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Abstract. We examine the relationship between the analytic type of an irreducible plane
curve singularity with a single characteristic exponent and the germs of curve defined by the
elements of its Jacobian ideal, in particular its polar germs.

1. Introduction

Let ξ : f = 0 be a reduced non-empty germ of analytic plane curve, defined
in a neighbourhood of the origin of C2 by a convergent series f ∈ C{x, y} with
no multiple factors. Here the ideal J(ξ) = ( fx , fy, f ), fx and fy the derivatives
of f , will be called the Jacobian ideal of ξ ; it does not depend on the series f
defining ξ . The system of germs of curve defined by J(ξ), J (ξ) = {ζ : g = 0,
g ∈ J(ξ) − {0}}, will be called the Jacobian system of ξ . The polar germs of ξ

–often called just polars in the sequel– are the germs of curve defined by equations
h1 fx + h2 fy + h f = 0 with h1, h2, h ∈ C{x, y} and hi (0, 0) �= 0 for at least one
i = 1, 2. Generic germs (in the sense of [6], 2.7) ofJ (ξ) are thus polar germs. In the
sequel we will call generalized polars the elements of J (ξ). The weighted cluster
of base points of the Jacobian ideal, BP(J(ξ)), consists of the infinitely near points
and multiplicities shared by generic polars ( [6], 7.2.13, 7.2.15); we will often refer
to it as the (weighted cluster of) base points of the polars of ξ . Generic polars have
no singular points outside BP(J(ξ)); therefore they all have the same topological
type, which is determined by BP(J(ξ)); it is called the topological type of generic
polars. If a local analytic automorphism ϕ maps ξ to ξ ′, then it maps BP(J(ξ)) onto
BP(J(ξ ′)) preserving multiplicities; in particular, the topological type of generic
polars is an analytic invariant of the germ.

Since the nineteenth century, polar curves and polar germs are known to enclose
deep information: in a global context, they determine the singular points of a reduced
projective plane curve and may be used to control the resolution of its singularities
( [10], IV.II.14, for instance); in the local case, the base points of the polars of a
reduced germ of curve ξ are known to determine the topological type of ξ ( [6]
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8.6.4, [2] 2.4); in a higher-dimensional context, polar varieties provide the so called
polar invariants ( [11,13,18]).

Interest in polar germs was increased after an example due to Pham ( [17]),
showing that the topological type of generic polars of a germ of curve ξ depends
on the analytic type of ξ , and not only on its topological type. As a consequence,
rather evident characters of the polar germs of ξ may be used to unveil much more
hidden analytic characters of ξ : for instance, topologically equivalent germs of
curve may be shown not to be analytically equivalent by showing that their generic
polars are not topologically equivalent. For irreducible germs general enough, the
base points of the polar germs provide a number of continuous analytic invariants
( [5]). Regarding the whole Jacobian ideal, Mather and Yau proved in [14] that the
quotient algebra C{x, y}/J(ξ) determines the analytic type of ξ . More recently, a
deep result first claimed byHefez andHernándes [12], characterizes the analytically
relevant coefficients of the Puiseux series of an irreducible germ ξ in terms of the
intersection multiplicities of ξ and the germs in its Jacobian system J (ξ).

The main purpose of this paper is to go deeper into the relationship between
polars –and generalized polars– and analytic classification of irreducible germs of
plane curve with single characteristic exponent m/n, on the basis of the analytic
information recently given in [7] and examining in particular how much of this
information is retained by the polars.

Let us first recall some results from [7]. For fixed coprime integers m, n, m >

n > 1, are considered there the germs of curve γ with equations

f = yn − xm +
∑

ni+mj>nm

Ai, j x
i y j = 0, Ai, j ∈ C,

which represent all analytic classes of irreducible germs with single characteristic
exponent m/n. As usual, the point (i, j) ∈ R

2 is associated to the coefficient
Ai, j . Then –with the exceptions noted below –are determined there the coefficients
Ai, j whose variation changes the analytic type of γ (relevant coefficients) and,
among them, those whose value is –but for a finite conjugation– determined by
the analytic type of γ (continuous invariants). The excepted coefficients are those
corresponding to the integral points in the interior of a certain triangle T : each of
themmay be either non-relevant or a continuous invariant, depending on the values
of preceding –by the ordering induced by the value of ni + mj– coefficients. The
coefficients corresponding to the points in T are called conditional invariants. For
the easiest representative example, see Fig. 1.

Now, for the main results obtained here, those relative to polars are essentially
negative, showing that the topological type of generic polars and the base points
of the polars retain only partial information on the analytic type of the germ. More
precisely, for germs γ with single characteristic exponentm/n as above, we obtain:

– The Zariski invariant σ(γ ) –the easiest analytic, non-topological, invariant of
γ , see Sect. 3– is not determined by the topological type of generic polars, see
3.1.

– The topological type of generic polars is the same for all germs γ with Zariski
invariant σ(γ ) > m − n, see 3.5. The inequality σ(γ ) > m − n is a moderate
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Fig. 1. The casem/n = 7/6, see [7], 12.14. The coefficient A6,1 is not relevant and therefore
may be turned into zero. This done, A5,2 is relevant; if A5,2 �= 0, then A4,3 and A3,4
are continuous invariants and A4,4 is a conditional invariant: is a continuous invariant if
63A24,3 − 56A3,4 − 20 = 0, and is non-relevant otherwise. The other coefficients are all
non-relevant. Standing and non-standing points (see Sect. 2) are represented by white and
black dots, respectively. It is easy to check that in this case the topological type of generic
polars does not depend on the values of the continuous invariants

restriction allowing the appearance of continuous and conditional invariants; in
some cases –for instance form/n = 7/6, see Fig. 1– it is satisfied by all germs.

– For any γ , the cluster of base points of its polars is unaffected by the arbitrary
variation of any coefficient Ai, j with ni + mj > nm + m, see 4.3. Some of
these coefficients may be continuous or conditional invariants, as is the case of
A4,4 in the example of Fig. 1.

Generalized polars enclose much more information, as shown in the already
cited [14] and [12]. Regarding them, here we obtain:

– A proof of a single characteristic exponent version of Hefez and Fernandes’
characterization: a coefficient Ai, j , ni +mj > nm + σ(γ ), is relevant if and
only if there is no generalized polar ζ with [ζ · γ ] = ni +mj (7.5). It results
a rather explicit determination of analytic automorphisms causing the vari-
ation of each non-relevant coefficient and leaving the preceding coefficients
invariant (7.7).

– The existence of a continuous broken line –the staircase line of γ – that
separates the points in T corresponding to conditional invariants into those
corresponding to continuous invariants and those corresponding to irrelevant
coefficients, see Fig. 3, 7.10 and 7.12. The staircase line depends on the
values of continuous invariants of γ and is directly related to a standard
basis of J(γ ) (8.4); in particular, it easily gives the Tjurina number τ(γ ) =
dimC{x, y}/J(γ ) (9.5).
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The content is organized as follows: Sects. 3 and 4 are devoted to polars; besides
the results quoted above, they contain a close examination of Newton polygons of
polars and the way they are shaped by the values of certain continuous invariants.
Sections 5 and 6 are preparatory; in the second one there is a new way to obtain
coordinates on infinitesimal neighbourhoods whichmay be of independent interest.
Section 7 deals with Hefez and Fernandes’ characterization and the staircase line.
Section 8 completes the information about the intersection multiplicities [ζ ·γ ], ζ a
generalized polar; this provides a characterization of the Zariski invariant (8.2). In
Sect. 9, a couple of easy tools are adapted from computational algebra and applied
to compute the Zariski invariant (9.3) and the staircase line (9.9). They are used
in three examples: in 9.4 a non-evident Zariski invariant is computed, 9.10 sheds
light on an already known case of jumping Tjurina number and 9.11 describes
the different possibilities of relevance of coefficients for germs with characteristic
exponent 17/6 and minimal Zariski invariant.

2. Preliminaries

We place ourselves under the general conventions of [6] and, more especifically,
under those of [7]. In particular, germs of complex analytic plane curves will often
be called just germs. Positive coprime integers m, n, m > n > 1 will be fixed
throughout and we will mainly consider irreducible germs γ , defined in a neigh-
bourhood of the origin O of C2 by a convergent power series of the form

f = yn − xm +
∑

ni+mj>nm

Ai, j x
i y j , Ai, j ∈ C; (1)

as it is well known ( [7], Section 2, for instance), they are irreducible, have single
characteristic exponent m/n, and a Puiseux series

S = xm/n +
∑

r>0

cr x
(m+r)/n, cr ∈ C. (2)

Furthermore, any irreducible germ with single characteristic exponent m/n is ana-
lytically equivalent to a germ γ as before. Therefore, our analytically invariant
conclusions will hold for arbitrary irreducible germs with a single characteristic
exponent.

The multiplicity of a point O on a curve or germ of curve ξ will be denoted
eO(ξ). The Newton polygon of a germ ξ : g = 0, g = ∑

i, j≥0 Bi, j x
i y j will be

taken to be the union of the compact sides and vertices of the border of the convex
envelope of {(i, j) ∈ R

2|Bi, j �= 0} + (R+)2. Newton polygons will be drawn on
a plane N = R

2 –the Newton plane– in which we conventionally assume that the
first axis is horizontal, oriented from left to right, while the second axis is vertical,
oriented from bottom to top. We will take the Newton polygons and their sides –all
with negative slope– oriented from top left to bottom right.N2 will denote the set of
points ofN with non-negative integral coordinates. Non-zero vectors v onN with
both components non-negative will be called positive vectors, indicated v > 0.
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We will take ni + mj as the twisted degree of any non-zero monomial axi y j .
The twisted degree td (resp. twisted order to) of a non-zero polynomial (resp. series)
g will be the highest (resp. lowest) twisted degree of the non-zero monomials of
g, and we will take to(0) = ∞. The twisted initial form of g ∈ C{x, y} − {0} is
the sum of all its monomials of minimal twisted degree, usually denoted ḡ in the
sequel. The integer ni + mj will be also taken as being the twisted degree of the
point (i, j), which represents axi y j on the Newton plane.

As in [7], a point (i, j) ∈ N
2 with ni +mj > nm will be called standing if i <

m − 1 and j < n − 1, and non-standing otherwise. The monomials corresponding
to standing points and their coefficients will be called standing monomials and
standing coefficients, respectively.

Remark 2.1. The reader may easily check that if p is a standing point, then no
point p′ ∈ N

2, p′ �= p, has td(p) = td(p′). In particular, if g ∈ C{x, y} has
to(g) = td(p), p a standing point, then the twisted initial form of g has a single
monomial, and such a monomial corresponds to p. It easily turns out that the set
of twisted degrees of the standing points and the set of twisted degrees of the
non-standing points are disjoint, and also that the latter is

(m(n − 1) + 〈n,m〉) ∪ (n(m − 1) + 〈n,m〉),
where 〈n,m〉 is the semigroup generated by n,m.

A coefficient Ah,k of the equation (1) of a germ γ , say with nh + mk = d, is
said to be (analytically) irrelevant if and only if for any α ∈ C there is a germ γα ,
analytically equivalent to γ and defined by an equation

yn − xm +
∑

d≥ni+mj>nm

Ai, j x
i y j + αxh yk + · · · = 0,

the dots meaning terms of higher twisted degree. Irrelevant coefficients may be
turned into zero by the action of a suitable local automorphism, with no modifi-
cation to the other coefficients of equal or smaller twisted degree. This is called
eliminating the coefficient, see [7], Section 5 for details. All non-standing coeffi-
cients are irrelevant ( [7], 6.1). Relevant coefficients are of course those which are
not irrelevant.

The reader is referred to [7], Sect. 1, for a description of which coefficients in
(1) are relevant. In particular, the coefficients whose variation causes a variation of
the analytic type with at most finitely many occurrences of each analytic type, are
called continuous invariants. For a precise definition, a coefficient Ah,k , again with
nh +mk = d > nm, in (1) is an continuous invariant of the germ γ : f = 0 if and
only if there is a non-constant polynomial φ ∈ C[X ] such that no germs

γ
 : yn − xm +
∑

nm<ni+mj≤d

Ai, j x
i y j + ρ
x

h yk + · · · = 0,


 = 1, 2, are analytically equivalent if φ(ρ1) �= φ(ρ2), see [7], Sect. 9. Obviously,
continuous invariants are relevant. Coefficientswhichmayormaynot be continuous
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invariants, depending on the values of lower twisted degree coefficients, are called
conditional invariants.

