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Abstract. We give a direct proof for the degeneration formula of Gromov—Witten invariants
including its cycle version for degenerations with smooth singular locus in the setting of
stable log maps of Abramovich-Chen, Chen, Gross—Siebert.
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Introduction

Gromov—Witten invariants are constant in smooth families and more generally in log
smooth families if one considers logarithmic Gromov—Witten invariants instead [1,
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12,14],[26, Thm. A.3]. A one-parameter normal crossing degeneration, also known
as semi-stable degeneration, is such a log smooth family. We here consider the case
where the central fibre X consists of only two smooth irreducible components
X1, X» that meet in a smooth divisor D. In this case, the log Gromov—Witten
invariants of X decompose into log Gromov—Witten invariants on the components
with log structure given by the divisor D respectively. This result is the so-called
degeneration formula that was discovered and proven in pioneering works with the
framework of expanded relative stable maps: in the symplectic geometry setup by
Li and Ruan [23], by Ionel and Parker [18]; in algebraic geometry by Li [24] and
Abramovich and Fantechi [4]. Chen [11] proved a hybrid version using stable log
maps in the sense of [11,21]. All of these results use target expansions. We give a
proof in Theorems 1.5 and 1.6 below that goes without expansions. The result itself
is not new as it follows via comparison theorems [5] from the prior works, but we
decided to compose a direct proof in order to facilitate the arguments in [16,38].
The splitting stack in Sect. 7 is novel. Our gluing result of Sect. 6 has been used in
[7,8,15]. We give detailed arguments for the comparison results of virtual classes
by proving the commutativity of the relevant maps of triangles, see (9.10), (9.12).
Novel is the elaboration of the tropical point of view for the degeneration formula
inspired by [26,27,31]. The tropical point of view in log Gromov—Witten theory
was first established in [14].

A decomposition formula for general log smooth fibres has been given in [2].
A symplectic geometry approach has been followed in [34,37] with a more general
degeneration formula in [35]. More general gluing formulae in log geometry has
been obtained in [3,39] and a degeneration formula in [36].

0.1. Conventions

We refer to [19] for the basics of log geometry. All log schemes will be fine and
saturated and we denote them by undecorated letters like S. We refer to the under-
lying scheme by S and occasionally, by abuse of notation, we also refer to S as the
scheme with trivial log structure. For D C X a subvariety we denote the pullback
of the log structure from X to D by Mx|p. We use M to refer to monoid sheaves
and .# to refer to moduli stacks, e.g., .#; ,(X /B, B) denotes the moduli stack of
n-marked basic stable log maps of genus g and class S to a target log space X that
is log smooth over B. We will sometimes use the notation .#, s(X/B, ) for some
finite set S that is used to label the markings of the stable maps. With few exceptions
clear from the context, curves for us will be connected. Out of the n markings, some
may have prescribed contact orders to strata in X and this is a part of the data of §.
For a monoid M, we denote its Grothendieck group by M#P, similarly for sheaves
of monoids. We set MY := Hom(M, N), denote by M[1] the set of generators of
dimension one faces of M and form € M, we setm™ = {n e MY |n(m) = 0}. For
a graph I', we let E(I") denote the set of its edges. We work over a fixed field k
of characteristic zero. When we refer to a point, it will be implicit that we mean a
geometric point.
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1. Geometric setup and the main result
1.1. Semi-stable degenerations

Consider a semi-stable degeneration = : X — B, i.e., a projective surjection from
a smooth scheme X to a smooth one-dimensional scheme B with smooth fibres
away from a point b and X = 7! (b) is simple normal crossings. We assume X
consists of two smooth components X1, X, that meet in a smooth subvariety D
that is a divisor in each of X, X>.

The divisor X C X defines a divisorial log structure on X, concretely it is given
by the monoid sheaf My := (9;\  NOx withits inclusion in Ox. We analogously

obtain a divisorial log structure on B by Mp := Og\ by N Op that maps into My
under 7*, so we turned 7 into a log map which is in fact log smooth, even over
b. By [9] and [26, Theorem A.3] the log Gromov—Witten invariants of all fibres
of m agree. The main purpose of the degeneration formula is to compute these
invariants on the special fibre X. Henceforth, we will therefore forget about = and
only consider a log smooth X — b that is decomposed as in this degeneration.

1.2. Log smooth target X

We let k := Spec(N e k) denote the standard log point. (This can be thought of
as b above and it now comes with a distinguished chart.) We denote its underlying
point scheme by k = Speck.

Throughout, we fix a log smooth morphism X — k where the underlying
scheme decomposes as X = X Lip X, in smooth irreducible components X; and
D is the smooth connected singular locus of X. We assume that the log structure
is of semi-stable type which means that X — Kk is strict away from D and the
stalks of the characteristic My := Mx /Ox are isomorphic to N? at points in D.
Unwinding the definitions we obtain the following standard fact.

Lemma 1.1. Let X = X |Up X, be a scheme overk. Giving a log smooth morphism
X — Kk of semi-stable type with underlying variety X is equivalent to giving two
line bundles L1, Lo on X together with maps s; : L; — Ox and a global section
mel(X, L1 ®Ly) such that

1) Lilx, Sll% Ox, is injective and identifies L1|x, = Ox,(—D), and similarly
with indices 1,2 interchanged,

(2) 7 trivializes L1 ® Lo = Ox and

(3) (51 ®52)(w) = 0.

Remark 1.2. If X is the central fibre of a family = : X — B as before, then we find
L; = Ox(—X;)|x with s; the restriction of the inclusion Ox (—X;) < Ox to X
and 7 defines a section of Ox(—X| — X») over an étale neighbourhood of b, so
indeedwr € I'(X, L1 ® L3).
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Remark 1.3. A scheme of the form X = X, Up X, permits a lift to a log smooth
morphism X — k if and only if 7! := Ext(Q x, Ox) has a nowhere vanishing
section. More generally, if 7! has a section with smooth zero locus then X can be
upgraded to a log toroidal morphism X — K, see [13].

We denote by ¢; : X; — X the natural inclusions. Using the natural surjection
N? - My := Mx/O%, ¢ — (local equation for X; in X) (1.1)
we will later make use of the identification
My =11 .N@ 1 ,N. (1.2)
There is a natural surjection onto My from the following sheaf of monoids
{(n1,n2, f)ln1, na > 0, f is a local generator for L2 ® £},
see for instance Complement 1 in [19].

Remark 1.4. Note that X ; has two different natural log structures namely M x|x,,
the restriction from X, and the divisorial log structure from D, i.e., Mx, p) =
(’);l\ p N Ox,, similarly for X,. For the remainder of the paper, we use X; to
refer to the latter one, ie., X; = (X;, M(x,,p)). There is a natural inclusion
Mx,,py C Mx|x, compatible with the maps to Oy, because M x, p) is the log
structure associated to the submonoid sheaf

{(0, na, f)|lnp = 0, f is a local generator for £?0|X1 ® E?”‘ Ix,}

since by Lemma 1.1-(1) we have £»|x, = Ox,(—D). Hence, we have a map of
log schemes

(X, Mxlx) — (X, Mx,,p))

and similarly for X, and this difference is what causes most of the work in later
chapters. The induced inclusion M x, py C Mx|x, is {0} ® Np C Ny, ® Np
given by the exponents ny, ns.

