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Abstract. We give a direct proof for the degeneration formula of Gromov–Witten invariants
including its cycle version for degenerations with smooth singular locus in the setting of
stable log maps of Abramovich-Chen, Chen, Gross–Siebert.
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Introduction

Gromov–Witten invariants are constant in smooth families andmoregenerally in log
smooth families if one considers logarithmic Gromov–Witten invariants instead [1,
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12,14], [26, Thm.A.3]. A one-parameter normal crossing degeneration, also known
as semi-stable degeneration, is such a log smooth family. We here consider the case
where the central fibre X consists of only two smooth irreducible components
X1, X2 that meet in a smooth divisor D. In this case, the log Gromov–Witten
invariants of X decompose into log Gromov–Witten invariants on the components
with log structure given by the divisor D respectively. This result is the so-called
degeneration formula that was discovered and proven in pioneering works with the
framework of expanded relative stable maps: in the symplectic geometry setup by
Li and Ruan [23], by Ionel and Parker [18]; in algebraic geometry by Li [24] and
Abramovich and Fantechi [4]. Chen [11] proved a hybrid version using stable log
maps in the sense of [11,21]. All of these results use target expansions. We give a
proof in Theorems 1.5 and 1.6 below that goes without expansions. The result itself
is not new as it follows via comparison theorems [5] from the prior works, but we
decided to compose a direct proof in order to facilitate the arguments in [16,38].
The splitting stack in Sect. 7 is novel. Our gluing result of Sect. 6 has been used in
[7,8,15]. We give detailed arguments for the comparison results of virtual classes
by proving the commutativity of the relevant maps of triangles, see (9.10), (9.12).
Novel is the elaboration of the tropical point of view for the degeneration formula
inspired by [26,27,31]. The tropical point of view in log Gromov–Witten theory
was first established in [14].

A decomposition formula for general log smooth fibres has been given in [2].
A symplectic geometry approach has been followed in [34,37] with a more general
degeneration formula in [35]. More general gluing formulae in log geometry has
been obtained in [3,39] and a degeneration formula in [36].

0.1. Conventions

We refer to [19] for the basics of log geometry. All log schemes will be fine and
saturated and we denote them by undecorated letters like S. We refer to the under-
lying scheme by S and occasionally, by abuse of notation, we also refer to S as the
scheme with trivial log structure. For D ⊂ X a subvariety we denote the pullback
of the log structure from X to D byMX |D . We useM to refer to monoid sheaves
and M to refer to moduli stacks, e.g., Mg,n(X/B, β) denotes the moduli stack of
n-marked basic stable log maps of genus g and class β to a target log space X that
is log smooth over B. We will sometimes use the notationMg,S(X/B, β) for some
finite set S that is used to label themarkings of the stablemaps.With few exceptions
clear from the context, curves for us will be connected. Out of the n markings, some
may have prescribed contact orders to strata in X and this is a part of the data of β.
For a monoid M , we denote its Grothendieck group by Mgp, similarly for sheaves
of monoids. We set M∨ := Hom(M, N), denote by M[1] the set of generators of
dimension one faces of M and for m ∈ M , we set m⊥ = {n ∈ M∨|n(m) = 0}. For
a graph �, we let E(�) denote the set of its edges. We work over a fixed field k

of characteristic zero. When we refer to a point, it will be implicit that we mean a
geometric point.
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1. Geometric setup and the main result

1.1. Semi-stable degenerations

Consider a semi-stable degeneration π : X→ B, i.e., a projective surjection from
a smooth scheme X to a smooth one-dimensional scheme B with smooth fibres
away from a point b and X = π−1(b) is simple normal crossings. We assume X
consists of two smooth components X1, X2 that meet in a smooth subvariety D
that is a divisor in each of X1, X2.

The divisor X ⊂ X defines a divisorial log structure onX, concretely it is given
by themonoid sheafMX := O×X\X ∩OX with its inclusion inOX. We analogously

obtain a divisorial log structure on B byMB := O×B\{b} ∩OB that maps intoMX

under π∗, so we turned π into a log map which is in fact log smooth, even over
b. By [9] and [26, Theorem A.3] the log Gromov–Witten invariants of all fibres
of π agree. The main purpose of the degeneration formula is to compute these
invariants on the special fibre X . Henceforth, we will therefore forget about π and
only consider a log smooth X → b that is decomposed as in this degeneration.

1.2. Log smooth target X

We let k := Spec(N
1 	→0−→ k) denote the standard log point. (This can be thought of

as b above and it now comes with a distinguished chart.) We denote its underlying
point scheme by k = Spec k.

Throughout, we fix a log smooth morphism X → k where the underlying
scheme decomposes as X = X1 
D X2 in smooth irreducible components Xi and
D is the smooth connected singular locus of X . We assume that the log structure
is of semi-stable type which means that X → k is strict away from D and the
stalks of the characteristic MX :=MX/OX are isomorphic to N

2 at points in D.
Unwinding the definitions we obtain the following standard fact.

Lemma 1.1. Let X = X1
D X2 be a scheme over k. Giving a log smooth morphism
X → k of semi-stable type with underlying variety X is equivalent to giving two
line bundles L1,L2 on X together with maps si : Li → OX and a global section
π ∈ �(X ,L1 ⊗ L2) such that

(1) L1|X2

s1|X2−→ OX2 is injective and identifies L1|X2 = OX2(−D), and similarly
with indices 1,2 interchanged,

(2) π trivializes L1 ⊗ L2 ∼= OX and
(3) (s1 ⊗ s2)(π) = 0.

Remark 1.2. If X is the central fibre of a family π : X→ B as before, then we find
Li = OX(−Xi )|X with si the restriction of the inclusion OX(−Xi ) ↪→ OX to X
and π defines a section of OX(−X1 − X2) over an étale neighbourhood of b, so
indeed π ∈ �(X ,L1 ⊗ L2).
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Remark 1.3. A scheme of the form X = X1 
D X2 permits a lift to a log smooth
morphism X → k if and only if T 1 := Ext(�X ,OX ) has a nowhere vanishing
section. More generally, if T 1 has a section with smooth zero locus then X can be
upgraded to a log toroidal morphism X → k, see [13].

We denote by ιi : Xi → X the natural inclusions. Using the natural surjection

N
2 →MX :=MX/O×X , ei 	→ (local equation for Xi in X) (1.1)

we will later make use of the identification

MX = ι1,∗N⊕ ι2,∗N. (1.2)

There is a natural surjection onto MX from the following sheaf of monoids

{(n1, n2, f )|n1, n2 ≥ 0, f is a local generator for L⊗n1
1 ⊗ L⊗n2

2 },
see for instance Complement 1 in [19].

Remark 1.4. Note that X1 has two different natural log structures namelyMX |X1 ,
the restriction from X , and the divisorial log structure from D, i.e., M(X1,D) :=
O×X1\D ∩ OX1 , similarly for X2. For the remainder of the paper, we use Xi to
refer to the latter one, i.e., Xi = (Xi ,M(X1,D)). There is a natural inclusion
M(X1,D) ⊂MX |X1 compatible with the maps toOX1 becauseM(X1,D) is the log
structure associated to the submonoid sheaf

{(0, n2, f )|n2 ≥ 0, f is a local generator for L⊗01 |X1 ⊗ L⊗n1
2 |X1}

since by Lemma 1.1-(1) we have L2|X1 = OX1(−D). Hence, we have a map of
log schemes

(X1,MX |X1)→ (X1,M(X1,D))

and similarly for X2 and this difference is what causes most of the work in later
chapters. The induced inclusion M(X1,D) ⊂ MX |X1 is {0} ⊕ ND ⊂ NX1 ⊕ ND

given by the exponents n1, n2.

1.3. Cycle version of the degeneration formula

We fix an effective curve class β ∈ H2(X). We consider in Sect. 2 certain decorated
bipartite graphs �. Bipartite means that there is a given map r : {vertices of �} →
{1, 2} and the vertices of each edge have different values under r . To each vertex
V of � we associate a moduli stack MV that classifies stable log maps to Xr(V )

governed by data from � (see Theorem 1.6 and Sects. 2, 9 for more details). Here,
X1 carries the divisorial log structure via the divisor D, similarly for X2. The
adjacent edges at V index marked points that map to D, so there is an evaluation
map MV → ∏

e�V D where the product is over the edges of � that contain V .
Since, by usual conventions, markings ought to be ordered, we also need to keep
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track of an ordering of the edges of � and we denote this edge-ordered graph �̃.
We define

⊙
V MV by the Cartesian square

⊙
V MV

u ∏
V MV

∏
e D

� ∏
V
∏

e�V D

(1.3)

where the bottom left is the product over all edges of �̃ and the map � is (de)e 	→
(de)V∈e, that is on the factor D indexed by an edge e it is the diagonal into the
two components indexed by the vertices of e that appear in the bottom right. This
diagram has the effect that the stable maps in theMV for various V are glued over
their evaluations in D as prescribed by �̃ to form a stable map to X that is then
an object in

⊙
V MV . To further garnish this stable map with a compatible log

structure to get a stable log map to X , a finite choice is to be made. In fact, there is
an étale map φ�̃ :M�̃ →

⊙
V MV where objects inM�̃ are stable log maps to X

whose dual intersection graph collapses to �̃. We will show that

deg(φ�̃) =
∏

e we

l�
(1.4)

for the degree of this map (see Lemma 9.2,(4) or (6.13)) where we is the contact
order to D at the relative marking corresponding to e (and this is necessarily the
same for X1 and X2) and l� = lcm({we}). The contact order is defined to be
the weight of e, see (3.3) and the sentence thereafter. We also have a natural map
F :M�̃ →M to the moduli stack M :=Mg,n(X/k, β) of stable log maps to X

and we show in Lemma 9.1 that the virtual degree of F is |E(�)|!
l�

where E(�) is

the set of edges of �. For every �̃, we have a commutative diagram

M�̃

F

φ
�̃

M

ev

⊙
V MV

u ∏
V MV

ev
Xn

(1.5)

where ev denotes respectively the evaluation map for the n marked points. The
following is the main result and will be proved at the end of Sect. 9.3.

Theorem 1.5. (Cycle version of the degeneration formula) We have

�M � =
∑

�̃

l�
|E(�)|! F∗φ

∗�!
∏

V

�MV �

where φ = φ�̃ and �M � is the natural virtual fundamental class for M and
similarly

∏
V �MV � is the outer product of the natural virtual fundamental classes

for MV .
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1.4. Numerical degeneration formula

Let us deduce fromTheorem 1.5 the numerical version of the degeneration formula.
Assume we are given an operational Chow class γ ∈ A∗(Xn) and an operational
Chow class ψ ∈ A∗(

∏
V MV ) whose pullback to M�̃ comes from an operational

Chow class ψ ′ ∈ A∗(M ). Recall that taking degree is proper push-forward to a
point and thus compatible with finite maps. Inserting γ and ψ ′ into Theorem 1.5
gives

deg
(
ψ ′ ∩ (γ ∩ �M �)

) =
∑

�̃

l�
|E(�)|! deg

(

ψ ′ ∩ (γ ∩ F∗φ∗�!
∏

V

�MV �
)
)

=
∑

�̃

l�
|E(�)|! deg

(

ψ ∩ (γ ∩ φ∗�!
∏

V

�MV �
)
)

(1.4)=
∑

�̃

∏
e we

|E(�)|! deg
(

ψ ∩ (γ ∩�!
∏

V

�MV �
)
)

.

(1.6)

Here the last equality uses that φ∗φ∗ is multiplication by deg(φ).
The expressions in (1.6) may be reinterpreted in Borel–Moore homology

instead. In this case, read ev∗(γ )∩ for each occurrence of γ∩ above, γ,ψ are
cohomology classes now and we apply the cycle map A∗ → H2∗ to all occurrences
of �MV � above. Then (1.6) holds with these reinterpretations. The advantage of
the latter interpretation is that we can impose incidence at an arbitrary cocycle
γ ∈ H∗(Xn) at the cost of signs in the following.

Let {δ1j } j be a homogeneous basis of H∗(D, Q) and let {δ2j } j be the dual basis
in the sense that

∫

D
δ2i δ1j =

{
0 if i �= j
1 if i = j,

where 2 is purposefully before 1 to have no signs in the representation of the
diagonal. Define the sign (−1)ε by the equality

n∏

i=1
γi

∏

e

δ1e, je ⊗ δ2e, je = (−1)ε
∏

V

⎛

⎝
∏

i∈nV

γi

⎞

⎠

(
∏

e�V

δ
r(V )
e, je

)

.

Then, we conclude from Theorem 1.5 the following result.

Theorem 1.6. (Numerical version of the degeneration formula) For γi ∈
H∗(X , Q) and non-negative integers mi , in Witten’s correlator-notation where
τm(γ ) means ψm ev∗(γ ), we have

〈
n∏

i=1
τmi (γi )

〉X

g,β

=
∑

�̃

∑

( je)e

�ewe

|E(�̃)|! (−1)
ε
∏

V∈V (�)
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〈
∏

i∈nV

τmi (ι
∗
r(V )γi )

∣
∣
∣
∣
∣
∣

∏

e∈V

τ0(δ
r(V )
je

)

〉Xr(V )

gV ,βV

where ε is determined as before, the first sum runs over all �̃ ∈ �̃(g, n, β)

as introduced in Sect. 2 (see also for nV , βV ) and the second sum runs
over all tuples in {1, . . . , rkH∗(D)}E(�̃). The moduli stack underlying the left
hand side is Mg,n(X/k, β) and that for the right hand side is MV :=
MgV ,nV∪EV (Xr(V )/k, βV ) where EV refers to the ordered set of edges in �̃ adja-
cent to V . The positive contact orders we to D for e ∈ EV are part of the data
βV . If � has only one vertex, then we set �ewe/|E(�̃)|! = 1. The sum is finite (see
Sect. 2).

The formula is a straightforward version of the degeneration formula of [4,11,
24].