For the convenience of the reader, we sketch below some elementary facts
relating Newton polygons and infinitely near points that will be used in the sequel.
The origin O of C2, the points infinitely near to O on the x-axis and the satellite
points of the latter will be called initial points. If ζ is an irreducible germ with
origin at O and Puiseux series S = cxs/r + . . . , c �= 0 , r = eO(ζ ), we will call
cxs/r the initial term, and s/r the initial exponent, of ζ . The next lemma contains
well known facts, see for instance [6], 5.3.1.

Lemma 2.2. The hypothesis and notations being as above, the initial points ζ is
going through, and their multiplicities on ζ , depend only on the pair (s, r) and
not on ζ itself: the quotients appearing in the Euclidean algorithm for gcd(s, r)
determine the points themselves, while the remainders are the multiplicities of the
points. Also, irreducible germs with different initial exponents share no points other
than initial points.

Assume that ξ : ∑
i, j≥0 αi, j x i y j = 0 is a germ of curve with origin at O and

not containing any of the two germs of the coordinate axes. Let us recall (see for
instance [6], 2.2) that each branch of ξ comes associated with a side of the Newton
polygon N(ξ) of ξ . If � is a side of N(ξ) which has width s, height r and lowest
end i0, j0, then the branches associated with � are ζk , k = 1, . . . , h, h > 0, where
each ζk has initial term ckxsk/rk , rk = eO(ζk), sk/rk = s/r and ck is a solution of∑

(i, j)∈� αi, j Z j− j0 = 0 –the equation associated to �. Also, if the branches are
repeated according to theirmultiplicities as irreducible components of ξ ,

∑
k sk = s

and
∑

k rk = r .

Lemma 2.3. Let ξ be a germ not containing the germ of the y-axis. Then the initial
points ξ goes through, as well as their multiplicities on ξ , are determined by N(ξ).

Proof. If the germ of the x-axis is a branch of ξ , then it is a smooth branch and
its multiplicity as an irreducible component of ξ is the second coordinate of the
lowest vertex of N(ξ). All the other branches of ξ correspond to sides of N(ξ); let
� be one of these sides. The notations being as above, take ξ� = ∑

k ζk , where
the ζk are the branches of ξ associated with �, repeated according to multiplicities.
Being s/r = sk/rk for all k, the quotients in the Euclidean algorithms for gcd(s, r)
and each gcd(sk, rk) are the same; hence (2.2) ξ� and any of the ζk have the same
initial points, and these are determined by (s, r). Further, since s = ∑

k sk and
r = ∑

k rk , the remainders in the Euclidean algorithm for gcd(s, r) equal the sums
of the corresponding remainders in the algorithms for the gcd(sk, rk); using 2.2
again, the former are the multiplicities of the initial points on ξ�. By adding up for
the different sides of N(ξ) and taking into account the germ of the x-axis if it is a
branch of ξ , the claim follows. ��

3. Polars

The results in this section and the next one show that, for irreducible germs of curve
with a single characteristic exponent, both the topological type of generic polars
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and the base points of the polars give only partial information on the analytic type
of the germ.

If ξ : g = 0 is a reduced germ of plane curve, we will consider the pencil of
polar germs

Pg = {ξ : λgx + μgy = 0 | (λ, μ) ∈ C
2 − (0, 0)},

generated by the polars ξx : gx = 0 and ξy : gy = 0. The pencil Pg depends on
the choices of the coordinates x, y and the series g. Nevertheless, by [6], 8.5.7, Pg

and J(ξ) have the same cluster of base points and so, in particular (by [6], 7.2.1),
all but finitely many polars in Pg have the topological type of generic polars. In the
sequel, the base points of the polars of ξ and the topological type of generic polars
of ξ will be obtained from a pencil Pg . To this end we will often use the Newton
polygon shared by all but finitely many members of Pg; the series g being fixed, it
will be noted PN(ξ).

Let γ be a germ defined by an equation as (1); as said, it is irreducible and
has single characteristic exponent m/n. The easiest analytic –non-topological–
invariant of γ is the Zariski invariant σ = σ(γ ); it may be defined as

σ = σ(γ ) = min{ni + mj | (i, j) standing and Ai, j �= 0} − nm

provided all Ai ′, j ′ with either i ′ ≥ m − 1 or j ′ ≥ n − 1 (non-standing coefficients)
and ni ′ + mj ′ < nm + σ have been previously turned into zero by the action of a
suitable analytic automorphism ( [7], 7.14). We take min ∅ = ∞; the germs with
σ = ∞ (quasihomogeneous germs) are all analytically equivalent to yn − xm = 0,
and therefore have little interest regarding the analytic classification. If σ �= ∞,
then the only point ω = (ω1, ω2) ∈ N

2 with twisted degree nm + σ is called the
Zariski point of γ . When finite, the Zariski invariant obviously carries the same
information as the Zariski point. The next example shows that the Zariski invariant
is not determined by the topological type of generic polars:

Example 3.1. The germs of curve

γα : y7 − x17 + αx5y5 + x15y = 0, α ∈ C,

have σ(γα) = 1 if α �= 0 and σ(γ0) = 3. The topological type of generic polars of
γα is the same for all values of α but those satisfying α3 = −1323/500. Indeed,
the values of the Zariski invariant are clear. The Newton polygons PN(γα) are the
same for all α; in addition, they have a single side and the equation associated to it
has simple roots provided α3 �= −1323/500. Excluding these values of α, this is
enough to determine the topological type and the claim follows.

The variation of the topological type of generic polars of the same germs is also
worth some attention:

Example 3.2. Take the same germs γα as in Example 3.1 above, this time with
α �= 0 in order to have the same Zariski point (5, 5) for all. As seen in 3.1, the
topological type of generic polars is constant for α3 �= −1323/500. However, it
changes for α3 = −1323/500, because then the equation associated to the only side
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of PN(γα) acquires a double root. Therefore, also the analytic type of γα changes
for α3 = −1323/500. This change is, however, just part of a continuous variation
of the analytic type of γα with α3 which otherwise does not affect the topological
type of generic polars.

Indeed, by [7], 11.1, the coefficient corresponding to (15, 1) is a continuous
invariant of γα . For a correct reading of it, the equation needs to be normalized by
turning the coefficient of the term corresponding to the Zariski point into 1. For
each fixed α �= 0, this is achieved by replacing γα with its inverse image by the
local automorphism x∗ = α7x , y∗ = α17y, which is

γ ∗
α : y7 − x17 + x5y5 + 1

α3 x
15y = 0

and gives 1/α3 as the value of the invariant.

Back to considering an arbitrary germ γ with equation (1), we will pay some
attention to the Newton polygons of polar germs of γ , and in particular to PN(γ ).
As it is well known, the Newton polygon of a germ of plane curve depends on the
relative position of the germ and the coordinate axes. Therefore PN(γ ) cannot be
expected to be an analytic invariant of γ , and in fact it is not, see Example 3.10
below.

For generic germs γ (that is, for all γ with equation (1) but those whose coeffi-
cients Ai, j satisfy certain finitelymany polynomial equations), theNewton polygon
PN(γ ) was determined in [4]. Nevertheless, examining the relationship between
the polars and the analytic type of γ requires considering all germs γ , as we will
do next.

First of all, it is worth noting that if ω = (ω1, ω2) is the Zariski point, y-
derivation of the corresponding monomial gives rise to the point ω = (ω1, ω2 −1),
which, in spite of the minimality of td(ω), may not belong to PN(γ ). Here is an
example:

Example 3.3. Take γ : y13 − x43 + x7y11 + x37y2 = 0. Its Zariski point is (7, 11)
and the point (7, 10) does not belong to any of the sides ofPN(γ ), whose supporting
lines are defined by the equations 11i + 37 j = 444 and i + 5 j = 42.

If g ∈ C{x, y}, the set of points ofN corresponding to the non-zero coefficients
of g –theNewton diagram of g– will be denoted�(g) in the sequel. First of all note
that the derivation ∂/∂y (resp. ∂/∂x) acts on the points of �( f ) by deleting the
points on the first (resp. second) axis and shifting the other points one unit down-
wards (resp. leftwards). Therefore, no matter what the values of the coefficients
Ai, j are, �( fy) always has (0, n − 1) as its lowest point on the second axis, while
�( fx ) contains (m − 1, 0) and, being m/n > 1, no point (0, r), r ≤ n − 1. It
follows:

Lemma 3.4. PN(γ ) has (0, n − 1) as first vertex and no vertex strictly above the
line segment � with ends the points (0, n − 1) and (m − 1, 0).

As a consequence, the topological type of generic polars of γ ceases giving
analytic information on γ if the Zariski invariant of γ is m − n or higher:
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Proposition 3.5. Generic polars of irreducible germs of curve with single charac-
teristic exponentm/n andZariski invariantσ ≥ m−n have all the same topological
type: if d = gcd(n−1,m−1), n−1 = rd and m−1 = sd, then they are composed
of branches ξk , k = 1, . . . , h, each ξk with a Puiseux series Sk = αk xs/r + · · · ,
αk �= 0 and αr

k �= αr

 for k �= 
.

Proof. By [7] 6.3, up to replacing γ with an analytically equivalent germ, we may
assume that γ is given by an equation as (1) in which all non-standing coefficients
Ai, j (i.e., those with either i ≥ m − 1 or j ≥ n − 1) are zero. After this, since in
particular Am−1,1 = 0, both ends of � belong to the Newton diagram of λ( fx ) +
μ( fy) = 0 for λ,μ �= 0. Furthermore, by [7], 7.14, if Ai, j �= 0, then ni + mj ≥
nm+σ ≥ nm+m−n. The monomials produced by deriving a non-zero monomial
Ai, j x i y j correspond to the points (i−1, j) and (i, j−1), and have twisted degrees

ni + mj − n ≥ nm + σ − n ≥ nm + m − 2n > nm − n and

ni + mj − m ≥ nm + σ − m ≥ nm − n.

Since the maximum of the twisted degrees of the points on � is nm − n, reached
at the end (m − 1, 0) only, and neither of the above points is (m − 1, 0) (because
Am−1,1 = 0), they both lie strictly above �. This proves that � is the only side of
PN(γ ) and also that no point on � other than its ends corresponds to a non-zero
coefficient of the equation of a polar in P f . Then the equations associated to �

have no multiple roots and the claim follows by just computing the initial terms of
the Puiseux series of the polars λ( fx ) + μ( fy) = 0 with λ,μ �= 0 . ��

For an arbitrary γ , PN(γ ) is not far away from �, see Fig. 2:

Lemma 3.6. For any germγ with equation (1), the first vertex ofPN(γ ) is (0, n−1),
and the last one lies on the first axis. PN(γ ) is contained in the (closed) triangle
� limited by the line ni + mj = nm − m, the segment � and the first axis.

Proof. Obviously PN(γ ) is contained in the half-plane j ≥ 0. It has been seen in
3.4 that PN(γ ) has (0, n − 1) as first vertex and no vertex strictly above �. Since
all non-zero monomials in f have bidegree (i, j) with ni + mj ≥ nm, no point in
the Newton diagram of fy lies strictly below the line ni + mj = nm − m and no
point in the Newton diagram of fx lies strictly below the line ni + mj = nm − n.
This proves that PN(γ ) ⊂ �. Finally, for λAm−1,1 − mμ �= 0, the monomial of
bidegree (m − 1, 0) in the equation of the polar is not zero, and so, necessarily, the
last vertex of PN(γ ) lies on the first axis. ��
Lemma 3.7. The slope −r/s of any side of PN(γ ) satisfies s/r > m/n.

Proof. the integers n,m being coprime, no point inN2 other than (0, n−1) lies on
the line ni +mj = nm−m. Hence, by 3.6, the first side of PN(γ ) has slope strictly
higher than −n/m, and the same holds for the other sides due to the convexity of
the polygon. ��

The equations of the polars in P f other than fx = 0 may be written in the form
θ fx + fy , θ ∈ C; then, some of their coefficients remain constant:
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Lemma 3.8. The coefficients of hθ = θ fx + fy corresponding to the points in �

other than (m − 1, 0), are all independent of θ .

