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Abstract. We study the problem of classifying pencils of plane sextics up to projective
equivalence via geometric invariant theory (GIT). In particular, we provide a complete
description of the GIT stability of certain pencils of plane sextics called Halphen pencils of
index two-classical geometric objects which were first introduced by G. Halphen in 1882.
Inspired by the work of Miranda on pencils of plane cubics, we obtain explicit stability
criteria in terms of the types of singular fibers appearing in their associated rational elliptic
surfaces.

1. Introduction

Classification problems are often solved by constructing quotient spaces by the
action of an algebraic group, and Geometric Invariant Theory (GIT) provides a tool
for constructing such quotients. In this paper we are interested in the problem of
classifying pencils of plane sextics up to projective equivalence.

If we let V denote the space of sections H0(P2,OP2(1)), then the space Pd

of pencils of plane curves of degree d can be identified with the Grassmannian
of lines Gr(2, SdV ∗), which can be embedded in P(�2SdV ∗) � P

N via Plücker
coordinates. The group SL(V )1 acts naturally on V , hence on the invariant subva-
rietyPd ⊂ P

N , and a classical problem consists of constructing the corresponding
GIT quotientPd//SL(V ). This amounts to determining what are the (semi)stable
pencils for this action.

In [1], we have related the GIT stability of a pencil P ∈ Pd under the action of
SL(V ) to the log canonical threshold of the pair (P2, Cd), where Cd is a curve in P
(see e.g. [2, Sect. 8]); and also to the multiplicities of its generators at a base point.
The results in [1] however only provide a partial description of the (semi)stable
pencils.

In Sect. 2, we complete the description when d = 6 obtaining explicit stability
criteria in terms of some vanishing conditions on the Plücker coordinates of a pencil.
This is the content of Propositions 2.2 and 2.3. In Sect. 3, we then focus on particular
pencils of plane sextics and interpret such vanishing criteria geometrically.
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In Sect. 4 we turn our attention to the so called Halphen pencils of index two,
after the French mathematician Georges Henri Halphen who first studied them in
[3]. We provide a complete and geometric description of their stability viewed as
points in P6. Inspired by [4], we obtain explicit stability criteria in terms of the
types of singular fibers appearing in their associated rational elliptic surfaces. The
relevant definitions are as follows:

Definition 1.1. AHalphen pencil of index two is a pencil of plane curves of degree
six with nine (possibly infinitely near) base points of multiplicity two.

Definition 1.2. A rational elliptic surface consists of a smooth and projective
rational surface Y together with a fibration f : Y → P

1 such that the generic fiber
is a smooth genus one curve and there are no (−1)-curves in any fiber.We define the
index of the fibration as the positive generator of the ideal {D · Yη ; D ∈ Pic(Y )},
where Yη denotes the generic fiber.

Moreover, the correspondence between Halphen pencils and rational elliptic
surfaces is given by the following Proposition:

Proposition 1.3. [[5, Theorem 5.6.1]] If f : Y → P
1 is a rational elliptic surface

of index two, then there exists a birational map π : Y → P
2 so that f ◦ π−1 is

a Halphen pencil of index two. Conversely, given a Halphen pencil of index two,
taking the minimal resolution of its base points we obtain a rational elliptic surface
of index two.

The surface Y has finitely many singular fibers and the configuration of all non-
multiple singular fibers is exactly the same as the one in the associated Jacobian
fibration (see e.g. [6, Chapter V.9]). In particular, the possible types of fibers have
been classified by Kodaira and Néron [7–9]. Moreover, the possible configurations
of singular fibers have been classified by Miranda and Persson [10,11]. And, over
a field of characteristic zero, any multiple fiber is of type In for some n ≥ 0 [5,
Proposition 5.1.8].

The main results of this paper are given by Theorems 1.4, 1.5 and 1.6 below,
where P denotes a Halphen pencil of index two and Y denotes the associated
rational elliptic surface. We write P as λB + μ(2C) = 0, where C is the unique
cubic through the nine base points of P and the curve B corresponds to some
(non-multiple) fiber of Y , which we denote by F .

One of the main ideas in our approach consists of observing that the group
SL(V ) is also acting on P(S6V ∗), the space of plane sextics. In [1] we have also
related the stability of a pencil P ∈ P6 to the stability of its generators, and
the stability of plane curves of degree six is well known—it has been completely
described by Shah in [12].

The other main ingredients are: (1) the explicit constructions of Halphen pen-
cils of index two in [13] and the classification from Theorem 1.2 therein, (2) the
inequalities provided by [13, Theorem 1.1], (3) the stability criteria given in [1]
when d = 6, and (4) the results from Sect. 3.

Using Kodaira’s notation for singular fibers of elliptic surfaces, and considering
the actions of SL(V ) on both P6 and the space of plane curves of degree six, we
prove:
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Theorem 1.4. When C is smooth the pencil P is stable if and only if one of the
following statements hold

(i) all fibers of Y are reduced
(ii) Y contains exactly one (non-multiple) fiber F of type I ∗

n or I V ∗
(iii) Y contains exactly one (non-multiple) fiber F of type I I ∗ or I I I ∗ and the

corresponding plane curve B is semi-stable
(iv) Y contains two fibers of type I ∗

0 and there is no one-parameter subgroup λ that
destabilizes the two corresponding curves simultaneously.

Theorem 1.5. When C is singular the pencil P is stable if and only if one of the
following statements hold

(i) all fibers of Y are reduced
(ii) Y contains a (non-multiple) non-reduced fiber F such that the corresponding

curve B is semi-stable; and there is no one-parameter subgroup λ that desta-
bilizes 2C and B simultaneously

(iii) Y contains a fiber of type I V ∗ and B is unstable

Theorem 1.6. The pencil P is semi-stable if and only if every curve in P is semi-
stable or Y does not contain a fiber F of type I I ∗.

We work over C throughout.

2. Stability of pencils of plane sextics

A fundamental tool for describing stability in the sense of GIT is the numerical
criterion of Hilbert–Mumford. In our setting, it says a pencil P ∈ P6 is unstable
(resp. non-stable) if and only if there exists a 1-parameter subgroup C× → SL(V )

with respect to which all weights are positive (resp. non-negative). In particular, in
order to determine which are the (semi)stable pencils, we need to know how the
diagonal elements in SL(V ) act on the Plücker coordinates.

if we choose a pencil P ∈ P6 and two curves C f and Cg as generators, these
represented (in some choice of coordinates) by f = ∑

fi j x i y j z6−i− j = 0 and
g = ∑

gi j xi y j z6−i− j = 0, respectively; then the Plücker embedding takes the

2× 27 matrix

(
fi j
gi j

)

to the point in P(282 )−1 whose coordinates are given by all the

2 × 2 minors mi jkl
.=

∣
∣
∣
∣
fi j fkl
gi j gkl

∣
∣
∣
∣.