Remark 1.7. If X = π−1(b) is the central fibre of a semi-stable degeneration X→
B as in Sect. 1, we fix a β̂ in H2(X) and then for b′ ∈ B and Xb′ = π−1(b′), we
have an identity

∑

β

〈
n∏

i=1
τmi (γi )

〉X

g,β

=
∑

β ′

〈
n∏

i=1
τmi (γ

′
i )

〉Xb′

g,β ′

provided that:

(1) We take the sum respectively over all β ∈ H2(Xb) and β ′ ∈ H2(Xb′) which
map to β̂.

(2) The classes γ ′i ∈ H∗(Xb′) and γi ∈ H∗(Xb) are pullbacks from the same
element in H∗(X) for each i .

This statement follows from [9, Proposition 5.10] as explained in [26, Theo-
rem A.3].

2. Graphs

Consider a bipartite graph �, i.e., we have a map r : {vertices of �} → {1, 2} and
the vertices of each edge have different values under r . Each vertex V is decorated
with a tuple (gV , βV , nV ) with gV ≥ 0 called the genus, nV ⊂ {1, . . . , n} and βV

an effective curve class in Xr(V ). Each edge e is decorated with a positive integer
we, called the weight. Furthermore, we require� to satisfy the following properties.

∑

V :r(V )=1
ι1,∗βV +

∑

V :r(V )=2
ι2,∗βV = β (curve class) (2.1)

βV · D =
∑

e�V

we, (contact order) (2.2)

βV �= 0 if 2gV + |nV | + val(V ) < 3, (stability) (2.3)
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1− χtop(�)+
∑

V

gV = g, (genus) (2.4)

∐

V

nV = {1, . . . , n} (markings) (2.5)

We call � of type (g, n, β) if it satisfies these conditions and denote the set of all
such � up to isomorphism by �(g, n, β). The set �(g, n, β) is a finite set. Indeed,
(2.3), (2.4) and (2.5) imply that the set of marking and genus decorated graphs is
finite and then since the trivial curve class is indecomposable in the cone of effective
curve classes, the finiteness of �(g, n, β) follows.

We denote by �̃ a decorated graph� as above that is additionally equipped with
edge markings, i.e., with a bijection E(�) ∼= {e1, . . . , e|E(�)|} and here the ei are
formal symbols. Let �̃(g, n, β) denote the set of all such �̃ up to isomorphism. Let
Aut(�) denote the (finite) group of automorphisms of � that are compatible with
the decorations. Note that

∑

�∈�(g,n,β)

1

|Aut(�)| =
|�̃(g, n, β)|
|E(�)|! . (2.6)

Given �̃ as above, we denote by �i the subgraph with the vertex set {V : r(V ) = i}
and we keep the adjacent edges as half-edges, Each adjacent edge is considered
to have only one vertex, topologically [0,∞). We carry over the decorations to
the vertices and half-edges: βV , gV , nV , we and the ordering of the half-edges. We
then denote by �V the connected component of �1 or �2 containing the vertex V .

3. Stable log maps

We refer to [19] for the basics on log geometry and to [1,12,14] for the basics of
stable log maps that we recall here now. Note that smooth means log smooth in
the context of log schemes. Let Y, W be log schemes with log structures coming
from the Zariski site and let Y → W be a smooth and projective morphism. We are
going to apply this to X → k and Xi → k later on; see the beginning of Sect. 1.2
for the notations k, k. We recall Definitions1.3 and 1.6 from [14].

Definition 3.1. A prestable log map is a commutative diagram of log morphisms

C
f−−−−→ Y

π

⏐
⏐
�

⏐
⏐
�

S
fS−−−−→ W

(3.1)

such that π is smooth and integral and the fibres of π : C → S are reduced
and connected curves. There are sections x1, . . . , xn : S → C for the marked
points with mutually disjoint images and these images are precisely the locus in
the complement of nodes of fibres where π is not strict. By Theorem 1.3 in [20],
away from the nodes,MC = π∗MS ⊕⊕i xi,∗N. A prestable log map is stable if
the diagram of underlying schemes constitutes a stable map.
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Consider a stable log map with S a point, Q := MS and e ∈ C a node, then
MC,e = Q⊕N N

2 for some N → Q, 1 	→ qe �= 0. Let η1, η2 be the generic points
of the components adjacent to e in C , the map f together with the generizations
e → ηi induce a commutative diagram (see Discussion 1.8, p. 459 in [14])

Pη1

fη1
Q

Pe
fe

χ1

χ2

Q ⊕N N
2 Q × Q

pr1

pr2

Pη2 fη2
Q

(3.2)

where Pe := MY, f (e), Pηi := MY, f (ηi ) and the horizontal maps are induced by
f . The diagram defines a map ue : Pe → Z by the property

fη2 ◦ χ2 − fη1 ◦ χ1 = ue · qe. (3.3)

If ue is non-zero, there is a unique primitive ũe ∈ Hom(Pgp
e , Z) and we > 0 such

that ue = weũe. We call we the weight of e. If ue = 0, set we = 0. For a monoid
P , define P∨ = Hom(P, N). Consider the monoid

Q∨basic

:=
{

((Vη)η, (le)e) ∈
⊕

η

P∨η ⊕
⊕

e

N

∣
∣
∣
∣
∣

Vη2 ◦ χ2 − Vη1 ◦ χ1 = leue for all e

}

(3.4)

where the first sum runs over the generic points η of irreducible components of C
and the second sum runs over the nodes e.

Definition 3.2. If S is a point and Q = MS as before, for η the generic point of
a component of C , let f ∨η : Q∨ → P∨η denote the dual of fη. For e a node of
C , let q∨e : Q∨ → N be the evaluation of an element of Q∨ on qe. The tuple
(( f ∨η )η, (q∨e )e) gives a well-defined structure map

Q∨ → Q∨basic

because the image
(
( f ∨η (q))η, (q∨e (q))e

) =: ((Vη)η, (le)e) of every q ∈ Q∨ satis-
fies the relation Vη2 ◦ χ2 − Vη1 ◦ χ1 = leue for each e in the definition of Q∨basic
due to (3.3).

We call the stable log map f : C/S → Y/W basic if the structure map
Q∨ → Q∨basic is an isomorphism. A stable log map with more general base S is
basic if its restriction to all points in S is basic.
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If f is basic and ρ ∈ Q∨basic an element, say ρ = ((Vη)η, (le)e), then Defini-
tion 3.2 implies

ρ(qe) = le.

If xi : S → C is one of the sections of a stable log map f : C/S → Y/W with
S a point, then we denote Pxi :=MY, f (xi (S)) and f induces a map

ui : Pxi →MC,xi (S) = Q ⊕ N → N

where the secondmap is the projection to the second summand. Themap constitutes
an element ui ∈ P∨xi

which we call the contact order of f at x1.

Definition 3.3. A class β of stable log map to Y/W consists of

• an element of H2(Y ) that we also call β,
• a genus g ≥ 0,
• a number of markings n ≥ 0 and
• for 1 ≤ i ≤ n, a strict closed embeddings Zi ⊂ Y and section si ∈

�(Zi ,Hom(Mgp
Zi

, Z)) that does not extend to any closed subset of Y that is
strictly larger than Zi .

We say that a stable log map f is of class β if the underlying stable map is of genus
g, of class β with n markings and if the contact order ui at xi agrees with si over
every point in S.

We denote the moduli stack of basic stable log maps of class β byMg,n(Y/W, β).
This stack is the source of a forgetful functor to the another stack LogMg,n that we
recall in Sect. 7. Moreover, we have a commutative square

V

π

f
Y

Mg,n(Y/W, β) W

where the left vertical arrow denotes the universal family and the top horizontal
arrow is the universal map. Let TY/W denote the relative tangent sheaf of the log
smooth map Y → W . Similar to the construction given in Sect. 9.3 below, we
obtain a perfect obstruction theory (Rπ∗ f ∗TY/W )∨ → LMg,n(Y/W,β)/LogM g,n

, see
also [14],Sect. 5.

The reader may find the general definition of combinatorial finiteness for a
class β in [14],Definition 3.3. This condition holds in the situations of interest to
us because the set �(g, n, β) that we introduced in Sect. 2 is finite.

The main result of [1,12,14] is then as follows.

Theorem 3.4. If β is combinatorially finite then Mg,n(Y/W, β) is a proper
Deligne-Mumford stack of finite type over W with natural virtual fundamental
class �Mg,n(Y/W, β)�.

We will considerM :=Mg,n(X/k, β) as well asMV :=MgV ,nV∪EV (Xi/k, βV )

for certain βV in Sect. 9.
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4. From curves to graphs and tropical curves

Transferring notation from the previous section, we now set Y := X , W := k. By
Definition 3.1, the characteristic of the log structure at every point s̄ ∈M (X/k, β)

is given by the dual of (3.4), that is,Ms̄ = Qbasic := (Q∨basic)∨. By the description
ofMX in (1.2), we have Pη

∼= N
2 if and only if ηmaps to D and Pη

∼= N otherwise.
A similar statement holds for Pe. By definition, Q∨basic is a saturated submonoid of
(
⊕

η P∨η )⊕ (
⊕

e N) and the subgroup of invertible elements of the latter is trivial.
Applying Hom(·, N) to this inclusion, we obtain a map

(
⊕

η

Pη

)

⊕
(
⊕

e

N

)

→ Qbasic (4.1)

that is surjective up to saturation, i.e., for every q ∈ Qbasic there is a k > 0 such
that kq is in the image. The generator of the N-summand for e maps as 1 	→ qe and
we denote the restriction of (4.1) to the Pη-summand by Vη : Pη → Qbasic. This
notation is compatible with the notation in (3.4) because, for an element ρ ∈ Q∨basic,
composing Vη with evaluation on ρ yields the component that is called Vη in (3.4),
see (4.4).

Let 1 denote the generator of N in the log structure of the standard log point k.
The section 1 maps to every stalk in all the log structures of the schemes in (3.1)
and we call them 1 also in these other places. Note that 1 �= 0 in all places by the
locality of monoid maps induced from log morphisms.

For η a generic point of a component of C , in light of (1.1) and (1.2), consider
the composition

N
2 = �(X,MX ) � Pη

Vη−→ Qbasic, ei 	→ Vη(ei ). (4.2)

Note that 1 = (1, 1) on the left maps to the element 1 on the right independent of
η because this only depends on the bottom horizontal map in (3.1) which on log
charts is given byN → Qbasic, 1 	→ 1. Therefore, 1 = Vη(1, 1) for all η and hence
by (3.3)

ue(1) = 0 (4.3)

for all nodes e and thus ũe = (1,−1) or ũe = (−1, 1) whenever it is non-zero.
Here we implicitly represent ũe : Pe → Z via the composition with N

2 � Pe.

Lemma 4.1. For every edge e ∈ E(�C ) there is an labelling η1, η2 of the generic
points of adjacent curve components so that we have an identity of elements in
Qbasic of the form

Vη1(e1)+ weqe + Vη2(e2) = 1.

Proof. The statement follows from combining (3.3) with the identity Vη2(e1) +
Vη2(e2) = 1. �
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Next, assume we are given an element ρ = ((V ρ
η )η, (le)e) ∈ Q∨basic. Consider

the composition

N
2 = �(X,MX ) � Pη

Vη−→ Qbasic
ρ−→ N, ei 	→ ρ(Vη(ei )) = V ρ

η (ei )

(4.4)

We set l := ρ(1) = ρ(Vη(1, 1))which is independent of η by the commutativity of
(3.1). Applying Hom(·, R≥0) to the sequence (4.4) yields a map V∨η : R≥0 → R

2≥0
for each Vη. The set of points {V∨η (1)}η is contained in the segment {(l−α, α)|α ∈
[0, l]} that we identify with [0, l]. We refer to the images of 1 under V∨η as vertices

V∨η (1) ∈ [0, l] = {φ(e2) |φ ∈ Hom(R2≥0, R≥0), φ(1, 1) = l}. (4.5)

We have just defined a map from the dual intersection graph �C of C to [0, l] by
mapping the vertex indexed by η to V∨η (1) and by requiring the map to be linear
on edges. (Each edge corresponds to a node e of C .) We decree the length of the
edge e to be le. By (3.4),

V∨η2(1)− V∨η1(1) = lewe (4.6)

whenever e is a node between the curve components η1 and η2 and the ordering
η1, η2 is compatible with the orientation of ue in the sense of (3.2). Consequently,
we is the scaling factor of the linear map e → [0, l] and we take it to be 0 if ue = 0.
The so defined map h : �C → [0, l] of the metric graph �C is a tropical curve for
which we give a definition below. The first relevant property is that, by (4.5) and
(4.6), h satisfies the balancing condition (see [14, Proposition 1.15]) which is an
equality

∑

V∈e

±ue = 0, (4.7)

for each vertex V = Vη of �C that corresponds to a component η of Cs̄ that is
contracted by f . The sum is over all nodes e in η, the sign± is such that±ue points
away from V∨η (1).

For an integral monoid M , we denote by M ⊗ R≥0 the convex hull of M in
Mgp ⊗Z R. Note that (4.6) induces a partial ordering on the vertices of �C , i.e.,
V1 ≤ V2 if there is an edge e between them and h(V1) ≤ h(V2) holds as points
in [0, l]. The ordering of the vertices of �C obtained this way only depends on
the minimal face of Q∨basic ⊗ R≥0 that ρ is contained in. In the following, we will
always consider the ordering “≤” obtained from some ρ that lies in the interior
of Q∨basic ⊗ R≥0. By continuity, the vertices of an element ρ in the boundary of
Q∨basic⊗R≥0 still satisfy the order induced from an element in the interior. Hence,
the partial ordering “≤” we will be satisfied by all elements of Q∨basic ⊗ R≥0.

We define

Q̄∨basic := {((Vη)η, (le)e) ∈ Q∨basic | le = 0 whenever ue = 0}
and Q0 := ⊕e:ue=0 N and conclude from close inspection of (3.4) the following
Lemma.
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Lemma 4.2. Q∨basic = Q̄∨basic ⊕ Q∨0
By (1.2), there are three possibilities for Pη, namelyNe1,Ne2 orN

2, depending
on whether η maps to X1\X2, X2\X1 or D.