Proof. Asnoticed in the proof of 3.6, theNewton diagramof fx lies in the half-plane
ni + mj ≥ nm − n, whose only common point with � is (m − 1, 0). ��

Let �̂ be the image of � by the translation of vector (0, 1). By 3.8, the coeffi-
cients of hθ corresponding to the points (i, j − 1) ∈ �, (i, j − 1) �= (m − 1, 0),
are j Ai, j , (i, j) ∈ �̂, (i, j) �= (m − 1, 1). Regarding the Ai, j involved, we have:

Lemma 3.9. Neither of the coefficients Ai, j , (i, j) ∈ �̂, (i, j) �= (m − 1, 1), is a
conditional invariant.

Proof. The Zariski point ω = (ω1, ω2) being a standing point, it holds n − 2 ≥
ω2 ≥ 1, and hence, using that nω1 + mω2 > nm, also ω1 > 2m/n . Therefore,
according to their definition (see [7], Section 12), all points (i, j) corresponding to
conditional invariants satisfy either

ni + mj > nω1 + m(n − 1) > nm + m

or

ni + mj > n(m − 1) + mω2 ≥ nm + m − n.

Since the maximum of the twisted degrees of the points in �̂ is nm + m − n, the
claim follows. ��

There may be non-standing points in the interior of �̂; the elimination of their
corresponding –necessarily irrelevant– coefficients by local automorphisms may
change PN(γ ), but of course not the topological type of generic polars. Here is an
example:

Example 3.10. Takeγ : f = y4−x21+4x6y3 = 0. The point (6, 3) is non-standing
and belongs to both �( f ) and �̂. The Newton polygon PN(γ ) has vertices (3, 0),
(6, 2) and (20, 0), the intermediate one being originated by (6, 3) by derivation. The
inverse imageofγ by the local automorphism x∗ = x , y∗ = y−x6 isγ ∗ : y4−x21−
6x12y2 +8x18y−3x24 = 0, which has not the irrelevant monomial corresponding
to (6, 3). The Newton polygon PN(γ ∗) has a single side, with vertices (3, 0) and
(18, 0). Needless to say, see Sect. 1, generic polars of γ and γ ∗ have the same
topological type, which may be directly checked by the reader in this case. The
difference between PN(γ ) and PN(γ ∗) is due to the different positions of the
polars with respect to the coordinate axes.

To avoid the effect of non-standing coefficients, assume that those with twisted
degree less than 2nm − n −m + 1 (or all) have been turned into zero by replacing
γ with an analytically equivalent germ, still named γ ( [7], 6.2 and 6.3). Then,
by [7] 7.14, all critical coefficients are zero, but the one corresponding to the
Zariski point ω = (ω1, ω2). By 3.9 and the previous elimination of non-standing
coefficients, the points in �̂ corresponding to a non zero Ai, j areω, in case it belongs
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Fig. 2. The topological type of generic polars is the same for all germs γ with Zariski
point above the dotted line ni + mj = nm + m − n (3.5). The Newton polygon PN(γ ) of
generic polars of any germ γ lies inside the light grey triangle � (3.6). PN(γ ) is determined
by the coefficients corresponding to points inside the black triangle �̂ (3.11). The free
variation of the coefficients of the equation of γ corresponding to points above the dashed
line ni + mj = nm + m does not modify the base points of the polars (4.3). The unnamed
medium grey triangle is the one described in 4.1

to �̂, points corresponding to continuous invariants, and points corresponding to
irrelevantmonomials Ai, j x i y j , (i, j) = ω+v v > 0, see [7] 8.1.By the positivity of
v, no one of the latter gives rise, after y-derivation, to a point (i, j −1) belonging to
PN(γ ). TheZariski point and the points in �̂ corresponding to continuous invariants
suffice thus to determine PN(γ ). More precisely:

Proposition 3.11. Assume that all the non-standing coefficients Ai, j of the equation
of γ up to the twisted degree 2nm − n −m + 1 are zero. Let L̂ be the subset of the
Newton plane N composed of (0, n), (m − 1, 1), the Zariski point and all points
in �̂ corresponding to non-zero continuous invariants. Take L to be the image of
L̂ by the translation of vector (0,−1). Then the border of the convex envelope of
L + (R+)2 is composed of two half-lines, one on each coordinate axis, and the
Newton polygon PN(γ ) joining their ends.

The reader may note in particular how, under the hypothesis of 3.11 and for
fixed Zariski invariant, the different shapes of PN(γ ) result from the annhilation of
certain continuous invariants of γ .

4. Base points of polars

Wewillwrite BP(J(γ )) = PBP if no confusionmay arise. Fix ξ : h = λ fx+μ fy =
0 to be a polar with Newton polygon PN(γ ) and going sharply through PBP. We
take h′ = fx if A1,n �= 0 and h′ = fx+ f otherwise, in order to have (0, n) ∈ �(h′)
in all cases.
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Lemma 4.1. The Newton polygon PN(h′) has (0, n) and (m − 1, 0) as its first
and last vertices; it is contained in the triangle with sides ni + mj = nm − n,
ni + (m − 1) j = nm − n and the second axis; the slope −r/s of any of the sides
of PN(h′) satisfies s/r < m/n.

Proof. The first claim is clear after the definition of h′. The second one follows from
it, as we already know (proof of 3.6) that the Newton diagram of fx is contained
in the half-plane ni + mj ≥ nm − n. The third claim follows then from an easy
argument similar to the one used in the proof of 3.7. ��
Lemma 4.2. Any monomial xi y j , with ni + (m − 1) j ≥ nm − n defines a germ of
curve going through PBP.

Proof. The polar ξ ′ : h′ = 0 obviously goes through PBP. By 3.7 and 4.1, no
branch of ξ ′ has the same initial exponent as a branch of ξ . As a consequence the
points shared by ξ and ξ ′ are all initial points (by 2.2). Then, since all points in
PBP belong to ξ , all the points in PBP the polar ξ ′ is effectively going through, are
initial points. For any non-initial point q ∈ PBP, ξ ′ does not effectively go through
q and so, the multiplicity at q of the virtual transform with origin at q remains the
same if ξ ′ is replaced with any germ ξ ′′ having the same effective multiplicities as
ξ ′ at the initial points. As a consequence any such ξ ′′ also goes through PBP (see
[6], 4.1, 4.2). By 2.3, this occurs if N(ξ ′′) = N(ξ ′).

By the hypothesis and 4.1, the point p = (i, j) does not lie below N(h′); then,
after taking h′′ = h′ + αxi y j , α �= 0, it holds N(h′′) = N(h′) for all values
of α but at most one, in particular for a certain non-zero α. By the above, the
germ ξ ′′ : h′′ = 0 goes through PBP, after which so does the germ defined by
xi y j = α−1(h′ − h). ��
Theorem 4.3. If γ is an irreducible germ of curve with single characteristic expo-
nent m/n, m > n > 1, m, n coprime, and equation

yn − xm +
∑

ni+mj>nm

Ai, j x
i y j = 0,

then the weighted cluster of base points of the polars of γ and the topological type of
its generic polars remain the same if any of the coefficients Ai, j , ni+mj ≥ nm+m
is allowed to take arbitrary values.

Some of the above coefficients Ai, j , ni + mj ≥ nm + m may be continuous
invariants; then their values cannot be read from PBP(γ ). This is the case for
m/n = 13/6, see [7], Example 12.18.

Proof of 4.3:. Of course, only the part of the claim regarding PBP needs to be
proved; the other has been included for the sake of completeness. We will prove
that the germ obtained from γ by an arbitrary modification of Ai, j still has two
polars going sharply through PBP and sharing no points outside of it; from this,
the claim directly follows.

Fix i, j satisfying the inequality of the claim and for any α ∈ C let γα be the
germ γα : f + αxi y j = 0. For each polar of γ , ξ : g = λ fx + μ fy = 0, going
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sharply through PBP and with Newton polygon PN(γ ), we will prove next that the
polar of γα

ξα : gα = λ fx + μ fy + α(iλxi−1y j + jμxi y j−1) = 0

is also going sharply through PBP.
Note first that all branches of ξ are tangent to the x axis, because their initial

exponents are higher than m/n (by 3.7). Also, all the infinitely near points shared
by ξ and the x-axis belong toPBP, because these points depend only on the Newton
polygon the germ (by 2.3), and therefore are also shared by any other polar in P f

going sharply through PBP and with Newton polygon PN(γ ).
The coefficients λ,μ still being fixed, the polars ξα , together with the germ

ξ∞ : iλxi−1y j + jμxi y j−1 = 0, describe a pencil of germs of curve B, generated
by ξ0 = ξ and ξ∞. The germ ξ obviously goes through PBP, and, after direct
computation, so does ξ∞ due to the hypothesis ni + mj ≥ nm + m and 4.2. All
germs in B are thus going through PBP, and in particular so do the polars ξα .

Select a branch ζ of ξ . By 3.7, it has a Puiseux parameterization x = tr ,
y = cts + · · · , with s/r > m/n. Then the only non-zero monomial of minimal
(r, s)-twisted degree in fx is−mxm−1 and hence, after substitution, the intersection
multiplicity of ζ and the polar ξ̂ : fx = 0 is [ξ̂ ·ζ ] = r(m−1). Since ζ is contained
in ξ , any polar ξ̃ ∈ P f , ξ̃ �= ξ , has [ξ̃ · ζ ] = r(m − 1). In particular we chose
such a ξ̃ to be going sharply through PBP. Being ξ̃ �= ξ , ζ and ξ̃ share no point
outside PBP, otherwise such a point would be a base point. Using then the Noether
formula ( [6], 3.3.1), it results

r(m − 1) = [ξ̃ · ζ ] =
∑

p∈PBP
νpep(ζ ),

where νp is the virtual multiplicity of p inPBP and ep(ζ ) its (effective) multiplicity
on ζ .

By using again the above Puiseux parameterization and the hypothesis, we
obtain:

[ξ∞ · ζ ] = r
(
i + s

r
( j − 1)

)
> r

(
i + m

n
( j − 1)

)
≥ r(m − 1) =

∑

p∈PBP
νpep(ζ ).

(3)

Let q be the first point on ζ not in PBP. Since ξ goes sharply through PBP, q
and all points following it on ζ are free and have multiplicity one on ζ . The point
q clearly does not belong to ξ∞ : xi−1(iλy + jμx)y j−1 = 0 because, as noted at
the beginning of the proof, ζ is tangent to the x axis and all points shared by ξ and
the x-axis are base points. Nevertheles, iterated use of the virtual Noether formula
( [6], 4.1.2) and the inequality (3) show that the virtual transform with origin at q,
ξ̂∞, of ξ∞ (relative to the virtual multiplicities in PBP) is non empty, and therefore
equal to kE , where E is the germ of the exceptional divisor at q (a smooth germ
because q is free) and k a positive integer.

The virtual transforms with origin at q of the germs in B describe a pencil B̂
generated by ξ̂∞ and the virtual transform ξ̂ of ξ . The latter is in fact the strict
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transform of ξ –because ξ goes sharply through PBP– and therefore is a smooth
germ transverse to E . Using suitable equations z1 of ξ̂ and z2 of E as local coor-
dinates at q, the virtual transform ξ̂α of ξα has equation z1 + αzk2 = 0, k a positive
integer, and therefore is a smooth germ transverse to E . In particular ξ̂α has not
E as a component and therefore is also the strict transform of ξα , which has then
q as a non-singular point. Call ζα the only branch of ξα containing q: ζ and ζα ,
as any two irreducible germs sharing a non-singular point q, have the same points
preceding q and the same multiplicities at them.

We have thus associated to each branch ζ of ξ , a branch ζα of ξα in such a way
that both ζ and ζα have the same effective multiplicities at the points in PBP and
the same first point outside PBP; such a point is non-singular for both branches
and does not belong to other branches of ξ . Since, clearly from its definition, ξα

has the same multiplicity n − 1 as ξ , ξα has no branch other than those associated
to the branches of ξ . In particular ξα has no singular points outside PBP. It suffices
to add up the multiplicities of their branches at each point of PBP to see that ξα

and ξ have the same multiplicities at the points of PBP and therefore that ξα goes
sharply through PBP.

