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Abstract. For each geometrically finite 2-dimensional non-Euclidean crystallographic
group (NEC group), we compute the cohomology groups. In the case where the group
is a Fuchsian group, we also determine the ring structure of the cohomology.

1. Introduction

LetΓ be a geometrically finite non-Euclidean crystallographic group (NEC group),
i.e. a discrete subgroup of PGL2(R) with a finite sided fundamental domain for the
action of Γ on the hyperbolic planeRH2. Throughout we letΛ(Γ ) denote the limit
set of Γ . In this paper, we will calculate the cohomology of Γ . In the case where
Γ is a Fuchsian group, i.e. Γ is contained in PSL2(R), we will also calculate the
cohomology ring. Our proof will involve finding a suitable fundamental domain
for the action of the group on RH2 ∪ Λ(Γ ) and then applying a Cartan-Leray type
spectral sequence.

Since RH2 ∪ Λ(Γ ) is contractible, the sequence converges to the cohomology
of Γ . Using knowledge of the abelianization of Γ , it is easy to compute with the
spectral sequence. We will now set the convention that an omission of coefficients
in the (co)homology functors should be read as having coefficients in the trivial
module Z.

Definition 1.1. Let m1, . . . ,mr be a set of positive integers each greater than 2.
For j = 1, . . . , r − 1, let t̂ j be the greatest common divisor of the set of products
of m1, . . . ,mr taken j at a time. Then, let t1 = t̂1 and for j = 2, . . . , r − 1 let
t j = t̂ j/t̂ j−1. We define w j for j = 1, . . . , r − 1 by the same process except
for we perform the procedure to 2m1,m1, . . . ,mr and discard products containing
2m1m1. Finally, we define wr to be equal to 2m1m2 . . .mr/wr−1.

Theorem 1.2. Let Γ be an NEC group of signature

(g, s, ε, [m1, . . . ,mr ], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk ), (), . . . , ()}),
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where the number of empty cycles equals d. Let CE denote the number of even ni,l
and let CO denote the number of period cycles for which every ni,l is odd.

(a) If ε = + and d = k = s = 0 (i.e. Γ is a cocompact Fuchsian group) then

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Z q = 0,

Z
2g ⊕

(⊕r−1
j=1 Zt j

)
q = 1,

Z q = 2,⊕r
j=1 Zm j q = 2l + 1, where l ≥ 1,

0 otherwise.

(b) If ε = − and d = k = s = 0 then

Hq(Γ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z q = 0,

Z
g−1 ⊕

(⊕r
j=1 Zw j

)
q = 1,

⊕r
j=1 Zm j q = 2l + 1, where l ≥ 1,

0 otherwise.

(c) If ε = + and d + k + s > 0 then

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z q = 0,

Z
2g+s+k+d−1 ⊕ Z

CE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q = 1,

Z

1
2 qCE+CO+d
2 q = 2p > 0,

Z

1
2 (q−1)CE+CO+d
2 ⊕

(⊕k
i=1

⊕si
l=1 Zni,l

)

⊕
(⊕r

j=1 Zm j

)
q ≡ 3 (mod 4),

Z

1
2 (q+1)CE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q > 1 and

q ≡ 1 (mod 4).

(d) If ε = − and d + k + s > 0 then

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z q = 0,

Z
g+s+k+d−1 ⊕ Z

CE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q = 1,

Z

1
2 qCE+CO+d
2 q = 2p > 0,

Z

1
2 (q−1)CE+CO+d
2 ⊕

(⊕k
i=1

⊕si
l=1 Zni,l

)

⊕
(⊕r

j=1 Zm j

)
q ≡ 3 (mod 4),

Z

1
2 (q+1)CE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q > 1 and

q ≡ 1 (mod 4).

In the case where Γ is a Fuchsian group we also compute the ring structure
(Theorem 1.4).



Cohomology of Fuchsian groups 661

Definition 1.3. We will write
⊕r

j=1 Zm j = (
⊕r−1

j=1 Zt j ) ⊕ (
⊕l

k=1 Zqk ), where

the
⊕l

k=1 Zqk term is decomposed via the invariant factor decomposition of finite
abelian groups. We write H̃∗(X) for the reduced cohomology of X , that is the
kernel of the map induced by the inclusion of the basepoint. Recall that H∗(Zq) =
Z[x]/(qx) where x has degree 2. Define Rq to be the subring of H̃∗(Zq) generated
by x2 and x3.

Theorem 1.4. Let Γ be a Fuchsian group of signature [g, s;m1, . . . ,mr ].
(a) If s = 0 then H̃∗(Γ ) ∼= H̃∗(Σg) ⊕

(⊕r−1
j=1 H̃

∗(Zt j )
)

⊕ (
⊕l

k=1 Rqk ).

(b) If s > 0 then H̃∗(Γ ) ∼= H̃∗(F2g+s−1) ⊕
(⊕r

j=1 H̃
∗(Zm j )

)
where F2g+s−1 is

a free group of rank 2g + s − 1.