Definition 4.3. We call a vertex V = Vη of �C i-rigid if Pη = Nei , i.e., f (η) /∈
X3−i .

For for l ≥ 0, let M�C ,l denote the parameter space of pairs consisting of a
tuple of edge lengths (le)e ∈ (R≥0)E(�C ) and a continuous map h : �C → [0, l]
where each edge e of the graph �C is equipped with the metric affine structure of
the interval [0, le] and h is affine linear on each edge and is subject to the following
constraints.

(T1) The scaling factor of the restriction of h to an edge e of �C is we,
(T2) the balancing condition (4.7) holds for vertices that correspond to contracted

components,
(T3) (4.6) is satisfied,
(T4) h maps the vertices respecting the partial ordering and finally
(T5) 1-rigid vertices map to 0 and 2-rigid vertices map to l.

We call such a pair ((le)e, h) a tropical curve. The set M�C ,l can be identified with
a polyhedron in the vector space R × (RE(�C )) by picking any vertex V0 of �C

and mapping a tropical curve h to the tuple (h(V0), (le)e) given by the image of V0
and the tuple of edge lengths. Let M�C be the union

⋃
l≥0 M�C ,l which embeds in

R× R× R
E(�C ) as a convex cone by mapping h to (l, h(V0), (le)e). In particular,

elements in M�C can be added, i.e., the sum of tropical curves h1 : �C → [0, l1]
and h2 : �C → [0, l1] is a tropical curve h : �C → [0, l1 + l2].

Let M̄�C ,l ⊆ M�C ,l denote the subset of tropical curves with le = 0 whenever
ue = 0. The subset M̄�C ,l is a polytope in R×R

E(�C ) because it is closed and for
each e holds 0 ≤ le ≤ l. We denote by M̄�C =

⋃
l≥0 M̄�C ,l the subcone of M�C .

Lemma 4.4. (1) M�C ,l = {ρ ∈ (Q∨basic ⊗ R≥0) | ρ(1) = l},
(2) M̄�C ,l = {ρ ∈ (Q̄∨basic ⊗ R≥0) | ρ(1) = l},
(3) M�C ,0 = Q∨0 ⊗ R≥0.

Proof. All statements follow from the discussion before, except for the rigidity of
vertices which holds because for a 1- or 2-rigid vertex, the map Vη : Pη → N

is entirely determined by 1 	→ l, so the composition with N
2 � Pη now maps

e1 	→ l, e2 	→ 0 in the 1-rigid case or the other way round in the 2-rigid case. Note
that (3) follows from (4.6) because it implies le = 0 whenever ue �= 0. �


Let� be themetric graph obtained from�C by collapsing all edgeswith ue = 0.
To be more precise, collapsing means that we inductively identify the vertices of
an edge e if ue = 0 and we delete the edge in the process, so that every edge e of
the resulting graph satisfies ue �= 0.

Corollary 4.5. M̄�C ,l is the parameter space of tropical curves h : � → [0, l]
satisfying the conditions inherited from �C .
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Fig. 1.An example of a stable log map and its associated graphs for a particular choice of ρ

For a toric monoid Q, we denote by Q[1] the finite set of primitive generators
for the rays, i.e., the primitive elements in the dimension one faces of Q.

Definition 4.6. Given ρ = ((Vη)η, (le)e) ∈ Q∨basic[1], we call a node e of C with
le �= 0 a splitting node.

Recall �(g, n, β) from Sect. 2. In the remainder of this section, we are going to
define a map

Trop :
{

C/s → X/k is a basic stable log map over a point s

together with ρ ∈ Q∨basic[1] such that ρ(1) �= 0

}

→ �(g, n, β).

(4.8)

Lemma 4.7.
{
ρ ∈ Q∨basic[1] | ρ(1) �= 0

} = Q̄∨basic[1]

Proof. Since Q∨basic[1] is the disjoint union of Q̄∨basic[1] and Q∨0 [1], the assertion
follows directly from part (3) of Lemma 4.4. �

The lemma implies that 1 does not lie in any proper face of Q̄basic.

We now define the map Trop. Let therefore f : C/s → X/k and ρ ∈ Q∨basic[1]
with l := ρ(1) > 0 be given. Consider the associated tropical curve h : � → [0, l].
We will modify � to a bipartite graph �ρ , see Fig. 1 for an example.
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Lemma 4.8. All vertices of � map to either 0 or l, hence we obtain a map

r : {vertices of �} → {1, 2}, r(V ) =
{
1 if V = V∨η (1) = 0,
2 if V = V∨η (1) = l.

Proof. Recall the definition of V∨η (1) from (4.5). Assume to the contrary that the
set of vertices

{
V∨η (1)

∣
∣
∣ η is the generic point of a curve component, V∨η (1) �= 0, l

}

is non-empty and let V1 < · · · < Vs be an enumeration of the set. If s = 1, set
V2 := l. Let ε > 0 be smaller than (V2 − V1)/2. We obtain a sum decomposition
of vectors with strictly increasing entries

(0, V1, V2, . . . , Vs, l) = (0, V1/2− ε, V2/2, . . . , Vs/2, l/2)

+ (0, V1/2+ ε, V2/2, . . . , Vs/2, l/2),

and the summands on the right are linearly independent. We can now write the
tropical curve h : � → [0, l] as a sum of tropical curves h1, h2 : � → [0, l/2] as
follows. We require for a vertex V of � that hi (V ) = h(V )/2 unless h(V ) = V1
in which case we set h1(V ) = (V1 − ε)/2 and h2(V ) = (V1 + ε)/2. With these
prescriptions ofwhere tomap the vertives, there is a canonical choice of edge lengths
le for h1, h2 so that all defining conditions of a tropical curve are satisfied for h1
and h2. By construction, h1, h2 correspond to elements ρ1, ρ2 ∈ Q∨basic⊗R≥0 that
satisfy ρ1 + ρ2 = ρ. However, ρ1, ρ2 are linearly independent and this contradicts
the assumption ρ ∈ Q∨basic[1] because ρ1, ρ2 span a face of dimension at least 2
and ρ is contained in its relative interior. �

Equipped with the statement of Lemma 4.8, we collapse all edges in � that map
constantly under h (i.e., those that are not splitting nodes) and obtain a graph �ρ

that is bipartite by means of the map r : {vertices of �ρ} → {1, 2} induced from
Lemma 4.8. Each vertex V of �ρ is an equivalence class of vertices of the dual
intersection graph �C of C and thus a vertex V of �ρ represents a connected union
of curve components that we call CV . Note that CV maps entirely into Xr(V ).
We decorate V with the genus gV = g(CV ), curve class βV = [CV ] and nV =
{markings on CV } and then�ρ satisfies (2.4), (2.1), (2.5), (2.3) because�C satisfies
similar conditions. It remains to verify (2.2) in order to have defined the map Trop
in (4.8) completely:

Lemma 4.9. Given V ∈ �ρ , we have

βV .D = deg(OXr(V )
(D)|CV ) =

∑

e∈E(�ρ )

V∈e

we.

Proof. The first equality is clear. In order to prove the second equality, we need to
recall the homomorphism τV : �(C̃V , g∗MX ) → Z from equation (1.10) in [14].

Here, g : C̃V → CV
fV→ X is the composition of the normalization ν : C̃V → CV

of an irreducible component CV of C , corresponding to a vertex V of �C , with
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the restriction fV of the stable map f : C → X to CV . Each section of g∗MX

corresponds to anO×
C̃V

-torsor and the map τV associates to the torsor the degree of

the corresponding line bundle. The description ofMX in (1.2) leads to a similarly
simple description of �(D, g∗MX ), namely

�(C̃V , g∗MX ) = �(C̃V , g−1ι−11 N)⊕ �(C̃V , g−1ι−12 N)

= N
π0(g−1(X2)) ⊕ N

π0(g−1(X1)),

and, by Lemma 1.1, the generators of the two occurences of the monoid N in the
middle correspond to the torsorsL1,L2 respectively. We can say precisely how the
map τV acts on each summand of N on the right. For a connected compoment of
g−1(Xi ) that is a single point x , the map τV sends the corresponding generator of
N to the (positive) degree of the Cartier divisor g−1(Xi ) at x . On the other hand, if
g−1(Xi ) is all of C̃V , then τV maps the corresponding generator ofN to deg(g∗Li ).
By part (2) of Lemma 1.1, we have deg(g∗Li ) = − deg(g∗L3−i ) and by part (1)
the restriction of L3−i to Xi is OXi (−D). Hence,

deg(g∗Li ) = − deg(g∗L3−i ) = − deg(g∗OXi (−D)) = (g : C̃V → Xi ).D.

In any event, the sum of the images of the generators of N
π0(g−1(X2))⊕N

π0(g−1(X1))

under τV is zero and the sum of the images of N
π0(g−1(Xi )) under τV equals

deg(g∗Li ).
If x ∈ C̃V is a point that maps to a node e of C under the composition C̃V →

CV ↪→ C then (g∗M)x = Pe and we have the map ue : (g∗M)x → Z that we
naturally extend to a map �(C̃V , g∗MX ) → Z by composing with the natural
map �(C̃V , g∗MX ) → (g∗M)x . The general balancing condition as proved in
[14],Proposition 1.15 says that

τV +
∑

x

±ue = 0 (4.9)

where the sum is over precisely those points x ∈ C̃V that map to nodes of C and the
sign± is chosen to account for the ordering of the components adjacent to the node
in the definition of ue. The sign is +1 iff V is the first component in that ordering
and if both adjacent components are V , i.e., e is a node ofCV , then the sum

∑
x ±ue

has the corresponding summand ue occuring twice with opposite signs, so we can
ignore such nodes altogether when forming the sum. Recall that ue = weũe where
ũe : N

2 → Z is either (−1, 1) or (1,−1). Evaluating (4.9) on the generator of
N

π0(g−1(Xi )) = N for i chosen so that CV maps into Xi yields

βV .D +
∑

x

±we = 0 (4.10)

which is already close to the assertion. So far we only studied a single component of
C , however, a single vertex V ′ of�ρ correspond to several vertices V of�C , namely
those that contract toV ′. The assertion follows from summing up the equation (4.10)
over all V that contract to a specific vertex V ′ of �ρ . Necessarily, all associated
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components CV map into Xi for i = r(V ′) and βV ′ = ∑V βV and evaluating all

τV on the generator of N
π0(g−1(Xi )) = N respectively and summing over the V that

contract to V ′ yields βV ′ .D as an intersection evaluated in Xi . Those summandswe

that correspond to a non-splitting edge will appear twice and with opposite sign in
the sum and therefore cancel. The contribution from the splitting edges however all
carry the same sign (either + 1 or - 1) because the sum of ±weũe over the splitting
edges e is a sum of vectors pointing into the interval [0, l] from either the endpoint
0 or l depending on whether r(V ′) = 1 or r(V ′) = 2. Evaluating also ±ũe on the
generator of N

π0(g−1(Xi )) = N for each V yields−1 and so the assertion follows. �


4.1. Generization

We have so far considered a curve over a single point s in this section. Let us
consider the case where s is in the Zariski closure of another point η. A node of Cs

either gets smoothed in Cη or it remains a node. Hence, there is a natural collapsing
map of dual intersection graphs �Cs → �Cη and a natural map

Qs
basic → Qη

basic (4.11)

that is a localization composed with modding out the resulting subgroup of invert-
ibles. Dually, (Qη

basic)
∨ ⊆ (Qs

basic)
∨ is the embedding of a face and hence

(Qη
basic)

∨[1] ⊆ (Qs
basic)

∨[1]. Given ρ ∈ (Qη
basic)

∨[1], the map (4.11) maps 1
to 1 and commutes with ρ, so we get the same l = ρ(1) for s and η. If a node
e gets smoothed under generization then qe (see just after Definition 3.1) maps to
zero under (4.11), hence ρ(qe) = le = 0, so the node e is not a splitting node. We
conclude the following lemmata.

Lemma 4.10. If s ∈ η and Trops , Tropη denote the respective maps given in (4.8),
then Tropη is the composition of the injection
{
ρ ∈ (Qη

basic)
∨[1] ∣∣ ρ(1) �= 0

} → {
ρ ∈ (Qs

basic)
∨[1] ∣∣ ρ(1) �= 0

}

with Trops . In particular, for every ρ ∈ (Qη
basic)

∨[1] with ρ(1) �= 0, the stable
log maps over s and η together with ρ respectively give the same tropical curve
�ρ → [0, l].
If M is a sheaf of monoids on a scheme S, we call a subsheaf F ⊂ M a sheaf
of facets if F x ⊂ Mx is a facet for every x ∈ S. If M is a toric monoid, then its
facets are in one-to-one correspondence with the elements ρ ∈ M∨[1] by mapping
ρ to ρ⊥ := {m ∈ M |ρ(m) = 0}. By standard toric geometry, if ρ ∈ (Qη

basic)
∨[1],

the generization map (4.11) sends the facet Fs
ρ = ρ⊥ surjectively onto the facet

Fη
ρ = ρ⊥ ⊂ Qη

basic. Every other facet of Qs
basic does not map to a facet under

(4.11). This analysis implies the following two statements.

Lemma 4.11. If C/S → X/k is a basic stable log map, s ∈ S a point, ρ ∈
(MS,s)

∨[1] and Fs
ρ = ρ⊥ ⊂MS,s then by the coherence of the log structure on

S there is a unique maximal closed subset W of SpecOS,s together with a sheaf of
facets F ⊆MS|W so that F s = Fs

ρ .
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Proposition 4.12. Let C/S → X/k be a basic stable log map with S connected
and ρ ∈ �(S,M∨

S ) with ρ(1) �= 0 such that ρ maps to an element of M∨
S,s[1] for

each s ∈ S. Then all tropical curves h : �ρ → [0, l] obtained from ρ at different
points s ∈ S are naturally identified and the corresponding facets Fs

ρ define a sheaf

of facets F S ⊂MS.