Now, if an element of SL(V ) is given by

⎛

⎝
α 0 0
0 β 0
0 0 γ

⎞

⎠ in some choice of coor-

dinates [x, y, z] in P
2, then its action on the coordinates of P

2 is given by
[x, y, z] 	→ [αx, βy, γ z]. Thus, the action on a point ( fi j ) ∈ S6V ∗ represent-
ing

∑
fi j x i y j z6−i− j is given by ( fi j ) 	→ (αiβ jγ 6−i− j fi j ) and, therefore, it acts

on the Plücker coordinates by

(mi jkl) 	→ (αi+kβ j+lγ 12−i− j−k−lmi jkl)
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We can thus express the Hilbert–Mumford criterion for the stability of a pencil
P ∈ P6 as the vanishing of some of its Plücker coordinates (mi jkl) (with respect
to a convenient choice of basis in P2).

First, note that we may assume any one-parameter subgroup λ of SL(V ) is
normalized, meaning we choose coordinates [x, y, z] in P2 so that λ is given by

t 	→
⎛

⎝
tax 0 0
0 tay 0
0 0 taz

⎞

⎠

where ax , ay, az ∈ Z with ax ≥ ay ≥ az, ax > 0 and ax + ay + az = 0.
In particular, the action of λ(t) in the Plücker coordinates is given by

(mi jkl) 	→ (tei jkl mi jkl)

where ei jkl
.= ax (2i + 2k + j + l − 12) + ay(2 j + 2l + i + k − 12).

Further, we can normalize the weights so that ax = 1, ay = a and az = −1−a
for some a ∈ [−1/2, 1] ∩ Q. Then

ei jkl = ei jkl(a) = (2i + 2k + j + l − 12) + a(2 j + 2l + i + k − 12)

The sign of the Hilbert–Mumford weight μ(P, λ) (defined in (1) below) does
not change under these reductions and the Hilbert–Mumford criterion becomes:

Proposition 2.1. A pencil P ∈ P6 is unstable (resp. non-stable) if and only if
there exists a rational number a ∈ [−1/2, 1] and coordinates in P

2 such that if
the pencil is represented in those coordinates by (mi jkl), then mi jkl = 0 whenever
ei jkl(a) ≤ 0 (resp. ei jkl(a) < 0).

A priori, for each choice of coordinates in P2 one would need to test all possible
values of a ∈ [−1/2, 1] ∩Q to verify the stability criterion. However, because the
function (for a fixed P and some choice of coordinates)

μ(P, λ)
.= min{ei jkl(a) : mi jkl �= 0} (1)

is piecewise linear, a key observation is that we only need to test its positivity for
a finite number of critical values a ∈ [−1/2, 1] ∩ Q.

In other words, the conditions ei jkl(a) ≤ 0 (resp. ei jkl(a) < 0) divide the inter-
val [−1/2, 1] into finitely many subintervals [an, an+1] within which the truthful-
ness of the inequality remains constant. That is, for each interval [an, an+1] we can
find values of i, j, k and l for which the inequality ei jkl(a) ≤ 0 (resp. ei jkl(a) < 0)
remains true for all a ∈ [an, an+1].

To find these intervals we proceed as follows. For computational reasons we
first let r = i + k and s = j + l. Then, for each possible pair (r, s) in the set

{(r, s) ∈ {0, 1, . . . , 12} × {0, 1, . . . , 12} : r + s ≤ 12},
we test whether we can solve the inequality 2r + s − 12 + a(2s + r − 12) ≤ 0
(resp. < 0) for the variable a, further imposing the restriction a ∈ [−1/2, 1].



Stability of pencils of plane sextics... 357

Table 1. Intervals for unstability

Values of r and s Values of a

r = 4 and s = 5, . . . , 8 a ∈ [−1/2]
r = 0, 1, 2, 3 or 4 and s = 0, . . . , 8 − r a ∈ [−1/2, 1]
r = 0 and s = 9 a ∈ [−1/2, 1/2]
r = 1 and s = 8 a ∈ [−1/2, 2/5]
r = 0 and s = 10; r = 2 and s = 7 a ∈ [−1/2, 1/4]
r = 1 and s = 9 a ∈ [−1/2, 1/7]
r = 0 and s = 11 a ∈ [−1/2, 1/10]
r = 0, 1, 2 or 3 and s = 12 − 2r a ∈ [−1/2, 0]
r = 1 and s = 11 a ∈ [−1/2, −1/11]
r = 2 and s = 9 a ∈ [−1/2, −1/8]
r = 2 and s = 10; r = 3 and s = 7 a ∈ [−1/2, −1/5]
r = 3 and s = 8 a ∈ [−1/2, −2/7]
r = 3 and s = 9 a ∈ [−1/2, −1/3]
r = 5 and s = 0 a ∈ [−2/7, 1]
r = 5 and s = 1 a ∈ [−1/5, 1]
r = 5 and s = 2; r = 6 and s = 0 a ∈ [0, 1]
r = 6 and s = 1 a ∈ [1/4, 1]
r = 7 and s = 0 a ∈ [2/5, 1]
r = 5, 6, 7 or 8 and s = 8 − r a = 1

There are
(14
2

)
possible pairs (r, s), and the corresponding values of a we find

can be summarized as in Tables 1 and 2 below.
At this point, the corresponding vanishing conditions on the Plücker coordinates

mi jkl , however, are not independent. But a careful inspection of Tables 1 and 2
reveals the number of sub-intervals giving minimal conditions for unstability (resp.
non-stability) is in fact six (resp. seven).

More precisely, in order to obtain minimal conditions for unstability, it suffices
considering only the following six distinct subintervals:

(−1/3,−2/7), (−2/7,−1/5), (−1/11, 0), (1/7, 1/4), (1/4, 2/5), (1/2, 1)

And, similarly, for non-stability it suffices taking

a ∈ {−1/2,−2/7,−1/5, 0, 1/4, 2/5, 1}.
As a consequence, of this analysis of the data in Tables 1 and 2, we conclude the

Hilbert–Mumford criterion for unstability (resp. non-stability) can be restated as
in Proposition 2.2 (resp. Proposition 2.3) below, where we introduce the following
sets:

Mrs
.= {mi jkl : i + k = r and j + l = s}

and

Xm,n
.= {(r, s) : r = m and 0 ≤ s ≤ n}
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Table 2. Intervals for non-stability

Values of r and s Values of a

r = 0, 1, 2 or 3 and s = 0, . . . , 7 − r a ∈ [−1/2, 1]
r = 0, 1, 2 or 3 and s = 8 − r a ∈ [−1/2, 1)
r = 4 and s = 0, . . . , 3 a ∈ (−1/2, 1]
r = 0 and s = 9 a ∈ [−1/2, 1/2)
r = 1 and s = 8 a ∈ [−1/2, 2/5)
r = 0 and s = 10; r = 2 and s = 7 a ∈ [−1/2, 1/4)
r = 1 and s = 9 a ∈ [−1/2, 1/7)
r = 0 and s = 11 a ∈ [−1/2, 1/10)
r = 0, 1, 2 or 3 and s = 12 − 2r a ∈ [−1/2, 0)
r = 1 and s = 11 a ∈ [−1/2, −1/11)
r = 2 and s = 9 a ∈ [−1/2, −1/8)
r = 2 and s = 10; r = 3 and s = 7 a ∈ [−1/2, −1/5)
r = 3 and s = 8 a ∈ [−1/2, −2/7)
r = 3 and s = 9 a ∈ [−1/2, −1/3)
r = 5 and s = 0 a ∈ (−2/7, 1]
r = 5 and s = 1 a ∈ (−1/5, 1]
r = 5 and s = 2; r = 6 and s = 0 a ∈ (0, 1]
r = 6 and s = 1 a ∈ (1/4, 1]
r = 7 and s = 0 a ∈ (2/5, 1]