We remark that some of the results have appeared in the literature before. The
case where Γ is a cocompact Fuchsian group, so ε = + and d = k = s = 0, was
considered by Majumdar [16], however, our computation of the ring structure is
new. The case ε = + and d = k = 0 is a corollary of a result of Huebschmann [11]
and the case ε = − and d = k = s = 0 was considered by Akhter and Majumdar
[1]. Each of these previous results used different methods to the ideas here.

Other interpretations of the cohomology of Fuchsian groups have appeared in
the literature. These have primarily dealt with lifting phenomena [17], with Eichler
cohomology [5,6] or with K -theory in relation to the Baum-Connes conjecture
[2,12,14].

The paper is structured as follows. In Section 2 we define the signature of an
NEC group. In Section 3 we introduce the Cartan Leray type spectral sequence for
a Γ -space. Finally, in Section 4 we prove Theorem 1.2 and Theorem 1.4.

2. Non-Euclidean crystallographic groups

We will first describe Wilkie and Macbeath’s NEC signatures [15,19], then the
associated fundamental domain in RH2 ∪ Λ(Γ ), and finally we will give a presen-
tation for an NEC group in terms of its signature. For further information on NEC
groups the reader should consult [4].

An NEC signature consists of a sign ε = ±, and several sequences of integers
grouped in the following manner:

1. Two integers g, s ≥ 0.
2. An ordered set of integer periods [m1, . . . ,mr ].
3. An ordered set of k period cycles {Ci := (ni,1, . . . , ni,si ) : 1 ≤ i ≤ k}.
4. A further d empty period cycles (), . . . , ().

The sequences and sign are then combined into the NEC signature, which is written
as

(g, s, ε, [m1, . . . ,mr ], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk ), (), . . . , ()}).
We let CE denote the number of even ni,l and we let CO denote the number of

Ci for which every ni,l is odd.
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Associated to each NEC signature is a surface symbol describing a fundamental
domain for the associatedNECgroup.The surface symbol is a list of edges travelling
around the polygon clockwise. Two edges paired orientably will be indicated by
the same letter and a prime. Two edges paired non-orientably will be indicated by
the same letter and an asterisk. When ε = +, we have the surface symbol

ξ1ξ
′
1 . . . ξrξ

′
rε1γ1,0 . . . , γ1,s1ε

′
1ε2 . . . εkγk,0 . . . , γk,sk ε

′
kα1β

′
1α

′
1β

′
1 . . . αgβ

′
gα

′
gβ

′
g.

When ε = −, we have the surface symbol

ξ1ξ
′
1 . . . ξr+sξ

′
r+sε1γ1,0 . . . , γ1,s1ε

′
1ε2 . . . εkγk,0 . . . , γk,sk ε

′
kα1α

∗
1 . . . αgα

∗
g .

For j = 1, . . . , r , the period m j is attached to the vertex v j common to the
edges ξ j and ξ ′

j . For 1 ≤ i ≤ k and 1 ≤ l ≤ si the cycle period ni,l is associated
with the vertex wi,l common to the edges γi,l−1 and γi,l . The vertices v j for j =
r + 1, . . . , r + s lie on the boundary ∂RH2. For i = 1, . . . , d + k we label the
vertex common to the edges εi and γi,0 or to the edges γi,si and ε′

i by wi,0. Finally,
we label all other vertices v0. Several examples of fundamental domains are given
in Figure 1.

For an NEC group Γ we may take the quotient O = RH2/Γ . The quotient
comes with a natural orbifold structure and many of the geometric-toplogical fea-
tures of the quotient are reflected in the signature. Indeed, if ε = + then O is a
genus g surface with the disjoint union of s points and d + k open disks removed.
We refer to the removed points as the cusps of O and to the boundary of the open
disks as the boundary components of O. There are r cone or orbifold points in the
interior O. For the i th boundary component, for 1 ≤ i ≤ k, there are si cone or
orbifold points on the boundary. The remaining d boundary components do not
have any cone points. If ε = − the situation is identical except we begin with a
sphere with g cross-caps attached.

Under the action of the associated NEC group, for 1 ≤ j ≤ r the stabiliser
of the vertex v j is a cyclic group of order m j acting on RH2 via rotations. This
corresponds exactly to a maximal elliptic subgroup ofΓ fixing the point v j inRH2.
If v j lies on ∂RH2, that is when r +1 ≤ j ≤ r + s, then the stabiliser is isomorphic
to Z. This corresponds to a maximal parabolic subgroup of Γ stabilising a cusp.

The stabiliser of the edge γi,l for 1 ≤ i ≤ k and 0 ≤ l ≤ sk or for k + 1 ≤
i ≤ k + d and l = 0 is a reflection group Z2. The reflection corresponds to a
non-trivial reflection in Γ reflectingRH2 through the geodesic line containing γi,l .
In the quotient these edges correspond to the edges in the boundary components.
The stabiliser of the vertex wi,l for 1 ≤ i ≤ k and 1 ≤ l ≤ sk is a dihedral group
D2ni,l of order 2ni,l , note thewi,l lies in the i th boundary component. The stabiliser
of the vertex wi,l for 1 ≤ i ≤ k + d and l = 0 is a reflection group Z2. No other
points of the polygon are fixed points of the NEC group.