5. Splitting stable log maps

As in the previous section, consider a stable logmapC/s → X/k. LetMs = Qbasic
be the associated basic monoid (the dual of Q∨basic in (3.4)). We also fix a primitive
ray generator ρ ∈ Q∨basic[1] with l := ρ(1) > 0. The dual intersection graph
�C of C collapses to � and then further to �ρ . The map r : � → {1, 2} from
Lemma 4.8 lifts uniquely to r : �C → {1, 2} by composition with the collapsing.
Let �i denote the possibly disconnected subgraph of � given by the vertices with
r(V ) = i and furthermore we include “half-edges” at these vertices, one for each
edge of a splitting node, see Fig. 1 for an example. We similarly define (�ρ)i which
is obtained from �i by collapsing (le = 0)-edges. We also similarly define (�C )i .
The set of vertices of (�C )i inherits the partial order from �C . We call a continuous
map h : (�C )1 → [0,∞) a tropical curve if it satisfies the analogous conditions
(T1) to (T5). Here, (T5) is applied only to 1-rigid vertices. We similarly obtain a
notion of tropical curve for maps h : (�C )2 → (−∞, 0]. Next consider the set

Q∨1 :=

⎧
⎪⎪⎨

⎪⎪⎩
h : (�C )1 → [0,∞)

∣
∣
∣
∣
∣
∣
∣
∣

h is a tropical curve with h(V )

integral for all vertices V ,
le ∈ Z≥0 for all compact edges e,

rigid vertices map to 0

⎫
⎪⎪⎬

⎪⎪⎭
.

We similarly define Q∨2 = {h : (�C )2 → (−∞, 0] | . . .}. Note that Q∨1 , Q∨2 are
monoids. Since (�C )1 decomposes into connected components, we have

Q∨1 =
⊕

r(V )=1
Q∨V (5.1)

where the sum is over the vertices of (�ρ)1 and Q∨V is the parameter space of
tropical curves with domain the component of (�C )1 indexed by V . We similarly
define Q̄∨1 := {h : �1 → [0,∞) | . . .}, we have Q̄∨1 =

⊕
r(V )=1 Q̄∨V and a similar

statement for Q̄∨2 . Set Qi := (Q∨i )∨ and Q̄i := (Q̄∨i )∨.

Lemma 5.1. The facet Fρ := ρ⊥ ⊂ Qbasic associated to ρ satisfies

Fρ = Q1 × Q2.

Proof. In light of Lemma 4.2, first note that it suffices to prove a similar statement
for the facet F̄ρ = ρ⊥ of Q̄basic, the dual of Q̄∨basic. Indeed, the duals of the
summands of Q∨0 = ⊕eN get distributed over Q1 and Q2 depending on whether
the edge e contracts to 0 or l under the tropical curve map h corresponding to ρ.
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We prove the dual statement, i.e., F̄∨ρ = Q̄∨1 ⊕ Q̄∨2 . Note that F̄∨ρ = (Q̄∨basic +
Zρ)/Zρ. There is a natural homomorphism of monoids

π : Q̄∨basic → Q̄∨1 ⊕ Q̄∨2 (5.2)

thatmaps a tropical curve h : � → [0, l ′] to the pair (h1 : �1 → [0,∞), h2 : �2 →
(−∞, 0]) by splitting the curve h at the splitting edges and turning these edges into
rays (and translating l ′ to zero for h2). We verify that the map is surjective, so we
pick a pair (h1, h2) on the right hand side. Take l0 ∈ N larger than the sum of all
le occurring in h1 and h2. Now translate h2 by l0 to become �2 → (−∞, l0]. We
can extend this combination of maps of vertices of �1, �2 to a viable tropical curve
h : � → [0, l0] by giving an edge e between vertices V1, V2 with r(Vi ) = i the
length le = (h2(V2) − h1(V1))/we, modifying l0 if needed to ensure that each le
is integral. One verifies that (T1)-(T5) hold, so we verified the surjectivity of π .
Finally, we need to show that π−1(0) = Nρ. A curve that maps to zero under π

is characterised by the property that all vertices of h1, h2 are zero (in [0,∞) and
(−∞, 0] respectively). In terms of edge lengths of the original curve, these are
either zero if the edge e is not a splitting edge or otherwise lewe = l ′ for some fixed
positive integer l ′ if the edge is a splitting edge. Such a curve is precisely l ′

l ρ where
l = ρ(1) denotes the length of the interval [0, l] that the tropical curve represented
by ρ maps to. �


Say we are given a basic stable log map C/S → X/k with S connected and
also a ρ ∈ �(S,M∨

S ) that maps to an element of M∨
S,s[1] for all s ∈ S. By

Proposition 4.12, this induces a sheaf of facets F S ⊂ MS that is on stalks given
by Fρ = ρ⊥. We obtain a new log structure on S via FS :=MS ×MS

F S .
Also by Proposition 4.12, we obtain the same tropical curve h : �ρ → [0, l]

from all points of S. After replacing S by a finite connected cover if needed, we
can order the edges of �ρ as e1, . . . , er and denote this edge-marked curve by
�̃ρ . In other words, we mark the splitting nodes ei : S → C . Let Ci be the
possibly disconnected union of components ofC that are (le=0)-edge-contraction-
equivalent to vertices V of �ρ with r(V ) = i . Since C1 and C2 intersect in the
splitting nodes, we have a cocartesian (alias pushout) diagram

Sr (e11,...,e
1
r )−−−−−→ C1

(e21,...,e
2
r )

⏐
⏐
�

⏐
⏐
�

C2 −−−−→ C .

(5.3)

Recall that Ci maps into Xi under f : C → X . In the following, we set i = 1. By
symmetry, the case i = 2 works analogously. As said in Remark 1.4, X1 carries
the divisorial log structure by D ⊂ X1 and there is a natural log morphism

(X1,MX |X1
)→ X1

via the injection MX1 ↪→MX |X1
. We may restrict f : C → X (as a log map) to

C1, i.e.,MC1 =MC |C1 , and compose with the above map to obtain a map C1 →



82 B. Kim et al.

X1. We will find a natural sub-log-structure FC1 ⊂ MC1 giving a commutative
diagram

(C1,FC1)
f1−−−−→ X1

π

⏐
⏐
�

⏐
⏐
�

(S,FS) −−−−→ k.

(5.4)

The left vertical map C1 → S has natural sections e11, . . . , e1r in addition to the
usual markings given by the markings of the splitting nodes of C . Including the
additional markings, the diagram of underlying schemes in (5.4) constitutes a stable
map because f is a stable map. To find FC1 , away from nodes and marked points
on C1, we simply take the pullback π∗FS (i.e., make π strict there). Furthermore,
it suffices to give FC1 ⊂ MC1 and then set FC1 := MC1 ×MC1

FC1 . Generic

strictness reduces this to a local problem, looking at markings and nodes. At an
ordinary marked point x , we have MC1,x = MC,x = MS,π(x) ⊕ N and we pick
the substalk FC1,x := F S,π(x) ⊕ N. At a node x in C1, so not a splitting node,
we set FC1,x := F S,x ⊕N N

2 ⊂ MS,x ⊕N N
2 = MC,x and this works because

the map N →MS,x , 1 	→ qe factors through F S,x (indeed it maps to ρ⊥ because
ρ(qe) = le = 0 for all non-splitting nodes). Finally, for x = e1j a splitting node, we

take for FC1,x the submonoid F S,x ⊕ N ⊂ MS,x ⊕N N
2 where the N-summand

embeds in the second copy (the one that corresponds to i = 2) on the right. We
thus produced (5.4).

Note that there is a decomposition in connected componentsC1 =∐ V∈�ρ
r(V )=1

CV .

Proposition 5.2. Given a basic stable log map C/S → X/k together with ρ ∈
�(S,MS) that maps to an element of MS,s[1] for all s ∈ S and an ordering of the
edges of the resulting tropical curve �ρ ,

(1) the diagram (5.4) obtained from this input data constitutes a stable log map
with contact order data given by the weights of the unbounded edges of (�ρ)1.
Here C1 is potentially disconnected and

(2) the collection of inclusions Q1 ⊆ F S,s for all s ∈ S given via Lemma 5.1 consti-
tutes a subsheaf Q1 of monoids of F S and the fibre product M1

S := FS×F S
Q1

is the basic log structure for the diagram (5.4). Similarly, the decomposi-
tion (5.1) yields subsheaves QV ⊂ F S that give the basic log structure
MV

S = FS ×F S
QV of the connected components of C1. Furthermore, the

map M1
S → FS (respectively MV

S → FS) realizes (5.4) (respectively the
V -component of it) as the pullback from this basic log structure.

Proof. The smoothness of π follows from the construction of FC1 as locally it has
precisely the shape as in the classification of log smooth curves [20, Sect. 1.8], [14,
Theorem 1.1]. For (1), it remains to study the contact orders. The definition was
given just before Definition 3.3. At a splitting node e in f : C → X , we identify
the map Pe → Q ⊕N N

2 in (3.2) with the map of stalks of the characteristics at
the node ϕ : N2 →MS,s ⊕N N

2. The part of ϕ that maps to the second summand
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is the map N
2 → N

2 that is given by multiplication by we which follows from
the definition of ue. On the other hand, by the preceding construction of FC1,x

at a splitting node x as the subsheaf F S,x ⊕ N ⊂ MS,x ⊕N N
2, restricting ϕ to

the second N-summand yields ϕ2 : N → FS,s ⊕ N and the composition with the
projection to the second N-summand is multiplication by we, so the weight of the
edge e of (�ρ)1 gives the contact order as claimed.

For (2), the existence of the sheaf Q1 is Lemma 4.11. Note that the labelling
of edges of �ρ together with the map r makes vertices uniquely identify-able
as each vertex is adjacent to at least one edge, so we don’t need to additionally
enumerate vertices and then consequently (5.1) gives sheavesQV as claimed. That
the QV are the basic monoids (and then consequently Q1 is also) follows directly
from Definition 3.2 and Equation (3.4). Finally, the statement that the inclusion
MV

S ,M1
S ⊂ FS gives the pullback from the basic log structure can be checked

directly. Indeed, MC1 = π∗FS ⊕π∗M1
S
M1

C1
, where the definition of M1

C1
is as

that ofMC1 above, onlywithM1
S in place ofFS everywhere. Similarly, one defines

MV
CV

and has then MC1 |CV = π |∗CV
FS ⊕π |∗CV

MV
S
MV

C1
as desired. �


A similar version of Proposition 5.2 holds for C2 in place of C1, so we finished
the splitting procedure that turns a basic stable log map f : C/S → X/k into a
pair of basic stable log maps f1 : C1/S → X1/k and f2 : C2/S → X2/k and then
we can split further into CV over vertices V of �ρ corresponding to components
of C1, C2. We finished constructing the map φ�̃ in (1.5).

Note that, by construction, there is a map from the original stable map log
structure to the split one in (5.4), i.e., we have a commutative diagram

(CV ,MC |CV
)/S (Xr(V ),MX |Xr(V )

)/k

CV /(S,MV
S ) Xr(V )/k.

(5.5)

6. Gluing stable log maps

The purpose of this section is to reverse the process of the last section. We assume
to be given �̃ ∈ �̃(g, n, β) and an object in

⊙
V MV , see (1.5). I.e., we have

two basic stable log maps f1 : C1/S → X1/k and f2 : C2/S → X2/k with
contact order data �̃1 and �̃2 respectively and the underlying curves with matching
contact orders, i.e., we1i

= we2i
for e j

i ∈ E(�̃ j ) the i th edge for j = 1, 2 and also

f1(e1i ) = f2(e2i ) for each i , so we have the diagram (5.3). For a point s ∈ S, denote

by C1,s, C2,s the curves above s. We obtain Qi := Mi
S,s and the interpretation

of its dual Q∨i as a parameter space of tropical curves h1 : �C1,s → [0,∞) and
h2 : �C2,s → (−∞, 0] given in Sect. 5 respectively. Plugging �C1,s and �C2,s

together by gluing half-edges to compact edges along matching e1i ↔ e2i yields
�̃C . We give the resulting new compact edges the weights wei = we1i

= we2i
.



84 B. Kim et al.

The natural map r : {vertices of �̃C } → {1, 2} is given by whether a component
of the curve is in C1 or C2. We hence obtain a graph �̃C fully decorated with
we, βV , nV , gV . Collapsing �̃C to a bipartite graph �̃ρ using r and inferring the
decorations on �̃ρ from �̃C , we find that �̃ρ is an element of �̃(g, n, β) and in fact
�̃ρ = �̃. We abuse notation when writing �̃ρ at this point because we have not yet
defined ρ that yields this graph.

Our next step is to define the monoid Q∨basic,s together with an element ρ so

that �̃ρ is the graph associated to ρ. As in the proof of surjectivity of (5.2), we
can lift any pair of tropical curves h1, h2 to a tropical curve h : �̃C → [0, l]
for some l � 0. We define Q∨basic,s to be the parameter space of integral tropical

curves h : �̃C → [0, l] with varying l ≥ 0 and with the constraints (T1) to (T5).
Here, integral simply means that l, the V∨η and the le are all integral. We define
qe,1 ∈ (Q∨basic,s)∨ =: Qbasic,s respectively as the maps Q∨basic,s → N given by
((Vη)η, (le′)e′) 	→ le′ , (h : �Cs → [0, l]) 	→ l. The monoid Q∨basic,s contains a
particular element ρ that is given by the tropical curve h : �Cs → [0, l] where

l = lcm(we : e is a splitting node) (6.1)

and the (r = 1)-vertices of �Cs map to 0 and the (r = 2)-vertices map to l. With
the same reasoning as in Lemma 5.1, we find that ρ is contained in Q∨basic,s[1] and
the associated facet Fρ = ρ⊥ of Qbasic,s takes the form Fρ = Q1× Q2 where Q∨i
is the parameter space of integral tropical curves that map �Ci,s to a ray as at the
beginning of Sect. 5. Under the construction in Sect. 4, i.e., collapsing (ue = 0)-
and (le = 0)-edges, it is not hard to see that the tropical curve given by ρ yields
precisely the decorated bipartite graph �̃ρ that we produced from plugging together
�C1,s and �C2,s in the above paragraph, except we forgot the ordering of the edges.