Proposition 2.2. A pencil P ∈ P6 is unstable if and only if there exist coordinates
in P2 so that if the pencil is represented in those coordinates by (mi jkl), then either

CaseU (1) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,12 ∪ X1,11 ∪ X2,10 ∪
X3,8 ∪ X4,4 and a = −13/42 will exhibit P as unstable; or

CaseU (2) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,12 ∪ X1,11 ∪ X2,10 ∪
X3,7 ∪ X4,4 ∪ X5,0 and a = −8/35 will exhibit P as unstable; or

CaseU (3) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,12 ∪ X1,10 ∪ X2,8 ∪
X3,6 ∪ X4,4 ∪ X5,1 and a = −1/12 will exhibit P as unstable; or

CaseU (4) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,10 ∪ X1,8 ∪ X2,7 ∪
X3,5 ∪ X4,4 ∪ X5,2 ∪ X6,0 and a = 3/14 will exhibit P as unstable; or

CaseU (5) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,9 ∪ X1,8 ∪ X2,6 ∪
X3,5 ∪ X4,4 ∪ X5,2 ∪ X6,1 and a = 3/10 will exhibit P as unstable; or

CaseU (6) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,8 ∪ X1,7 ∪ X2,6 ∪
X3,5∪ X4,4∪ X5,2∪ X6,1∪ X7,0 and a = 3/4will exhibitP as unstable.

Proposition 2.3. A pencil P ∈ P6 is non-stable if and only if there exist coordi-
nates in P2 so that if the pencil is represented in those coordinates by (mi jkl), then
either

CaseN S(1) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,12∪X1,11∪X2,10∪
X3,9 and a = −1/2 will exhibit P as non-stable; or

CaseN S(2) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,12∪X1,11∪X2,10∪
X3,7 ∪ X4,3 and a = −2/7 will exhibit P as non-stable; or
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Fig. 1. Pictorial description of Case NS(1) of Propositions 2.3

CaseN S(3) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,12 ∪ X1,11∪ X2,9∪
X3,6 ∪ X4,3 ∪ X5,0 and a = −1/5 will exhibit P as non-stable; or

CaseN S(4) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,11 ∪ X1,9 ∪ X2,7 ∪
X3,5 ∪ X4,3 ∪ X5,0 and a = 0 will exhibit P as non-stable; or

CaseN S(5) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,9 ∪ X1,8 ∪ X2,6 ∪
X3,5 ∪ X4,3 ∪ X5,2 ∪ X6,0 and a = 1/4 will exhibit P as non-stable;
or

CaseN S(6) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,9 ∪ X1,7 ∪ X2,6 ∪
X3,5 ∪ X4,3 ∪ X5,2 ∪ X6,1 and a = 2/5 will exhibit P as non-stable;
or

CaseN S(7) the mi jkl in Mrs all vanish for all pairs (r, s) in X0,7 ∪ X1,6 ∪ X2,5 ∪
X3,4∪X4,3∪X5,2∪X6,1∪X7,0 and a = 1will exhibitP as non-stable.

Remark 2.4. Note that if a pencilP ∈ P6 satisfies the vanishing conditions of Case
U(i) in Proposition 2.2, then it satisfies the vanishing conditions of Case NS(i +1)
in Proposition 2.3.

3. Unstable and non-stable pencils

Given an unstable (resp. non-stable) pencil P ∈ P6, if we choose coordinates
[x, y, z] in P

2 as in Proposition 2.2 (resp. 2.3) and generators C f and Cg , then
each vanishing condition mi jkl = 0 can be translated into the vanishing of the
coefficients of some pair C f ′ and Cg′ of generators (not necessarily the original
pair). We can then visualize the stability criteria by representing C f ′ (and Cg′ ) in a
triangle of coefficients in the plane as in [14, Sect. 1.9].

For instance, if we assume P satisfies the conditions of Case NS(1) (resp.
NS(4)) of Proposition 2.3 then the coefficients of the defining polynomials f ′ and
g′ which are located below the corresponding lines in one of the cases in Fig. 1
(resp. 2) must all vanish.

One can draw similar pictures for each of the cases in Propositions 2.2 and 2.3
thus obtaining a characterization of the unstable and non-stable pencils in P6 in
terms of explicit equations for their generators.

To illustrate what kind of computations are involved in this process we
prove Proposition 3.1 below, which corresponds to Fig. 1. We use the notation
〈m1, . . . ,mn〉 to denote the subspace of homogeneous polynomials of degree six
in the variables x, y and z which is generated by the monomials mi . Whereas



360 A. Zanardini

Fig. 2. Pictorial description of Case NS(4) of Propositions 2.3

〉m1, . . . ,mn〈 denotes the subspace of those polynomials which are generated by
all the monomials which are different from the mi . The result is the following:

Proposition 3.1. ApencilP ∈ P6 satisfies the vanishing conditions inCase N S(1)
of Proposition 2.3 if and only if there exist coordinates in P

2 and generators C f

and Cg of P such that either

Case1 f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉 and g is arbitrary
Case2 f ∈ 〈x3z3, x3yz3, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6〈
Case3 f and g ∈ 〈xi y j z6−i− j 〉, where 2 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i + j ≤ 6

Proof. Let us assume P is non-stable and that its Plücker coordinates (mi jkl) must
vanish for all i, j, k and l satisfying i +k = r and j + l = s for all the pairs (r, s) in
Case NS(1) of Proposition 2.3. Using the relations mi jkl = −mkli j and mi ji j = 0
we can compute the minimal set of values {i, j, k, l} (in order) so that the mi jkl

vanish.
In other words, we find all integers i, j, k and l subject to the restrictions

(i) 0 ≤ i, j, k, l ≤ 6,
(ii) i + j ≤ 6,
(iii) k + l ≤ 6, and
(iv) (i < k) ∨ (i = k ∧ j < l)