Recall that the rational Euler characteristic of a group Γ of type V F is defined
to be χQ(Γ ) = χ(Γ ′)/|Γ : Γ ′| where Γ ′ is a finite index subgroup of type F . Let
Γ be an NEC group of signature

(g, s, ε, [m1, . . . ,mr ], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk ), (), . . . , ()}),
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Fig. 1. In (a) we have a fundamental domain for an NEC group of signature
(1, 0, +, [], {(m, n), ()}). The topological quotient of RH2 is homeomorphic to a torus with
two open discs removed. In the orbifold structure of the quotient we have two cone points on
one of the two boundary components. In (b)we have a fundamental domain for a Fuchsian tri-
angle group of signature (0, 0, +, [p, q, r ], {}) = [0, 0; p, q, r ] for p−1 + q−1 + r−1 < 1.
The topological quotient is homeomorphic to a sphere. In the orbifold structure we have
three cone points. In (c) we have a fundamental domain an Fuchsian NEC group of signature
(0, 1, +, [m, n], {}) = [0, 1;m, n] form+n > 4. The topological quotient is homeomorphic
to a punctured sphere. In the orbifold structure we have two cone points in the interior of the
punctured sphere. In (d) we have a fundamental domain for a non-orientable NEC group of
signature (4, 0, −, [m, n], {}) for m, n ≥ 2. The topological quotient is homeomorphic to a
non-orientable surface. In the orbifold structure we have two cone points
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Table 1. Generators and relations for an NEC group

Signature element Generator(s) Relation(s)

Period m j for 1 ≤ j ≤ r x j x
m j
j = 1

Cycle (ni,1, . . . , ni,si ) for
1 ≤ i ≤ k and 0 ≤ l ≤ si

ei
ci,0 . . . ci,si

ci,si = e−1
i ci,0ei

c2i,l−l = c2i,l = (ci,l−1ci,l )
2 = 1

Cycle () for k + 1 ≤ i ≤ k + d ei , ci,0 c2i,0 = 1, ci,0 = e−1
i ci,0ei

s xr , . . . , xr+s See g ±
g + a1, b1, . . . , ag, bg

∏r+s
j=1 x j

∏k+d
i=1 ei

∏g
t=1[at , bt ] = 1

g − a1, . . . , ag
∏r+s

j=1 x j
∏k+d

i=1 ei
∏g

t=1 a
2
t = 1

if ε = + then

χQ(Γ ) = 2 − 2g − s − r − d − k − 1

2

k∑

i=1

si +
r∑

j=1

1

mi
+ 1

2

k∑

i=1

si∑

j=1

1

ni, j

and if ε = − then

χQ(Γ ) = 2 − g − s − r − d − k − 1

2

k∑

i=1

si +
r∑

j=1

1

mi
− 1

2

k∑

i=1

si∑

j=1

1

ni, j
.

If χQ(Γ ) < 0 then there exists an NEC groupwith the corresponding signature,
except when ε = − and s > 0where there is no known classification. By theGauss-
Bonnet Theorem we see that the hyperbolic area of a fundamental domain for the
NEC group is equal to −2πχQ(Γ ) [18] (see also [4, Theorem 1.1.8]).

For the above equations, there are 17 solutions to χQ(Γ ) = 0, these exactly
correspond to the 17 Euclideanwallpaper groups [15, Section 8].We can now give a
presentation for anNEC group. Due to the large number of generators and relations,
we detail this in Table 1.

If d = k = 0 and ε = +, then we write the signature of Γ as [g, s;m1, . . . ,mr ]
and we refer to Γ a Fuchsian group (i.e. a discrete subgroup of PSL2(R). If s = 0,
we say that Γ is cocompact.

3. A Cartan-Leray type spectral sequence

For a more thorough treatment on Γ -equivariant cohomology and related spectral
sequences the reader should consult for example [3, Chapter VII]. We will just
summarise the theory we need.

Let Γ be a discrete group, X a Γ -complex and M a Γ -module. We define the
Γ -equivariant homology of X with coefficients in M to be

HΓ∗ (X; M) := H∗(Γ ;C∗(X) ⊗ M)

with diagonal Γ -action on C∗(X) ⊗ M .
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Let Ω(p) be a set of representatives of Γ -orbits of p-cells in X and let Γσ

denote the stabiliser of the cell σ . We have a Γσ -module Zσ on which Γσ acts
on via the orientation character χσ : Γσ → {±1}. Note that the action is trivial
if Γσ fixes σ pointwise. Define Mσ := Zσ ⊗ M , it follows Mσ is a Γσ -module
additively isomorphic to M but with the Γσ -action twisted by χσ . One of the main
computational tools is the following spectral sequence.