By construction and Proposition 4.12, �̃ρ is independent of s ∈ S and compat-
ible with generization, meaning that for η ∈ S with s ∈ η̄, we have a collapsings
�s → �η → �̃ρ .

As the next step, we want to construct a diagram

MCs

f ∗←−−−− N
2

π∗
)
⏐
⏐

)
⏐
⏐1 	→(1,1)

Qbasic,s
1← �1←−−−− N

(6.2)

of sheaves of monoids on Cs where all except the top left one are constant sheaves.
We are going to define MCs as a subsheaf of

Mpre
Cs
:=
⎛

⎝
⊕

V∈�Cs

iV,∗Qbasic,s

⎞

⎠⊕
⎛

⎝
⊕

j∈n

σ j,∗N

⎞

⎠

where iV : CV → Cs is the inclusion of a component. The projection of the

image of f ∗ and π∗ to the second summand
(⊕

j∈n σ j,∗N
)
will be trivial. Away
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from the nodes, we set MCs = Mpre
Cs

and at a node e with adjacent components

V1, V2, the stalk ofMCs is defined by requiring that its projection to iV1,∗Qbasic,s×
iV2,∗Qbasic,s = Qbasic,s × Qbasic,s agrees with

{(a, b) ∈ Qbasic,s × Qbasic,s | b = kqe + a for some k ∈ Z}.

By the universal property of the pushout, the latter is canonically isomorphic to

Qbasic,s ⊕qe← �1,N,1 	→(1,1) N
2

and so we naturally obtain the commutative square (6.2) for the stalk at each node
e. We globalize the map f ∗ by taking it to be (Vη)η (see (4.2)). The map π∗ in (6.2)
globalizes by mapping diagonally into the first summand of Mpre

Cs
.

Lemma 6.1. The map f ∗ factors through f ∗MX and the diagram (6.2) is well-
defined and commutes.

Proof. In view of (1.2), for the first claim, we need to show that Vη is trivial on the
i th summand of N⊕N whenever f maps the generic point of a component η away
from Xi . Mapping η away from Xi means Vη is (3− i)-rigid and by definition the
integral tropical curves parametrized by Q∨basic,s satisfy the rigidity constraint, so

f ∗ factors through f ∗MX as claimed. The sheaf MCs is well-defined. That f ∗
maps into MCs follows from (3.3): indeed, if V1, V2 are connected by an edge e
then h(V1)− h(V2) = wele holds for every integral tropical curve h ∈ Q∨basic,s and
qe : Q∨basic,s → N is the map that returns le, so V1 − V2 is an integral multiple of
qe as required. Finally, we check commutativity of the diagram (6.2) at stalks. At a
node, the commutativity follows by the construction of the diagram as a pushout.
At a stalk of Cs which is not a node, the composition of π∗ with the projection
to the first summand of Mpre

Cs
is an isomorphism and the dual of the diagram is

commutative by the equality l = ρ(1) = ρ(Vη(1, 1)) that holds for every vertex
Vη, see (4.5) and the line after the equation. �


The remainder of this section is about lifting the diagram (6.2) to actual maps of
log structures for a basic stable log map C/S → X/k. First note that taking FS =
M1

S ⊕O×S M2
S as a log structure on S and on C1, C2 the pullbacks MCi ⊕π∗Mi

S

π∗FS , we obtain the diagram (5.4) for i = 1, 2.
Since C/S is a stable curve, as such it receives a basic log structure from

Cg,n → Mg,n , the Artin stack of prestable curves Mg,n with its universal curve

Cg,n , cf. [14, Appendix A], [20, p. 227ff.]. We denote this log structure by MC/S
C

on C and MC/S
S on S and have the induced map

π∗MC/S
S →MC/S

C . (6.3)

For a point s ∈ S and Cs the fibre over it, we have MC/S
S,s = N

E(�Cs ) and this is
compatible with (3.4) (by having Pη = 0 for all η).
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We arrive at the following maps of sheaves on S

MC/S
S −−−−→ MS

1← �1←−−−− N
)
⏐
⏐

FS

(6.4)

where the top left map sends a generator of the N-copy indexed by a node e to qe.

Lemma 6.2. The images of the left and bottom map going intoMS in (6.4) generate
Mgp

S .

Proof. The image contains F S which is co-rank one. We have F S = ρ⊥ and ρ

is primitive, so it suffices that we can find an element q in the linear combination
of the images that has ρ(q) = 1. We claim such an element can be obtained as a
linear combination of the qe which will be clear once we prove

gcd{le | e ∈ E(�ρ)} = 1

since le = ρ(qe). Assume k|le for all e. Sincewele = l, we find k|l and k > 1would
contradict primitivity of ρ since then 1

k ρ would be integral, so indeed gcd = 1 and
we are done. �

Our next goal is to lift MS to a log structure MS . Note that C1/S and C2/S are
stable curves, so they induce maps MCi /S

S →Mi
S that we sum to have maps

MC/S
S ←MC1/S

S ⊕O×S MC2/S
S → FS (6.5)

that fit in to fill the empty bottom left corner of (6.4) giving a commutative square
with the maps to MS . We let M̂S be the pushout of (6.5). Since all terms in (6.5)
are log structures, it is not hard to see that M̂S with the natural induced map to

OX is also a log structure. Note also that M̂S = N
r ⊕ F S because every stalk

MC/S
S,x of MC/S

S decomposes as MC/S
S,x = N

r ⊕ N
s for some s and the map from

MC1/S
S,x ⊕O×S,x

MC2/S
S,x = N

s toMC/S
S,x is the injection {0} × N

s ↪→ N
r ⊕ N

s .

We use M̂C := π∗M̂S ⊕π∗MC/S
S

MC/S
C and so the map

π∗M̂S → M̂C

makes π log-smooth because it is just the pullback of (6.3).
However M̂S is too large for what we want and the remainder of this section

is about producing MS as a suitable quotient of M̂S . Note that M̂S → MS is
surjective by Lemma 6.2 but not an isomorphism if �̃ρ has more than one edge.

This is becauseM∨
S parametrizes integral tropical curves with a map to an interval

which requires a relation between the edge lengths, see (4.6). This condition is

absent in (M̂S)∨, indeed

M̂S =M1
S ⊕M2

S ⊕ N
r = F S ⊕ N

r (6.6)
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where r is the number of edges of �̃ρ . We are going to define a global section of

M̂S as a sum

1e := V1 + weqe + V2 (6.7)

where qe is the generator of the N-summand in (6.6) that corresponds to the node e.
This is by slight abuse of notation as the projection of qe toMS also has this name.

Furthermore, for s ∈ S, Vi ∈Mi
S,s is defined by how it pairs with a tropical curve

h : �C1
s
→ [0,∞) or h : �C2

s
→ (−∞, 0] parametrized by (M1

S,s)
∨, (M2

S,s)
∨

respectively via Lemma 4.4. We set Vi : (Mi
S,s)

∨ → N to be the distance from 0

of the vertex Vi of e. Note that under the projection M̂S →MS each 1e maps to 1.
Indeed, it becomes the operator that associates to a tropical curve h : �C → [0, l]
the length l since h(V2)− h(V1) = wele by (4.6), see also Lemma 4.1.

Lemma 6.3. For E(�̃ρ) = {e1, . . . , er }, the lattice K := Z(1e2 − 1e1) ⊕ . . . ⊕
Z(1er − 1e1) injects in �(S,M̂S

gp
), let K sat denote its saturation. We have a split

exact sequence

0→ K sat → M̂S
gp →Mgp

S → 0.

Proof. That K sat injects in the middle term is clear and also that it lies in the
kernel to the right by what we just said about all 1e mapping to 1 and because
Mgp

S is torsion-free. Surjectivity on the right is Lemma 6.2. By checking ranks, it
is also straightforward to see that the sequence is exact over Q which completes
the proof up to finding a splitting of the exact sequence. Indeed, the proof of
Lemma 6.2 provide an element q as a linear combination of qe andwemay interpret

this linear combination in M̂S
gp

thus together with Fgp
S producing an injection

MS
gp → M̂S

gp
that is an inverse to the reversely directed surjection. �


An example where K �= K sat is given by the situation of two edges with the same
vertices but weights not coprime. Define L1e to be theO×S -torsor that is the inverse
image of 1e in M̂S .

Lemma 6.4. L1e
∼= O×S for all edges e of �̃ρ .

Proof. LetLV1 ,LV2 ,Lqe be theO×S -torsors that are the inverse images of V1, V2, qe

under M̂S → M̂S . By (6.7), we have LV1 ⊗L⊗we
qe ⊗LV2

∼= L1e and want to show
this is trivial.

Since e is a node over all points of S, we have a section e : S → C and sections
e j : S → C j and by [20, §2-Global construction], we find Lqe = Le1 ⊗Le2 where
Le1 ,Le2 is theO×S -torsor given by the conormal bundle of the marked point e1, e2
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in C1, C2 respectively.

C j
f j

π j

X j

S

e j
eve j

The characteristic MX j is globally generated by the generator 1 j ∈ N that

maps toMC j . The associated torsor, the inverse image in MC j , we call L1 j . The
torsor L1 j is isomorphic to the torsor of the line bundle f ∗j OX j (−D) because the
torsor of the N-generator on X j is the torsor ofOX j (−D) by Lemma 1.1 and every

map of torsors is an isomorphism. Next note that Vj ∈ �(S,M j
S), i.e., both V1, V2

lie in the facetF S ofMS . We haveMC j |e j = (π∗j M
j
S)|e j ⊕N and 1 j = (Vj , we)

in this, hence

((π∗j LVj )|e j )⊗ Lwe
e j = L1 j |e j .

Now (e j )∗π∗j = id∗S and (e j )∗ f ∗j = ev∗
e j , hence LVj ⊗ Lwe

e j is isomorphic to the
torsor of ev∗

e j OX j (−D). Now use that on X we have 11 + 12 = 1 and to 1 is
associated the trivial torsor since N →MX is a global section. This is just saying
OX1(−D)|D is dual to OX2(−D)|D . Putting it all together yields

LV1 ⊗ L⊗we
qe

⊗ LV2
∼= L−we

e1
⊗ ev∗e1 O

×
X1

(−D)⊗ (Le1 ⊗ Le2)
we

⊗L−we
e2

⊗ ev∗e2 O
×
X2

(−D)

∼= O×S .

�

A consequence of Lemma 6.4 is that the inverse image of every element of K in
M̂gp

S is a trivial torsor and thus has sections. The next step is to produce a section
s1e ∈ �(S,L1e ) that is in fact uniquely determined by filling the dashed arrow in
the diagram

(M̂C )η ( f ∗MX )η

(π∗M̂S)η N

(6.8)

by means of 1 	→ s1e in order to make it commutative at stalks at points η in the
image of the section S → C that marks the node e. Once this is done, we will take
a quotient of M̂S that identifies all these sections, so that we get a map from N into
the quotient that is defined compatibly for all nodes.

Let e be a gluing node (alias edge of �̃ρ) of a curve f : C/S → X glued
from C1, C2 as in (5.3). Let V1, V2 be the adjacent vertices of �C with r(Vi ) = i .
Let η be a point in the node locus of e, then η necessarily maps to D under f , so
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Pe :=MX, f (η) = N
2. The top horizontal arrow in (6.2) at e is the map fe : Pe →

Q̂⊕NN
2 in (3.2) for Q̂ := M̂ S,π(η) and this is given by fe : N2

(Vη1 ,Vη2 )−→ Q̂× Q̂, see
Lemma6.1.Wecanbemore explicit by using (6.7) denoting as beforeVi : Q∨i → N

the map sending an integral tropical curve to the distance of Vi from the origin. We
find

fe : N2 → Q̂ ⊕N N
2, (λ1, λ2) 	→ (λ1V1 + λ2V2, (weλ1, weλ2)) (6.9)

and indeed fe(1, 1) = (V1 + V2, (we, we)) ∼ (V1 + weqe + V2, (0, 0)) = 1e by
(6.7). As part of the datum of X → k, namely the map on log structuresN →MX ,
we are given as the image of 1 under this, a lift of (1, 1) inMX and we look at its
localization in (MX )η. Locally at f (η), we can choose a chart of the log structure
of X given by

N
2 →MX, f (η) → OX, f (η)

∼= (B[z1, z2]/(z1, z2))(z1,z2), ei 	→ zi (6.10)

for B = OD, f (η) and zi a local equation of D in Xi at f (η). We may assume this
chart is compatible with the chart on k, i.e., (1, 1)maps to the given section ofMX

that comes from the chart of k. Using (6.10) and the fact that we are given basic
stable log maps Ci → Xi , we obtain maps

Nei → (MX |Xi ) f (η) →MXi , f (η) →MCi ,η (6.11)

for i = 1, 2 whose composition with MCi ,η →MCi ,η =Mi
S,η ⊕ N sends ei to

(Vi , we). In particular, by (6.9), taking the sum of (6.11) over i = 1, 2 yields at the
level of characteristic sheaves the desired top horizontal map of (6.1) up to adding
extra summands of N to which we map trivially. In order to form this sum also at
the level of actual log structures, we need to lift torsors from Ci to C . Concretely,
let s̄i denote the image of ei under (6.11). We wish to lift s̄i to a section si ∈ (M̂C )η
such that s1e := s1 · s2 ∈ (π∗M̂S)η. Once we choose a chart Q̂⊕N N

2 → (M̂C )η
compatible with the chart (6.10), the lifts s1, s2 are given uniquely by the following
essential Lemma (cf. [31, Proposition 7.1], [20,24,30]).

Lemma 6.5. For a local ring (A,m), let R denote the Henselization of A[x, y]/(xy)

in the ideal generated by m and x, y. Let Rx , Ry be the Henselization of A[x],A[y]
in m + (x),m + (y) respectively. Given ā ∈ R×x and b̄ ∈ R×y , there are unique

a, b ∈ R× that project to ā, b̄ respectively and satisfy the property ab ∈ A.