satisfying the inequality

(2i + 2k + j + l − 12) − 1/2(2 j + 2l + i + k − 12) < 0

All possible solutions {i, j, k, l} (in order) are:
{0, 0, 0, 1}, {0, 0, 0, 2}, {0, 0, 0, 3}, {0, 0, 0, 4}, {0, 0, 0, 5}, {0, 0, 0, 6}, {0, 0, 1, 0},
{0, 0, 1, 1}, {0, 0, 1, 2}, {0, 0, 1, 3}, {0, 0, 1, 4}, {0, 0, 1, 5}, {0, 0, 2, 0}, {0, 0, 2, 1},
{0, 0, 2, 2}, {0, 0, 2, 3}, {0, 0, 2, 4}, {0, 0, 3, 0}, {0, 0, 3, 1}, {0, 0, 3, 2}, {0, 0, 3, 3},
{0, 1, 0, 2}, {0, 1, 0, 3}, {0, 1, 0, 4}, {0, 1, 0, 5}, {0, 1, 0, 6}, {0, 1, 1, 0}, {0, 1, 1, 1},
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{0, 1, 1, 2}, {0, 1, 1, 3}, {0, 1, 1, 4}, {0, 1, 1, 5}, {0, 1, 2, 0}, {0, 1, 2, 1}, {0, 1, 2, 2},
{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 0}, {0, 1, 3, 1}, {0, 1, 3, 2}, {0, 1, 3, 3}, {0, 2, 0, 3},
{0, 2, 0, 4}, {0, 2, 0, 5}, {0, 2, 0, 6}, {0, 2, 1, 0}, {0, 2, 1, 1}, {0, 2, 1, 2}, {0, 2, 1, 3},
{0, 2, 1, 4}, {0, 2, 1, 5}, {0, 2, 2, 0}, {0, 2, 2, 1}, {0, 2, 2, 2}, {0, 2, 2, 3}, {0, 2, 2, 4},
{0, 2, 3, 0}, {0, 2, 3, 1}, {0, 2, 3, 2}, {0, 2, 3, 3}, {0, 3, 0, 4}, {0, 3, 0, 5}, {0, 3, 0, 6},
{0, 3, 1, 0}, {0, 3, 1, 1}, {0, 3, 1, 2}, {0, 3, 1, 3}, {0, 3, 1, 4}, {0, 3, 1, 5}, {0, 3, 2, 0},
{0, 3, 2, 1}, {0, 3, 2, 2}, {0, 3, 2, 3}, {0, 3, 2, 4}, {0, 3, 3, 0}, {0, 3, 3, 1}, {0, 3, 3, 2},
{0, 3, 3, 3}, {0, 4, 0, 5}, {0, 4, 0, 6}, {0, 4, 1, 0}, {0, 4, 1, 1}, {0, 4, 1, 2}, {0, 4, 1, 3},
{0, 4, 1, 4}, {0, 4, 1, 5}, {0, 4, 2, 0}, {0, 4, 2, 1}, {0, 4, 2, 2}, {0, 4, 2, 3}, {0, 4, 2, 4},
{0, 4, 3, 0}, {0, 4, 3, 1}, {0, 4, 3, 2}, {0, 4, 3, 3}, {0, 5, 0, 6}, {0, 5, 1, 0}, {0, 5, 1, 1},
{0, 5, 1, 2}, {0, 5, 1, 3}, {0, 5, 1, 4}, {0, 5, 1, 5}, {0, 5, 2, 0}, {0, 5, 2, 1}, {0, 5, 2, 2},
{0, 5, 2, 3}, {0, 5, 2, 4}, {0, 5, 3, 0}, {0, 5, 3, 1}, {0, 5, 3, 2}, {0, 5, 3, 3}, {0, 6, 1, 0},
{0, 6, 1, 1}, {0, 6, 1, 2}, {0, 6, 1, 3}, {0, 6, 1, 4}, {0, 6, 1, 5}, {0, 6, 2, 0}, {0, 6, 2, 1},
{0, 6, 2, 2}, {0, 6, 2, 3}, {0, 6, 2, 4}, {0, 6, 3, 0}, {0, 6, 3, 1}, {0, 6, 3, 2}, {0, 6, 3, 3},
{1, 0, 1, 1}, {1, 0, 1, 2}, {1, 0, 1, 3}, {1, 0, 1, 4}, {1, 0, 1, 5}, {1, 0, 2, 0}, {1, 0, 2, 1},
{1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 1, 1, 2}, {1, 1, 1, 3}, {1, 1, 1, 4}, {1, 1, 1, 5},
{1, 1, 2, 0}, {1, 1, 2, 1}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4}, {1, 2, 1, 3}, {1, 2, 1, 4},
{1, 2, 1, 5}, {1, 2, 2, 0}, {1, 2, 2, 1}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 2, 4}, {1, 3, 1, 4},
{1, 3, 1, 5}, {1, 3, 2, 0}, {1, 3, 2, 1}, {1, 3, 2, 2}, {1, 3, 2, 3}, {1, 3, 2, 4}, {1, 4, 1, 5},
{1, 4, 2, 0}, {1, 4, 2, 1}, {1, 4, 2, 2}, {1, 4, 2, 3}, {1, 4, 2, 4}, {1, 5, 2, 0}, {1, 5, 2, 1},

{1, 5, 2, 2}, {1, 5, 2, 3}, {1, 5, 2, 4}

The question then is how to determine which coefficients in the defining poly-
nomials of the generators need to vanish.

Note that we have introduced an ordering on the Plücker coordinates coming
from the restrictions on i, j, k and l. So, the first step is to look at the equation
mi jkl = 0 for the first term {i, j, k, l} in the list above, namely we look at the
equation m0001 = 0. It follows that either

(1) f00 = g00 = 0 or
(2) g00 �= 0 or
(3) f00 �= 0

Moreover, if (2) (or (3) by symmetry) holds, then taking f ′ = f − f00
g00

g we
can assume f00 = 0 and we must have f01 = 0.

The next step then is, at each of the cases above, to look at the next vanishing
condition m0002 = 0 coming from the second term {i, j, k, l} in the list. Again
there are three possibilities: Either f00 = g00 = 0 or g02 �= 0 or f02 �= 0.

We proceed in this manner until there are no more equationsmi jkl = 0 to solve.
In fact our list tells us that m00kl vanish for all (appropriate) 0 ≤ k ≤ 3 and

0 ≤ l ≤ 6. Thus, our algorithm tells us that if we are in the situation of case (2),
then one of the generators belongs to 〉xk jl z6−k−l〈 for all kl such that m00kl = 0.
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And, by symmetry, we reach the same conclusion if (3) holds. A similar reasoning
applies to the next set of vanishing conditions m01kl = 0 and so on.

It is important to note, however, that at each step, when solving the equations
mi jkl = 0 we have to take into account whether there are or there are not previous
conditions on the coefficients fi j , gi j , fkl and gkl .

By following the sketched algorithm we obtain the desired description for the
pencil P . ��

In particular,

Corollary 3.1.1. If P ∈ P6 contains a curve of the form 4L + Q, where L is a
line and Q is a conic, then P is non-stable.

Now, the same algorithm as in the proof of Proposition 3.1 can be applied
more generally whenever P is unstable (resp. non-stable) and satisfies one of the
vanishing conditions in one of the cases in Proposition 2.2 (resp. 2.3). However, the
computations involved are very lengthy, and a complete description can be found
in [15]. We present here only the results which will be essential to our study of
Halphen pencils of index two in Sect. 4. And we focus on pencils that contain a
curve which has a multiple line as a component, and which are proper.

Definition 3.2. A pencil P ∈ P6 is called proper if any two curves on it intersect
properly, meaning its base locus is zero dimensional.

The first result we prove is the following:

Proposition 3.3. If we can find coordinates in P
2 and generators C f and Cg of

P such that f ∈ 〈x5z, x5y, x6〉 and g is arbitrary, then the pencil P ∈ P6 will
satisfy the vanishing conditions in Case U (1) of Proposition 2.2. In particular, ifP
contains a curve of the form 5L + L ′, where L and L ′ are lines, thenP is unstable.