Theorem 3.1. [3,ChapterVII (7.10)] Let X be aΓ -complex, then there is a spectral
sequence

E1
pq :=

⊕

σ∈Ω(p)

Hq(Γσ ;Zσ ) ⇒ HΓ
p+q(X;Z).

A description of d1p,∗ : E1
p,∗ → E1

p−1,∗ is given in [3, Chapter VII.8], we will
summarise it here. Let σ be a p-cell of X and τ a (p − 1)-cell. Write ∂στ : Mσ →
Mτ for the (σ, τ )-boundary component of Cp(X) ⊗ M → Cp−1(X) ⊗ M . Let
Ωσ = {τ : ∂στ �= 0} and note that this is a Γσ -invariant set of (p − 1)-cells. Let
Γστ = Γσ ∩ Γτ and let

tστ : H(Γσ ; Mσ ) → H(Γστ ; Mσ )

denote the transfer map arising from the fact |Γσ : Γστ | is finite. Now, ∂στ is a
Γστ -map and ∂ is a Γ -map, thus we have a map

uστ : H∗(Γστ ; Mσ ) → H∗(Γτ ; Mτ )

induced byΓστ ↪→ Γτ and ∂ . Let τ0 be aΓ -orbit representative in X and choose g ∈
Γ such that g(τ ) = τ0. The action of g on Cp−1(X) ⊗ M induces an isomorphism
Mτ → Mτ0 which is compatible with the conjugation isomorphism Γτ → Γτ0

induced by g. It follows there is an isomorphism

vτ : H∗(Γτ ; Mτ ) → H∗(Γτ0; Mτ0).

Finally, by [3, Chapter VII (8.1)] up to sign we have

d1p,∗|H∗(Γσ ;Mσ ) =
∑

τ∈Ω(p−1)

vτuστ tστ .

4. Cohomology

4.1. The cocompact Fuchsian case

We will calculate the cohomology of cocompact Fuchsian groups. We note that the
proof here is new, except for we calculate the abelianization using Smith normal
form in the same way as Majumdar [16].
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Fig. 2. The E1-page of the spectral sequence for a Fuchsian group

Fig. 3. The E2-page of the spectral sequence for a Fuchsian group

Proof of Theorem 1.2(a). Wewill useTheorem3.1. In this case X = RH2 endowed
with the induced cell structure from the Wilkie-Macbeath polygon. To set up the
spectral sequence we observe for each m j there is a Γ -orbit of 0-cells, where each
cell has stabiliser Zm j . Now, by Theorem 3.1 the E1-page of the spectral sequence
has the form given by Figure 2.

The only non-trivial differentials are along the bottom row. Slightly abusing
notationwe fix a basis for the chain groups by labelling the chains by the equivariant
cells which afford them. Thus, we have a sequence

0 〈v0, . . . , vr 〉 〈αi , βi , ξ1, . . . , ξr |i = 1, . . . , g〉 〈γ 〉 0.
d11,0 d12,0

We have d11,0(αi ) = d11,0(βi ) = v0 − v0 = 0 for 1 ≤ i ≤ g, d11,0(ξ j ) = v j − v0

for 1 ≤ j ≤ r and, d12,0 = 0. In particular, Im(d11,0)
∼= Z

r , Ker(d11,0)
∼= Z

2g ,

Im(d12,0) = 0 and Ker(d12,0)
∼= Z. From this calculation we deduce the E2 page is

as in Figure 3.

The only non-trivial differential is the map drawn in Figure 3. Moreover, the
spectral sequence clearly collapses after the computation of this differential. We
can easily deduce what this differential is using the knowledge of H1(Γ ). We will
compute the abelianization using the same method as Majumdar [16].
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To compute the abelianization we write out the presentation matrix M of Γ and
then compute the Smith normal form.

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1 0 · · · · · · 0 0 · · · 0
0

. . .
...

...
...

...
. . .

...
...

...
...

. . . 0 0 0
0 · · · · · · 0 mr 0 0
1 · · · · · · 1 1 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We find H1(Γ ) = Z
2g ⊕

(⊕r−1
j=1 Zt j

)
. The constants t j (Definition 1.1) come from

Theorem 6 in Ferrar’s book ‘Finite Matrices’ [8]. In particular,
∏p

j=1 t j is equal to
the greatest common divisor of the p-rowed minors of M .

It follows from the calculation of the abelianization of Γ that the map d22,0
is a surjection onto the factor

⊕l
k=1 Zqk from the decomposition

⊕r
j=1 Zm j =

(
⊕r−1

j=1 Zt j ) ⊕ (
⊕l

k=1 Zqk ). The result now follows from the fact all extension
problems are trivial. ��
Corollary 4.1. LetΓ be a cocompact Fuchsian groupof signature [g;m1, . . . ,mr ],
then

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Z q = 0,
Z
2g q = 1,

Z ⊕
(⊕r−1

j=1 Zt j

)
q = 2,

⊕r
j=1 Zm j q = 2l, where l ≥ 2,

0 otherwise.