Proof. Note that via extension by zero, x ′ = āx and y′ = b̄y define elements in R
and we then find the existence of a, b to follow from [20, Lemma 2.1 (a = ux , b =
uy)] and their uniqueness is [20, Lemma 2.2]. �

Let us now study the dependence on choices. Any other chart (6.10) in reference
to the given one has the form e1 	→ az1, e2 	→ a−1z2 for some a ∈ B× which
then can be absorbed in an accordingly different chart Q̂ ⊕N N

2 → (M̂C )η by
multiplying the image of (0, e1) by b and (0, e2) by b−1 for b awe’th root of f ∗(a).
This operation leaves s1e invariant and it even leaves the inclusion of (π∗M̂S)η in
(M̂C )η pointwise invariant.
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Next, look at the effect of a change of chart Q̂⊕N N
2 → (M̂C )η while keeping

the compatibility with (6.10) and also keeping (π∗M̂S)η invariant (not necessarily
pointwise) are given by multiplying the image of (0, ei ) in (M̂C )η by some we’th
root of unity ζi . As long as ζ1ζ2 = 1, this leaves (π∗M̂S)η pointwise invariant but
more generally, this acts on (π∗M̂S)η via multiplication by ζ1ζ2. Everything we
did is compatible with generizations η � η′, so we obtain the following result.

Proposition 6.6. Let ie : S → C denote the section of π : C → S that marks the
node e. The sheaf of sets on S given by the isomorphism classes of commutative
diagrams of log structures (on S and C)

i−1e M̂C i−1e ( f ∗MX )

M̂S N×O×S

that lift (6.8) along ie(S) is a torsor under μwe (the we’th roots of unity).

Let Ŝ denote the fibre product of the total spaces of the torsors obtained from the
edges e ∈ E(�̃ρ) via Proposition 6.6. It is a

∏
e μwe -torsor over S, and carries the

scheme- and log-structure pulled back from (S,M̂S). Let (Ĉ,M̂Ĉ ) → (Ŝ,M̂Ŝ)

be the log-smooth curve that is the pullback of (C,M̂C )→ (S,M̂S) under Ŝ → S.

Lemma 6.7. Define L := ⊕e Z1e as a sublattice of M̂
gp

Ŝ and let Lsat be its

saturation. The inclusion L
1e 	→s1e−→ M̂gp

Ŝ
extends canonically to an injection

Lsat → M̂gp
Ŝ

. In particular, also K sat ⊂ Lsat lifts (see Lemma 6.3).

Proof. This is a tautology and follows by construction: a point ˆη ∈Ŝ that lies above

η ∈ S is identified with an isomorphism class of charts M̂S,η → M̂S,η whose
groupification injects L to M̂gp

S,η as prescribed by the assertion and also maps Lsat

into M̂gp
S,η by mapping the additional elements to roots of products of the s1e and

the choice of roots is uniquely defined by η̂. �

We can now define the quotientMgp

Ŝ
:= M̂gp

Ŝ
/K sat and obtainMŜ =Mgp

Ŝ
×Mgp

Ŝ

MŜ whereMŜ is the pullback ofMS to Ŝ. We have a surjection M̂Ŝ →MŜ and
forMŜ to be a log structure, it suffices to show that the structure map M̂Ŝ → OŜ
factors through this surjection. This follows if we verify that the torsors given by
the non-trivial elements in theN

r -summand in (6.6) map to zero inOS . And indeed,
this is because the sections qe are nowhere zero in S, hence all Lqe and thus their
products and powers map to zero. We obtain MĈ := M̂Ĉ ⊕π∗M̂Ŝ

MŜ to have a

log smooth map (Ĉ,MĈ ) → (Ŝ,MŜ) that in fact canonically extends as the left
column in the diagram (3.1), namely the bottom horizontal map f Ŝ : k→ Ŝ sends
the generator of N to s1e (since with the quotient by K sat all s1e got identified, we
just call their equivalent class s1, just like all 1e got identified with 1). To obtain
(3.1), by Proposition 6.6, it remains to argue why and how the top horizontal map in
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the diagram (3.1) is defined away from the nodes. For simplicity, we omit various
decorations of̂on spaces in the following. I.e., we now sit on only C1 or only C2
and here the map f is completely determined by realizing that, for π0 : X → k
denoting structure map of the target,

Mgp
X |Xi =Mgp

Xi
⊕O×Xi

π∗0M
gp
k |Xi

and then considering the commutative diagram

Mgp
C |Ci Mgp

Ci

π∗Mgp
S |Ci f ∗i (Mgp

X |Xi ) f ∗i M
gp
Xi

( f ∗i π∗0M
gp
k )|Ci

π∗ f ∗S
O×Ci

that yields as the dashed arrowaway from the gluing nodes a natural homomorphism
( f gp)∗ : Mgp

X → Mgp
C compatible with fS in the sense of (3.1). Furthermore,

the induced map ( f̄ gp)∗ : Mgp
X → Mgp

C maps f ∗MX into MC and is the top
horizontal map in (6.2). Hence, away from the splitting nodes, we obtain the desired
map f ∗MX →MC as the induced map

f ∗MX = f ∗Mgp
X × f ∗Mgp

X
f ∗MX →Mgp

C ×Mgp
C
MC =MC .

We obtained a basic stable log map

(Ĉ,MĈ )
f

π

X

π0

(Ŝ,MŜ)
f Ŝ

k

(6.12)

that lifts (6.2) and when applying the splitting construction of the previous section
(up to taking the quotient Ŝ → S) gives back the curves fi : Ci/S → X/k that we
started with.

To conclude this section, it remains to observe that when producing Ŝ, we
marked a bit too much. Indeed (6.12) has a non-trivial group of automorphisms,
namely μl acting by pullback of the left column of the diagram along endomor-
phisms of the log structure MŜ → MŜ that modify a chart by pointwise fixing
FŜ and multiplying the image of q by ζ ∈ μl where q is the element found in the

proof of Lemma 6.2, i.e., so thatMgp
Ŝ = Fgp

Ŝ ⊕ qZ. If ρ ∈M∨
Ŝ [1] is the primitive

generator whose perp is F Ŝ then ρ(1) = l by Sect. 4 and ρ(q) = 1. This shows
that the described action fixes s1. Furthermore, it acts transitively on the sheets of
Ŝ → S by means of the injection μl → ∏e μwe , ζ 	→ ζ le (this injects because
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the le are coprime since l = lcm({we}) and le = l/we). We denote the quotient by
S̃ := Ŝ/μl and let C̃ be the quotient log smooth curve above it. We observe

deg(S̃ → S) =
∏

e we

lcm({we}) . (6.13)

7. The splitting stack

The purpose of this section is to first recall Olsson’s stack L̃ogS which classifies
maps of fine log schemes T → S for fixed S. We then introduce a new stackLogspl

k

that surjects to L̃ogk where k denotes the standard log point. A typical local model
for L̃ogk is given by an injection of monoids h : N → Q. Subject to h, a typical
local model for Logspl

k is given by a choice of facet in Q with the property that its
intersection with the image of h is trivial.

For a fine log scheme S, denote by L̃ogS the Artin stack over S due to Olsson
[32] that is defined as follows. The objects over a scheme morphism T → S are the
morphisms T → S of fine log schemes over T → S. The morphisms from T → S
to T ′ → S are the log morphisms h : T → T ′ over S for which h∗M′ → M is
an isomorphism. The stack L̃ogS is an algebraic stack locally of finite presentation

over S (see [32, Theorem 1.1]). Let LogS be the open substack of L̃ogS classifying
fs log schemes over S (see [32, Remark 5.26]).

Definition 7.1. Recall that k = Spec(N
1 	→0−→ k) denotes the standard log point.

We denote by Logspl
k the category fibred in groupoids over the category (Sch/k)

of schemes over k = Spec k whose fibre over T → k is the groupoid of triples

(T, h,F)

where (T, h : NT ⊕ k
×
T → M) is an object in Logk and F is a subsheaf of M

satisfying that:

(1) For every t ∈ T , Ft̄ is a facet of Mt̄ (i.e., ab ∈ Ft̄ ⇒ a, b ∈ Ft̄ ).
(2) For the log structure α :M→ OT , α|M\F = 0.

(3) For every t ∈ T , 〈F t̄ ,1〉gp⊗Z R =Mgp
t̄ ⊗Z R where 1 is the image of 1 under

the induced homomorphism ht̄ : NT,t̄ →Mt̄ and 〈F t̄ ,1〉 is the submonoid of
Mt̄ generated by F t̄ and 1.

The morphisms from (T, h,F) to (T ′, h′,F ′) are the morphisms from (T, h) →
(T ′, h′) in Logk for which F goes to F ′.

Note that by Condition (2) the pair (F , α|F ) is also a log structure on T . Note
also that instead ofF wemay give a sheaf of facetsF ⊂Mwith suitable properties
because by (1) we have that F is the inverse image of its projection F inM.

It is straightforward to check that Logspl
k is a stack over k. Below, we will show

that the forgetful morphism

Logspl
k → Logk, (T, h,F) 	→ (T, h)
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is a representable, proper, and “normalization” map (see Proposition 7.4).
Let Q be a toric monoid and q be a nonzero element of Q. Consider Spec(Q →

k[Q]/(q)), where (q) denotes the ideal of k[Q] generated by the character χq .

Lemma 7.2. By taking T = Spec(Q → k[Q]/(q)) and N ↪→ Q, 1 	→ q for h
there is a morphism

Spec(k[Q]/(q))→ Logk

that is representable and smooth in the ordinary sense.

Proof. By the toroidal characterization of log smoothness [19, Theorem 3.5], the
map T → Spec k is log smooth. By the classifying properties of Logk, [32,
Theorem 4.6 (ii) and Cor 5.31], we find that the map in the assertion is smooth.
The map is representable by [32, §4, Rem. 4.2]. �


Recall the convention Q∨ = HomMon(Q, N) and that ρ⊥ = {p ∈ Q | ρ(p) = 0}
for ρ ∈ Q∨[1] gives a bijection between facets of Q and Q∨[1].
Lemma 7.3. (1) The reduced scheme Spec(k[Q]/(q))red of Spec(k[Q]/(q)) is

canonically isomorphic to
⋃

ρ∈Q∨[1]:ρ(q) �=0
Spec(k[Q]/(Q\ρ⊥)),

the union of the closed subschemes of Spec(k[Q]/(q)) defined by the ideals
generated by Q\ρ⊥ for varying ρ.

(2) The fibre product Spec(k[Q]/(q))×Logk Logspl
k is representable by the disjoint

union
∐

ρ∈Q∨[1]:ρ(q) �=0
Spec(k[Q]/(Q\ρ⊥))

of irreducible components of Spec(k[Q]/(q))red.

Proof. Let T := Spec(k[Q]/(q)) and T ρ := Spec(k[Q]/(Q\ρ⊥)). Recall the
well-known fact that the divisor div(χq) of the character χq as a rational function
on Spec(k[Q]) is∑ρ∈Q∨[1] ρ(q)T ρ . This proves (1).

For (2), we first construct a natural T -morphism
∐

ρ:ρ(q) �=0
T ρ → T ×Logk Logspl

k . (7.1)

Note that the affine coordinate ring of T ρ has two expressions k[ρ⊥] and
k[Q]/(Q\ρ⊥) which are isomorphic via the inclusion ρ⊥ ⊂ Q. Hence on T
we can consider two induced log structures: F defined by Spec(ρ⊥ → k[ρ⊥]) and
MTρ defined by Spec(Q → k[Q]/(Q\ρ⊥)). For t ∈ T ρ , denote by αt the natural

homomorphism Q → OT ρ,t̄ . Then α−1t (O×T ρ,t̄ ) ⊂ ρ⊥, so since ρ⊥ ⊂ Q is a facet,

Ft̄
∼= ρ⊥/α−1t (O×T ρ,t̄ ) ⊂ Q/α−1t (O×T ρ,t̄ )

∼= MTρ,t̄
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is also one. Let ιρ denote the inclusion T ρ → T . The pair (ιρ,F →MTρ ← NT ρ
)

can be considered as an object of (T ×Logk Logspl
k )(T ρ).

Conversely, we construct a natural T -morphism from T ×Logk Logspl
k to

∐
ρ:ρ(q) �=0 Tρ . Suppose that we are given a morphism S → T ×Logk Logspl

k by

data h : S → T , NS ⊕ k
×
S → MS ← FS such that NS ⊕ k

×
S → MS is the

pullback of NT ⊕ k
×
T → MT under h. Suppose S is connected. Fix s ∈ S, the

composition gs : Q →MT ,h(s̄) →MS,s̄ induces a chart, so Q0 := g−1s (M×
S,s̄)

is a face of Q and gs induces an isomorphism Q/Q0
∼−→ MS,s̄ . In particular,

g−1s (F S,s̄) is a facet ρ⊥ of Q for a unique ρ with ρ(q) �= 0. Since gs is com-
patible with specialization, ρ⊥ is independent of the choices of s ∈ S. By (2) of
Definition 7.1, h : S → T factors through S → T ρ → T .

The above two natural morphisms are inverse to each other. �

Proposition 7.4. (1) The morphism

∐

Q,q,ρ

T ρ → Logspl
k

obtained via (7.1) is representable, smooth, and surjective. Here, the disjoint
union runs over all toric monoids Q with nonzero element q and ρ ∈ Q∨[1]
such that ρ(q) �= 0.

(2) The fibred category Logspl
k is a pure zero-dimensional algebraic stack over k.

(3) The forgetful morphism Logspl
k → Logk is representable, affine, proper and

surjective. Every map V → Logk from a normal variety V factors uniquely
through the forgetful morphism Logspl

k → Logk.

(4) Given an object (T, h : NT ⊕k
×
T →MT ) of Logk, the inverse image in Logspl

k
is in natural bijection with the set

{
ρ ∈ �(T,M∨

T ) | ρ(h̄(1)) �= 0, ρ ∈M∨
T,t̄ [1] for all t̄ ∈ T

}
.