Now, to close, take λ′, μ′, λ′/μ′ �= λ/μ, such that still the polar of γ , ξ ′ : g =
λ′ fx +μ′ fy = 0 goes sharply through PBP and has Newton polygon PN(γ ). Then,
the above arguments applying also to ξ ′, the corresponding polar of γα , ξ ′

α , goes
sharply through PBP too.

As it is well known ( [6], 6.4, for instance), the intersection number of two
different polars of a reduced germ of curve is the Milnor number of the germ,
which in our case, for both γ and γα , equals nm − n −m + 1. Therefore, if still νp

denotes the virtual multiplicity of p in PBP,

[ξα · ξ ′
α] = [ξ · ξ ′] =

∑

p∈PBP
ν2p,

the last equality using the Noether’s formula ( [6], 3.3.1) and the fact that both ξ

and ξ ′ go sharply through PBP and share no points outside it. Since also ξα and
ξ ′
α go sharply through PBP, the equality displayed above shows that they share no
point outside PBP. Therefore the weighted cluster of base points of the polars of
γα is PBP, as claimed. ��

5. Intersecting with generalized polars

Still taking γ : f = 0, with

f = yn − xm +
∑

ni+mj>nm

Ai, j x
i y j ,

in this section we will consider the finite intersection multiplicities of γ and its
generalized polars, and prove that these intersection multiplicities may be replaced
with twisted orders of equations of generalized polars, and conversely.

We take

� = �(γ ) = {[ζ · γ ] | ζ ∈ J (γ ) and ζ �⊃ γ }.
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Remark 5.1. If we denote by ϒ the semigroup of γ , namely

ϒ = {[ζ · γ ] | ζ a germ of curve and ζ �⊃ γ },
which in our case is the semigroup generated by n,m ( [6], 5.8.2, for instance), we
obviously have � ⊂ ϒ and � + ϒ ⊂ �.

In particular, � is a semigroup. The positive integers that do not belong to �

will be called the gaps of J(γ ). The Jacobian ideal being intrinsically related to the
germ, analytically equivalent germs γ, γ ′ have �(γ ) = �(γ ′).

Remark 5.2. Both nm−m and nm−n belong to�, because they are the intersection
multiplicities of γ and the polars fy = 0 and fx = 0 (by either the Plücker
formula ( [6], 6.3.2) or a direct substitution). If γ has finite Zariski invariant σ ,
then, nm + σ ∈ �. Indeed, assuming, as allowed, all non-standing coefficients of
f to be zero,

f = yn − xm + Aω1,ω2x
ω1 yω2 + . . . , Aω1,ω2 �= 0,

where (ω1, ω2) is the Zariski point of γ . Then

nm + σ = nω1 + mω2 = [ζ · γ ]
for ζ : nx fx + my fy − nm f = 0.

Using the equality of differentials on γ ,

Adx + Bdy = A fy − B fx
fy

dx, A, B ∈ C{x, y},

it is direct to check that a suitable shifting of� is the set of the orders of the non-zero
differentials on γ , which is the way in which � appears in [12].

In our case, � may be handled as the set of the twisted orders of the non-zero
elements of the Jacobian ideal, which will be quite useful in the sequel:

Lemma 5.3. A positive integer r belongs to� if and only if there is h ∈ J(γ )which
has twisted order r .

Proof. For an arbitrary germof curve ζ : g = 0, assume to(g) = d and g = gd+. . .

where gd is the twisted initial formof g and the dots represent termsof higher twisted
degree. Substituting the Puiseux parameterization of γ , x = tn , y = tm + . . . , it is

[ζ · γ ] = ot (g(t
n, tm + . . . )) = ot (t

d(gd(1, 1) + . . . )),

the dots meaning now terms of higher degree in t . Therefore we have [ζ ·γ ] ≥ to(g)
and the equality holds if and only if gd(1, 1) �= 0.

Now assume that r ∈ �. Then there is a germ ζ : g = 0, g ∈ J(γ ), for which
r = [ζ · γ ]. By the above, d = to(g) ≤ r . If the equality holds, r is indeed the
twisted order of a non-zero element of J(γ ). Otherwise the twisted initial form gd
of g satisfies g(1, 1) = 0. An easy computation shows that then gd has a factor
yn − xm , say gd = (yn − xm)Q. Substracting f Q cancells the twisted initial form
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of g, hence g′ = g− f Q ∈ J(γ ) has twisted order at least d+1; the germ it defines,
ζ ′ : g′ = 0, still has [ζ ′ · γ ] = r and it is enough to use decreasing induction on
r − d.

Assume d = to(g), g ∈ J(γ ) − {0}. Take ζ : g = 0. Again it is d ≤ [ζ · γ ]
and, if the equality holds, d ∈ �. Otherwise, the twisted initial form gd of g
satisfies g(1, 1) = 0, and therefore, as above, has factor yn − xm . Assume gd =
(yn − xm)k H , where k > 0, all monomials of H have twisted degree d − knm and
H(1, 1) �= 0. The twisted initial form of y fy is nyn , after which it is clear that

(
gd + (nyn)k H

)
(1, 1) �= 0. (4)

In particular gd + (nyn)k H �= 0 and so, it has twisted degree d and is the twisted
initial form of g′ = g+ (y fy)k H ; then, obviously, g′ ∈ J (γ ) and has twisted order
d. If ζ ′ is the germ ζ ′ : g′ = 0, then, due to the inequality (4), [ζ ′ · γ ] = d, as
wanted. ��

Remark 5.4. Since J(γ ) is an (x, y)-primary ideal, any g ∈ C{x, y}with td(g) high
enough belongs to J(γ ): it follows thus from 5.3 that J(γ ) has finitely many gaps.

Remark 5.5. Lemma 5.3 is not true for irreducible germs with two or more charac-
teristic exponents: if the characteristic exponents are 6/4, 9/4, then n = 4, m = 6
and, by the Plücker formula ( [6], 6.3.2), the intersection multiplicity with a generic
polar is 21.

6. Coordinates and translations in first neighbourhoods

Let s be a positive integer. We will call qs the point on γ in the s-th neighbourhood
of the last satellite point, and Es the first neighbourhood of qs . Es is a projective
line and, qs being free, contains a single satellite point q̄; Es − q̄ , which is the set
of free points in Es , may thus be taken as an affine line with improper (or ideal)
point q̄ . In [7], Section 4, it is shown that coefficients of twisted degree nm + s of
the equations of irreducible germs through qs may be taken as affine coordinates
of their points in Es . In this section we will show a different way of getting affine
coordinates on Es , and use them to control the action of local automorphisms of
C
2 on Es .
Let η : h = 0, h = yn − xm + . . . , the dots meaning terms of higher twisted

degree, be an irreducible germ with single characteristic exponent m/n going
through qs . Let x = tn, y = tmu(t), u(0) = 1, be a Puiseux parameterization
of a second germ η′, also irreducible, with single characteristic exponent m/n and
going through qs . The germs η and η′ sharing the point qs , by the Noether formula,

ot (h(tn, tmu(t)) = [η · η′] ≥ nm + s.

and we have:
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Proposition 6.1. There is an affine coordinate on Es such that, for any η′ as above,
if

h(tn, tmu(t)) = αtnm+s + . . . ,

then the point on η′ in Es has coordinate α.

Proof. Pick non-negative integers i, j with ni + mj = nm + s and take ha =
h + axi y j . By [7], 4.3, there is an affine coordinate on Es such that for any a ∈ C,
a is the affine coordinate of the point on ηa : ha = 0 in Es . By substituting the
Puiseux parameterization of η′ in ha ,

ha(t
n, tmu(t)) = h(tn, tmu(t)) + atnm+su j = (α + a)tnm+s + . . . .

Again by the Noether formula, η′ and ηa have the same point in Es if and only if
[η′ · ηa] > nm + s, which, by the above equality, is equivalent to α = −a, hence
the claim. ��

The coordinate of 6.1 depends on the choice of the series h defining η. It will
be called the coordinate associated to h, or just the h-coordinate. The series h will
always be taken of the form h = yn − xm + . . . . Obviously the h-coordinate of
the point on η is α = 0. A change between affine coordinates z, ẑ, of the form
ẑ = z + b, b ∈ C, will be called unimodular. We have:

Lemma 6.2. The change between the affine coordinates z, ẑ on Es associated
respectively to the equations h = yn − xm + . . . and ĥ = yn − xm + . . . , of
irreducible germs η and η̂, each with single characteristic exponent m/n and both
going through qs, is unimodular.

Proof. By [7], 4.5, there is an invertible v ∈ C{x, y} such that h and vĥ have the
same partial sum of twisted degree nm + s − 1; it holds thus vĥ = h + B, where
to(B) ≥ nm + s. Since h and ĥ have the same twisted initial form, of degree nm,
necessarily v(0) = 1.

Let x = tn, y = tmu(t), u(0) = 1, be a Puiseux parameterization of an
irreducible germ η′, with single characteristic exponentm/n and going through qs .
By substituting, on one hand

(vĥ)(tn, tmu) = (1 + . . . )(α̂tnm+s + . . . ) = α̂tnm+s + . . . ,

where α̂ is the ĥ-coordinate of the point on η′ in Es . On the other hand,

(h + B)(tn, tmu) = h(tn, tmu) + B(tn, tmu) = (α + B̃(1, 1))tnm+s + . . . ,

where α is the h-coordinate of the point on η′ in Es and B̃ is the quasihomogeneous
form of twisted degree nm + s of B. This yields α̂ = α + B̃(1, 1), which proves
the claim. ��
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If, in an affine line with a fixed affine coordinate z, a translation is given by
the equation z∗ = z + b, we will call the complex number b the modulus of the
translation.As it is clear, themodulusmay change by changing the affine coordinate,
but it remains the same if the change of coordinate is unimodular.

The next proposition is our main goal in this section. Recall from [7], 9.2 that
the principal automorphisms are the local automorphisms of C2 whose equations

x∗ =
∑

(i, j)∈N2−{(0,0)}
ai, j x

i y j , y∗ =
∑

(i, j)∈N2−{(0,0)}
bi, j x

i y j ,

satisfy bi,0 = 0 for i < m/n and a1,0 = b0,1 = 1.

Proposition 6.3. Assume that ϕ is a principal automorphism leaving invariant the
point qs . Take f to be a series defining γ of the form f = yn − xm + . . . and let
x = tn, y = tmu, u(0) = 1, be a Puiseux parameterization of γ . If on the first
neighbourhood Es of qs we take the f -coordinate, then

(ϕ∗( f ))(tn, tmu(t)) = β(ϕ)tmn+s + . . . , β(ϕ) ∈ C,

and β(ϕ) is the modulus of the translation (see [7], 12.2) induced by ϕ on Es.

Proof. Since ϕ leaves invariant qs , again by the Noether formula, [γ · ϕ∗(γ )] ≥
nm + s and an equality as the one in the claim does hold. The automorphism ϕ

being principal, the series ϕ∗( f ) still has the form ϕ∗( f ) = yn − xm + . . . and we
may consider the coordinate associated to it. Using this coordinate, by 6.1, β(ϕ) is
the coordinate of the point on γ in Es . This point is the image by ϕ of the point on
ϕ∗(γ ), which has coordinate 0; thus, still using the coordinate associated to ϕ∗( f ),
the modulus of the translation is β(ϕ). The same holds using the coordinate relative
to f due to 6.2. ��

In particular:

Corollary 6.4. The mapping ϕ �→ β(ϕ) is a group homomorphism between the
group of principal automorphisms at O leaving qs invariant and the additive group
of C.

7. Analytic relevance and gaps of J(γ )

This section is devoted to give a proof of the theorem below, which sets a very
interesting link between analytically relevant coefficients of a germ and gaps of
its Jacobian ideal. It was first proved by Hefez and Hernandez in 2011. For the
original version, which applies to germs with many characteristic exponents, the
reader is referred to [12]. As an application, we will also prove the existence of a
continuous broken line –the staircase line of the germ– that separates the points
representing conditional invariants into points representing continuous invariants
and points representing irrelevant coefficients.
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Theorem 7.1. Let γ be an irreducible analytic germ of plane curve with a single
characteristic exponent m/n, finite Zariski invariant σ and equation

f = yn − xm +
∑

ni+mj>nm

Ai, j x
i y j .