4.2. Non-orientable NEC groups with no cusps or boundary components

Proof of Theorem 1.2(b). Let X = RH2 and let Γ be an NEC group with signature
(g, 0,−, [m1, . . . ,mr ], {}). In this case our E1-page again has the form given in
Figure 2. The only non-trivial differentials are along the q = 0 row. Keeping the
same notation as before we now have a sequence

0 〈v0, . . . , vr 〉 〈α1, . . . , αg, ξ1, . . . , ξr 〉 〈γ 〉 0.
d11,0 d12,0

We have d11,0(αi ) = v0 − v0 = 0 for 1 ≤ i ≤ g, d11,0(ξ j ) = v j − v0 for 1 ≤
j ≤ r and, d12,0( f ) = ∑g

i=1 2αi . In particular, Im(d11,0)
∼= Z

r , Ker(d11,0)
∼= Z

2g ,

Im(d12,0) = 2Z and Ker(d12,0) = 0. It follows that E2
0,0 = Z, E2

1,0 = Z
g−1⊕Z2 and

E2
2,0 = 0, the remaining entries are unchanged. Thus, by dimension considerations

the spectral sequence collapses.
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The result now follows from resolving the extension problem in H1(Γ ). Instead
we compute the abelianization of Γ from the presentation matrix

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1 0 · · · · · · 0 0 · · · 0
0

. . .
...

...
...

...
. . .

...
...

...
...

. . . 0 0 · · · 0
0 · · · · · · 0 mr 0 · · · 0
1 · · · · · · 1 1 2 · · · 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m2 0 · · · · · · 0 0

0
. . .

...
...

...
. . .

...
...

...
. . . 0 0

0 · · · · · · 0 mr 0
m1 · · · · · · m1 m1 2m1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M ′

We find H1(Γ ) = Z
g−1 ⊕

(⊕r
j=1 Zw j

)
. The constants w j (Definition 1.1) come

from Theorem 6 in Ferrar’s book ‘Finite Matrices’ [8]. In particular,
∏p

j=1 w j is
equal to the greatest common divisor of the p-rowed minors of M ′. ��
Corollary 4.2. If Γ is an NEC group with signature (g, 0,−, [m1, . . . ,mr ], {})
then,

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z for q = 0,
Z
g−1 for q = 1,⊕r
j=1 Zw j for q = 2,

⊕r
j=1 Zm j for q = 2l, where l ≥ 2,

0 otherwise.

4.3. Orientable NEC groups with at least one cusp or boundary component

The remaining proofs will use the homology of finite dihedral groups. We record
them here for the convenience of the reader.

Theorem 4.3. [10] Let D2n denote a dihedral group of order 2n. In the case n is
odd we have

Hq(D2n;Z) =

⎧
⎪⎪⎨

⎪⎪⎩

Z q = 0,
Z2 q ≡ 1 (mod 4),
Z2n q ≡ 3 (mod 4),
0 otherwise.

Hq(D2n;Z2) = Z2 for q ≥ 0.

In the case n is even we have

Hq(D2n;Z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z q = 0,

Z

1
2 (q+3)
2 q ≡ 1 (mod 4),

Z

1
2 q
2 q > 0 is even,

Z

1
2 (q+1)
2 ⊕ Zn q ≡ 3 (mod 4).

Hq(D2n;Z2) = Z
q+1
2 for q ≥ 0.
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Fig. 4. The E1-page of the spectral sequence for an orientable NEC group with cusps and
boundary

Wewill nowcompute the cohomology of anNECgroupwith orientable quotient
space with at least one boundary component or cusp.

Proof of Theorem 1.2(c). First, assume that k + d = 0, so s > 0. In this case it is
easy to see that we can rearrange the presentation of Γ so that Γ ∼= Fs−1 ∗ Zm1 ∗
· · · ∗ Zmr where Fs−1 is a free group of rank s − 1. The result now follows from a
straightforward application of the homology Mayer-Vietoris sequence.

We now treat the case with boundary, let k, d, s ≥ 0 such that k+d > 0 and let
ε = +.Wewill useTheorem3.1; here our space X isRH2∪Λ(Γ ) endowedwith the
induced cell structure from the Wilkie-Macbeath polygon. To set up the sequence,
observe that the stabiliser of a marked point v j in the interior of the quotient space
is a cyclic group Zm j . If the vertex v j lies on ∂RH2 then the stabiliser is Z. The
stabiliser of a marked point wi,l on the boundary of the quotient space is a dihedral
group D2ni,l , and edges along the boundary are stabilised by reflection groups
isomorphic to Z2. Now, the face stabilisers are trivial, vertices have a canonical
orientation, and the edges being stabilised by Z2 are fixed pointwise. In particular,
for each cell σ ∈ X the orientation character χσ : Γσ → {±1} is trivial. It follows
that the E1-page consists of modules with trivial Γ -action and has the form given
in Figure 4.