Proof. By [32], Theorem 1.1 and Remark 5.26, see also page 777 in loc.cit. for the
notations SP , SQ in Corollary 5.25, we conclude that Logk is an algebraic stack
and
∐

Q,q

[Spec(k[Q])/Spec(k[Qgp])] ×[Spec(k[N])/Spec(k[Z])] Spec(k)→ Logk

(7.2)

is representable, étale, and surjective where N → Q is given by 1 	→ q. The map
in Lemma 7.2 factors through this etalé cover, hence

∐

Q,q

Spec(k[Q]/(q))→ Logk

is smooth, representable and surjective. Assertion (1) now follows by base change
to Logspl

k via Lemma 7.3, (2).
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The claim in (2) that Logspl
k is an algebraic stack now follows from [6, Lemma

C.5]. The stack Logk is pure zero-dimensional because the left hand side in (7.2)
is pure zero-dimensional. By part (2) of Lemma 7.3, the map Logspl

k → Logk is

finite and surjective, so Logspl
k is also pure zero-dimensional.

Part (3) is similarly a direct consequence of Lemma 7.3.
To show (4), first consider the special case where T has a global chart, say

T = Spec(Q → R) for some k-algebra R and the map to k given by q ∈ Q,
then the natural map T → Logk factors canonically through the map given in
Lemma 7.2 and the statement of (4) follows directly from Lemma 7.3 (2). The
general case reduces to the special case by choosing an atlas and checking that
the statement of (4) is compatible with localization. The latter follows from the
discussion in Sect. 4.1: the collection of elements ρ, one for each chart, naturally
glues to global section of M∨

T . �


8. Decomposing moduli stacks of curves

Let Mg,n denote the moduli stack of prestable curves with its natural log smooth
structure [20], [14, Appendix A] over the trivial log point k. Using the splitting
stack introduced in the previous section, we define

M := LogMg,n ×Logk Logk, Mspl := LogMg,n ×Logk Logspl
k ,

M :=Mg,n(X/k, β).

Objects ofM are diagrams of the form (3.1) but with W = k. Forgetting the right
column in the diagram defines a map of log stacksM →Mg,n and forgetting the
top row in the diagram defines a map to k. Taken together, we obtain a log map
M →Mg,n ×k k and thus a map M →M that we call forget-target-morphism.
By abuse of notation, we will omit the underline onM and writeM →M for this
map. SinceMg,n is of pure dimension 3g−3+n, the same holds true for LogMg,n

by [32, Corollary 5.25]. Proposition 7.4 now implies that M and Mspl are of pure
dimension 3g − 3+ n as well.

If C → S is an object inMspl then, by Definition 7.1, we have a global section
s1 := h(1) ∈ �(S,MS) whose image in �(S,MS) we denote by 1. We also
have, by Proposition 7.4 (4), ρ ∈ �(S,M∨

S ) with l := ρ(1) �= 0. Furthermore, we

have a map MC/S
S → MS from the natural log structure MC/S

S on Mg,n to the
one given with the object. If e is a node of a fibre of C → S over a point s ∈ S,

there is an N-summand inMC/S
S,s and its generator maps to an element qe inMS,s .

We call the node e a splitting node if le := ρ(qe) �= 0 and note that if this is the
case, this node doesn’t ever get smoothed anywhere over S (since qe then generates
(MS/ρ

⊥)⊗Q which is nowhere trivial on S since ρ(qe) �= 0). If �̄ρ denotes the
graph obtained from collapsing all non-splitting edges in a fibre of C → S, we find
that all fibres of C → S are marked by this graph. Adding markings nV and genera
gV as obtained from C as decorations to the graph �̄ρ , we obtain part of the data of
Sect. 2. We set we := l

le
which may be rational a priori. For fixed g, n, let �(g, n)
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denote the set of graphs with vertices decorated by gV , nV and edges with rational
we satisfying (2.4) and (2.5).

The stackM is too big for our purpose of arriving at the statements ofLemma8.1
and Lemma 8.2 below. To be able to state these lemmata, we will therefore choose
a sufficiently small open substack M0 with the property that the forget-target-
morphism M → M factors through the open embedding M0 ⊆ M as follows.
Let P : M → M be a smooth presentation. For every point x in the image of
M → M, let x̂ ∈ M be a point so that P(x̂) = x and let Ux → M be an étale
neighbourhood of x̂ that is a chart for the log structures at x̂ . We define M0 to be
the union of P(Ux ) for x running through the points in the image ofM →M. We
define Mspl

0 :=M0 ×M Mspl.
For fixed g, n, let �(g, n) denote the set of graphs with vertices decorated by

gV , nV and edges with we satisfying (2.4) and (2.5) and let

�̄(g, n, β) := im(�(g, n, β)→ �(g, n))

be the (finite) image of the map that forgets βV . For � ∈ �̄(g, n, β) letM� be the
open and closed substack ofMspl

0 whose points are marked by � by the discussion
in the preceding paragraphs.

Lemma 8.1. Mspl
0 =∐�∈�̄(g,n,β) M�

Proof. We only need to show that Mspl
0 is contained in the right hand side. Every

point x inM0 lies in a chartUy of the log structure of some point y that is contained

in the image ofM →M0. This implies thatM∨
Uy ,x is a face ofM

∨
Uy ,y and for the

latter we have an interpretation as a parameter space of integral tropical curves by
Lemma 4.4. The points of the inverse of y inMspl

0 are in bijection with the elements

of M∨
Uy ,y[1] that evaluate non-trivial on 1 by Proposition 7.4 (4). By (4.8), these

same elements yield elements of �(g, n, β) under Trop and so the corresponding
graphs with βV forgotten lie in �̄(g, n, β). By Sect. 4.1, the points in the inverse
image of x in M

spl
0 are indexed by the subset M∨

Uy ,x [1] of M
∨
Uy ,y[1] which are

therefore also labelled by graphs in �̄(g, n, β). �

We use the composition

μM�
: M� →M

spl
0 →M0

to define

M� :=M ×M0 M�. (8.1)

Let μ� : M� → M denote the forgetful map. By Proposition 7.4, (4) and

Lemma 8.1, the map
∐

� M�

∐
μ�→ M is surjective. We arrive at a commutative

diagram with Cartesian squares

∐
�∈�̄(g,n,β) M�

∐
μ�

∐
�∈�̄(g,n,β) M�

∐
μM�

Mspl Logspl
k

M M0 open M pr Logk.

(8.2)



The degeneration formula for stable log maps 97

Let π : C → M be the universal curve for M and f : C → X be the universal
map. Recall that

(Rπ∗( f ∗TX/k))
∨ → LM /M0

is the natural perfect obstruction theory for M relative to M0 (see [14, Sect. 5]).
Then similarly μ∗�(Rπ∗( f ∗TX/k)

∨ defines a perfect obstruction theory for M�

relative to M� , since the intrinsic normal cone of M� relative to M� is closely
immersed to the pullback of the intrinsic normal cone of M relative toM0 by the
Cartesianness of (8.2), Proposition 7.4 and Lemma 7.3.

Lemma 8.2. Under the projective morphismsμM�
, as an identity in A3g−3+n(M0),

we have
∑

�∈�̄(g,n,β)

l�(μM�
)∗[M�] = [M0].

Proof. The morphisms μM�
are affine and proper by Proposition 7.4, (3) and thus

projective. By the Cartesianness of (8.2), it is enough to prove the correspond-
ing statement for the forgetful morphism Logspl

k → Logk. The statement can be
checked on themap of presentations as given in Proposition 7.4. The components of
the presentation are studied in Lemma 7.3 and so the claim follows if we show that
the cycle [Spec(k[Q]/(Q\ρ⊥))] appears with coefficient l� in [Spec k[Q]/(1)].
By assumption, l� = ρ(1) and by standard toric geometry l� is the vanishing order
of the character χ1 on Spec(k[Q]/(Q\ρ⊥)), so we conclude the proof. �


Consider M′
� := M� ×k Spec(k[x]/(xl� )) in order to have the induced pro-

jective morphism μ′ : ∐� M′
� →M0 be of pure degree one. Hence, by applying

[29, Proposition 5.29] (see also [17]) to μ′, we get

Lemma 8.3.
∑

�∈�̄(g,n,β) l�(μ�)∗[M�/M�, μ∗�(Rπ∗ f ∗TX/k)
∨]

= [M /M0, (Rπ∗ f ∗TX/k)
∨].

Here and later, [K/M, E] (or sometimes simply [K , E]) denotes the virtual funda-
mental class of a stack K that is relative DM type over a pure dimensional algebraic
stack M , with respect to a relative perfect obstruction complex E of K over M (see
[9,22,25]).

9. Comparing perfect obstruction theories

In this section, we deliver the details for Sect. 1.3. Recall the forgetful maps of
finite graph sets

�̃(g, n, β)→ �(g, n, β)→ �̄(g, n, β)

where the first map forgets the edge ordering and the second map forgets the βV .
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9.1. Gluing of log structures and moduli stacks

For �̄ ∈ �̄(g, n, β), recall M�̄ and M�̄ from (8.1). We decompose M�̄ in the
obvious way into open and closed substacks M� that fix the classes βV , i.e.,

M�̄ =
∐

�(g,n,β)�� 	→�̄

M�.

Furthermore, we may consider the edge-labelled stack M�̃ where splitting nodes
are marked. We have an étale forgetful map of the markings M�̃ → M� . We
similarly define M�̃ with an étale forgetful map M�̃ → M� . Let μ�̃ denote the
composition

M�̃ →M�̄

∐
μ�−−−→M .

As a direct consequence of Lemma 8.3, we arrive at the following.

Lemma 9.1.
∑

�̃∈�̃(g,n,β)
l�

|E(�̃)|! (μ�̃)∗[M�̃/M�̃, μ∗
�̃
(Rπ∗ f ∗TX/k)

∨]
= [M /M0, (Rπ∗ f ∗TX/k)

∨].
For the remainder of the section, we fix � ∈ �̃(g, n, β), in particular, edges of
the graph � will be ordered from now on. Recall that for a vertex V we defined
MV :=MgV ,nV∪EV (Xr(V ), βV ), i.e., the moduli stack of genus gV basic stable log
maps to Xr(V ) of class βV with nV unconstrained markings and further markings
indexed by e ∈ EV with contact order we to D. We also consider the stackM ◦

V :=
MgV ,nV∪EV of prestable curves, see the beginning of Sect. 8.

The diagram

M�

φ�

w
M�

f

⊙
V MV

w′
∏

V LogM ◦
V s

Log�V M ◦
V
=: B

(9.1)

commutes, where φ� is defined by the splitting construction of Sect. 5; w, w′ are
morphisms that forget the targets of stable log maps; f is defined by taking the

homomorphism⊕VM
CV /S
S → FC/S

S (i.e., taking only the “facet data”) and finally

s is defined by taking the sum ⊕VM
CV /S
S →⊕VMSV .

Recall that D carries the trivial log structure. We define theOD-module ND/Xi

by the exact sequence

0→ ND/Xi → TXi |D → TD → 0. (9.2)

Note that ND/Xi is isomorphic to OD (unlike ND/Xi
).

Lemma 9.2. (1) s is étale.
(2) The morphism f is of Deligne-Mumford-type and smooth.
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(3)

w∗L∨M�/B
∼= φ∗�

( ⊕

e∈E(�)

ev∗e ND/X1

)

where B = Log∏
V M ◦

V
.

(4) The morphism φ� is of Deligne-Mumford-type and étale of degree
�e∈E(�)we

l�
.

Here, if � has only one vertex, then we set �e∈E(�)we = 1.

Proof. For (1): This is straightforward by the lifting criterion for formally étale
morphisms.

For (2): First note that f is of DM-type since there is no infinitesimal automor-
phism σ of a geometric point of M� with f(σ ) = id. Now to prove f is smooth,
it is enough to show f is formally smooth since it is locally of finite presentation.
The corresponding lifting property of f can be checked by considering charts of log
morphisms. Let I be a nilpotent ideal of a finitely generated ring � over k and let
S = Spec(�/I ). We may assume that there is a chart

M
C/S
S Q N

1← �1

OS

of MC/S
S → MS ← N ⊕ O×S . By Definition 7.1, there exists a unique lifting to

Spec(�) of the log structure on MS . It is also obvious that MC/S
S → MS and

MS ← N⊕O×S have lifts, which may not be unique.
For (3): Since ND/X1 is a trivial line bundle, it is enough to show that L

∨
M�/B

is also a trivial bundle of rank |E(�)|. For this we will describe anOS-basis of the
set of isomorphism classes of liftings to S[ε] := Spec(OS[ε]/ε2), fixing the log
structure of the facet, of a given object

(C/S, N⊕O×S
h−→MS

j←−MC/S
S )

of M� over any scheme S. For each e ∈ E(�), we define a lifting

(C[ε]/S[ε], N⊕ (OS[ε])× h+εh′−→ MS[ε] je←−MC/S
S [ε]) (9.3)

as follows. The monoid homomorphism of h′ : N → OS can be transformed to
the trivial homomorphism up to a unique isomorphism of MS fixing FS , since
OS is a divisible group, and F and N generate M ⊗Z Q. For each splitting node
q, there is the corresponding canonical submonoid sheaf Nq ⊂ MC/S

S satisfying
Nq ∼= Nq ⊕O×S by Lemma 6.4 which deals with L1q

∼= 1⊕O×S . Therefore je is
determined by je(1q) for all splitting nodes q. Define je(1q) = j (1q) for q �= e,
je(1q) = j (1q)+ ε for q = e. We can check that je is well-defined and the liftings
(9.3) for e ∈ E(�) form a basis of the set of the isomorphism classes of liftings.
We can do this construction for a smooth surjective cover S →M� .
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Finally, (4) follows from thegluing construction inSect. 6 that gave thepreimage
S̃ of any scheme S mapped to the target ofφ� and (6.13) readily computes the degree
of φ� . �


Let us fix � ∈ �̃(g, n, β) and for a vertex V we define

MV := LogMgV ,nV ∪EV
. (9.4)

Note that we don’t take the product with Logk like we did for M. Let CV be the
universal curve over MV , i.e., the pullback from MgV ,nV∪EV . The natural perfect
obstruction theory on MV is given by

(RπV,∗ f ∗V TXr(V )/k)
∨ → LM V /MV

where πV : CV →MV is the universal curve (also the pullback fromMgV ,nV∪EV )
and fV : CV → Xr(V ) the universal map and (·)∨ means taking RHom(·,O). We
take the outer tensor product of these obstruction theories on

∏
V MV via

E := �V (RπV,∗ f ∗V TXr(V )/k)
∨ → L := �V LMV /MV

∼= L�V MV /�V MV

which is the natural perfect obstruction theory on
∏

V MV relative to
∏

V MV ,
e.g., by [9, Proposition 5.7]. The isomorphismL ∼= L�V MV /�V MV between cotan-
gent complexes can be seen by the distinguished triangles associated to towers of
projections starting from MV1 ×k MV2 → MV1 ×k MV2 → MV1 ×k MV2 and
base changes.

