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Abstract. In this text, we show that the local polyhedral structure of tropical manifolds
given by its charts satisfies higher balancing conditions at all cells of positive codimension.

1. Introduction

A fundamental insight in tropical geometry is that the tropicalization of a classical
variety is the underlying set of a polyhedral complex in R

n whose top-dimensional
cells are equipped with multiplicities, or weights, such that certain balancing con-
ditions are satisfied for the top-dimensional cells meeting at a common face of
codimension 1. This understanding has led to the definition of a tropical variety
as a (finite and rational) polyhedral complex in R

n together with weights for its
top-dimensional cells such that the mentioned balancing conditions are satisfied.

Instead of entering into the technical details of the balancing condition, we give
an impression of its nature in terms of the following illustration of a plane tropical
curve.

While every plane tropical curve is realizable, i.e. it arises as the tropicalization
of a classical curve, is is not true that all tropical varieties are realizable, which
makes it hard to justify that the definition of a tropical variety captures the ‘correct’
class of objects. Note that we cannot restrict to the subclass of realizable tropical
varieties if we want to include Bergman fans of matroids as a particularly simple
class of tropical linear spaces.

However, there are other disturbing artefacts about tropical varieties: for one, the
structure of a polyhedral complex is not intrinsic to a tropicalization, but depends on
choices; secondly, the balancing condition makes only sense for equidimensional
tropical varieties.

We add a third artefact in this note: Bergman fans satisfy certain balancing
conditions for cells of arbitrary positive codimension.
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Fig. 1. A tropical curve in R
2 and the balancing conditions for its vertices

Before we address the potential implications of our result on tropical geometry
at the end of the introduction, we give an impression of our main result, which
extends in fact to the more ample class of tropical manifolds, as explained in the
following.

Tropical manifolds

A tropical manifold is a topological space X together with a cover by open subsets
Ui and an open embedding of eachUi into the Bergman fan of a matroid, which are
called the charts of X . We avoid a precise definition in this text since it is technical
and not necessary for our purposes; instead we refer the interested reader to [1,
section 1.6] and [2, section 3.1].

Since the polyhedral structure of X is defined by its charts, balancing conditions
for X stem from balancing conditions for Bergman fans.

Example: locally tropical convex tropical varieties

Before we turn to Bergman fans, let us mention an important example of a tropical
manifold, namely tropical varieties in R

n that are locally tropically convex.
To explain, a subset X in R

n is tropically convex if for all x, y ∈ X and
a, b ∈ R, the tropical linear combination z = (a � x) ⊕ (b � y) (with coordinates
zi = min{a + xi , b + yi }) is contained in X . A subset X in R

n is locally tropically
convex if every point of X has an open tropically convex neighbourhood. By [3,
Prop. 3.3], a tropical variety X is locally tropically convex if and only if for every
point p of X , the (underlying set of the) star StarX (p) at p is the (underlying set of
the) Bergman fan of a matroid. Since p has an open neighbourhoodUp that embeds
as an open subset of Star(p), this shows that X is a tropical manifold with respect
to these embeddings.

Note that locally tropical convex tropical varieties form a well-understood class
of tropical varieties: A tropical variety is locally tropically convex if and only if it
is tropically convex as a set ([3, Thm. 1.2]), and tropical linear spaces are tropically
convex ([3, Prop. 2.14]). In fact, the only discrepancy between tropical linear spaces
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and tropically convex tropical varieties lies in the possibility of higher weights: by
[3, Thm. 1.1], the underlying set of a tropically convex tropical variety is equal to
the underlying set of a tropical linear space. For more details, cf. [3] and [4].

A preview on higher balancing

It is well-known that the Bergman fan of amatroid is a tropical variety, whichmeans
that it satisfies the balancing condition for all top-dimensional cones containing a
given cone of codimension 1 (with respect to a constant weight function). In this
text, we show that a Bergman fan satisfies balancing conditions for polyhedra of
any codimension. These higher balancing conditions require a distinction of the
cones of a Bergman fan according to their ‘types’, which is a finer invariant than
the dimension. The formulation of the higher balancing conditions requires some
preparatory definitions and can be found in Theorem 2.