1.3. Cycle version of the degeneration formula

We fix an effective curve class § € H(X). We consider in Sect. 2 certain decorated
bipartite graphs I'. Bipartite means that there is a given map r : {vertices of I'} —
{1, 2} and the vertices of each edge have different values under r. To each vertex
V of T we associate a moduli stack .y that classifies stable log maps to X, (v
governed by data from I" (see Theorem 1.6 and Sects. 2, 9 for more details). Here,
X carries the divisorial log structure via the divisor D, similarly for X». The
adjacent edges at V index marked points that map to D, so there is an evaluation
map .#y — [[,5y D where the product is over the edges of I" that contain V.
Since, by usual conventions, markings ought to be ordered, we also need to keep
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track of an ordering of the edges of I" and we denote this edge-ordered graph I".
We define (), .#y by the Cartesian square

@v My - Hv My

L

A
[leD——Ily[Lsv 2

where the bottom left is the product over all edges of I" and the map A is (de)e —>
(de)vee, that is on the factor D indexed by an edge e it is the diagonal into the
two components indexed by the vertices of e that appear in the bottom right. This
diagram has the effect that the stable maps in the .#y for various V are glued over
their evaluations in D as prescribed by I" to form a stable map to X that is then
an object in ()}, Ay . To further garnish this stable map with a compatible log
structure to get a stable log map to X, a finite choice is to be made. In fact, there is
an étale map ¢ : Ay — Oy .#y where objects in ./ are stable log maps to X

whose dual intersection graph collapses to I'. We will show that

deg(¢) = Hl—rw (1.4)

for the degree of this map (see Lemma 9.2,(4) or (6.13)) where w, is the contact
order to D at the relative marking corresponding to e (and this is necessarily the
same for X; and X») and Ir = lcm({w,}). The contact order is defined to be
the weight of e, see (3.3) and the sentence thereafter. We also have a natural map
F : My — A to the moduli stack .# := .4, ,(X/K, B) of stable log maps to X

and we show in Lemma 9.1 that the virtual degree of F is #{W where E(T) is

the set of edges of I'. For every I, we have a commutative diagram

My —E 1
o| \ (15)
Oy 2y LHV///V —— X"

where ev denotes respectively the evaluation map for the n marked points. The
following is the main result and will be proved at the end of Sect. 9.3.

Theorem 1.5. (Cycle version of the degeneration formula) We have
Ir
M = ———— F "N My
1= oS TTe

where ¢ = ¢ and [/ is the natural virtual fundamental class for .# and
similarly [ [y [.#v] is the outer product of the natural virtual fundamental classes
Sfor My .
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1.4. Numerical degeneration formula

Let us deduce from Theorem 1.5 the numerical version of the degeneration formula.
Assume we are given an operational Chow class y € A*(X") and an operational
Chow class ¢y € A*([] .#yv) whose pullback to .# comes from an operational
Chow class ¥' € A*(.#). Recall that taking degree is proper push-forward to a
point and thus compatible with finite maps. Inserting y and ¥’ into Theorem 1.5
gives

deg (v' N (y N[4])) = Z IEil;)l' deg <¢/ Nn(yn Fop* A l‘[[[///ﬂ]))
r ’ v

=> IEi;)I' deg (w N(yne¢*a’ ]_[[[///v]])>
P ' v

1.4 e We !
(=)Z%deg<wﬂ(yﬂA 1;[[[///\/]}))
f
(1.6)

Here the last equality uses that ¢,.¢* is multiplication by deg(¢).

The expressions in (1.6) may be reinterpreted in Borel-Moore homology
instead. In this case, read ev*(y)N for each occurrence of yN above, y, ¢ are
cohomology classes now and we apply the cycle map A, — Ha, to all occurrences
of [.#y] above. Then (1.6) holds with these reinterpretations. The advantage of
the latter interpretation is that we can impose incidence at an arbitrary cocycle
y € H*(X") at the cost of signs in the following.

Let {8}}j be a homogeneous basis of H*(D, Q) and let {sz.}j be the dual basis

in the sense that
525! — 0ifi £j
D Lo 1 ifi =,

where 2 is purposefully before 1 to have no signs in the representation of the
diagonal. Define the sign (—1)® by the equality

[T TTsts o2, = -0 T T (TT20).

\4 ieny esV
Then, we conclude from Theorem 1.5 the following result.

Theorem 1.6. (Numerical version of the degeneration formula) For y; €
H*(X, Q) and non-negative integers m;, in Witten’s correlator-notation where
T (Y) means ¥ ev*(y), we have

<Ht"“(y’>g ZZE;};,— 1

r Uee vev()
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Xr(v)

%
< [T o Gy | T 085 >>>

ieny ecV ev. By
where ¢ is determined as before, the first sum runs over all T € Q(g,n, B)
as introduced in Sect. 2 (see also for ny,By) and the second sum runs
over all tuples in {1, ..., tkH*(D)}!D). The moduli stack underlying the left
hand side is Mg, (X/K, B) and that for the right hand side is My =
Mgy nyUEy (Xr(vy/K, Bv) where Ey refers to the ordered set of edges in r adja-
cent to V. The positive contact orders w, to D for e € Ey are part of the data
Bv. If T has only one vertex, then we set I1,w,/|E(I')|! = 1. The sum is finite (see
Sect. 2).

The formula is a straightforward version of the degeneration formula of [4,11,
241].

Remark 1.7. 1t X = 7! (?) is the central fibre of a semi-stable degeneration X —
B as in Sect. 1, we fix a B in H>(X) and then for b’ € B and X}y = 7~ (»'), we
have an identity

n X n Xy
> <]_[ Ty (J/i)> => <1_[ T (V,-’)>
B \i=1 2.8

= . poNi=l 8:p
provided that:

(1) We take the sum respectively over all 8 € H>(Xjp) and B8’ € Hp(Xy) which
map to ,3 .

(2) The classes y/ € H*(X}) and y; € H*(X}) are pullbacks from the same
element in H*(X) for each i.

This statement follows from [9, Proposition 5.10] as explained in [26, Theo-
rem A.3].

2. Graphs

Consider a bipartite graph I', i.e., we have a map r : {vertices of '} — {1, 2} and
the vertices of each edge have different values under r. Each vertex V is decorated
with a tuple (gv, By, ny) with gy > 0 called the genus, ny C {1, ...,n}and By
an effective curve class in X, (y). Each edge e is decorated with a positive integer
w,, called the weight. Furthermore, we require I" to satisfy the following properties.

Z t1,+By + Z Py =8 (curve class) (2.1)

Vir(V)=1 Vi (V)=2
By - D= Z We, (contact order) (2.2)

esV

By #0 if 2gy + |ny|+ val(V) < 3, (stability) (2.3)
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1= xopM + Y gv =g, (genus) (2.4)
\%

]_[nv ={1,....n} (markings) (2.5)
%

We call " of type (g, n, B) if it satisfies these conditions and denote the set of all
such I' up to isomorphism by 2(g, n, B). The set 2(g, n, B) is a finite set. Indeed,
(2.3), (2.4) and (2.5) imply that the set of marking and genus decorated graphs is
finite and then since the trivial curve class is indecomposable in the cone of effective
curve classes, the finiteness of (g, n, ) follows.