9.2. Tangent sheaves and morphisms

The universal curve π : C →
⊙

V MV is obtained via pushout from the CV as in
(5.3). The universal curve C� of M� as well as various other universal curves are
defined by the following fibre product diagram in log stacks

C� CM�
CMg,n CM

M� M� LogMg,n M

starting from the log universal curve CMg,n of LogMg,n . The underlying universal
curve C� of M� fits into the fibre product diagram

C�

φ̃�

π�

C 
π

M � φ�

⊙
V M V ,

ιe
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which defines φ̃� that we also denote φ̃. On C� we consider the following diagram
with exact triangles as rows that we will prove to be commutative:

TC�/CM�
⊕V TC�/CM�

|CV,�
⊕eTC�/CM�

|Me

f ∗TX/k ⊕V f ∗TX/k|CV,�
⊕e f ∗TX/k|Me

φ̃∗E φ̃∗ ⊕V ιV,∗ũ∗V f ∗V TXr(V )/k φ̃∗ ⊕e ιe,∗ ev∗e TD/k

φ̃∗π∗T⊙
V MV /

∏
V MV φ̃∗ ⊕V π∗u∗V TMV /MV φ̃∗π∗Tu[1]

(9.5)

Here, TA/B denotes the relative tangent complex of a map A → B, i.e., the
dual of the relative cotangent complex LA/B . For a strict map of fine log stacks
A → B, we have LA/B = LA/B = LA/LogB by [33] and the map underlying every
occurrence of T in the diagram is strict. Pullbacks of T are well-defined, see [33].
We refer to the universal map C� → X by f and CV,� is the closed substack of C�

corresponding to the universal curve CV ofMV . There is a naturalmap CV,� → CV ,
which gives a log structure on CV,� by pullback. This will be denoted by CV,� . The
image of the sectionM� ↪→ C� associated to the node e is denoted by Me.

We now explain how to construct the diagram. Let CV, denote the universal
curve on

⊙
V MV corresponding to CV . We denote by ιV : CV, → C and

ιe :⊙MV → C the closed immersions attached to V and e.

• The first two lines and the morphisms between them are obtained from the
composition TC�/CM�

→ TC�/M�
→ f ∗TX/k by tensoring with the partial

normalization exact sequence

0→ OC�
→
⊕

V

ιV,∗OCV,�
→
⊕

e

ιeOe → 0.

• The maps uV , ũV are defined by the commuting diagram

C�

φ̃

f

CV,�ιV,�

φ̃V

X X

C 

π

CV, 
ιV ũV

πV

CV

πV

fV
Xr(V ) Xr(V )

⊙
MV

ιe

uV

ιV,e

MV

ιV,e

D

ιD

with the squares Cartesian and πV = π ◦ ιV . Here we double use notation for
ιV,e and πV .
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• The forgetful morphisms (D,MX |D) → (D,MXi |D) → D induce epimor-

phisms TX/k|D σi−→ TXi /k|D τi−→ TD/k = TD . On C , we consider the sheaf
epimorphism

⊕V ιV,∗ũ∗V f ∗V TXr(V )/k → ⊕eιe,∗ ev∗e TD/k
(ξV )V 	→∑e τ1(ξV1(e)|D)− τ2(ξV2(e)|D)

(9.6)

where Vi (e) refers to the vertex V of e with r(V ) = i . We define E as the
kernel of (9.6). This explains the third line of (9.5) before taking pullback under
φ̃ : C� → C⊙. Now the right two vertical morphisms from the second line

to the third line are obtained from f ∗TX/k|CV,�
→ φ̃∗ιV,∗ũ∗V f ∗V TXr(V )

and the
adjunction transformation id⇒ ιe,∗ι∗e . These two vertical morphisms uniquely
determine the dashed arrow f ∗TX/k ��� φ̃∗E .

• Recall u from (1.3). The bottom row of (9.5) is obtained by applying φ̃∗π∗ to
the natural exact triangle

T
⊙

V MV /
∏

V MV → u∗ �V TMV /MV → Tu[1].

• The bottom central diagonal up-arrow is φ̃∗ applied to the composition

π∗u∗V TMV /MV → ιV,∗ ι∗V π∗
︸ ︷︷ ︸

π∗V

u∗V TMV /MV

= ιV,∗ũ∗V π∗V TMV /MV

= ιV,∗ũ∗V TCV /CMV
→ ιV,∗ũ∗V f ∗V TXr(V )/k

where the last map is d fV and the second “=” follows from the flatness of πV

as it implies that the natural pullback morphism is an isomorphism.
• The bottom right diagonal up-arrow is φ̃∗π∗ of the natural map Tu[1] →

(
∏

e eve)
∗
T�[1] (see (1.3)) composed with the isomorphism T�[1] ∼= ⊕eTD

and adjunction

π∗ ⊕e ev
∗
e TD →⊕eιe,∗ι∗eπ∗ ev∗e TD = ⊕eιe,∗ ev∗e TD.

• The left long vertical map is the natural map TM�/M�
→ φ∗�TM /B =

φ∗�TM /�V MV from (9.1) using that s is étale (by Lemma 9.2, (1)), then apply-
ing π∗ and using flatness of π to have TC�/CM�

= π∗TM�/M�
. The commu-

tativity of the hexagon that includes this map follows from the commutativity
of (5.5).

• We prove the commutativity of the bottom right square. From (1.3), we have a
commuting diagram of cotangent complexes

π∗u∗ �e ev∗e1,2 TD×D π∗(
∏

e eve)
∗
T�[1] adj

⊕eιe,∗ ev∗e TD

π∗u∗ �V TMV /MV π∗Tu[1]
(9.7)
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where adj is obtained by adjunction of π∗ ⇒ ιe,∗ι∗eπ∗ = ιe,∗. By construction
of the right diagonal up-arrow, the composition map π∗u∗ �V TMV /MV →⊕eιe,∗ ev∗e TD coincides with the the composition of the bottom horizontal map
with this diagonal map. We need to show that this agrees with the other path
that goes diagonal first and then horizontal after. To achieve this, we will factor
the left vertical arrow in (9.7). We rewrite the top left corner using

�e ev
∗
e1,2 TD×D = �V∈e ev

∗
V,e TD = �V∈eι

∗
V,e f ∗V ιD,∗TD

and consider the commutative diagram

f ∗V TXr(V )
ιV,e,∗

ev∗V,e
︷ ︸︸ ︷
ι∗V,e f ∗V ιD,∗ ι∗DTXr(V )

τr(V )
ιV,e,∗ ev∗V,e TD

TCV /CMV

d fV

ιV,e,∗TMV /MV

d evV,e
ιV,e,∗ι∗V,ed fV

(9.8)

where the bottom left horizontal arrow is adjunction id⇒ ιV,e,∗ι∗V,e combined
with TCV /CMV

= π∗V TMV /MV and ι∗V,eπ
∗
V = id∗; the map τr(V ) was defined

above (9.6). Since the left vertical map in (9.8) gives the bottom central diagonal
arrow in (9.5) and τ the horizontal one, we are done verifying the commutativity
of the bottom right square.

• The dashed diagonal arrow in (9.5) is the unique map making the left right
bottom corner commutative by the axioms of triangulated category applied to
the bottom two rows as triangles and Lemma 9.3.

Lemma 9.3. Let A → B be a monomorphism in an abelian category A with
enough injectives. Let C• be a complex in A with Ci = 0 for all i < 0. Then the
induced homomorphism HomD+(A)(C

•, A)→ HomD+(A)(C
•, B) is monic.

Proof. Let Kom(A) be the category of cochain complexes of A and let K (A) be
the homotopy category of Kom(A). First we find injective resolutions I •, J • of A,
B respectively, replacing A → B by I • → J • in Kom(A) with monomorphisms
I i → J i for all i ≥ 0. We have

HomD+(A)(C
•, A) = HomK (A)(C

•, I •)→ HomK (A)(C
•, J •)

= HomD+(A)(C
•, B)

which is easily checked to be monic. �


9.3. Virtual fundamental classes

Recall diagram (1.3).Wedefine a natural perfect obstruction theory on
⊙

V MV rel-
ative to �VMV as follows. The virtual class [MV , (RπV∗ f ∗V TXr(V )

)∨] is obtained
from the perfect obstruction theory that comes from a chain of exact functors

(Rπ∗ f ∗V TXr(V )/k)
∨ ∼= Rπ∗( f ∗V T ∨Xr(V )/k ⊗ ωπ [1])



104 B. Kim et al.

→ Rπ∗(LCV /CMV
⊗ ωπ [1])

∼= Rπ∗(Lπ∗LMV /MV ⊗ ωπ [1])
∼= LMV /MV ⊗ Rπ∗ωπ [1]
→ LMV /MV (9.9)

where the first one is Grothendieck duality, the third one uses the fact that universal
curve π is flat, the fourth one is the projection formula, and the last one is the trace
map. We may think of (9.9), under the sequence of exact functors, as an output for
a map of a pair TXr(V )/k ← π∗TMV /MV as an input.

Note that ωπV = ι∗V ωπ , so if we apply the chain (9.9) of exact functors for
three pairs in the last two lines in diagram (9.5), we obtain a commuting diagram
of exact triangles

(�e eve)
∗
L�[−1] u∗E (Rπ∗E)∨

Lu[−1] u∗L L
⊙

V MV /�V MV

(9.10)

where, by construction, the left vertical map is the natural one coming from the
Cartesian square (1.3). Also as in the construction, we use

(Rπ∗(⊕eιe,∗ ev∗e TD/k))
∨ ∼= (⊕e ev

∗
e TD/k)

∨ ∼= (�e eve)
∗
L�[−1].

Since the left vertical arrow in (9.10) is surjective at h0, by the two four-lemmas
(that are part of the usual five-lemma), h0 of the right vertical arrow in (9.10) is
an isomorphism and h−1 is surjective. Thus, the right vertical arrow in (9.10) is an
obstruction theory (see [9, Def 4.4]). We claim it is a perfect obstruction theory,
i.e., (Rπ∗E)∨ is locally quasi-isomorphic to a complex of free sheaves in degree
−1 and 0. Equivalently, Rπ∗E is locally quasi-isomorphic to E0 → E1 (for Ei free
and in degree i). Indeed, we can take (9.6) as a resolution for E , call this F0 → F1.
We can replace F0 → F1 by [E0 → E1] := [F0(

∑
j D j ) → F1 ⊕⊕ j F0|D j ]

for D j suitably chosen local sections of π with
∑

j D j relatively ample so that
Rπ∗Ei is locally free and concentrated in degree 0 for i = 0, 1, hence giving the
perfectness.

By the functoriality of [9, Proposition 5.10], we conclude from (9.10) that

[
⊙

V

MV , (Rπ∗E)∨] = �!
∏

V

[MV , (RπV∗ f ∗V TXr(V )
)∨]. (9.11)

Now focus on the middle two lines in (9.5) and note that TX/k|Xi
→ TXi /k is

an isomorphism and so the kernel of the right vertical map is ⊕eιe,∗ ev∗e ND/X1 by
the definition of ND/X1 in (9.2). The snake-lemma for this 2× 3-diagram gives the
cokernel of the left vertical arrow, that is, there is a natural exact sequence

0→ f ∗TX/k → φ̃∗E → φ̃∗(⊕eιe,∗ ev∗e ND/X1)→ 0.
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If we apply the chain (9.9) of exact functors for the left trapezoid in diagram (9.5),
we obtain a commuting diagram of exact triangles

φ∗(Rπ∗E)∨ μ∗�
(

Rπ∗ f ∗TX/k

)∨
φ∗
(
⊕

e∈E(�) ev
∗
e ND/X1

)∨
[1]

L
⊙

M V /
∏

V MV LM�/M�
w∗LM�/

∏
V MV [1].

(9.12)

By Lemma 9.2,(3), the top right corner is isomorphic tow∗LM�/B[1] and since
L
∏

V MV /B = 0 by Lemma 9.2,(1), for the right vertical map to be isomorphic to
the pullback of the natural map LM�/B → LM�/

∏
V MV , we need to prove that

it is an isomorphism. Since the other two vertical arrows are perfect obstruction
theories, the 4-lemma gives that the right vertical map is surjective. However, a
surjective map of free sheaves of the same rank is an isomorphism (as this can be
checked étale locally where they are projective).

Applying functoriality [9, Proposition 5.10] to (9.12), we conclude

[M�/�VMV , φ∗�(Rπ∗E)∨] = [M�/M�, μ∗�(Rπ∗ f ∗TX/k)
∨]. (9.13)

Also, by a special case of functoriality for the étale map φ� ,

[M�/�VMV , φ∗�(Rπ∗E)∨] = φ∗�[
⊙

V

MV , (Rπ∗E)∨]. (9.14)

Proof of Theorem 1.5. The result is the composition of the identities Lemma 9.1,
(9.13), (9.14) and (9.11). �
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