Then, for any integer s > σ , a coefficient Ai, j , with twisteddegree ni+mj = nm+s,
is analytically relevant if and only if there is no generalized polar ζ : g = 0,
g ∈ J(γ ) − {0}, with [ζ · γ ] = nm + s.

Remark 7.2. The theorem does not cover the coefficients Ai, j with twisted degree
nm+ s, s ≤ σ , but the relevance of these is clear after [7], Section 7: if the inequal-
ity is strict, they are either non-standing coefficients –and therefore analytically
irrelevant– or critical –hence relevant– coefficients taking their critical values; the
only coefficient Ai, j with twisted degree nm + σ is critical and therefore relevant;
it is the critical coefficient of highest twisted degree ( [7], 9.3). Therefore, when the
theorem applies, the coefficients corresponding to gaps are all continuous invariants
(see [7], Sect. 1).

Regarding the coefficients Ai, j , with twisted degree nm + s, s > σ , using 5.1
and 5.2, it is direct to reprove from 7.1 that the non-standing ones are irrelevant,
and also that so are those with (i, j) = (ω1, ω2) + v, where (ω1, ω2) is the Zariski
point and v > 0 (Zariski’s elimination criteria, see [7], 6.1 and 8.1).

It is worth noting that, in general, just because of 7.1, setting a certain positive
integer r to be, or to be not, a gap of J(γ ) may impose constraints on coefficients of
lesser twisted degree that are continuous invariants. For instance, back to Zariski’s
examplem/n = 7/6 ( [19] V.5), as presented in [7] 12.15, all classes of germs with
minimal Zariski invariant are represented by germs

y6 − x7 + x5y2 + A4,3x
4y3 + A3,4x

3y4 + A4,4x
4y4 = 0, A4,3, A3,4, A4,4 ∈ C,

and A4,3 and A3,4 are continuous invariants. By the theorem, setting 52 as a gap is
equivalent to the relevance of the coefficient A4,4, which in turn, by [7] 12.15, is
equivalent to the equality 63A2

4,3 − 56A3,4 = 20. Therefore, setting the semigroup
� as a first invariant in order to analytically classify irreducible germs, makes clear
which coefficients are continuous invariants, but leaves obscure which is the range
of variation of each of them.

Proof of 7.1:. For the only if part we will assume that there is a generalized polar ζ
as in the claim and construct from it a local flow whose members act transitively on
the first neighbourhood of the point in the s-th neighbourhood of the last satellite,
thus proving the irrelevance of the coefficient. For the converse, assuming the
coefficient irrelevant, we will use results from [7] to construct a particular family
of local automorphisms, and from it a generalized polar as wanted.

We will make frequent use of the fact, already seen in the proof of 5.3, that any
germ δ : h = 0 has [δ · γ ] ≥ to(h), the inequality being strict if and only if the
twisted initial form of h has a factor yn − xm .
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The claim being invariant by local automorphisms at O , in the sequelwe assume
that the series f defining γ has the form

yn − xm + xω1 yω2 +
∑

ni+mj>nm+σ

Ai, j x
i y j , (5)

where (ω1, ω2) is the Zariski point and therefore nm + σ = nω1 + mω2 ( [7],
7.15). Fix s > σ , and assume that there is a generalized polar ζ : g = 0 that has
[ζ · γ ] = nm + s. Since subtracting from g a multiple of f does not change [ζ · γ ],
we assume

g = C fx + Dfy, C =
∑

i, j≥0

ci, j x
i y j , D =

∑

i, j≥0

di, j x
i y j .

We will need:

Lemma 7.3. Hypothesis and notations being as above, one has c0,0 = c1,0 = 0,
d0,1 = 0 and di,0 = 0 for i < m/n.

Proof of 7.3:. Along the proof we assume chosen a Puiseux parameterization of
γ , say x = tn , y = tmh(t), h(0) = 1, and for any A ∈ C{x, y} we write ot A =
ot A(tn, tmh(t)). If A �= 0 and δ is the germ δ : A = 0, then ot (A) = [δ · γ ]. Note
that, for any A, ot (A) ≥ to A, and that, by either the Plücker formula ( [6], 6.3.2)
or a direct checking, ot fx = nm − n and ot fy = nm − m.

Assume first that c0,0 �= 0 and there is i < m/n for which di,0 �= 0. Take such
i to be the minimal one. Then, since ot y = m > in, it holds ot D = in.

If in < m − n, by the above,

ot (Dfy) = in + nm − m < nm − n = ot ( fx ) = ot (C fx )

and so

[ζ · γ ] = ot (C fx + Dfy) = ot (Dfy) < nm − m < nm

against the hypothesis.
If m − n < in < m, then

ot (Dfy) = in + nm − m > nm − n = ot ( fx ) = ot (C fx )

and so, this time,

[ζ · γ ] = ot (C fx + Dfy) = ot (C fy) = nm − m < nm

against the hypothesis.
If still c0,0 �= 0 and there is no i , ni < m, for which di,0 �= 0, then, clearly,

ot D ≥ to(D) ≥ m. After this,

ot (Dfy) ≥ m + nm − m > nm − n = ot (C fx ),

leading to the same contradiction as above. Thus, c0,0 = 0.
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Now, since c0,0 = 0, one has otC ≥ n and so

ot (C fx ) ≥ n + nm − n = nm.

If there is i , in < m, for which di,0 �= 0, then, assuming again that it is the minimal
one, still ot D = in and we have

ot (Dfy) = in + nm − m < nm,

which gives

[ζ · γ ] = ot (C fx + Dfy) = ot (Dfx ) < nm,

once again against the hypothesis. Thus di,0 = 0 for all i < m/n.
From what we have proved till now, C fx + Dfy = −mc1,0xm +nd0,1yn + . . . ,

the dots meaning terms of higher twisted degree. If mc1,0 �= nd0,1, then direct
substitution yields [ζ · γ ] = nm, and so again a contradiction.

Assume to have thus mc1,0 = nd0,1 �= 0. Then, up to dividing g = C fx + Dfy
by mc1,0, we may assume that c1,0 = 1/m and d0,1 = 1/n, after which

g = yn − xm +
(
C − 1

m
x

)
mxm−1 + (D − 1

n
y)nyn−1 + nm + σ

nm
xω1 yω2 + . . . ,

where the dots indicate terms of twisted degree higher than nω1 +mω2 = nm+σ .
As it is clear, g has twisted initial form yn − xm and therefore ζ is an irreducible
germ with single characteristic exponent m/n that goes through the first point on
γ after the last satellite.

If ζ does not go through the point qσ , on γ and in the σ -th neighbourhood
of the last satellite, then, by the Noether formula, [ζ · γ ] < nm + σ against the
hypothesis. Otherwise, by [7], 4.5, there is an invertible series, necessarily of the
form 1 + u, u(0, 0) = 0, such that (1 + u)g and f have the same partial sum of
twisted degree nm + σ − 1. Note that the monomials each monomial αxi y j of g
gives rise to by multiplication by 1 + u are αxi y j itself, plus monomials α′xk yr
with (k, r) = (i, j) + v, v a positive vector. Then, all monomials given rise to by
monomials of

yn − xm +
(
C − 1

m
x

)
mxm−1 +

(
D − 1

n
y

)
nyn−1

correspond to non-standing points. Since (ω1, ω2) is a standing point, (1+u)g has
the same monomial of bidegree (ω1, ω2) as g, and therefore the form

(1 + u)g = yn − xm + nm + σ

nm
xω1 yω2 + . . . ,

the dots still indicating terms of twisted degree higher than nω1 +mω2 = nm +σ .
Then,

(1 + u)g − f = σ

nm
xω1 yω2 + . . .

and considering the germ ζ ′ : (1 + u)g − f = 0,

[ζ · γ ] = [ζ ′ · γ ] = ot ((1 + u)g − f ) = nm + σ,

the last contradiction needed in order to prove the claim. ��
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Lemma 7.4. Still assume that ζ : g = C fx + Dfy = 0 has [ζ · γ ] = nm + s,
s > σ . Consider the vector field (C∂x + D∂y), defined in a neighbourhood of the
origin, and its associated local flow

ϕu : x∗ = x∗(x, y, u), y∗ = y∗(x, y, u).

Then each local automorphism ϕu is principal.

Proof of 7.4:. Write

x∗(x, y, u) =
∑

i, j≥0

ai, j (u)xi y j , y∗(x, y, u) =
∑

i, j≥0

bi, j (u)xi y j .

By the hypothesis,

dx∗(x, y, u)

du
= C(x, y) and

dy∗(x, y, u)

du
= D(x, y),

for x, y, u small enough. Since, by 7.3, it is c0,0 = c1,0 = d0,1 = di,0 = 0 for
i < m/n, we get

da0,0/du = 0, da1,0/du = 0, db0,1/du = 0

and

dbi,0/du = 0 for 0 ≤ i < m/n,

locally at u = 0. Therefore a0,0, a1,0, b0,1 and the bi,0, 0 ≤ i < m/n, are all
constant for u small enough. Using that ϕ0 = I d yields

a1,0 = b0,1 = 1, a0,0 = 0 and bi,0 = 0 for 0 ≤ i < m/n,

as wanted. ��
Proof of 7.1, continued:. Still consider the local flow

ϕu : x∗ = x∗(x, y, u), y∗ = y∗(x, y, u).

associated to C∂x + D∂y . Assume that

x = x(t) , y = y(t)

is a Puiseux parameterization of γ and substitute it in the series ϕ∗
u ( f ) = f ◦ ϕu

defining ϕ∗
u (γ ) to get

ϕ∗
u ( f )(x(t), y(t)) = θ(u)tr

′ + . . . (6)

where the power series θ(u) is non-zero and the dots indicate terms of higher degree
in t . Then r ′ = [ϕ∗

u (γ ) · γ ] for u �= 0 and close enough to 0. Since, by 7.4, ϕu is
principal, it leaves invariant all points on γ up to the first free point after the satellite
points and therefore r ′ > nm. The difference r = r ′ −nm is thus a positive integer.
For all u close enough to 0, it holds [ϕ∗

u (γ ) · γ ] ≥ nm + r and therefore ϕu leaves
invariant all points on γ up to the r -th free point pr after the satellite points. We
need a further lemma:
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Lemma 7.5. θ(u) = cu, c ∈ C − {0}.
Proof of 7.5:. By 6.3, for u small enough, θ(u) is the modulus of the translation
induced by ϕ∗

u in the first neighbourhood of pr (relative to an affine coordinate
independent of u). After this, by 6.4, it holds

θ(u1 + u2) = θ(u1) + θ(u2)

for u1 and u2 small enough. Then, using just the definition of derivative, θ(u) =
[dθ/du]|u=0u, hence the claim. ��
End of the proof of 7.1. After taking derivatives with respect to u at u = 0 in (6),

ctnm+r + . . . =
[

∂

∂u
f (x∗(x(t), y(t), u), y∗(x(t), y(t), u))

]

|u=0

=
[

∂

∂u
f (x∗(x, y, u), y∗(x, y, u))

]

|x=x(t),y=y(t),u=0

=
[
∂ f

∂x

∂x∗

∂u
+ ∂ f

∂y

∂y∗

∂u

]

|x=x(t),y=y(t),u=0

=
[
C

∂ f

∂x
+ D

∂ f

∂y

]

|x=x(t),y=y(t)
.

This yields

nm + r = [ζ · γ ] = nm + s

and thus r = s. After this, 6.3 and the equality (6) show that, for u small enough,
u �= 0, ϕ∗

u induces a non-identical translation in the first neighbourhood of qs , and
therefore ( [7], 5.5) that the coefficients of twisted degree nm + s are irrelevant, as
claimed.