We denote by I' a decorated graph I as above that is additionally equipped with
edge markings, i.e., with a bijection E(I') = {ey, ..., e|g(r)} and here the ¢; are
formal symbols. Let Q(g, n, ) denote the set of all such r up to isomorphism. Let
Aut(I") denote the (finite) group of automorphisms of I' that are compatible with
the decorations. Note that

redi 1AW T ED)!
Given I as above, we denote by I'; the subgraph with the vertex set {V : r(V) = i}
and we keep the adjacent edges as half-edges, Each adjacent edge is considered
to have only one vertex, topologically [0, co). We carry over the decorations to
the vertices and half-edges: By, gv, ny, w, and the ordering of the half-edges. We
then denote by I'y the connected component of I'; or I'; containing the vertex V.

3. Stable log maps

We refer to [19] for the basics on log geometry and to [1,12,14] for the basics of
stable log maps that we recall here now. Note that smooth means log smooth in
the context of log schemes. Let Y, W be log schemes with log structures coming
from the Zariski site and let Y — W be a smooth and projective morphism. We are
going to apply this to X — k and X; — K later on; see the beginning of Sect. 1.2
for the notations k, k. We recall Definitions 1.3 and 1.6 from [14].

Definition 3.1. A prestable log map is a commutative diagram of log morphisms

7

C—— Y

nl l 3.1)

SL>W

such that 7 is smooth and integral and the fibres of 1 : C — § are reduced
and connected curves. There are sections x1,...,x, : S — C for the marked
points with mutually disjoint images and these images are precisely the locus in
the complement of nodes of fibres where 7 is not strict. By Theorem 1.3 in [20],
away from the nodes, Mce =1*Ms ® @i xi «N. A prestable log map is stable if
the diagram of underlying schemes constitutes a stable map.
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Consider a stable log map with S a point, Q := My and e € C a node, then
ﬂc,e = 0PN N2 for some N — 0,1+ g, # 0.Letny, ny be the generic points
of the components adjacent to e in C, the map f together with the generizations
e — 7; induce a commutative diagram (see Discussion 1.8, p. 459 in [14])

fnl
Py, 0
V / Tprl
P—— T oy 0 x 0 (3.2)
R \ lprz
Py, n 0

where P, := My f(), Py := My, f@;;) and the horizontal maps are induced by
f- The diagram defines a map u, : P, — Z by the property

fmoXZ_meXl:Me'Qe- (3.3)

If u, is non-zero, there is a unique primitive i, € Hom(Pegp, Z) and w, > 0 such
that u, = weit,. We call w, the weight of e. If u, = 0, set w, = 0. For a monoid
P, define PV = Hom(P, N). Consider the monoid

Ql;/asic
= {((vn)n, (o)) € P Py @ EPN| Vi 0 x2 = Vi 0 x1 = Leu for all e}
n e
(3.4)

where the first sum runs over the generic points 7 of irreducible components of C
and the second sum runs over the nodes e.

Definition 3.2. If S is a point and Q = M as before, for 1 the generic point of
a component of C, let f," : Q¥ — P,’ denote the dual of f;. For e a node of
C,let g/ : OV — N be the evaluation of an element of OV on g,. The tuple
(( f,]v )ns (@.)e) gives a well-defined structure map

Y v
Q g Qbasic

because the image ((f, ()5, (¢, (@))e) =: (Vy)y, (Le)e) of every g € Q satis-
fies the relation Vy, o xo — Vy, o x1 = leu, for each e in the definition of ansic
due to (3.3).

We call the stable log map f : C/S — Y /W basic if the structure map
0V — O} 1s an isomorphism. A stable log map with more general base S is
basic if its restriction to all points in S is basic.
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If f is basic and p € Qt\)/asic an element, say p = ((Vy);, (l¢).), then Defini-
tion 3.2 implies

p(ge) = le.

If x; : § — C is one of the sections of a stable logmap f : C/S — Y/W with
S a point, then we denote Py, := My, r(y;(s)) and f induces a map

u;: le. — MC,X,-(S) =0®N—->N

where the second map is the projection to the second summand. The map constitutes
an element u; € Pxf which we call the contact order of f at x;.

Definition 3.3. A class B of stable log map to Y/ W consists of

e an element of H,(Y) that we also call 8,

e agenus g >0,

e a number of markings n > 0 and

efor 1 < i < n, a strict closed embeddings Z; C Y and section s; €
rz;, Hom(ﬂgrj, 7)) that does not extend to any closed subset of Y that is
strictly larger than Z;.

We say that a stable log map f is of class f if the underlying stable map is of genus
g, of class B with n markings and if the contact order u; at x; agrees with s; over
every point in S.

We denote the moduli stack of basic stable log maps of class 8 by ., ,(Y/W, B).
This stack is the source of a forgetful functor to the another stack Log M, , that we
recall in Sect. 7. Moreover, we have a commutative square

¥ / %

A

Mg (YW, ) —=W

where the left vertical arrow denotes the universal family and the top horizontal
arrow is the universal map. Let 7y, w denote the relative tangent sheaf of the log
smooth map ¥ — W. Similar to the construction given in Sect. 9.3 below, we
obtain a perfect obstruction theory (Rm. f*Ty w)" — L.z, v/ W.B)/Log.u o, SCC
also [14], Sect. 5.

The reader may find the general definition of combinatorial finiteness for a
class B in [14], Definition 3.3. This condition holds in the situations of interest to
us because the set 2(g, n, B) that we introduced in Sect. 2 is finite.

The main result of [1,12,14] is then as follows.

Theorem 3.4. If B is combinatorially finite then Mg ,(Y/W,B) is a proper
Deligne-Mumford stack of finite type over W with natural virtual fundamental
class [ Mg (Y)W, B)].

We will consider A := M, ,(X/K, B) as well as Ay := My, nyuEy (Xi/K, Bv)
for certain By in Sect. 9.
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4. From curves to graphs and tropical curves

Transferring notation from the previous section, we now set ¥ := X, W := k. By
Definition 3.1, the characteristic of the log structure at every points € .Z (X /K, )
is given by the dual of (3.4), that is, M5 = Qpasic := (Qasic)” - By the description
of Mx in (1.2), we have P, = N? if and only if  maps to D and P, = Notherwise.
A similar statement holds for P,. By definition, Qlfasic is a saturated submonoid of
(@n P);/ ) & (D, N) and the subgroup of invertible elements of the latter is trivial.
Applying Hom(-, N) to this inclusion, we obtain a map

(@ Pn) @ (@ N) — Qbasic @.1)

that is surjective up to saturation, i.e., for every ¢ € Qpasic there is a k > 0 such
that kg is in the image. The generator of the N-summand for e maps as 1 +— ¢, and
we denote the restriction of (4.1) to the P,-summand by V), : P, — Qpasic. This
notation is compatible with the notation in (3.4) because, for an element p € ansic,
composing V), with evaluation on p yields the component that is called V,, in (3.4),
see (4.4).

Let 1 denote the generator of N in the log structure of the standard log point k.
The section 1 maps to every stalk in all the log structures of the schemes in (3.1)
and we call them 1 also in these other places. Note that 1 # 0 in all places by the
locality of monoid maps induced from log morphisms.

For 71 a generic point of a component of C, in light of (1.1) and (1.2), consider
the composition

_ V,
N? = (X, Mx) = Py —> Obasics € > Vyle;). (4.2)

Note that 1 = (1, 1) on the left maps to the element 1 on the right independent of
n because this only depends on the bottom horizontal map in (3.1) which on log
charts is given by N — Quyagic, 1 = 1. Therefore, 1 = V; (1, 1) for all n and hence
by (3.3)

u.(1) =0 4.3)

for all nodes e and thus iz, = (1, —1) or u, = (—1, 1) whenever it is non-zero.
Here we implicitly represent i, : P, — Z via the composition with N> — P,.