We will first deal with the differentials d1∗,0. By slightly abusing notation and
labelling our basis elements for each chain group by the equivariant cells which
afford them, we have a sequence

0 ←
〈

v j , wi,l

∣
∣
∣
∣

0 ≤ j ≤ r + s
1 ≤ i ≤ k + d
0 ≤ l ≤ si

〉 〈

αt , βt , ξ j , γi,l , εi

∣
∣
∣
∣

1 ≤ t ≤ 2g,
1 ≤ j ≤ r + s
1 ≤ i ≤ k + d,

0 ≤ l ≤ si

〉

〈 f 〉 0.

d11,0

d12,0
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Computing the image of the differential d12,0 on the Z-basis element f , we
obtain that up to sign

f �→
k∑

i=1

si∑

l=0

γi,l .

So, we find Im(d12,0) = Z and E2
2,0 = 0. In light of the description of the funda-

mental domain in Section 2, for d11,0 we have the following

αt �→ v0 − v0 = 0 for 1 ≤ t ≤ 2g;
βt �→ v0 − v0 = 0 for 1 ≤ t ≤ 2g;
ξ j �→ v j − v0 for 1 ≤ j ≤ r + s;
γi,l �→ wi,(l+1 (mod si )) − wi,l for 1 ≤ i ≤ k, and 0 ≤ l ≤ si ;
γi,0 �→ wi,0 − wi,0 = 0 for k + 1 ≤ i ≤ k + d;
εi �→ wi,0 − v0 for 1 ≤ i ≤ k + d.

In particular, we have Im(d11,0) = Z
r+s+k+∑k

i=1 si and Ker(d11,0) = Z
2g+k+d . It

then follows that E2
1,0 = Z

2g+k+d−1 and E2
0,0 = Z. At this point, it is easy to

see that the spectral sequence will collapse trivially once we have computed the
differentials d11,∗.

We will begin with the differential d11,q where q ≡ 1 (mod 4). Since the edges
connected to the vertices corresponding to the Zm j summands have trivial stabilis-
ers, the Zm j summands will survive to the E2-page. In the case q = 1, the Z

summands also survive by the same reasoning.
We now draw our focus to the other summands. Let each D2ni,l be generated by

a reflection ri,l and a rotation ti,l of order ni,l . We have that H1(D2ni,l ) is generated
by r1i,l , t

1
i,l , the images of ti,l and ri,l under the abelianization map. For q > 1 we

have classes rqi,l , t
q
i,l ∈ Hq(D2ni,l ). There will be extra generators of Hq(D2ni,l )

whenever an ni,l is even; we will suppress this from the notation. Note that this
has the effect of working in the subgroup of Hq(D2ni,l ) generated by rqi,l and tqi,l .

Also, note that if ni,l is odd then tqi,l = 0. For each q ≡ 1 (mod 4) we now have
a sequence (ignoring the extra classes arising from dihedral groups where ni,l is
even and when q > 1)

0

〈

w
q
i,0, w

q
p,0, r

q
i,l , t

q
i,l

∣
∣
∣
∣

1 ≤ i ≤ k
1 ≤ l ≤ si
1 ≤ p ≤ d

〉 〈

γ
q
i,l , γ

q
p,0

∣
∣
∣
∣

1 ≤ i ≤ k
0 ≤ l ≤ si
1 ≤ p ≤ d

〉

.
d11,q

We will break the map d11,q into several cases depending on the adjacent edges
in the fundamental domain and the cycle type of the boundary component. First, we
will consider each ‘end’ of the i th boundary component with a non-empty period
of cycles (i.e. 1 ≤ i ≤ k), the reader should keep Figure 1a in mind. Here we have

(ψi,0)q : Hq(〈ri,0〉) ↪→ Hq(D2ni,l ) ⊕ Hq(Z2) by γ
q
i,0 �→ tqi,1 − w

q
i,0
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and

(ψi,si )q : Hq(〈ri,si ti,si 〉) ↪→ Hq(Z2) ⊕ Hq(D2ni,l ) by γ
q
i,0 �→ w

q
i,0 − tqi,si − rqi,si .

For the intermediary edges we have

(ψi,l)q : Hq(〈ri,l ti,l〉) ↪→ Hq(D2ni,l+1) ⊕ Hq(D2ni,l ) by γ
q
i,0 �→ tqi,l+1 − tqi,l − rqi,l .

In each case we are suppressing from the image a possible sum of order 2 classes
(distinct from tqi,l and rqi,l ) arising from even dihedral groups. The reason for this
is that provided at least one of the ni,l are even, the images of the maps ψi,l for
0 ≤ l ≤ si are already linearly independent. Of course if all of the ni,l for 0 ≤ l ≤ si
are odd, then the classes do not exist.

If the boundary component i only contains odd cycles, then γ
q
i,si

= ∑si−1
l=0 γ

q
i,l ,

so we have an order 2 element in the kernel of d11,q . If the boundary component has
an empty period of cycles, then we have exactly one edge γi,0 with vertex wi,0 at
each end. In particular γ

q
i,0 �→ w

q
i,0 − w

q
i,0 = 0. From this analysis we deduce that

Ker(d11,q) = Z
CO+d
2 and Im(d11,q)

∼= Z
k+∑k

i=1 si−CO
2 . It then follows from a simple

calculation that E2
1,q = Z

CO+d
2 and E1

0,q
∼= Z

1
2 (q+1)CE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
for

q ≡ 1 (mod 4), q > 1. When s > 0 we have an additional Zs summand in E2
0,1.