For the converse, assume that, for a certain integer s > σ , the coefficients of
twisted degree nm + s are irrelevant. Using the notations of [7]. Sect. 12, denote
by [ϕ]s the twisted s-jet of a principal automorphism ϕ, by Bs the group of twisted
s-jets of the principal automorphisms and byWs the subgroup of the twisted s-jets
leaving fixed qs . Consider the group homomorphism δ′

s mapping each twisted s-jet
to the modulus of the translation induced by it on the first neighbourhood of qs (
[7], 12.2), namely

δ′
s : Ws �−→ C

[ϕ]s �→ �s(av, bw),

where �s(Xv,Yw) is a polynomial in variables Xv,Yw, for v,w admissible of
twisted degree at most s. In particular, the zeros of �s(Xv,Yw) in Ws are the
twisted s-jets of the principal automorphims leaving fixed qs+1.

The coefficients of twisted degree s being irrelevant, δ′
s is not constant (i. e., not

zero) on Ws ( [7], 12.8). Being a group homomorphism, δ′
s , seen as a function on

the smooth variety Ws , has no critical points, in particular its differential at [I d]s
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is not zero. We may thus choose an analytic family of twisted s-jets ϕ̂u ∈ Ws ,
defined for u small enough and with ϕ̂0 = [I d]s , which is transverse at [I d]s to
the variety of zeros of �s in Ws . The coefficients up to twisted degree s of the
local automorphisms being affine coordinates of the corresponding twisted jet in
Bs , assume that the above family is given by analytic functions

av = av(u) , bw = bw(u), av(0) = bw(0) = 0,

for v,w admissible and with twisted degree at most s. By the transversality above,

�(av(u), bw(u)) �= 0, (7)

for u �= 0 small enough, and
[
d

du
�(av(u), bw(u))

]

u=0
�= 0. (8)

For u small enough, let ϕu be the representative of ϕ̂u with all its coefficients
av , bw equal to zero for td(v) > nm + s, td(w) > nm + s. Assume it to be given
by equalities

x∗ = x∗(av(u), bw(u), x, y) , y∗ = y∗(av(u), bw(u), x, y).

For u �= 0, the germ ϕ∗
u (γ ) goes through qs and, by (7), misses qs+1. Therefore

[ϕ∗
u (γ ) · γ ] = nm + s, and so, if still x = x(t), y = y(t) is a Puiseux parameteri-

zation of γ ,

ϕ∗
u ( f )(x(t), y(t)) = β(u)tnm+s + . . . ,

where β(u) �= 0 and the dots indicate terms of higher degree in t .
Now, by 6.3, both β(u) and �(av(u), bw(u)) are moduli of the action of ϕu

on the first neighbourhood of qs relative to affine coordinates independent of u.
Therefore, there is c ∈ C−{0} such that β(u) = c�(av(u), bw(u)) for any u small
enough. The above may thus be equivalently written

f (x∗((x(t), y(t), u), y∗((x(t), y(t), u)) = c�(av(u), bw(u))tnm+s + . . . .

Taking derivatives with respect to u at u = 0 yields
[

∂ f

∂x

[
∂x∗

∂u

]

|u=0
+ ∂ f

∂y

[
∂y∗

∂u

]

|u=0

]

|x=x(t),y=y(t)

= c

[
d

du
�(av(u), bw(u))

]

u=0
tnm+s + . . . .

This equality, together with (8), shows that the generalized polar

ζ :
[
∂x∗

∂u

]

|u=0

∂ f

∂x
+

[
∂y∗

∂u

]

|u=0

∂ f

∂y
= 0

has [ζ · γ ] = nm + s, as wanted. ��
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Example 7.6. From Zariski’s 7/6 example ( [7], 12.14), we know that the germs

γ : f = y6 − x7 + x5y2 + A4,3x
4y3 + A3,4x

3y4 + A4,4x
4y4 = 0,

A4,3, A3,4, A4,4 ∈ C, represent all analytic classes of irreducible germs with single
characteristic exponent 7/6 and minimal Zariski invariant, and also that their coef-
ficients A4,3 and A3,4 are continuous invariants. Consider the generalized polar ζ0
defined by

(84x2 − 126A4,3xy + 4y2) fx + 7y(14x − 21A4,3y) fy

= (20 − 63A2
4,3 + 56A3,4)x

4y4 + (16A4,3 − 84A4,3A3,4)x
3y5 + 12A3,4x

2y6

−210A4,3A4,4x
4y5 + 140A4,4x

5y4 + 16A4,4x
3y6.

If 20 − 63A2
4,3 + 56A3,4 �= 0, using the Puiseux parameterization of γ

x = t6 , y = t7 + . . .

it easily turns out that [ζ0 · γ ] = 52 and therefore, by 7.1, the coefficient A4,4 is
irrelevant, as already seen in [7], 12.14.

The proof of 7.1 provides local automorphisms having a non-trivial action on
the first neighbourhood of qs :

Corollary 7.7. (of the proof of 7.1) If the generalized polar ζ : C fx + Dfy = 0
has [ζ · γ ] = nm + s, s > 0, then the non-identical local automorphisms in the
flow associated to the vector field C∂x + D∂y leave invariant the point on γ in the
s-th neighbourhood of the last satellite and induce non-trivial translations in the
first neighbourhood of it.

Given a point p = (i, j) on the Newton plane N , the set

Qp = {p′ = (i ′, j ′) ∈ N |i ′ ≥ i, j ′ ≥ j}

will be called the quadrant with vertex p.

Remark 7.8. Assume that for a certain p = (i, j) ∈ N there is ζ : g = 0, g ∈ J(γ )

with [ζ · γ ] = td(p). Then, for any p′ = (i + k, j + r) ∈ Qp , xk yr g ∈ J(γ )

defines a germ ζ ′ with [ζ ′ ·γ ] = td(p′). In other words, if td(p) is not a gap of J(γ ),
neither is td(p′) for any p′ ∈ Qp. Using 7.1, this directly gives new information
regarding relevance of coefficients:

Corollary 7.9. Let γ be as above, defined by the equation f = yn − xm +∑
ni+mj>nm Ai, j x i y j = 0. If the coefficient Ai, j of γ , corresponding to p = (i, j),

ni+mj > nm+σ , is irrelevant, then so are all coefficients corresponding to points
in Qp.
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Still assume that γ has finite Zariski invariant σ and Zariski pointω = (ω1, ω2).
As in [7], Section 12, take κ = min{td(m − 1, ω2), td(ω1, n − 1)} − nm and, in
the Newton plane N , let the triangle T be either

T = {(α, β) | nα + mβ ≥ κ + mn, α ≤ m − 1, β ≤ ω2}
if nω1 + m(n − 1) < n(m − 1) + ω2, or, otherwise,

T = {(α, β) | nα + mβ ≥ κ + mn, α ≤ ω1, β ≤ n − 1}.
Then:

Corollary 7.10. Still assume the Zariski invariant of γ to be finite. Take p1 =
(m − 1, 0), p2 = (0, n − 1) and rename p3 the Zariski point ω of γ . Then there
are points pk ∈ N

2, k = 4, . . . , 
, 
 ≥ 3, in the interior of T, such that the
set U = ⋃


k=1Qpk is composed of p1, p2, p3 and all points corresponding to
irrelevant coefficients.

Proof. By [7], 6.1 and [7], 8.1, all coefficients corresponding to points inQ1∪Q2∪
Q3 are irrelevant. By [7], 7.9 and [7], 11.1, all the other coefficients are relevant but
maybe those corresponding to interior points of T . The claim follows then from
7.9 by taking the pi , i = 4, . . . , 
 to be the integral points in the interior of T
corresponding to irrelevant coefficients. ��
Remark 7.11. Of course, from the quadrantsQpk of 7.10, those with pk in another
quadrant are redundant. In fact, one may choose p4 to be the lowest twisted degree
point in T corresponding to an irrelevant coefficient and, inductively, pk to be
the lowest twisted degree point in T − ⋃

k′<k Qpk′ corresponding to an irrelevant

coefficient. Then still U = ⋃

k=1Qpk and the decomposition is irredundant.

The border of U in 7.10 is composed of two half-lines on the coordinate axes,
with ends (0, n−1) and (m−1, 0), and a stairs-shaped line joining their ends:wewill
call this line the staircase line of γ , denoted SL(γ ). An irredundant decomposition
U = ⋃


k=1Qpk being obviously unique, we will call the points pk , k = 1, . . . , 
,
the corners of SL(γ ).

Remark 7.12. After 7.10, the coefficients corresponding to either the Zariski point
ω or a point strictly below SL(γ ) are relevant; those corresponding to a point other
than ω and placed on or above SL(γ ) are irrelevant.

Since the coefficients corresponding to the points in the interior of T are the
only ones whose relevance is not determined by m/n and σ (see the proof of 7.10
above), the interesting part of the staircase line is SL(γ )∩T, which is of course not
determined bym/n and σ . For instance in casem/n = 7/6, σ = 2 (see [7], 12.14),
SL(γ ) has corners (0, 5), (4, 4), (5, 2), (6, 0) if 20− 63A2

4,3 + 56A3,4 �= 0, while
it has corners (0, 5), (5, 2), (6, 0) otherwise.Wewill see more interesting examples
in the forthcoming Section 9.
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( ,0)m-1

(0, )n-1
T

SL( )

Fig. 3. The Zariski point ω, the triangle T –in grey– and the staircase line SL(γ ) of a germ
γ

Remark 7.13. Not all possible candidates for the part of SL(γ ) inside T do actually
occur, due to the constraints on the number of points corresponding to irrelevant
coefficients of [7], 12.17. Indeed, as seen in [7], 12.18, in case m/n = 13/6
and σ(γ ) = 1, at most one of the points (10, 2), (8, 3), (6, 4) corresponds to an
irrelevant coefficient, and therefore in no case SL(γ ) can have two of them as
corners. In particular no SL(γ ) can have all three as corners, as one could wrongly
expect to be the case for ”generic” germs γ .

Remark 7.14. Corollary 7.9 and [7], 12.17 combine to give non-obvious informa-
tion. Still in the case of [7], 12.18, if A8,3 is irrelevant, then so is A9,3 and, as a
consequence, A7,4 is invariant. Similarly, if A6,4 is irrelevant, so is A7,4 and then
A9,3 is invariant.

The staircase line of a quasihomogeneous germ may be taken to have corners
(m − 1, 0) and (0, n − 1); in such a way, by [7], 7.13, after dropping the mentions
to the Zariski point, Remark 7.12 still applies.

8. Complements regarding the gaps of J(γ )

As seen in 7.1, the gaps d of J(γ ) with d > nm + σ are the twisted degrees of the
points corresponding to relevant coefficients. In this section we will determine the
gaps d of J(γ ) with d ≤ nm +σ . This will provide a useful characterization of the
Zariski invariant σ(γ ).

In this section and the next one we will make frequent use of the fact that, if
finite, σ = σ(γ ) satisfies σ + mn < 2nm − n − m + 1, just because the Zariski
point is a standing point.

Proposition 8.1. If the germ γ has finite Zariski invariant σ , then an integer d ≤
nm+σ belongs to�(γ ) if and only if either d = nm+σ or d is the twisted degree
of a non-standing point.
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Proof. As in former occasions, up to replacing γ with an analytically equivalent
germ, we assume all non-standing coefficients of the equation of γ up to the twisted
degree nm + σ to be zero, and therefore an equation of γ to be

f = yn − xm + Aω1,ω2x
ω1 yω2 + · · · = 0, Aω1,ω2 �= 0,

where (ω1, ω2) is the Zariski point of γ and the dots stand for terms of higher
twisted degree.

First, as already noticed, the polars fx = 0 and fy = 0 have intersection
multiplicities ((m − 1)n = td(m − 1, 0)) and (n − 1)m = td(n − 1, 0)) with γ ;
then, by 7.8, the twisted degree of any non-standing point belongs to �.

By substituting a Puiseux parameterization of γ it is direct to check that the
generalized polar

η : nm f + n fx − m fy = 0

has [η · γ ] = nω1 + mω2 = nm + σ .
Assume now that d ∈ �(γ ), d < nm + σ , is not the twisted degree of a non-

standing point. By 5.3, there is h = a f + b fx + c fy which has to(h) = d. The
twisted initial forms of the three summands above are

ā(yn − xm), −mb̄xm−1, nc̄yn−1.