Lemma 4.1. For every edge e € E(I'c) there is an labelling n1, n2 of the generic
points of adjacent curve components so that we have an identity of elements in

Obasic of the form
Vm(el) + Weqge + Vn2(€2) = 1.

Proof. The statement follows from combining (3.3) with the identity V), (e1) +
Vip(e2) = 1. O



74 B. Kim et al.

Next, assume we are given an element p = ((V,;O )iy (le)e) € Qlfasic. Consider
the composition

- V,
N? = (X, My) = Py —> Obasic —> N. e > p(Vy(en) = VI (e)
“4.4)

Weset! := p(1) = p(V,(1, 1)) which is independent of 1 by the commutativity of
(3.1). Applying Hom(:, R>) to the sequence (4.4) yields a map Vv R>o — ]R2

for each V;,. The set of points {Vv (1)}, is contained in the segment {(l—a, a)|a e
[0, 1]} that we identify with [0, [ ] We refer to the images of 1 under Vv as vertices

V (1) €[0,l] ={p(e2) | € H0m(R>0, R-o0), ¢ (1, 1) =1}. 4.5)

We have just defined a map from the dual intersection graph I'c of C to [0, /] by
mapping the vertex indexed by 7 to an(l) and by requiring the map to be linear
on edges. (Each edge corresponds to a node e of C.) We decree the length of the
edge e to be /,. By (3.4),

V() = V) (1) = lewe 4.6)

whenever e is a node between the curve components 71 and 1, and the ordering
N1, N2 is compatible with the orientation of u, in the sense of (3.2). Consequently,
w, is the scaling factor of the linear map e — [0, /] and we take it to be 0 if u, = 0.
The so defined map 4 : I'c — [0, [] of the metric graph I'c is a tropical curve for
which we give a definition below. The first relevant property is that, by (4.5) and
(4.6), h satisfies the balancing condition (see [14, Proposition 1.15]) which is an
equality

Z +u, =0, 4.7

for each vertex V = V), of I'c that corresponds to a component 77 of C; that is
contracted by f. The sum is over all nodes e in 7, the sign = is such that +-u, points
away from V,’(1).

For an integral monoid M, we denote by M ® R the convex hull of M in
M® @7 R. Note that (4.6) induces a partial ordering on the vertices of I'¢, i.e.,
Vi < V3 if there is an edge e between them and 2(V)) < h(V>) holds as points
in [0, []. The ordering of the vertices of I'c obtained this way only depends on
the minimal face of QY ;. ® R~ that p is contained in. In the following, we will
always consider the ordering “<” obtained from some p that lies in the interior
of Q) e ® R=o. By continuity, the vertices of an element p in the boundary of
Opasic ® R still satisfy the order induced from an element in the interior. Hence,
the partial ordering “<” we will be satisfied by all elements of QY .. ® R=o.

We define

Orasic = {((V)y, (le)e) € Opsic | le = 0 whenever u, = 0}

and Qo := P,.,,—o N and conclude from close inspection of (3.4) the following
Lemma.
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Lemma 4.2. Qﬁasic = Ql\)/asic ® Qg

By (1.2), there are three possibilities for P, namely Nej, Ne; or N2, depending
on whether n maps to X1\ X»>, X2\ X; or D.

Definition 4.3. We call a vertex V =V, of I'c i-rigid if P, = Ne;, i.e., f(n) ¢
X3_i.

For for [ > 0, let Mr.; denote the parameter space of pairs consisting of a
tuple of edge lengths (,), € (REO)E(FC) and a continuous map & : I'c — [0, /]
where each edge e of the graph I'c is equipped with the metric affine structure of
the interval [0, /] and £ is affine linear on each edge and is subject to the following
constraints.

(T1) The scaling factor of the restriction of / to an edge e of ['¢ is w,,

(T2) the balancing condition (4.7) holds for vertices that correspond to contracted
components,

(T3) (4.6) is satisfied,

(T4) h maps the vertices respecting the partial ordering and finally

(TS) 1-rigid vertices map to 0 and 2-rigid vertices map to /.

We call such a pair ((/,)., h) a tropical curve. The set Mr. ; can be identified with
a polyhedron in the vector space R x (RF(T'¢)) by picking any vertex Vy of I'¢
and mapping a tropical curve # to the tuple (h(Vy), (I.).) given by the image of Vj
and the tuple of edge lengths. Let M. be the union ;- o Mr.,; which embeds in
R x R x RETC) a5 a convex cone by mapping 4 to (I, h(Vp), (l).). In particular,
elements in Mr. can be added, i.e., the sum of tropical curves hy : I'c — [0, ;]
and h; : FC — [0, /1] is atropical curve h : 'c — [0, 1 + [2].

Let Mrc 1S Mrg denote the subset of tropical curves with [, = 0 whenever
u, = 0. The subset Mr.; is a polytope in R x RETC) because it is closed and for
each e holds 0 <[, < [. We denote by Mrc U1>0 MI‘C,[ the subcone of Mr,..

Lemma 4.4. (1) Mr. 1 = {p € (Qyyic ® R=0) | p(1) =1},
(2) Mre; ={p € (QbaSlC ®R>0) | p(1) =1},
(3) Mre0 = Qy ® Roo.

Proof. All statements follow from the discussion before, except for the rigidity of
vertices which holds because for a 1- or 2-rigid vertex, the map V,, : P, — N
is entirely determined by 1 + I, so the composition with N> — P, now maps
e1 — 1, e2 > 0 in the 1-rigid case or the other way round in the 2-rigid case. Note
that (3) follows from (4.6) because it implies /[, = 0 whenever u, # 0. |

Let I" be the metric graph obtained from I'¢ by collapsing all edges with u, = 0.
To be more precise, collapsing means that we inductively identify the vertices of
an edge e if u, = 0 and we delete the edge in the process, so that every edge e of
the resulting graph satisfies u, 7~ O.

Corollary 4.5. Mrc,l is the parameter space of tropical curves h : I' — [0,[]
satisfying the conditions inherited from I c.
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C dual intersection graph
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Fig. 1. An example of a stable log map and its associated graphs for a particular choice of p

For a toric monoid Q, we denote by Q[1] the finite set of primitive generators
for the rays, i.e., the primitive elements in the dimension one faces of Q.

Definition 4.6. Given p = ((Vy)y, (le)e) € ansic[l], we call a node e of C with
le # 0 a splitting node.

Recall ©2(g, n, B) from Sect. 2. In the remainder of this section, we are going to
define a map

C/s — X/Kk is a basic stable log map over a point s
Trop : . v — Q(g,n, B).
together with p € Qy .. .[1] such that p(1) # 0
(4.8)
Lemma4.7. {p € QY [11 | p(1) #0} = Oy ..[1]

Proof. Since Q. [1] is the disjoint union of vaasic[l] and Q([1], the assertion
follows directly from part (3) of Lemma 4.4. O

The lemma implies that 1 does not lie in any proper face of Qbasic.