Proof. In fact, all the Plücker coordinates mi jkl vanish, except for (possibly):
m50kl ,m51kl and m60kl . Note that mi jkl = −mkli j and mi ji j = 0. ��

We also prove:

Proposition 3.4. Let P ∈ P6 be a proper pencil which contains a curve C f of
the form 4L + Q, where L is a line and Q is a conic (possibly reducible). If P is
unstable, then there exist coordinates in P

2 and another generator Cg of P such
that f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉 and either

(i) L is tangent to Cg at [0, 0, 1] with multiplicity ≥ 5; or
(ii) L is tangent to Cg at [0, 0, 1] with multiplicity 4 and [0, 0, 1] has multiplicity

≥ 3 in Cg; or
(iii) L is tangent to Cg at [0, 0, 1] with multiplicity ≥ 3 and [0, 0, 1] ∈ Q.

Proof. We first note that by Corollary 3.1.1, P is always non-stable. In fact P
satisfies the vanishing conditions inCase NS(1) of Proposition 2.3 (or, equivalently,
Case 1 of Proposition 3.1). Now, using the algorithm described in the proof of
Proposition 3.1, one can show that if P is unstable, then there exist coordinates in
P
2 and another generator Cg of P such that either:
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(i) f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉
and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈

(ii) or
(iii) f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3〈
(iv) or
(v) f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈
��

Moreover, the same kind of reasoning as in the proof of Proposition 3.4 also
shows:

Proposition 3.5. Let P ∈ P6 be a proper pencil which contains a curve C f of
the form 3L + C, where L is a line and C is a cubic (possibly reducible). If P is
unstable, then there exist coordinates in P

2 and another generator Cg of P such
that

f ∈ 〈x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉
and either:

(i) L is tangent to Cg at [0, 0, 1] with multiplicity 6 and [0, 0, 1] has multiplicity
≥ 3 in Cg; or

(ii) L is tangent to Cg at [0, 0, 1] with multiplicity 5, [0, 0, 1] has multiplicity ≥ 3
in Cg and and the intersection multiplicity of L and C at [0, 0, 1] is 1; or

(iii) L is tangent to Cg at [0, 0, 1] with multiplicity 5, [0, 0, 1] has multiplicity ≥ 2
in Cg and the intersection multiplicity of L and C at [0, 0, 1] is ≥ 2; or

(iv) L is tangent to Cg at [0, 0, 1] with multiplicity 4, [0, 0, 1] has multiplicity ≥ 3
in Cg and the intersection multiplicity of L and C at [0, 0, 1] is 2; or

(v) L is tangent to Cg at [0, 0, 1] with multiplicity ≥ 3, and the intersection multi-
plicity of L and C at [0, 0, 1] is 3.

Proposition 3.6. Let P ∈ P6 be a proper pencil which contains a curve of the
form 2L + Q, where L is a line and Q is a quartic (possibly reducible). If P is
unstable then there exist coordinates in P

2 and generators C f and Cg of P such
that:

f ∈ 〈x2yz3, x2y2z2, x2y3z, x2y4, xi y j z6−i− j 〉
with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i + j ≤ 6 plus f2 j �= 0 for some j = 0, . . . , 4, L is
tangent to Cg with multiplicity 6 and [0, 0, 1] has multiplicity ≥ 4 in Cg.

Proposition 3.7. Let P ∈ P6 be a proper pencil which contains a curve C f of
the form 3L + C, where L is a line and C is a cubic (possibly reducible). If P is
non-stable then there exist coordinates in P

2 and another generator Cg such that
f ∈ 〈x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 and either:
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(i) L is tangent to Cg at [0, 0, 1] with multiplicity 6
(ii) L is tangent to Cg at [0, 0, 1] with multiplicity 5 and [0, 0, 1] has multiplicity

≥ 3 in Cg

(iii) L is tangent to Cg at [0, 0, 1] with multiplicity 4 and [0, 0, 1] has multiplicity
≥ 4 in Cg

(iv) L is tangent to Cg at [0, 0, 1]withmultiplicity 4 and the intersectionmultiplicity
of L and C at [0, 0, 1] is ≥ 2

(v) L is tangent to Cg at [0, 0, 1] with multiplicity ≥ 3, [0, 0, 1] has multiplicity
≥ 3 in Cg and the intersection multiplicity of L and C at [0, 0, 1] is 2

(vi) the intersection multiplicity of L and Cg (resp. C) at [0, 0, 1] is ≥ 2 (resp. 3).

4. Stability of Halphen pencils of index two

At last, we are in position of proving Theorems 1.4, 1.5 and 1.6. This is the goal of
this section. Inspired by [4], we will provide a complete and geometric description
of the stability of a Halphen pencil of index two P (Definition 1.1), in terms of
the types of singular fibers appearing in the corresponding rational elliptic surface
Y → P

1 (see Definition 1.2 and Proposition 1.3).
Our strategy can be summarized as follows: Combining the stability criteria we

obtained in [1] with results from [13,16,17] (Lemmas 4.1, 4.3 and 4.4 below), we
can first give some sufficient conditions for the (semi)stability ofP . This is achieved
in Sect. 4.1. A complete characterization of the stability of P is then obtained by
further studying the cases where Y contains a fiber F of type I I ∗, I I I ∗ or I V ∗
(Sects. 4.2, 4.3 and 4.4). And for these last steps we make use of the results from
Sect. 3 and the explicit constructions from [13, Sect. 7].

Note that P contains exactly one multiple cubic 2C , which corresponds to a
unique multiple fiber in Y [5, Proposition 5.61,(iii)]. Thus, P can be written in the
following form λ(B) + μ(2C) = 0, where the curve B corresponds to some (non-
multiple) fiber of Y that we denote by F . We will use these notations throughout.

4.1. Sufficient conditions for (semi)stability

In [13], we have studied the singularities of the curves B and C in terms of their
log canonical threshold (lct) (see e.g. [2, Sect. 8]), and we have established some
precise inequalities between the lct of the pair (Y, F) and the lct of the pair (P2, B).
More precisely, denoting by MB (resp. MF ) the largest multiplicity of a component
of B (resp. F), we have proved the following:

Lemma 4.1. ([13, Theorems 1.1 and 1.2]) If F is any (non-multiple) fiber of Y ,
then the corresponding plane curve B is such that

lct (P2, B) ≤ 1

MB
≤ 2lct (Y, F)

Further,
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(i) if F is reduced, then B is reduced and we have that

1/2 < lct (P2, B) ≤ lct (Y, F)

(ii) if MF ≥ 2 (or, equivaletly, F is non-reduced), then lct (Y, F) ≤ lct (P2, B)

(iii) if MF ≥ 3, then B is non-reduced.

Remark 4.2. Note that the number lct (Y, F) is given by the table below, depending
on the type of F :

l ct(Y, F) Type of F lct(Y, F) Type of F

1 In 1/2 I∗n
5/6 I I 1/6 I I∗
3/4 I I I 1/4 I I I∗
2/3 I V 1/3 I V ∗

And we have also proved:

Lemma 4.3. [[13, Proposition 4.9]]The curveC has atworst nodes as singularities.
In particular, lct (P2,C) = 1.