A remark on the relevance of higher balancing

Locally tropically convex tropical varieties are blessed with the property that they
look locally like a Bergman fan, and therefore inherit a canonical polyhedral struc-
ture that satisfies higher balancing conditions with respect to a constant weight
function. Other types of tropical varieties do not come with such an intrinsic struc-
ture, but one needs additional information in order to extend the weight function to
polyhedra of higher codimension.

Tentative calculations show that in good cases a finite tropical basis for the
tropical variety provides enough structure to define a polyhedral structure of the
tropical variety together with a weight function for which higher balancing holds;
see [5, section 12.2] for a definition of the weight function. In particular, this works
well for hypersurfaces with one defining equation, which is in nature similar to
Lemma 3.6 in [6]. We have hopes to extend this to all tropicalizations of classical
varieties. It might also apply to tropical prevarieties that are defined by tropical
ideals in the sense of [7], which have recently been proven to be balanced in
codimension 1; see [8].

To conclude, we see higher balancing as an indication for that there might be
interesting information about the tropicalizations of classical varieties that has not
been used so far. Our hope is that this additional information finds a satisfactory
explanation in terms of tropical scheme theory, as developed in [9], [5] and [10]. In
particular, we would like to propose the following question as a guiding problem
for further developments in tropical scheme theory.

Question. For which subschemes of the tropical torus (i.e. ideals in the semiring
of tropical Laurent polynomials) can we make sense of higher balancing?

2. The Bergman fan of a matroid

Matroids are combinatorial objects that capture the notion of linear independence
beyond the framework of linear algebra. A tantalizing property of matroids is that
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they can be defined in many different ‘cryptomorphic’ ways, which reflects the
fundamental importance of the concept of a matroid.

In this note, we focus on the incarnation of a matroid in terms of its family of
flats. To explain, a matroid M on a ground set E is a family F of subsets F of E ,
called flats, that satisfies the following axioms:

(1) E is a flat;
(2) if F and F ′ are flats, then F ∩ F ′ is a flat;
(3) if F is a flat and e ∈ E − F , then there is exactly one flat F ′ that contains

F ∪ {e} and such that F � F ′′ ⊂ F ′ implies F ′′ = F ′ for every other flat F ′′.
The family F is partially ordered by inclusion and forms a ranked lattice: its

bottom element is ∅ and its top element is E ; the rank of a flat F ∈ F is

rk F = max{ l | there is a chain ∅ � F1 � . . . � Fl = F of length l }.
Note that all maximal chains ∅ � F1 � . . . � Fl = F have the same length
l = rk F .

The Bergman complex of a matroid was introduced by Sturmfels in [11]. Sub-
sequently the related notion of the Bergman fan of a matroid was introduced by
Ardila and Klivans in [12]. We will review this theory in the following. For a
pleasant introduction, cf. section 2.2 of [13].

Let M be a matroid with ground set E . The Bergman fan of M is the fan
B(M) in R

E whose cones are defined as follows. Let {ei }i∈E be the standard basis
of R

E . For a subset F of E , we define eF = ∑
i∈F ei . A flag of flats is a tuple

F = (F0, . . . , Fd) of flats Fi of M such that

∅ = F0 � F1 � · · · � Fd = E .

The cone of F is defined as

cF =
d−1∑

i=0

R
+ · eFi + R · eE

=
{ d∑

i=0

λi eFi

∣
∣
∣
∣ λi ∈ R

+ for i = 1, . . . , d − 1 and λd ∈ R

}

where R
+ are the nonnegative reals.

By definition, cF is a rational cone of dimension d (in the sense of toric geome-
try, cf. [14]). Themaximal linear subspace contained in cF is the line spanned by eE .
Let |F | = {F0, . . . , Fd}. We have an inclusion cF ′ ⊂ cF if and only if |F ′| ⊂ |F |.
In this case cF ′ is a face of cF , and every face of cF is of the form cF ′ for some
flag of flats F ′. In particular, every cone cF contains c(∅,E) = R · eE as its unique
1-dimensional face. Given two flags of flats F and F ′, the intersection of the asso-
ciated cones is cF ∩ cF ′ = cF ′′ whereF ′′ is the flag of flats with |F ′′| = |F |∩ |F ′|.
This shows that B(M) is an equidimensional polyhedral complex whose dimension
is equal to the rank rkM of M .