We now define the map Trop. Let therefore f : C/s — X/kand p € Qy i [1]
with/ := p(1) > 0be given. Consider the associated tropical curve 4 : I’ — [0, [].
We will modify I" to a bipartite graph I',, see Fig. 1 for an example.
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Lemma 4.8. All vertices of I' map to either O or I, hence we obtain a map

. 1 ifv=vy1) =0,
: 1 ry— (1,2}, V)= . 1
r : {vertices of T'} {1, 2} r(V) {2 ifV = an(l) 7
Proof. Recall the definition of an(l) from (4.5). Assume to the contrary that the
set of vertices

Vi . . . \
{Vn @) ’ n is the generic point of a curve component, V,] (1) #0,1 }

is non-empty and let V| < --- < V; be an enumeration of the set. If s = 1, set
Vo :=1. Let € > 0 be smaller than (V2 — V7)/2. We obtain a sum decomposition
of vectors with strictly increasing entries

O, Vi, Va, ..., Ve, ) = (0, Vi/2 — &, Va/2, ..., Vs/2,1/2)
+ O, Vi/2+¢6,W/2,...,Vs/2,1/2),

and the summands on the right are linearly independent. We can now write the
tropical curve i : I' — [0, [] as a sum of tropical curves hy, hy : I' — [0,1/2] as
follows. We require for a vertex V of I that #; (V) = h(V)/2 unless h(V) =V
in which case we set h1(V) = (Vi — €)/2 and hy(V) = (V] + €)/2. With these
prescriptions of where to map the vertives, there is a canonical choice of edge lengths
l, for hy, hy so that all defining conditions of a tropical curve are satisfied for &
and h,. By construction, /1, h» correspond to elements py, p2 € Qf)/asic ® R that
satisfy p1 + p» = p. However, p1, p; are linearly independent and this contradicts
the assumption p € ansic[l] because p1, p2 span a face of dimension at least 2
and p is contained in its relative interior. |

Equipped with the statement of Lemma 4.8, we collapse all edges in I" that map
constantly under 4 (i.e., those that are not splitting nodes) and obtain a graph I',,
that is bipartite by means of the map r : {vertices of I'y} — {1, 2} induced from
Lemma 4.8. Each vertex V of I',, is an equivalence class of vertices of the dual
intersection graph I'c of C and thus a vertex V of I', represents a connected union
of curve components that we call Cy. Note that Cy maps entirely into X, (v).
We decorate V' with the genus gy = g(Cy), curve class By = [Cy] and ny =
{markings on Cy} and then I, satisfies (2.4), (2.1), (2.5), (2.3) because I'c satisfies
similar conditions. It remains to verify (2.2) in order to have defined the map Trop
in (4.8) completely:

Lemma 4.9. Given V € T, we have

Bv.D = deg(Ox,,, (D)lcy) = Y we.

ecE(lp)
Vee

Proof. The first equality is clear. In order to prove the second equality, we need to
recall the homomorphism ty : I'(Cy, g*Mx) — Z from equation (1.10) in [14].

Here, g: Cy — Cy ﬂf) X is the composition of the normalization v : Cy — Cy
of an irreducible component Cy of C, corresponding to a vertex V of I'c, with
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the restriction fy of the stable map f: C — X to Cy. Each section of g* My
corresponds to an O g -torsor and the map ty associates to the torsor the degree of
\4

the corresponding line bundle. The description of My in (1.2) leads to a similarly
simple description of I'(D, g* Mx), namely

F(Cy.¢'Mx) =T (Cy. ¢ 'y N @T(Cv.g '5'N)
— N8 (X2) gy o™ (X1)

and, by Lemma 1.1, the generators of the two occurences of the monoid N in the
middle correspond to the torsors £, £ respectively. We can say precisely how the
map ty acts on each summand of N on the right. For a connected compoment of
¢~ 1(X;) that is a single point x, the map Ty sends the corresponding generator of
N to the (positive) degree of the Cartier divisor g’1 (X;) at x. On the other hand, if
g (X)) isall of Cy, then ty maps the corresponding generator of N to deg(g*L;).
By part (2) of Lemma 1.1, we have deg(g*L;) = —deg(g*L3—;) and by part (1)
the restriction of £3_; to X; is Oy, (—D). Hence,

deg(g*Li) = —deg(g*L3-;) = —deg(g*Ox,(—D)) = (g : Cy — X;).D.

In any event, the sum of the images of the generators of N70(¢ 71 (X2)) g N8~ (X1)
under 7y is zero and the sum of the images of N7~ (X)) ynder Ty equals
deg(g*L).

IfxeCyisa point that maps to a node e of C under the composition Cy —
Cy < C then (g*M), = P, and we have the map u, : (g*M), — Z that we
naturally extend to a map I'(Cy,g*Myx) — Z by composing with the natural
map '(Cy, g*Myx) — (g*M),. The general balancing condition as proved in
[14], Proposition 1.15 says that

v + Z +u, =0 (4.9)
X

where the sum is over precisely those points x € Cy that map to nodes of C and the
sign =+ is chosen to account for the ordering of the components adjacent to the node
in the definition of u,. The sign is +1 iff V is the first component in that ordering
and if both adjacent components are V, i.e., ¢ is anode of Cy, then the sum ) | =P
has the corresponding summand u, occuring twice with opposite signs, so we can
ignore such nodes altogether when forming the sum. Recall that u, = w, i, where
i, : N2 — Z is either (—1, 1) or (1, —1). Evaluating (4.9) on the generator of
N7~ (X)) = N for i chosen so that Cy maps into X; yields

Bv.D+> +w, =0 (4.10)

which is already close to the assertion. So far we only studied a single component of
C, however, a single vertex V/ of I o correspond to several vertices V of I'c, namely
those that contract to V’. The assertion follows from summing up the equation (4.10)
over all V that contract to a specific vertex V' of T',. Necessarily, all associated
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components Cy map into X; for i = r(V’) and By» = )", Bv and evaluating all

Ty on the generator of N70(¢ T =N respectively and summing over the V that
contract to V' yields By-.D as an intersection evaluated in X;. Those summands w,
that correspond to a non-splitting edge will appear twice and with opposite sign in
the sum and therefore cancel. The contribution from the splitting edges however all
carry the same sign (either + 1 or - 1) because the sum of +w,ii, over the splitting
edges e is a sum of vectors pointing into the interval [0, /] from either the endpoint
0 or [ depending on whether (V') = 1 or r(V’) = 2. Evaluating also =i, on the

generator of N70(8 ~'(Xi) = N for each V yields —1 and so the assertion follows. O

4.1. Generization

We have so far considered a curve over a single point s in this section. Let us
consider the case where s is in the Zariski closure of another point 7. A node of C;
either gets smoothed in C), or it remains a node. Hence, there is a natural collapsing
map of dual intersection graphs I'c, — I'c, and a natural map

Obasic =~ Chasic (4.11)

that is a localization composed with modding out the resulting subgroup of invert-
ibles. Dually, (Qp )" < (0Q}..)" is the embedding of a face and hence
(Opasic)V[11 € (05 ,40)V[1]. Given p € (Qf ;) V[1], the map (4.11) maps 1
to 1 and commutes with p, so we get the same / = p(1) for s and 7. If a node
e gets smoothed under generization then ¢, (see just after Definition 3.1) maps to
zero under (4.11), hence p(g.) = [, = 0, so the node e is not a splitting node. We
conclude the following lemmata.