In contrast, in [1] we have related the stability of any pencil P ∈ P6 to: (i)
the stability of the curves lying on it; (ii) the log canonical threshold of the pair
(P2, C), where C is a curve in P; and (iii) to the multiplicities of its generators at a
base point.

Additionally, Hacking [16] and Kim-Lee [17] have observed the following:

Lemma 4.4. If C ⊂ P
2 is any plane curve of degree six and lct (P2, C) ≥ 1/2 (resp.

> 1/2), then C is semi-stable (resp. stable) for the natural action of SL(3).

In particular, we see that one can try to combine Lemmas 4.1, 4.3 and 4.4 above
with some of the aforementioned results from [1] in order to obtain explicit stability
criteria for Halphen pencils of index two. This is precisely what we pursue in this
Section.

Concretely, the results we need from [1] are the following:

Lemma 4.5. ([1, Theorem 1.1]) Let P be a pencil in P6 containing a curve C f

such that lct (P2,C f ) = α. If P is unstable (resp. not stable), then P contains a
curve Cg such that lct (P2,Cg) < α

4α−1 (resp. ≤).

Lemma 4.6. ([1, Theorem 1.3]) Let P be a pencil inP6. If we can find two curves
C f and Cg in P such that multp(C f ) + multp(Cg) > 8 (resp. ≥) for some base
point p, then P is unstable (resp. not stable).

Lemma 4.7. ([1, Theorems 1.4 and 1.5]) Let P be a pencil inP6.
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(i) If P has only semi-stable (resp. stable) members, then P is semi-stable (resp.
stable).

(ii) If P contains at most one strictly semi-stable curve (and all other curves in P
are stable), then P is stable.

Lemma 4.8. [[1, Theorem 1.6]] IfP ∈ P6 contains at most two semi-stable curves
C f and Cg (and all other curves in P are stable), then P is strictly semi-stable if
and only if there exists a one-parameter subgroup λ such that C f and Cg are both
non-stable with respect to this λ.

4.1.1. The criteria With the above results in mind, let P be a Halphen pencil of
index two, written in the form λ(B) + μ(2C) = 0. The first stability criterion we
prove is the following:

Proposition 4.9. If P is non-stable, then Y contains a non-reduced fiber.

Proof. Since lct (P2, 2C) = 1/2 (Lemma 4.3), we conclude from Lemma 4.5,
with α = 1/2, that if the pencil P is non-stable, then P contains a curve B such
that lct (P2, B) ≤ 1/2. By Lemma 4.1 (i), this implies the corresponding rational
elliptic surface Y → P

1 contains a non-reduced fiber F . ��
When C is smooth and B is semi-stable we also prove:

Proposition 4.10. If C is smooth and all curves in P are stable except (possibly)
for one curve that is semi-stable, then P is stable.

Proof. It follows directly from Lemma 4.7 and the fact that 2C is stable [12]. ��
Corollary 4.10.1. If C is smooth, F is of type I I ∗, I I I ∗ or I V ∗ and the corre-
sponding curve B

.= π(F) is semi-stable, then P is stable.

Proof. From the classification in [11] we know that any other fiber of Y is reduced.
By Lemma 4.1 we also know that all other curves in P are reduced and have log
canonical threshold greater than 1/2. As observed in Lemma 4.4, this implies all
the curves in P are stable except for one curve that is semi-stable. The statement
then follows from Proposition 4.10. ��
Corollary 4.10.2. If C is smooth and Y contains exactly one fiber F of type I ∗

n ,
then P is stable.

Proof. Again, from the classification in [11] we know that any other fiber of Y
is reduced. Since the curve B is such that lct (P2, B) ≥ 1/2 (Lemma 4.1), it is
semi-stable by Lemma 4.4, and we can argue as in the proof of Corollary 4.10.1
to conclude all the curves in P are stable except (possibly) for one curve that is
semi-stable. The result then follows from Proposition 4.10. ��
Proposition 4.11. If Y contains two fibers of type I ∗

0 , then P is strictly semi-stable
if and only if there exists a one-parameter subgroup λ (and coordinates in P2) such
that the two curves corresponding to the fibers of type I ∗

0 are both non-stable with
respect to this λ.
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Proof. By Lemma 4.1, if F is a fiber of type I ∗
0 , then the corresponding plane curve

B is such that lct (P2, B) ≥ 1/2, hence it is semi-stable by Lemma 4.4. Moreover,
by the classification in [11] we know that C has to be smooth, hence stable [12];
and all other fibers of Y must be reduced. In particular, P contains at most two
semi-stable curves (and all other curves are stable), hence P is always semi-stable
by Lemma 4.7 and the result follows from Lemma 4.8. ��
Corollary 4.11.1. If Y contains two fibers of type I ∗

0 and P is strictly semi-stable,
then P contains two curves B1 and B2 (different than 2C) such that lct (P2, Bi ) =
1/2. Moreover, each of these curves satisfies one of the following conditions:

(i) it consists of a double line and a reduced quartic
(ii) it is reduced and it has a (unique) point of multiplicity 4, which is (necessarily)

a base point of P
(iii) it is reduced and it has a consecutive triple point, which is (necessarily) a base

point of P .

Proof. The curves Bi are the two curves which correspond to the two fibers of
type I ∗

0 . By Lemma 4.1, we have lct (P2, Bi ) ≥ 1/2. On the other hand, if P is
strictly semi-stable, then Proposition 4.11 implies both curves are non-stable, hence
lct (P2, Bi ) ≤ 1/2, by Lemma 4.4. The description of the Bi then follows from [12,
Theorem 2.3]. These are the only non-stable sextics that could possibly yield a fiber
of type I ∗

0 . ��
Combining Propositions 4.9, Corollaries 4.10.2 and 4.10.1 and Proposition 4.11

we have thus proved:

Proposition 4.12. Assume C is smooth and one of the following statements holds

(i) all fibers of Y are reduced; or
(ii) Y contains exactly one (non-multiple) fiber F of type I ∗

n ; or
(iii) Y contains a (non-multiple) fiber F of type I I ∗, I I I ∗ or I V ∗ and the corre-

sponding plane curve B is semi-stable; or
(iv) Y contains two fibers of type I ∗

0 and there is no one-parameter subgroup λ that
destabilizes the two corresponding curves simultaneously.

Then the pencil P is stable.

In Sect. 4.4 we will further show (Proposition 4.28) that when C is smooth, Y
contains a (non-multiple) fiber F of type I V ∗ and the corresponding plane curve
B is unstable, thenP is also stable. This will then complete the proof of the reverse
implication in Theorem 1.4.

We now analyse the stability of P when C is singular. By the classification
in [11], either all fibers of Y are reduced, or Y contains exactly one fiber of type
I ∗
n , I I ∗, I I I ∗ or I V ∗. It cannot contain two fibers of type I ∗

0 (see e.g. [11]).
In view of Proposition 4.9, we will consider the case when P contains a non-

reduced fiber F such that the corresponding curve B is semi-stable. In this case
the pencil P will always be semi-stable (Lemma 4.7) since 2C is semi-stable by
[12], and all other fibers must be reduced – hence the corresponding curves must
be stable by Lemmas 4.5 and 4.4.