An alternative way of considering these maps is as follows. Let CEi denote
the number of even periods in the i th period cycle. Observe that each period cycle
contributes 1

2 (q + 1)CEi − 1 summands of Z2 to E2
0,q . The CO summands of Z2

contained in Ker(d11,q) cause an additional CO summands of Z2 to survive to E2
0,q .

From, above we then have that

k +
k∑

i=1

(
1

2
(q + 1)CEi − 1

)

+ CO = k + 1

2
(q + 1)CE − k + CO = 1

2
(q + 1)CE + CO .

Wenow need to compute themaps d11,q for q ≡ 3 (mod 4).We have essentially

the same cases and proof as when q ≡ 1 (mod 4) except that Coker(d11,q) contains
a summand Zni ,l for each ni,l .

Claim. For q ≡ 3 (mod 4), 1 ≤ i ≤ k and 1 ≤ l ≤ si the term E2
1,q =

Coker(d11,q) contains a summand Zni ,l .

Proof of claim. When ni,l is odd this is immediate. Let n := ni,l be even and
consider Hq+1(D2n;Z) where q ≡ 3 (mod 4). There is an element of order n in
Hq+1(D2n;Z) that corresponds to a power of the second Chern class of the faithful
2-dimensional linear representation ρ of D2n = 〈r, t〉. Restricting ρ to the subgroup
〈r t〉 gives the regular representation of Z2 ∼= 〈r t〉. Now, the total Chern class of
Z2 is equal to 0 in degree 4. It follows that the map Hq+1(D2n;Z) → Hq+1(〈r t〉)
has kernel containing a Zn summand. Dualizing back to homology, it follows the
map Hq(〈r t〉) → Hq(D2n) has cokernel containing a Zn summand. This yields the
claim.
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We conclude the description of E2 as follows. First, when q ≡ 3 (mod 4)

we have Ker(d11,q)
∼= Z

CO+d
2 and Im(d11,q)

∼= Z
k+∑k

i=1 si−CO
2 . It follows E2

1,q
∼=

Z
CO+d and E2

0,q
∼= Z

1
2 (q−1)CE+CO+d
2 ⊕

(⊕k
i=1

⊕si
l=1 Zni,l

)
⊕

(⊕k
j=1 Zm j

)
. Every

other entry on the E2-page is 0 trivially.
The theorem follows from resolving the extension problems 0 → E2

1,q−1 →
Hq(Γ ) → E2

0,q → 0, where q > 0 is even. To resolve the extension problems, we
will compute the homology ofΓ withZ2 coefficients and then compare theZ2-rank
of Hq(Γ ;Z2) with the Z2-rank of (E2

1,q−1 ⊕ E2
0,q) ⊗Z2 ⊕ Tor(E2

0,q−1,Z2). Note
that the latter is equal to (q + 1)CE + 2CO + 2d. If the ranks are equal, then the
extension will split.

Recall that Hn(Z2;Z2) = Z2 for n ≥ 0. Combining this with the Z2-
homology groups of the Dihedral groups (Theorem 4.3) and the Γ -equivariant
spectral sequence (Theorem 3.1), we can set up a spectral sequence calculation. To
simplify things, note we are only interested in the maps d11,q for q > 0.

Let q > 0 and letCT denote the number of odd cycles, soCT +CE = ∑k
i=1 si .

We then have a sequence

0 Z
(q+1)CE+CT +d+k
2 Z

CE+CT +d+k
2 0.

d11,q

By essentially using the same calculations as above we have that Im(d11,q)
∼=

Z
CE+CT +k−CO
2 . From this we conclude that E2

0,q = Z
(q+1)CE+CO+d
2 and that

E2
1,q = Z

CO+d
2 . This gives aZ2-rank of (q+1)CE +2CO +2d. Thus, the extension

splits. ��
Corollary 4.4. Let d + k + s > 0. If Γ is an NEC group with signature

(g, s,+, [m1, . . . ,mr ], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk ), (), . . . , ()})
then,

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z q = 0,
Z
2g+s+k+d−1 q = 1,

Z

1
2 qCE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q ≡ 2 (mod 4),

Z

1
2 (q−1)CE+CO+d
2 q = 2p + 1 where p ≥ 1,

Z

1
2 qCE+CO+d
2 ⊕

(⊕k
i=1

⊕si
l=1 Zni,l

)

⊕
(⊕r

j=1 Zm j

)
q > 0 and q ≡ 0 (mod 4).