Since all their monomials correspond to non-standing points, neither of them has
twisted degree d. Therefore, either two of them or all three cancel.

In the first case, assume for instance

ā(yn − xm) − mb̄xm−1 = 0.

Then ā is a multiple of xm−1 and so

to(a f + b fx ) > td(ā(yn − xm)) = td(mb̄xm−1)

≥ 2nm − n > 2nm − n − m + 1 > nm + σ > d,

after which d = to(c fy)would be the twisted order of a non-standing point, against
the hypothesis. The other two possibilities in this case may be dealt with similarly.

In the second case,

(ā y + nc̄)yn−1 = (āx + mb̄)xm−1.

If both sides are not zero then ā y + nc̄ is a non-zero multiple of xm−1, after which,
a computation as above gives again d > nm + σ . Otherwise,

b̄ = − āx

m
and c̄ = − ā y

n
.

In particular, td(b̄) ≥ n and td(c̄) ≥ m, after which it is clear that

to(a( f − yn + xm) + b( fx + mxm−1) + c( fy − nyn−1) ≥ nω1 + mω2 = nm + σ.

The monomials of twisted degree d of h are thus monomials of

a(yn − xm) − mbxm−1 + ncyn

which have each the twisted degree of a non-standing point, against our hypothesis
on d. ��
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Proposition 8.1 directly provides a characterization of the Zariski invariant in
terms of J(γ ):

Corollary 8.2. If the germ γ has finite Zariski invariant σ , then

nm + σ = min
[
�(γ ) − (m(n − 1) + 〈n,m〉) ∪ (n(m − 1) + 〈n,m〉)]

Remark 8.3. As said, quasihomogeneous germs have little interest, which is the
reason why they have been seldom considered before. Anyway, for the sake of
completeness, any quasihomogeneous germ τ being analytically equivalent to yn −
xm = 0, it is direct to check using the latter that

�(τ) = (m(n − 1) + 〈n,m〉) ∪ (n(m − 1) + 〈n,m〉),
which is the set of the twisted degrees of the non-standing points (2.1).

Corollary 8.4. (of 7.1) Select monomials Xk, k = 1, . . . , 
, corresponding to the
corners pk, k = 1, . . . , 
, of SL(γ ). The ideal (X1, . . . , X
) ⊂ C{x, y} contains
the twisted initial forms of all series g ∈ J(γ ).

Proof. If the twisted initial form ḡ of g has two or more monomials, then each of
these monomials corresponds to a non-standing point (by 2.1) and therefore is a
multiple of either xm−1 or yn−1. Otherwise ḡ is a monomial, say corresponding to a
point (i, j). Then, by 7.1 and 8.1, either (i, j) is one of the points (m−1, 0), (0, n−
1), ω or ni+mj > nm+σ and the coefficient Ai, j of the equation of γ is irrelevant.
In any case, by 7.10, (i, j) ∈ Qk for some k and ḡ is then a multiple of Xk . ��

Using terms from commutative algebra, 8.4 asserts that any g1, . . . , g
 ∈ J(γ )

with ḡk = Xk , k = 1, . . . , 
, make a standard basis (relative to the twisted grading)
of J(γ ).

9. Computations and examples

In this section we will present some computation procedures that allow to compute
the Zariski invariant σ(γ ) and to examine, for fixed n, m and σ(γ ), the different
possibilities of relevance of coefficients through Theorem 7.1. They will be used in
three examples. Our procedures are simplified adaptations of procedures that are
usual in computational algebra (see for instance [9]); nevertheless, since they are
not direct applications, we will provide the –rather simple– arguments needed to
support them.

Asbefore,γ is the germof curvedefinedby f = yn−xm+∑
ni+mj>nm Ai, j x i y j

= 0. Assume to have fixed g1, . . . , gr ∈ C{x, y}, r ≥ 2, each with a monomial
as twisted initial form. Assume furthermore that the twisted initial forms of g1 and
g2 are scalar multiples of powers of x and y, respectively. For i = 1, . . . , r , let
pi be the point corresponding to the twisted initial form of gi , and Q the union of
quadrantsQ = Qp1 ∪ · · · ∪Qpr . To avoid trivialities, we assume alsoQpi �⊂ Qp j

for i �= j . Note that there are finitely many points in N2 − Q.
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Given any g ∈ C{x, y}, substract from g multiples of the gi whose initial forms
cancel the monomials of g corresponding to the points in Q of minimal twisted
degree; then do the same with the difference and so on, until having cancelled all
monomials of g corresponding to points inQ of twisted degree, say, ρ or less. This
will give an expression

g = R +
r∑

k=0

hkgk + K , (9)

where all the monomials of R correspond to points not in Q, to(K ) > ρ and,
clearly, to(hkgk) ≥ to(g), k = 1, . . . , r , provided hkgk �= 0.

As soon as ρ is higher than the maximum of the twisted degrees of the points
in N

2 − Q, all monomials of the multiples of the gk used for the cancellations
correspond to points inQ and therefore R becomes independent of ρ. This satisfied,
we will say that the procedure leading to the equality (9) is a division of g by
g1, . . . , gr ; the hk will be called quotients of the division and R a remainder of
dividing g by g1, . . . , gr . Neither the quotients nor the remainder are uniquely
determined by g and the gk , as it is easy to check. The usual computational algebra
division in the local case is different and quite more complicated, see for instance
[8], 4.3.

We will make use of the following fact:

Lemma 9.1. Any g ∈ C{x, y} with to(g) ≥ 2nm − n −m + 1 belongs to the ideal
( fx , fy), and so also to J(γ ).

Proof. Perform a division of g by fx , fy as (9). Note that the points of Q with
integral coordinates are the non-standing points. The ideal ( fx , fy) being (x, y)-
primary, we take the positive integer ρ such that any series with twisted order higher
than ρ belongs to ( fx , fy), and so, in particular, so does the complementary term
K . Since g has twisted order 2nm − n − m + 1 or higher, the same holds for any
of the multiples of fx or fy used to cancel monomials in the division procedure.
On the other hand, any standing monomial has twisted degree strictly less than
2nm − n − m + 1 and therefore no standing monomial does appear in g or along
the division procedure, which forces the remainder R to be zero. Then the claim
follows from equality (9). ��
Remark 9.2. In our applications wewill always take g1 = fx and g2 = fy , in which
case all the non-standing points belong to Q. Also, unless otherwise said, we will
take ρ = 2nm − n − m + 1: then all points p with td(p) ≥ ρ are non-standing,
and therefore belong to Q; furthermore, K ∈ J(γ ) by 9.1.

The next proposition provides an easy way of computing the Zariski invariant
σ(γ ). Of course, it is useful only in case the equation has some non-zero non-
standing monomial, as otherwise the Zariski invariant may be directly read from
the equation, see Section 3.

Proposition 9.3. Let R be any remainder of a division of the series f defining γ

by fx and fy:
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(a) R = 0 if and only if γ is quasihomogeneous.
(b) If R �= 0, then to(R) = nm + σ(γ ).

Proof. The points of Q with integral coordinates are the non-standing points, and
so all the monomials of R are standing monomials. In particular, if R �= 0, to(R)

is the twisted degree of a standing point. By the choices of 9.2 R ∈ J(γ ). Then, if
γ is quasihomogeneous, using 5.3 contradicts 8.3.

Assume now that γ is not quasihomogeneous. Then, by 5.3 and 8.2, there is
g ∈ J(γ ) with to(g) = nm + σ . Assume

g = a f + b fx + c fy, a, b, c ∈ C{x, y}.
Using the division of f by fx , fy gives an equality

g = aR + b′ fx + c′ fy +U

where b′, c′,U ∈ C{x, y} and to(U ) ≥ 2nm − n − m + 1 > to(g). If the twisted
initial forms ofb′ fx and c′ fy , namely−mb̄′xm−1 andnc̄′yn−1, cancel, then, arguing
as in the proof of 8.1

to(b′ fx + c′ fy) > to(b′ fx ) ≥ 2nm − n − m > nm + σ = to(g),

and so to(g) = to(a) + to(R).
Otherwise, the twisted initial form of b′ fx + c′ fy is a sum of non-standing

monomials. Therefore to(b′ fx + c′ fy) �= to(g) and, again, to(g) = to(a) + to(R).
Thus, in both cases, by the minimality in 8.2, to(a) = 0 and the claim

follows. ��
Example 9.4. As in [7], 7.12, take γ defined by f = y5 − x7 − 7x6y − 21x5y2. A
division of f by its derivatives is

f = −6x4y3 + 1

35
(5x − 2y) fx + 1

5
y fy .

Hence, the Zariski invariant is 6 and so the Zariski point is (4,3). Note themonomial
−21x5y2, which is standing, appears in the equation of γ , has twisted degree
39 < 41 = td(4, 3) and does not correspond to the Zariski point. On the other
hand, no non-zero monomial of f corresponds to the Zariski point.

The Tjurina number of γ is an analytic invariant, usually denoted τ(γ ), which
may be defined by the rule τ(γ ) = dimCC{x, y}/J(γ ). As one can expect in view
of 8.4, τ(γ ) can be directly read from SL(γ ):

Corollary 9.5. If p1, . . . , p
 are the corners of the staircase line of γ , then

τ(γ ) = �(N2 −

⋃

k=1

Qpk ).
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Proof. Write L = N
2 − ⋃


k=1Qpk and, for any p = (i, j) ∈ N
2, X p = xi y j . We

will prove that the classes of the X p, p ∈ L, make a basis ofC{x, y}/J(γ ). Indeed,
in case of they being linearly dependent, it would be

g =
∑

p∈L
apX p ∈ J(γ )

for some ap ∈ C, not all zero; then, g �= 0 and ḡ = apX p for some p ∈ L (due
to 2.1), which contradicts 8.4. To prove that the classes of the X p, p ∈ L, generate
the quotient, take gk ∈ J(γ ) with ḡk a monomial corresponding to the corner pk ,
k = 1, . . . , 
. Then any g ∈ C{x, y} is congruent mod. J(γ ) to a remainder of its
division by p1, . . . , p
. ��

The above, togetherwithRemark 7.13,may explain the difficulties in computing
the minimal Tjurina number for a given equisingularity class: recursive procedures
were given in [3] and [15], and only recently a closed formula has been given in
[1].

Assume given g1, g2 ∈ C{x, y} − {0}, both with a monomial as twisted initial
form. Define

[g1 ∗ g2] = ḡ2
gcd(ḡ1, ḡ2)

g1 − ḡ1
gcd(ḡ1, ḡ2)

g2.

Remark 9.6. Since the twisted initial forms of the summands above cancel,

to([g1 ∗ g2]) > to(g1) + to(g2) − td(gcd(ḡ1, ḡ2)) = td(lcm(ḡ1, ḡ2)),

the latter being called the cancelled twisted degree of the pair g1, g2 in the sequel.

Lemma 9.7. If g1, g2 ∈ C{x, y} − {0} and g′
k = Mkgk, Mk a non-zero monomial,

k = 1, 2, then both g′
1, g

′
2 have monomials as twisted initial forms and

[g′
1 ∗ g′

2] = M[g1 ∗ g2],
where M is a non-zero monomial.

Proof. Direct from the definition of [ ∗ ]. ��
Lemma 9.8. Assume that the twisted initial forms of gk ∈ C{x, y} − {0}, k =
1, . . . , r , r ≥ 2, are all monomials of the same twisted degree ρ. If to(

∑r
k=1 gk) >

ρ, then there exist ai, j ∈ C for which

r∑

k=1

gk =
∑

1≤i< j≤r

ai, j [gi ∗ g j ].

Proof. The hypothesis is that the initial forms of the gk cancel:
∑r

k=1 ḡk = 0.
Then the same happens if the summation is restricted to the gk whose initial forms
are scalar multiples of an arbitrarily fixed monomial M . Therefore, by splitting
the given set {g1, . . . , gr }, it suffices to prove the claim with the supplementary
hypothesis that all the ḡk are scalar multiples of the samemonomial, say ḡk = bkM ,
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k = 1, . . . , r . Then
∑r

k=1 bk = 0 and [gi ∗ g j ] = b j gi − bi g j , after which it is
enough to check that it holds

r−1∑

k=1

1

br
[gk ∗ gr ] =

r∑

k=1

gr .