Note that some authors (e.g. Hampe in [3]) define the Bergman fan of M as
the image of B(M) in R

E/R · eE . This image is indeed a fan in the sense of toric
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geometry since all cones become strictly convex. Concerning balancing conditions,
it does not make any essential difference, which version of the Bergman fan one
uses. For our purposes, we find it more convenient to follow the definition of this
paper.

Note further that the matroid M is determined by its Bergman fan B(M) since a
subset F of E is a flat if and only if eF is contained in the underlying set of B(M),
which is the union |B(M)| = ⋃

cF of all cones cF of B(M).
Let F = (F0, . . . , Fd) be a flag of flats. The type of F is the tuple

(rk F0, . . . , rk Fd), which is a tuple of strictly increasing integers with rk F0 = 0
and rk Fd = rkM .

3. Balancing in codimension 1

The Bergman fan of a matroid is a tropical variety in the sense that it is balanced
at cones of codimension 1 with respect to a constant weight function on the top-
dimensional cones. This balancing condition was first considered in Speyer’s thesis
[15], and can be formulated as follows for Bergman fans. For details on matroid
theory, we refer to [16].

Let M be a matroid with ground set E . Given flats F and F ′, we write F ≤ F ′
if F ⊂ F ′ and F < F ′ if F � F ′. We say that F ′ covers F , and write F <: F ′, if
F ≤ F ′ and rk F ′ = rk F + 1, i.e. if there exists no flat strictly in between F and
F ′.

Proposition 1. Consider a flag of flats F = (F0, . . . , Fd) of length d = rkM − 1,
i.e. the type of F is (0, 1, . . . , i, i + 2, . . . , r) for some i ∈ {0, . . . , r − 2} where
r = rkM. Then

∑

Fi<:F ′<:Fi+1

eF ′ ∈ cF .

Proof. In the following, we reproduce the short argument from Huh’s thesis ([13,
Prop. 16]). As a first step, we consider the restriction M ′ = M |Fi+1 of M to Fi+1,
which results from M by deleting E − Fi+1. The ground set of M ′ is E ′ = Fi+1
and its flats are precisely those flats of M that are contained in Fi+1. The matroid
axiom for flats, applied to Fi as a flat of M ′, states that

Fi+1 − Fi =
∐

Fi<:F ′<:Fi+1

F ′ − Fi .

Therefore

eFi+1 − eFi =
∑

Fi<:F ′<:Fi+1

(eF ′ − eFi )

and thus
∑

Fi<:F ′<:Fi+1

eF ′ = eFi+1 + (m − 1)eFi ∈ cF

where m ≥ 1 is the number of flats F ′ with Fi <: F ′ <: Fi+1. �
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4. Higher balancing

We are prepared to state and prove the main result of this text.

Theorem 2. Let M be a matroid with ground set E and F = (F0, . . . , Fd) a flag
of flats of type (r0, . . . , rd). Let i and k be integers such that 0 ≤ i ≤ d − 1 and
1 ≤ k ≤ ri+1 − ri . Then

∑

F (0)<:···<:F (k)≤Fi+1

(eF (k) − eF (k−1) )

+
k−1∑

l=1

(−1)k−l
∑

F (0)<:···<:F (l)<Fi+1

(eFi+1 − eF (l−1) )

+ (−1)k(eFi+1 − eFi ) = 0

where F (0) = Fi is fixed and F (1), . . . , F (k) vary over all possible flats. We call
this relation the (i, k)-balancing condition at cF .

Proof. We prove the result by induction on k. For the sake of presentation, we will
show that the first sum in the balancing condition equals the inverse of the other
terms.