Applying Lemma 4.8 we can prove:
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Proposition 4.13. If C is singular and Y contains exactly one fiber F of type I ∗
n ,

then P is strictly semi-stable if and only if there exists a one-parameter subgroup
λ (and coordinates in P

2) such that 2C and B = π(F) are both non-stable with
respect to this λ.

Proposition 4.14. If C is singular, Y contains a fiber F of type I I ∗, I I I ∗ or I V ∗
and the curve B = π(F) is semi-stable, then P is strictly semi-stable if and only if
there exists a one-parameter subgroup λ (and coordinates in P2) such that 2C and
B are both non-stable with respect to this λ.

In particular, combining Propositions 4.9, 4.13 and 4.14, we obtain the follow-
ing, which is part of the statement of Theorem 1.5:

Proposition 4.15. Assume C is singular and one of the following statements holds

(i) all fibers of Y are reduced; or
(i) Y contains a (non-multiple) non-reduced fiber F such that the curve B = π(F)

is semi-stable and there is no one-parameter subgroup λ that destabilizes 2C
and B simultaneously.

Then the pencil P is stable.

Now, in order to complete the proofs of Theorems 1.4 and 1.5 we need to
obtain necessary conditions for the estability of P . In particular, we need to prove
that whenever Y contains a (non-multiple) fiber F of type I I ∗ or I I I ∗ and the
corresponding curve B is unstable, then P is non-stable (Proposition 4.24). And
we also need to better understand the stability of P when F is a fiber of type I V ∗
(Sect. 4.4).

As already mentioned, for these last steps we will make use of the results from
Sect. 3 and the constructions in [13, Sect. 7].

4.2. The stability of P when F is of type I I ∗

When F is of type I I ∗, then by [13, Theorem 5.15] the curve B can only be realized
by one of the following plane curves:

(i) a triple conic
(ii) a nodal cubic and an inflection line, with the line taken with multiplicity three
(iii) two triple lines
(iv) a conic and a tangent line, with the line taken with multiplicity four
(v) a line with multiplicity five and another line

By [12], if B is a triple conic, then B is strictly semi-stable andP will always be
semi-stable (Lemma 4.7): The curve 2C is semi-stable by [12], and all other fibers
must be reduced—hence the corresponding curves must be stable by Lemmas 4.5
and 4.4.

But there are two possibilities: either C is smooth, in which case P is stable
(Corollary 4.10.1); or C is singular and then P is strictly semi-stable if and only if
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there exists a one-parameter subgroup λ (and coordinates in P
2) such that 2C and

B are both non-stable with respect to this λ (Proposition 4.14).
When B is one of the curves in (i i), (i i i), (iv) or (v) then we can use the

explicit constructions obtained in [13] to conclude P is unstable. In fact, we can
find coordinates in P

2 so that the Plücker coordinates of P with respect to these
coordinates satisfy the conditions in Case U (1) of Proposition 2.2.

Therefore, we obtain the following characterization when F is of type I I ∗:

Proposition 4.16. If Y contains a fiber F of type I I ∗ and B
.= π(F) is not a triple

conic, then P is unstable.

Proof. Since B is not a triple conic, there are four cases to consider:

(ii) First, assume B consists of a nodal cubic and an inflection line, with the line
taken with multiplicity three. Then [13, Example 7.58] we can find coordinates
in P2 so that the curve B has equation x3(xz2 − y2(y + x)) = 0 and C is given
by x2y + xz2 − y3 − xy2 = 0. In particular, the Plücker coordinates of P with
respect to these coordinates satisfy the conditions in Case U (1) of Proposition
2.2 and we conclude P is unstable. Note that one can also easily check P is as
in (v) in Proposition 3.5.

(iii) Next, assume B consists of two triple lines. Then, one can show that one of the
lines is an inflection line ofC and the other linemust be tangent to the cubicwith
multiplicity two [13, Example 7.57]. In particular, we can find coordinates inP2

so that B is given by x3y3 = 0 andC is given by z2x− y(y− x)(y−α · x) = 0,
where α ∈ C\{0, 1}. In particular, the Plücker coordinates of P with respect
to these coordinates satisfy the conditions in Case U (1) of Proposition 2.2.
Moreover, again in this case, we can check P is as in (v) in Proposition 3.5.

(iv) Assume now B consists of a conic and a tangent line, with the line taken with
multiplicity four. Then [13, Example 7.59] P is as in (i i) in Proposition 3.4.
In fact, one can show that C must be tangent to the conic (resp. the line) at
the point Q ∩ L with multiplicity six (resp. two). In particular, we can find
coordinates in P2 so that B is given by the zeros of the polynomial x4(y2 + xz)
and C is given by f = ∑

fi j x i y j z6−i− j = 0, with f00 = f01 = f02 = 0.
Thus, the Plücker coordinates of P with respect to these coordinates satisfy the
conditions in Case U (1) of Proposition 2.2 and we conclude P is unstable.

(v) Lastly, assume B consists of a line with multiplicity five and another line. Then
P is unstable by Proposition 3.3. In fact, we can choose coordinates so that B
is the curve x5(x − z) = 0 and C is the cubic y2z = x(x − z)(x − α · z) for
some α ∈ C\{0, 1} [13, Example 7.59]. Note that, equivalently, the Plücker
coordinates of P satisfy the vanishing conditions of Case U (1) in Proposition
2.2. ��
This proves the foward implication in Theorem 1.6. The other implication will

then follow from Proposition 4.17 below, provided we can show whenever Y con-
tains a fiber F of type I I I ∗ or I V ∗, then P cannot be unstable – this is achieved
in Sects. 4.3 an 4.4 (Propositions 4.23 and 4.27).

Proposition 4.17. If P is unstable, then Y contains a fiber of type I I ∗, I I I ∗ or
I V ∗.
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Proof. The proof is very similar to the proof of Theorem 4.9. Since we know
lct (P2, 2C) = 1/2 by Lemma 4.3, we conclude from Lemma 4.5 (by taking
α = 1/2) that if the pencil P is unstable, then P contains a curve B such that
lct (P2, B) < 1/2. Thus, Lemma 4.1 implies Y contains a fiber of type I I ∗, I I I ∗
or I V ∗. ��

4.3. The stability of P when F is of type I I I ∗

We now consider the case when F is of type I I I ∗.
By [13, Theorem 5.16] the curve B can only be realized by one of the following

plane curves:

(i) a double line, a cubic and another line
(ii) a double conic and another conic (semi-stable)
(iii) a triple conic (semi-stable)
(iv) two triple lines
(v) a triple line, a conic and a line
(vi) a triple line, a double line and another line
(vii) a triple line and a cubic
(viii) a conic and a line, with the line taken with multiplicity four
(ix) a line with multiplicity four and two other lines

If B is semi-stable, then arguing as in the case of a fiber of type I I ∗ (triple
conic), we conclude P will always be semi-stable by Lemma 4.7. Again, there
are two possibilities to consider: either C is smooth, in which case P is stable
(Corollary 4.10.1); or C is singular and we can refer to Proposition 4.14.