��
Proposition 9.9. Let γ be an irreducible germ with single characteristic exponent
m/n and finite Zariski invariant σ , defined by

f = yn − xm +
∑

ni+mj>nm

Ai, j x
i y j , Ai, j ∈ C.

Take g1 = fx , g2 = fy and g3 a remainder of a division of f by fx , fy . Proceeding
inductively, for k ≥ 3, assume that the initial forms of g1, . . . , gk are monomials.
For each pair r, s, 1 ≤ r < s ≤ k, take Rr,s to be a remainder of a division of
[gr ∗ gs] by g1, . . . , gk.
(a) If Rr,s = 0 for 1 ≤ r < s ≤ k, define 
 = k and stop the procedure.
(b) Otherwise, take gk+1 to be one of the remainders Rr,s with minimal twisted

order; gk+1 �= 0 and has a monomial as twisted initial form. Then, repeat from
g1, . . . , gk+1.

After finitely many steps, possibility (a) occurs. Furthermore, if pk is the point
corresponding to the twisted initial form of gk, 1 ≤ k ≤ 
, then {p1, . . . , p
} is the
set of corners of the staircase line of γ .

Proof. Obviously, the initial forms of g1 = fx and g2 = fy are monomials. By
9.3, g3 �= 0 and its twisted initial form is a monomial corresponding to the Zariski
point. Assume inductively that for a given k, 3 ≤ k < 
, g1, . . . , gk are non-zero
and have monomials as twisted initial forms. Then gk+1 is defined and non-zero
because k < 
. SinceQp1 ∪Qp2 is the set of the non-standing points, the union of
quadrants Uk = Qp1 ∪ · · · ∪ Qpk , used in the division whose remainder is gk+1,
contains all the non-standing points. Then all non-zero monomials of the remainder
gk+1 are standingmonomials and no two have the same twisted degree, by 2.1. This
in particular assures that the twisted initial form of gk+1 is a monomial.

As far as option (a) does not occur, the sets N2 − Uk are finite and make an
strictly decreasing sequence. Having N

2 − Uk = ∅ obviously forces Rr,s = 0 for
1 ≤ r < s ≤ k, hence the finiteness of the procedure.

By the definition of g3 and 9.1, g1, g2, g3 generate J(γ ). Inductively, by its
definition and again 9.1, gk ∈ J(γ ); hence also g1, . . . , gk generate J(γ ) if k > 3.

Fix k, 3 ≤ k ≤ 
 and assume to have chosen g1, . . . , gk as in the claim. Take
ε = min{to(Rr,s)}1≤r<s≤k , ε ≤ ∞. We will prove that no g ∈ J(γ ) with initial
form a monomial corresponding to a point in N2 − Uk has to(g) < ε. This proved,
on one hand, for 3 ≤ k < 
, pk+1 is the point of minimal twisted degree inN2 −Uk

corresponding to the twisted initial form of an element of J(γ ). On the other, no
point in N

2 − U
 corresponds to the twisted initial form of an element of J(γ ).
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Then, after adding that p1 = (m − 1, 0) , p2 = (0, n − 1) and p3 is the Zariski
point by 9.3, the proof will be complete.

Assume thus that the initial form of g ∈ J(γ ) is a monomial whose correspond-
ing point is p ∈ N

2 −Uk , and also that to(g) < ε. Note that then p is the only point
in N

2 with td(p) = to(g), by 2.1. Since g1, . . . , gk generate J(γ ), there is at least
an expression

g = h1g1 + · · · + hkgk, h1, . . . , hk ∈ C{x, y}. (10)

Then take δ = min{to(h1g1), . . . , to(h
g
} and note that δ ≤ ε. Then, among all
g as above and all their expressions as (10), choose a pair for which δ is maximal
and still use for them the notations as in (10).

Up to reordering, assume that to(hi gi ) = δ for i = 1, . . . , s and to(hi gi ) > δ

for i = s + 1, . . . , k. Split

g = g′ + g′′, (11)

where

g′ =
s∑

i=1

h̄i gi

and

g′′ =
s∑

i=1

(hi − h̄i )gi +
k∑

i=s+1

hi gi .

We will fix our attention on g′, just retaining from g′′ that all its summands have
twisted order strictly higher than δ; in particular, to(g′′) > δ . Just because of this,
it cannot be to(g′) = δ, as then to(g) = δ would be the twisted order of a point in
Uk .

Decompose each h̄i , 1 ≤ i ≤ s, into the sum of its monomials,

h̄i =
ri∑

j=1

hi, j

and rewrite

g′ =
s∑

i=1

ri∑

j=1

hi, j gi .

Since, as noted above, to(g′) > δ, by 9.8 there are ai, j,i ′, j ′ ∈ C for which

g′ =
∑

i,i ′, j, j ′
ai, j,i ′, j ′ [hi, j gi ∗ hi ′, j ′gi ′ ].

Using 9.7 this yields

g′ =
∑

i,i ′, j, j ′
Mi, j,i ′, j ′ [gi ∗ gi ′ ]. (12)
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where each Mi, j,i ′, j ′ is a monomial and

td(Mi, j,i ′, j ′) = to([hi, j gi ∗ hi ′, j ′gi ′ ]) − to([gi ∗ gi ′ ]) > δ − to([gi ∗ gi ′ ]).(13)

Write the chosen division of [gi ∗ gi ′ ] by g1, . . . , gk in the form

[gi ∗ gi ′ ] = Ri,i ′ + Bi,i ′ + Ki,i ′ ,

where Ri,i ′ is the remainder, Bi,i ′ a sumofmultiples of g1, . . . , gk , eachwith twisted
order non-less than the twisted order of [gi ∗ gi ′ ], and Ki,i ′ a series with twisted
order at least 2nm − n − m + 1. By replacing in (12) and going back to (11) we
get

g =
∑

i,i ′, j, j ′
Mi, j,i ′, j ′ Ri,i ′ +

∑

i,i ′, j, j ′
Mi, j,i ′, j ′ Bi,i ′ +

∑

i,i ′, j, j ′
Mi, j,i ′, j ′Ki,i ′ + g′′.

Our hypothesis regarding to(g) forces

to(g) < to(
∑

i,i ′, j, j ′
Mi, j,i ′, j ′ Ri,i ′)

and, clearly, it holds

to(g) < to(
∑

i,i ′, j, j ′
Mi, j,i ′, j ′Ki,i ′).

Therefore, if

ĝ =
∑

i,i ′, j, j ′
Mi, j,i ′, j ′ Bi,i ′ + g′′,

then, necessarily, to(ĝ) = to(g), which in turn forces g and ĝ to have the same
monomial as initial form (by 2.1). Obviously, ĝ ∈ J(γ ). In addition, as noticed
when defining it, any of the multiples of the gi whose sum is Bi,i ′ has twisted order
to([gi ∗ gi ′ ]) or higher. Using (13), any of the multiples of the gi whose sum is
Mi, j,i ′, j ′ Bi,i ′ has twisted order strictly higher than δ. The same being true for g′′,
ĝ contradicts our choice of g and its expression. ��

The series gk of 9.9 may be computed using any computer algebra system. In
practice, many of the [gi ∗ gk] involved may be discarded a priori due to a too high
cancelled twisted degree. Coefficients that are continuous or conditional invariants
may be taken as free parameters in order to discuss the different possibilities; in
such a case the twisted initial forms of the gi , i > 3, provide the conditions for the
relevance of the conditional invariants. Next are two examples. The first one already
appeared in [16], 3.7, as an example of jumping Tjurina number. The second one
showsdifferent possibilitieswithfixed characteristic exponent andZariski invariant.
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T

(11,6)

10 15 20 25

5

5

Fig. 4. Example 9.10

Example 9.10. Consider the family of germs

γA : y8 − x27 + x19y3 + Ax11y6 = 0

For all of them, the Zariski point is ω = (19, 3), the coefficient A is a continu-
ous invariant and there are three points in the interior of the triangle T, namely
(16, 6), (17, 6), (18, 6). See Fig. 4. Computing as described in 9.9, it results

g3 = −17x19y3 − 34Ax11y6 and g4 = 17(19 + 54A)x18y6.

The first equality confirms the Zariski point, already evident from the equation.
The second one shows that the coefficients corresponding to (16, 6) and (17, 6) are
continuous invariants (both with value zero) for all values of the invariant A. The
coefficient corresponding to (18, 6) is irrelevant for A �= −19/54, while it is also a
continuous invariant for A = −19/54. Figure 4 shows the staircase lines for both
cases; they in particular explain the jumping of the Tjurina number, from 153 to
154, for A = −19/54.

The reader may have noticed how the coefficient corresponding to (18, 6) plays
an important role in example 9.4, even if its value is zero in all cases. This shows
the convenience of considering analytic relevance rather than just the possibility
of turning a coefficient into zero by an analytic automorphism (elimination of
coefficients), which may be confusing.

Example 9.11. The germs

γ : y6 − x17 + x6y4 + A9,3x
9y3 + A12,2x

12y2 + A15,1x
15y

+A10,3x
10y3 + A13,2x

13y2 + A11,3x
11y3 + A14,2x

14y2 + A12,3x
12y3

+A15,2x
15y2 + A13,3x

13y3 + A14,3x
14y3 + A15,3x

15y3 = 0

represent all the analytic types of germs with single characteristic exponent 17/6
and (minimal) Zariski invariant 2. The coefficients

A9,3, A12,2, A15,1, A10,3, A13,2, A11,3, A14,2

are continuous invariants by [7], 11.1, while

A12,3, A15,2, A13,3, A14,3, A15,3
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T

5 10 15 20

5

Fig. 5.Example 9.11: The characteristic exponent is 17/6,ω is the Zariski point and the other
black points correspond to continuous invariants. The points in the interior of the triangle T,
in white, correspond to the conditional invariants, whose relevance is discussed in the text

are conditional invariants (see Fig. 5). After computing, it results g3 = −2x6y4 +
. . . , as expected, and

g4 = (8 − 24A12,2 + 27A2
9,3)x

12y3 + . . . .

Assume first 8 − 24A12,2 + 27A2
9,3 �= 0 (Case 1). Then A12,3 is irrelevant, and

hence so are A13,3 A14,3 and A15,3. The remaining A15,2 is invariant due to the
constraints of [7] 12.7; further computation confirms this fact, as it gives g5 = 0.
Note that there is thus no staircase line with corners (12, 3), (15, 2).

Assume now otherwise (Case 2), and so fix A12,2 to be

A12,2 = 8 + 27A2
9,3

24
. (14)

Then,

g4 = (−30A15,1 + 18A9,3 + 81

2
A3
9,3)x

15y2 + . . .

and so, as far as

−30A15,1 + 18A9,3 + 81

2
A3
9,3 �= 0

(Case 2.1), the coefficient A15,2 is irrelevant, and therefore so is A15,3. Further
computation gives

g5 = (−1020A13,2 − 450A2
15,1 + 2754A10,3A9,3 + 540A15,1A9,3

−162A2
9,3 + 1215A15,1A

2
9,3 − 729A4

9,3 − 6561

8
A6
9,3)x

14y3 + . . . (15)

showing that A13,3 is necessarily invariant. This time the invariance is not due to
the constraints of [7] 12.7; actually, A18,3 cannot be irrelevant because its twisted
degree is lesser than the cancelled twisted degrees appearing in the computation of
g5. The reader may note that, due to the invariance of A18,3 and taking in account
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the restriction (14), the number of free continuous invariants is 8 in both Case 2.1
and the ”generic” Case 1. Still in Case 2.1 and depending on the coefficient in (15),
A14,3 may, or may not, be irrelevant.

There remains another subcase of Case 2, namely when −30A15,1 + 18A9,3 +
81
2 A3

9,3 = 0 (Case 2.2). Then A15,2 is invariant and all possibilities for the remaining
coefficients occur: either A13,3, A14,3, A15,3 are irrelevant, or A13,3 is invariant and
A14,3, A15,3 are irrelevant, or A13,3, A14,3 are invariant and A15,3 is irrelevant, or
A13,3, A14,3, A15,3 are all invariant. Details are left to the reader.
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