The case k = 1 follows by the same argument that we have used to prove
Proposition 1 where we note that the proof did not make any use of the assumptions
that F is of length d = rkM − 1 and that ri+1 − ri = 2. Therefore, we derive that

∑

F (0)<:F (1)≤Fi+1

(eF (1) − eF (0) ) = eFi+1 − eFi = −
[
(−1)k(eFi+1 − eFi )

]
,

where we use that (−1)k = −1 and that there is no middle term of the form
“
∑k−1

l=1 . . . ” since k − 1 < 1.
If k > 1, then we can split the sequences F (0) <: · · · <: F (k) ≤ Fi+1 into

F (0) <: F (1) and F (1) <: · · · <: F (k) ≤ Fi+1, which yields an equality
∑

F (0)<:···<:F (k)≤Fi+1

(eF (k) − eF (k−1) )

=
∑

F (0)<:F (1)<Fi+1

⎡

⎣
∑

F (1)<:···<:F (k)≤Fi+1

(eF (k) − eF (k−1) )

⎤

⎦ .

Applying the inductive hypothesis to the sum inside the brackets transforms this
expression into

−
∑

F (0)<:F (1)<Fi+1

⎡

⎣
k−2∑

l=1

(−1)(k−1)−l
∑

F (1)<:···<:F (l+1)<Fi+1

(eFi+1 − eF (l) )

+(−1)k−1(eFi+1 − eF (1) )

]

.
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Merging the outer sumover F (0) <: F (1) < Fi+1 with the inner terms and replacing
l by l − 1 yields

−
[ k−1∑

l=2

(−1)k−l
∑

F (0)<:···<:F (l)<Fi+1

(eFi+1 − eF (l−1) )

+(−1)k−1
∑

F (0)<:F (1)<Fi+1

(eFi+1 − eF (1) )

]

.

We can apply the case k = 1 to the sum on the right hand side and get

(−1)k−1
∑

F (0)<:F (1)<Fi+1

(eFi+1 − eF (1) )

= (−1)k−1
∑

F (0)<:F (1)<Fi+1

(eFi+1 − eF (0) ) + (−1)k(eFi+1 − eFi ).

Substituting this term in the expression above produces the desired outcome

−
⎡

⎣
k−1∑

l=1

(−1)k−l
∑

F (0)<:···<:F (l)<Fi+1

(eFi+1 − eF (l−1) ) + (−1)k(eFi+1 − eFi )

⎤

⎦ .

�

5. Geometric interpretation of higher balancing

Let F = (F0, . . . , Fd) be a flag of flats in M of type (r0, . . . , rd). The cases of
(i, k)-balancing for k = ri+1 − ri are degenerate and we will discuss them below.
For now we assume that k < ri+1 − ri and write F < F ′ for F � F ′.

To begin with, we observe that the flags F (0) <: · · · <: F (l) < Fi+1 that occur
as indices of the sums in the (i, k)-balancing condition can be identified with the
cones cF ′ with

F ′ = (F0, . . . , Fi , F
(1), . . . , F (l), Fi+1, . . . , Fd).

Thus we can interpret the sum as varying over all cones in B(M) of type

(r0, . . . , ri , ri + 1, . . . , ri + l, ri+1, . . . , rd)

that contain cF .
Therefore the (i, 1)-balancing condition

∑

Fi<:F (1)≤Fi+1

(eF (1) − eFi ) − (eFi+1 − eFi ) = 0
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can be rewritten as
∑

F ′=(F ′
0,...,F

′
d+1) of type

(r0,...,ri ,ri+1,ri+1,...,rd )
such that cF⊂cF ′

eF ′
i+1

= eFi+1 + (m − 1)eFi ∈ cF

where m ≥ 1 is the number of flags F ′ of type (r0, . . . , ri , ri + 1, ri+1, . . . , rd)
such that cF ⊂ cF ′ . Note that eF ′ is a primitive vector for cF ′ modulo cF , which is
a ray. In particular, this recovers the usual balancing condition for tropical varieties
in the case that cF is of dimension rkM − 1.