When B is unstable we can once more use the explicit constructions obtained
in [13, Sect. 7] to conclude P is strictly semi-stable. More precisely, arguing as in
the case of a fiber of type I I ∗, we can first show:

Lemma 4.18. (i) When the curve B is as in (i), (v) or (vi) (with the lines in general
position), then we can find coordinates in P

2 so that the Plücker coordinates
of P with respect to these coordinates satisfy the conditions in Case N S(3) of
Proposition 2.3.

(ii) When B is one of the curves in (vi i i) or (i x) (resp. (vii)) we can find coordinates
in P

2 so that the corresponding Plücker coordinates satisfy the conditions in
Case N S(1) of Proposition 2.3 (resp. Case N S(4) of Proposition 2.3).

Proof. If B is as in (i), (v) or (vi) (with the lines in general position), then P
must be as in Example 7.45, Example 7.51 or Example 7.49 in [13], respectively.
Similarly, if the curve B is as in (vi i i) or (i x) (resp. (vi i)), then P must be as in
Example 7.53 or Example 7.54 (resp. Example 7.52) in [13]. ��

Then, when B is one of the curves in (iv) or (vi) (with the lines concurrent at
a point), we can apply the following Lemma to conclude P is also non-stable in
these cases:
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Lemma 4.19. If P contains a curve B and a base point p such that multp(B) = 6,
then P is non-stable.

Proof. Since multP (C) ≥ 1, the result follows from Lemma 4.6 applied to the
curves C f = B and Cg = 2C (and the base point p). ��

In particular, combining Lemmas 4.18 and 4.19 we obtain the following char-
acterization when F is of type I I I ∗:

Proposition 4.20. If Y contains a fiber F of type I I I ∗ and B
.= π(F) is unstable,

then P is non-stable.

Moreover, we can prove Propositions 4.21 and 4.22 below, which then further
imply P can never be unstable.

Proposition 4.21. If Y contains a fiber F of type I I I ∗ and B
.= π(F) contains

either a line with multiplicity four or a triple line, then P is semi-stable.

Proof. If B contains a line with multiplicity four andP is unstable, thenP (and B)
must be as in one of the cases of Proposition 3.4. Similarly, if B contains a triple
line and P is unstable, then P (and B) must be as in one of the cases of Proposition
3.5. Arguing as in [13, Sect. 5], it is routine to check none of these cases can yield
a rational elliptic surface Y with a fiber of type I I I ∗. ��
Proposition 4.22. If Y contains a fiber F of type I I I ∗ and B

.= π(F) consists of
a double line, a cubic and another line, then P is semi-stable.

Proof. If B consists of a double line, a cubic and another line, then P must be a
pencil as in [13, Example 7.45].More precisely, Bmust be of the form2L1+L2+D,
where:

(i) D is a nodal cubic, with node P1;
(ii) the line L1 is a flex line of D, with flex point P2; and
(iii) the line L2 is a line through P2 that intersects D at two other points, say P3

and P4.

And, moreover, the cubic C is such that it passes through P1, . . . , P4; and it is
tangent to D (resp. L1) at P1 with multiplicity 5 (resp. 3). Therefore, applying
Proposition 3.6 we conclude P must be semi-stable.

Now, to see why the curves B and C must be as described above, note that if B
consists of a double line, a cubic and another line, then the dual graph of F must
be the following one:

where we have labeled the components coming from B and the unlabeled black
nodes indicate the missing components. See also [13, Lemma 4.1].

In particular,π : Y → P
2 is the blow-upofP2 at the points P(1)

1 , P(1)
2 , . . . , P(6)

2 ,

P(1)
3 , P(1)

4 , where Pj = P(1)
j is a point in P

2 and P(i+1)
j is infinitely near to the

previous point P(i)
j (of order 1). This tells us C must be tangent to D (resp. L1) at

P1 with multiplicity 5 (resp. 3). ��
Concisely, we have thus proved:
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Fig. 3. The dual graph of F

Proposition 4.23. If Y contains a fiber F of type I I I ∗, then P is semi-stable.

And, combining Propositions 4.16 and 4.20, we have also proved:

Proposition 4.24. If Y contains a (non-multiple) fiber F of type I I ∗ or I I I ∗ and
the corresponding curve B is unstable, then P is non-stable.

4.4. The stability of P when F is of type I V ∗

Finally, we describe the stability of P when F is of type I V ∗. We prove that either
P is stable or C is singular and B is semi-stable, in which case we can refer to
Proposition 4.14.

First, we observe that [13, Theorem 5.17] when F is of type I V ∗, then B must
be one of the following curves:

(i) a double conic and a conic (semi-stable)
(ii) a double line, a conic and two lines
(iii) a double line, a cubic and a line
(iv) a double line and two conics
(v) two double lines and two lines
(vi) two double lines and a conic
(vii) a double conic and two lines (semi-stable)
(viii) a triple conic (semi-stable)
(xi) a triple line, a conic and a line
(x) a triple line, a double line and another line
(xi) a triple line and three lines
(xii) a triple line and a cubic

Moreover, the constructions in [13, Sect. 5] further imply the following Lemma
holds:

Lemma 4.25. Let P be a Halphen pencil of index two containing a curve B such
that B = 2L + Q, where L is a line and Q is a quartic (possibly reducible). The
intersection multiplicity of L and Q at any point is at most 3. In particular, B is
semi-stable by [12].

Proof. Arguing as in [13, Sect. 5], it is routine to check that if the intersection
multiplicity of L and Q at some point p is four, then B cannot yield a fiber of type
I V ∗. Note that p has to be a base point of P . ��
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Now, if B is semi-stable, then arguing as in the case of a fiber of type I I ∗
(triple conic), we conclude P is always semi-stable by Lemma 4.7. Thus, in view
of Lemma 4.25, it remains to consider the case where B contains a triple line. We
prove:

Proposition 4.26. If Y contains a fiber F of type I V ∗ and B
.= π(F) contains a

triple line, then P is stable.

Proof. If P were non-stable, then P (and B) would be as in Proposition 3.7, by
taking B = C f . It is routine to check that P as in Proposition 3.7 cannot yield a
rational elliptic surface Y with a fiber of type I V ∗ (see e.g. [13, Sects. 5 and 7]). ��

In particular, we have proved Proposition 4.27 below.

Proposition 4.27. If Y contains a fiber of type I V ∗, then P is semi-stable.

Moreover,

Proposition 4.28. If Y contains a fiber of type I V ∗ and P is non-stable, then C is
singular and B is semi-stable.

Proof. If P is non-stable, then it follows from Corollary 4.10.1 that either C is
singular or B is unstable. The description by Shah in [12, Sect. 2] of unstable
sextics, and a careful analysis of the possibilities for the curve B given at the
beggining of this section, combined with Proposition 4.26 and Lemma 4.25 above,
imply B cannot be unstable. ��

This concludes the proofs ofTheorems1.4, 1.5 and1.6.CombiningPropositions
4.12, 4.24 and 4.28 (resp. 4.15, 4.24 and 4.28) proves Theorem 1.4 (resp. 1.5), and
the proof of Theorem 1.6 follows from combining Propositions 4.16, 4.17, 4.23
and 4.27.
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