ I is
globally generated. Hence there is a section s ∈ H0(Y,OY (k A)⊗I) not vanishing
at π(x).

However by adjunction we have natural isomorphisms

H0(Y,OY (k A) ⊗ I)  H0(Y, π∗(OX (kL − H)))  H0(X, kL − H).

The corresponding section s′ ∈ H0(X, kL − H) does not vanish at x by construc-
tion.

Hence we have inclusions E(L) ⊆ B+(L) ⊆ Exc(π) and it remains to show
that Exc(π) ⊆ E(L). More precisely it is enough to show that if V is any closed,
integral subscheme of X such that L|V is big then V → π(V ) is generically an
isomorphism.

Suppose then that L ′ = L|V is big, so we have a section s of kL ′−A for k >> 0
and A ample on V . Since V is integral, by assumption, this induces an inclusion
OV (A) ↪→ OV (kL ′). Now πV : V → π(V ) is generically an isomorphism if and
only if it is generically finite, and hence if and only if it’s Stein factorisation is so.
Therefore wemay freely replace πV with its Stein factorisation and assume that πV

is induced by generating sections of kL ′. Then the inclusion OV (A) ↪→ OV (kL ′)
ensures that πV is generically an isomorphism, completing the proof.

Corollary 4.8. Let X be a projective scheme over an excellent Noetherian base S
with L a nef line bundle on X. Suppose that one of the following holds:

1. SQ has dimension 0;
2. L|XQ

is semiample;

Then B+(L) = E(L).

Proof. By Theorem 4.5, it is enough to know B+(L|XQ
) = E(L|XQ

). In case (1)
this follows from [1, Theorem 1.3], since each connected component of XQ is
projective over a field. In case (2) this is the content of Lemma 4.7.
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