4.4. Non-orientable NEC groups with at least one cusp or boundary component

We will now compute the cohomology of an NEC group with non-orientable quo-
tient space and at least one cusp or boundary component. The proof is almost exactly
the same as the proof of Theorem 1.2(c) so we will only provide a brief sketch and
highlight the differences.
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Proof of Theorem 1.2(d) (sketch). First assume that k+d > 0. The key differences
between the orientable (Figure 4) and non-orientable cases is the E1

1,0 term and the

map d12,0. The E1
1,0 now contains a Zg summand instead of a Z2g summand. The

map d12,0 now sends the generator to the sum of boundary components plus 2 times
each generator of the aforementioned Zg summand. More precisely (with the same
notation as in the proof of Theorem 1.2(c)) we have,

f �→
k∑

i=1

si∑

l=0

γi,l + 2
g∑

t=1

αt

In particular, E2
1,0 = Z

g+k+d−1. The proof goes through identically from here.

Now assume g > 0 and k + d = 0, so s > 0. We still have that E1
1,0 contains a

Z
g summand instead of a Z2g summand. However, with notation as before,

d12,0( f ) = 2
g∑

t=1

αt .

In particular, E2
1,0 = Z

g−1 ⊕ Z2. The remainder of the proof is identical, except
we now have an extension problem to determine H1(Γ ). We instead resolve this
by computing the abelianisation from the presentation matrix

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1 0 · · · · · · 0 0 · · · 0 0 · · · 0
0

. . .
...

...
...

...
...

...
. . .

...
...

...
...

...
...

. . . 0 0 · · · 0 0 · · · 0
0 · · · · · · 0 mr 0 · · · 0 0 · · · 0
1 · · · · · · 1 1 1 · · · 1 2 · · · 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Clearly, M can be reduced to an (r +1)× (r +g+ s)matrix with the only non-zero
entries equal to m1, . . . ,mr , 1 on the leading diagonal. The result follows.

The final case when g = k = d = 0 and s > 0 follows an almost identical
argument to the case k = d = 0, s > 0 and ε = +, so we will not recreate it here.
��

Corollary 4.5. Let d + k + s > 0. If Γ is an NEC group of signature

(g, s,−, [m1, . . . ,mr ], {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk ), (), . . . , ()})
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Fig. 5. The E2-page of the cohomological spectral sequence for a cocompact Fuchsian
group. Here the element x j is additive torsion of order m j

then

Hq(Γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z q = 0,
Z
g+s+k+d−1 q = 1,

Z
CE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q = 2,

Z

1
2 (q−1)CE+CO+d
2 q = 2p + 1 where p ≥ 1,

Z

1
2 qCE+CO+d
2 ⊕

(⊕k
i=1

⊕si
l=1 Zni,l

)

⊕
(⊕r

j=1 Zm j

)
q > 0 and q ≡ 0 (mod 4),

Z

1
2 qCE+CO+d
2 ⊕

(⊕r
j=1 Zm j

)
q > 2 and q ≡ 2 (mod 4).

4.5. The ring structure

We will now deal with the computation of the ring structure. Recall that Rq is the
subring of H̃∗(Zq) generated by x2 and x3, where x is the degree 2 generator of
H∗(Zq).

Proof of Theorem 1.4. We first prove the result when s > 0. Let Γ be a Fuchsian
group of signature [g, s;m1, . . . ,mr ] such that s > 0. We may rearrange the
presentation of Γ so that Γ ∼= Fs−1 ∗ Zm1 ∗ · · · ∗ Zmr where Fs−1 is a free group
of rank s−1. The result is now an easy application of the Mayer-Vietoris sequence
for cohomology.

Now, letΓ be a Fuchsian group of signature [g, s;m1, . . . ,mr ] such that s = 0.
We instead consider the equivariant cohomology spectral sequence for Γ . Armed
with our calculation for homology, it is clear that E2-page has the form given in
Figure 5 (here m j x j = 0). Now, there is an extension problem

0 Z H2(Γ ) 〈x1, . . . , xr 〉 0

which we can resolve using the computation of H1(Γ ). In particular, an applica-

tion of the universal coefficient theorem yields that H2(Γ ) ∼= Z ⊕
(⊕r−1

j=1 Zt j

)
.

It follows the extension problem kills a subgroup of 〈x1, . . . , xr 〉 isomorphic to⊕l
k=1 Zqk . Since the spectral sequence preserves cup products the result follows.

��



Cohomology of Fuchsian groups 675

5. Closing remarks

We end with three remarks. Firstly, the author was asked by Professor Gareth Jones
whether the same results hold for the 17 wallpaper groups if one takes X to be the
Euclidean plane. We confirm here it does, however the cohomology computations
of these groups arewell known sowewill not elaborate on this. Secondly, the results
in this paper are consistent with Gaboriau’s result that L2-Betti numbers of lattices
in a Lie group are proportional to their covolume [9]. As such one deduces the well
known result that for anNECgroupΓ the first L2-Betti numberb(2)

1 (Γ ) = −χQ(Γ )

and all other L2-Betti numbers vanish. Finally, Fuchsian groups are not determined
by their cohomology. Indeed, the groupswith signatures [g, s; 3, 10] and [g, s; 5, 6]
have isomorphic cohomology rings but the groups are not isomorphic.
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