Lemma 4.10. If s € 7 and Tropy, Trop,, denote the respective maps given in (4.8),
then Trop,, is the composition of the injection

{pe Q) 1T o) £0} = {p e (O [11] p(1) # 0}

with Trop,. In particular, for every p € (ansic)v[l] with p(1) # 0, the stable
log maps over s and n together with p respectively give the same tropical curve
'y — [0,1].

If M is a sheaf of monoids on a scheme S, we call a subsheaf 7 C M a sheaf
of facets if F, C M, is a facet for every x € S.If M is a toric monoid, then its
facets are in one-to-one correspondence with the elements p € M ¥[1] by mapping
pto pt := {m € M|p(m) = 0}. By standard toric geometry, if p € (ansic)v[l],
the generization map (4.11) sends the facet F /‘ﬁ = pT surjectively onto the facet
F ;7 =pt c ansic. Every other facet of Qy . does not map to a facet under
(4.11). This analysis implies the following two statements.

Lemmad4.11. I[f C/S — X/K is a basic stable log map, s € S a point, p €
(ﬂs,s)v[l] and F; = pJ' C Mg,s then by the coherence of the log structure on
S there is a unique maximal closed subset W of Spec Os ¢ together with a sheaf of
facets F € Mg|w so that Fs = F‘g.
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Proposition 4.12. Let C/S — X/k be a basic stable log map with S connected
and p € T'(S, M;) with p(1) # 0 such that p maps to an element ofm;/,s[l]for
each s € §. Then all tropical curves h : T, — [0, I] obtained from p at different
points s € S are naturally identified and the corresponding facets F, define a sheaf

of facets Fs C M.

5. Splitting stable log maps

Asinthe previous section, consider a stable log map C /s — X /k. Let M, = Obasic
be the associated basic monoid (the dual of ansic in (3.4)). We also fix a primitive
ray generator p € ansic[l] with [ := p(1) > 0. The dual intersection graph
I'c of C collapses to I' and then further to I',. The map r : I' — {1, 2} from
Lemma 4.8 lifts uniquely to r : I'c — {1, 2} by composition with the collapsing.
Let I'; denote the possibly disconnected subgraph of I' given by the vertices with
r(V) =i and furthermore we include “half-edges” at these vertices, one for each
edge of a splitting node, see Fig. 1 for an example. We similarly define (I",); which
is obtained from I'; by collapsing ([, = 0)-edges. We also similarly define (I'¢);.
The set of vertices of (I'¢); inherits the partial order from I'¢c. We call a continuous
map i : (I'c); — [0, 0co) a tropical curve if it satisfies the analogous conditions
(T1) to (T5). Here, (T5) is applied only to 1-rigid vertices. We similarly obtain a
notion of tropical curve for maps i : (I'c)> — (—o00, 0]. Next consider the set

h is a tropical curve with (V)
integral for all vertices V,

l, € Z>o for all compact edges e,
rigid vertices map to 0

QY :=1h: () — [0, 00)

We similarly define QY = {h: (I'c)» = (—00,0]]...}. Note that QY, Q5 are
monoids. Since (I'c); decomposes into connected components, we have

o/ = P oy (5.1)

r(V)=1

where the sum is over the vertices of (I'y); and Q\‘ﬁ is the parameter space of
tropical curves with domain the component of (I'c); indexed by V. We similarly
define QY :={h: Ty — [0,00) | ...}, we have Q) = D, v)=1 QY and a similar
statement for Q3. Set Q; := (@) and Q; := (0))".

Lemma 5.1. The facet F,, := pJ‘ C Qvasic associated to p satisfies
Fy =01 x 0».

Proof. In light of Lemma 4.2, first note that it suffices to prove a similar statement
for the facet Fp = ,oL of Qbasic, the dual of ansic. Indeed, the duals of the
summands of Qg = ®.N get distributed over Q1 and Q, depending on whether
the edge e contracts to 0 or / under the tropical curve map % corresponding to p.
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We prove the dual statement, i.e., F) = QY & Q3. Note that F = (Qy,. +
7Zp)/Zp. There is a natural homomorphism of monoids

T ansic - le @ QZV (5'2)

that maps a tropical curve 2 : ' — [0, I']to the pair (hy : 'y — [0, 00), hp : T —
(—o0, 0]) by splitting the curve & at the splitting edges and turning these edges into
rays (and translating [’ to zero for hy). We verify that the map is surjective, so we
pick a pair (h1, hy) on the right hand side. Take /p € N larger than the sum of all
l, occurring in k1 and hy. Now translate 4y by [ to become 'y — (—o00, [p]. We
can extend this combination of maps of vertices of I'1, I'; to a viable tropical curve
h: T — [0,[p] by giving an edge e between vertices V1, Vo with r(V;) = i the
length [, = (h2(V2) — h1(V1))/w,, modifying /o if needed to ensure that each [,
is integral. One verifies that (T1)-(T5) hold, so we verified the surjectivity of 7.
Finally, we need to show that 7 H0) = Np. A curve that maps to zero under
is characterised by the property that all vertices of k1, hy are zero (in [0, c0) and
(—o0, 0] respectively). In terms of edge lengths of the original curve, these are
either zero if the edge e is not a splitting edge or otherwise [, w, = I’ for some fixed
positive integer I if the edge is a splitting edge. Such a curve is precisely ll—/,o where
[ = p(1) denotes the length of the interval [0, /] that the tropical curve represented
by p maps to. O

Say we are given a basic stable log map C/S — X/k with S connected and
alsoa p € I'(S, ﬂ\s/) that maps to an element of M;S[l] for all s € S. By
Proposition 4.12, this induces a sheaf of facets Fs C Mg that is on stalks given
by F, = p. We obtain a new log structure on S via Fs := Mg X1 Fs.

Also by Proposition 4.12, we obtain the same tropical curve h : I'y — [0, /]
from all points of S. After replacing S by a finite connected cover if needed, we
can order the edges of I, as ey, ..., e, and denote this edge-marked curve by
f‘p. In other words, we mark the splitting nodes ¢; : S — C. Let C; be the
possibly disconnected union of components of C that are (I, =0)-edge-contraction-
equivalent to vertices V of I', with (V) = i. Since C; and C; intersect in the
splitting nodes, we have a cocartesian (alias pushout) diagram

1 1
(el,...,er)

e tA el
(eﬁ,..‘,e,z)l l (5.3)
¢, — C.

Recall that C; maps into X; under f : C — X. In the following, we seti = 1. By
symmetry, the case i = 2 works analogously. As said in Remark 1.4, X carries
the divisorial log structure by D C X and there is a natural log morphism

(Xy, Mxlx,) — Xi

via the injection My, < Mx|x,. We may restrict f : C — X (as a log map) to
Ci,ie., Mc, = Mc|c,, and compose with the above map to obtain a map C; —
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X1. We will find a natural sub-log-structure ¢, C M, giving a commutative
diagram

(1. Fep) —Is x

ﬂl l (5.4)

8. Fs) — k.

The left vertical map C; — S has natural sections e%, ceey e,1 in addition to the

usual markings given by the markings of the splitting nodes of C. Including the
additional markings, the diagram of underlying schemes in (5.4) constitutes a stable
map because f is a stable map. To find F¢,, away from nodes and marked points
on Cy, we simply take the pullback 7*Fg (i.e., make 7 strict there). Furthermore,
it suffices to give F¢, C Mg, and then set F¢, := Mc, XM, Fc,. Generic

strictness reduces this to a local problem, looking at markings and nodes. At an
ordinary marked point x, we have /Vcl x = Mc x = /75 7(x) @ N and we pick
the substalk .7-'0, x 1= Fg 7() ® N. At a node x in Cy, so not a splitting node,
we set 7:C1 x = .7-'5 cONN? C MS « Oy N2 = Mc » and this works because
the map N — ./\/ls ¥, 1 — g, factors through F s.x (indeed it maps to ,o because
0(qe) = I, = 0 for all non-splitting nodes). Finally, for x = e! ja splitting node, we

take for ?Cl» + the submonoid ?5, +®NC /\_/ls, x ON N? where the N-summand
embeds in the second copy (the one that corresponds to i = 2) on the right. We
thus produced (5.4).