For k > 1, a geometric interpretation of (i, k)-balancing involves different
‘types’ of ‘primitive vectors’, one for each ray of cF ′ that is not contained in cF .
Without spelling out the obvious formula, the (i, k)-balancing condition states that
a certain linear combination of primitive vectors of (the rays of) cones containing
cF , ordered by their types, is contained in the linear subspace spanned by cF .

Balancing in the degenerate case k = ri+1 − ri = 1 yields the trivial relation

(eFi+1 − eF ) − (eFi+1 − eF ) = 0.

If k = ri+1 − ri > 1, then (i, k)-balancing results from (i, k − 1)-balancing after
a trivial rearrangement of terms, which brings, however, the relation into a more
symmetric shape. In particular, (i, k)-balancing implies that

k∑

l=2

(−1)k
∑

Fi<:F (1)<:···<:F (l)≤Fi+1

eF (l−1)

is contained in the linear subspace spanned by cF .

6. Relation to CSM-balancing

Lopez de Medrano, Rincón and Shaw introduce in [17] the k-th Chern-Schwartz-
MacPherson cycle csmk(M) of a matroid M for k = 0, . . . , rkM , which is the
k-skeleton of the Bergman fan of the matroid together with certain weights on its k-
dimensional cones. A fundamental insight is that the Chern-Schwartz-MacPherson
cycles are tropical varieties; see [17, Thm. 2.14]. We refer to this result by CSM-
balancing for short.

We can reinterpret this result as follows. We can endow all cones cF of the
Bergman fan B(M) of M with certain weights μF such that for every cone cF of
dimension k < rkM ,

∑

cF⊂cF ′
dim cF ′=k+1

μF ′ eF ′

lies in the subspace spanned by cF where eF ′ is a primitive vector of cF ′ modulo cF .
It is possible to express the weights μF ′ as a linear combination of the number

of cones containingF ′ (ordered by their types), which indicates a relation to higher
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balancing in the sense of this paper. We were able to verify that CSM-balancing
can be traced back to certain linear combinations of the relations that occur in
Theorem 2 up to codimension 3, i.e. for rkM − k − 1 ≤ 3. We strongly suspect
that CSM-balancing can be deduced from higher balancing in general. A proof of
this conjecture would be desirable.

7. Example

As an example, we consider the uniform matroid M = U3,4 of rank 3 with ground
set E = {1, 2, 3, 4}. Its lattice of flats is as follows.

E

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

∅

The different types of cones of the Bergman fan B(M) of M are described in
the following table where we fix an identification E = {i, j, k, l}.

type typical flag F (x1, . . . , x4) in cF iff. dimension number of cones

(0, 3) (∅, E) xi = x j = xk = xl 1 1
(0, 1, 3) (∅, {i}, E) xi ≥ x j = xk = xl 2 4
(0, 2, 3) (∅, {i, j}, E) xi = x j ≥ xk = xl 2 6
(0, 1, 2, 3) (∅, {i}, {i, j}, E) xi ≥ x j ≥ xk = xl 3 12

We find non-trivial balancing conditions (i.e. k < ri+1 − ri ) at all cones of
positive codimension, i.e. at cones of types (0, 1, 3), (0, 2, 3) and (0, 3). These
balancing conditions are, up to permuting E = {i, j, k, l}, as follows.

(1, 1)-balancing atc(∅,{i},E) :
∑

{i}<:{i,n}<E

(e{i,n} − ei ) − (eE − ei ) = 0

(0, 1)-balancing atc(∅,{i, j},E) :
∑

∅<:{m}<{i, j}
(em − e∅) − (e{i, j} − e∅) = 0

(0, 1)-balancing atc(∅,E) :
∑

∅<:{m}<E

(em − e∅) − (eE − e∅) = 0

(0, 2)-balancing atc(∅,E) :
∑

∅<:{m}<:{m,n}<E

(e{m,n} − em) −
∑

∅<:{m}<E

(eE − e∅) + (eE − e∅) = 0
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Note that the first two conditions are balancing conditions in codimension 1, i.e.
they are the ‘classical’ balancing conditions for tropical varieties. In particular note
that these classical balancing conditions are divided into two different types.
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