Note that there is a decomposition in connected components C1 = [ | ver, Cy.
r(V)=1

Proposition 5.2. Given a basic stable log map C/S — X/K together with p €
I'(S, M) that maps to an element of Ms s[1] forall s € S and an ordering of the
edges of the resulting tropical curve T'),

(1) the diagram (5.4) obtained from this input data constitutes a stable log map
with contact order data given by the weights of the unbounded edges of (I'p)1.
Here C| is potentially disconnected and

(2) the collection of inclusions Q1 C 7S,sf0ralls € S givenvia Lemma 5.1 consti-
tutes a subsheaf Q1 of monoids of F s and the fibre product M; =Fs XF, [o}
is the basic log structure for the diagram (5.4). Similarly, the decompow-
tion (5.1) yields subsheaves Qy C Fs that give the basic log structure
MY ¢ = Fs XF T Qv of the connected components of C|. Furthermore, the

map M}; — Fyg (respectively /\/l}g/ — Fg) realizes (5.4) (respectively the
V-component of it) as the pullback from this basic log structure.

Proof. The smoothness of 7 follows from the construction of F¢, as locally it has
precisely the shape as in the classification of log smooth curves [20, Sect. 1.8], [14,
Theorem 1.1]. For (1), it remains to study the contact orders. The definition was
given just before Definition 3.3. At a splitting node e in f : C — X, we identify
the map P, — Q ®n N? in (3.2) with the map of stalks of the characteristics at
the node ¢ : N> — Mg, s ®n N2. The part of ¢ that maps to the second summand
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is the map N> — N2 that is given by multiplication by w, which follows from
the definition of u.. On the other hand, by the preceding construction of F¢, x
at a splitting node x as the subsheaf F sx@®N C M s.x ON N2, restricting ¢ to
the second N-summand yields ¢p: N — Fg ¢ @ N and the composition with the
projection to the second N-summand is multiplication by w,, so the weight of the
edge e of (I'); gives the contact order as claimed.

For (2), the existence of the sheaf Q) is Lemma 4.11. Note that the labelling
of edges of I', together with the map r makes vertices uniquely identify-able
as each vertex is adjacent to at least one edge, so we don’t need to additionally
enumerate vertices and then consequently (5.1) gives sheaves Qy as claimed. That
the Qy are the basic monoids (and then consequently Q is also) follows directly
from Definition 3.2 and Equation (3.4). Finally, the statement that the inclusion
Mg, M ng C Fg gives the pullback from the basic log structure can be checked

directly. Indeed, M¢, = 7*Fs @« M} /\/llcl, where the definition of M 1C1 is as
that of M, above, only with M g in place of Fg everywhere. Similarly, one defines
Mgv and has then Mc¢,|c, = nl’(‘;vfs <) MY Mg] as desired. O

nl*cv

A similar version of Proposition 5.2 holds for C; in place of C1, so we finished
the splitting procedure that turns a basic stable log map f : C/S — X/Kk into a
pair of basic stable log maps f1 : C1/S — Xi/kand f> : C2/S — X»/k and then
we can split further into Cy over vertices V of I', corresponding to components
of Cy, C>. We finished constructing the map ¢y in (1.5).

Note that, by construction, there is a map from the original stable map log
structure to the split one in (5.4), i.e., we have a commutative diagram

(Cy. Mcle,)/S — X,y Mxlx, /K

l l (5.5

Cv/(S, M) X, v)/k.

6. Gluing stable log maps

The purpose of this section is to reverse the process of the last section. We assume
to be given I e fZ(g, n, B) and an object in () Ay, see (1.5). Le., we have
two basic stable log maps f; : C1/S — Xi/kand f, : C2/S — X;,/k with
contact order data I'; and I, respectively and the underlying curves with matching
contact orders, i.e., Wl = W2 for eij € E(f‘j) the ith edge for j = 1, 2 and also
fi (el.l) = fr (eiz) for each i, so we have the diagram (5.3). For a point s € S, denote
by Ci, Ca s the curves above s. We obtain Q; = J\_/llSY and the interpretation
of its dual Q" as a parameter space of tropical curves 1 : I'c, . — [0, o0) and
hy : T'c,, — (=00, 0] given in Sect. 5 respectively. Plugging I'c,, and ¢,
together by gluing half-edges to compact edges along matching el.l < ei2 yields
['c. We give the resulting new compact edges the weights We; = Wel = W,2.

i
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The natural map r : {vertices of ¢} — {1, 2} is given by whether a component
of the curve is in C; or C>. We hence obtain a graph ['c fully decorated with
We, By, Ny, 8v. Collapsmg Ictoa blpartlte graph F usmg r and inferring the
decorations on F from FC, we find that F is an element of Q(g, n, B) and in fact
r 0= =T.We abuse notation when writing F at this point because we have not yet
defined p that yields this graph.

Our next step is to define the monoid ansim together with an element p so
that T o 1s the graph associated to p. As in the proof of surjectivity of (5.2), we
can lift any pair of tropical curves hi, hy to a tropical curve A : f‘c — [0,1]
for some [ > 0. We define ansim to be the parameter space of integral tropical
curves h : T'c — [0, 1] with varying [ > 0 and with the constraints (T1) to (T5).
Here, integral simply means that [, the an and the [, are all integral. We define
der 1 € (Qpsic.s)” =t Obasic,s Tespectively as the maps Q.. - — N given by
((ViDy, Ue)e) = Lo, (h: Ty — [0,1]) = [. The monoid ansic’s contains a
particular element p that is given by the tropical curve i : I'c, — [0, [] where

[ = lem(w, : e is a splitting node) 6.1

and the (r = 1)-vertices of I'c, map to 0 and the (r = 2)-vertices map to /. With
the same reasoning as in Lemma 5.1, we find that p is contained in ansic’s [1] and

the associated facet F), ,ol of QOpasic,s takes the form F, = Q1 x Q3 where Qv
is the parameter space of integral tropical curves that map I'c; | to a ray as at the
beginning of Sect. 5. Under the construction in Sect. 4, i.e., collapsmg (ue = 0)-
and (I, = 0)-edges, it is not hard to see that the tropical curve given by p yields
precisely the decorated bipartite graph I’ o that we produced from plugging together
['c,, and ¢, in the above paragraph, except we forgot the ordering of the edges.

By construction and Proposition 4.12, T’ » is independent of s € S and compat-
ible with generization, meaning that for n € § with s € 7, we have a collapsings
Iy—>TIy,— f‘p.

As the next step, we want to construct a diagram

*

MC R N2

s

n*T T]H(],l) (6.2)

11
Qbasmv «~— N

of sheaves of monoids on C; where all except the top left one are constant sheaves.
We are going to define M, as a subsheaf of

——pre .
MC; = @ [A78% Qbasic,s ® @O'j,*N
Vel jen
where iy : Cy — Cj is the inclusion of a component. The projection of the

image of f* and 7* to the second summand (@ jen @ j,*N> will be trivial. Away
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from the nodes, we set ﬂcx = ﬂlgf and at a node e with adjacent components
V1, V», the stalk of JVCS is defined by requiring that its projection to iy, x Qbasic,s X
vy, 4 Qbasic,s = Obasic,s X Obasic,s agrees with

{(a, b) € Ovasic,s X Obvasic,s | b = kg + a for some k € 7).

By the universal property of the pushout, the latter is canonically isomorphic to

2
Obasic,s Pg, <+1,N,1(1,1) N

and so we naturally obtain the commutative square (6.2) for the stalk at each node
e. We globalize the map f* by taking it to be (V;),, (see (4.2)). The map 7™ in (6.2)
globalizes by mapping diagonally into the first summand of M‘gf

Lemma 6.1. The map f* factors through f* My and the diagram (6.2) is well-
defined and commutes.

Proof. In view of (1.2), for the first claim, we need to show that V), is trivial on the
ith summand of N @ N whenever f maps the generic point of a component 1 away
from X;. Mapping 1 away from X; means V), is (3 —i)-rigid and by definition the
integral tropical curves parametrized by ansiw satisfy the rigidity constraint, so
f* factors through f* My as claimed. The sheaf Mc, is well-defined. That f*
maps into MCS follows from (3.3): indeed, if V1, V, are connected by an edge e
then £(Vy) — h(V;) = w,l, holds for every integral tropical curve h € Qt\>/asic, , and
ge : vaasic’s — N is the map that returns /., so V| — V3 is an integral multiple of
g as required. Finally, we check commutativity of the diagram (6.2) at stalks. At a
node, the commutativity follows by the construction of the diagram as a pushout.
At a stalk of Cy which is not a node, the composition of 7* with the projection
to the first summand of M‘gf is an isomorphism and the dual of the diagram is
commutative by the equality 1= p(1) = p(Vy(1, 1)) that holds for every vertex
Vy, see (4.5) and the line after the equation. |

The remainder of this section is about lifting the diagram (6.2) to actual maps of
log structures for a basic stable log map C/S — X /K. First note that taking Fg =
M g Do M% as a log structure on S and on Cy, C; the pullbacks M¢, @_ . M
*Fs, we obtain the diagram (5.4) fori = 1, 2.

Since C/S is a stable curve, as such it receives a basic log structure from
Ggn — My n, the Artin stack of prestable curves .#, , with its universal curve

C.n» cf. [14, Appendix A], [20, p. 2271f.]. We denote this log structure by Mg/s

on C and Mg/ 5 on S and have the induced map
n*Mg/S — Mg/s. (6.3)

For a point s € S and Cj the fibre over it, we have MS/SS = NETe) and this is
compatible with (3.4) (by having P, = 0 for all n).
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We arrive at the following maps of sheaves on S

./\/lg/s S — ms <—1(_|1 N

T (6.4)

Fs
where the top left map sends a generator of the N-copy indexed by a node e to g,.

Lemma 6.2. The images of the left and bottom map going into M s in (6.4) generate
A 48P
M.
Proof. The image contains Fg which is co-rank one. We have Fs = p* and p
is primitive, so it suffices that we can find an element ¢ in the linear combination

of the images that has p(¢) = 1. We claim such an element can be obtained as a
linear combination of the g, which will be clear once we prove

ged{l, | eec E(T'p)} =1

sincel, = p(g.). Assume k|l, for all e. Since w,l, = [, we find k|l and k > 1 would
contradict primitivity of p since then %p would be integral, so indeed gcd = 1 and
we are done. |

Our next goal is to lift M to a log structure M. Note that C1/S and C,/S are
stable curves, so they induce maps Mgi/ 5 M’S that we sum to have maps

M MG @ MG — F (6.5)

that fit in to fill the empty bottom left corner of (6.4) giving a commutative square
with the maps to M. We let M be the puskli)ut of (6.5). Since all terms in (6.5)
are log structures, it is not hard to see that Mg with the natural induced map to
Oy is also a log structure. Note also that Ms = N @ Fg because every stalk

Mg/,f of M?S decomposes as Mg/f = N" @ N* for some s and the map from

Mg}x/s o Mgzx/s =Nto Mf/f is the injection {0} x N* — N" @ N*.
We use /\//\lc = n*/\//\ls D . \CrS Mg/s and so the map
N

*Ms - Mc
makes 7 log-smooth because it is just the pullback of (6.3).

However M. s is too large for what we want and the remainder of this section

is about producing Mg as a suitable quotient of M s. Note that M s — Mg is
surjective by Lemma 6.2 but not an isomorphism if I", has more than one edge.

This is because M g parametrizes integral tropical curves with a map to an interval
which requires a relation between the edge lengths, see (4.6). This condition is

absent in (My)V, indeed

Ms=Ms@Me®ON =Fsd N 6.6)
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where r is the number of edges of I’ o- We are going to define a global section of

/\’/\15 as a sum
1o := Vi + weqe + Vo (6.7)

where ¢, is the generator of the N-summand in (6.6) that corresponds to the node e.
This is by slight abuse of notation as the projection of g, to M also has this name.

Furthermore, fors € S, V; € J\_/llS,S is defined by how it pairs with a tropical curve
h:Ter — [0,00) orh: T'ca — (—00, 0] parametrized by (/VIS’X)V, (mé’s)v
respectively via Lemma 4.4. We set V; : (MIIS’S)v — N to be the distance from 0
of the vertex V; of e. Note that under the projectionﬁg — Mgeach1, maps to 1.

Indeed, it becomes the operator that associates to a tropical curve 4 : I'c — [0, []
the length [ since h(V2) — h(V]) = w,l, by (4.6), see also Lemma 4.1.

Lemma 6.3. For E(T,) = {e1, ..., e}, the lattice K := Z(ly, — 1)) ® ... ®

.. . — &P . . .
Z(1,, — 1g,) injects in T'(S, Mg ), let K" denote its saturation. We have a split
exact sequence

0— K% > My — My — 0.

Proof. That K% injects in the middle term is clear and also that it lies in the
kernel to the right by what we just said about all 1, mapping to 1 and because
M 5 1s torsion-free. Surjectivity on the right is Lemma 6.2. By checking ranks, it
is also straightforward to see that the sequence is exact over (Q which completes
the proof up to finding a splitting of the exact sequence. Indeed, the proof of
Lemma 6.2 provide an element ¢ as a linear combination of ¢, and we may interpret

- ... =8P _— . L
this linear combination in Mg thus together with F %p producing an injection

- = &P . . . L.
Ms®™ — My that is an inverse to the reversely directed surjection. O

An example where K # K% is given by the situation of two edges with the same
vertices but weights not coprime. Define L1, to be the O -torsor that is the inverse

image of 1, in M.
Lemma 6.4. L1, = O for all edges e of T,.

Proof. Let CVI . Ly,, L4, bethe Og « -torsors that are the inverse images of V1, V2, g

under /\/ls — ./\/ls By (6.7), we have Ly, ® £®we ® Ly, = L1, and want to show
this is trivial.

Si_nce e is a node over all points of S, we have a section e : S — C and sections
e/ 1 § — C; and by [20, §2-Global construction], we find £,, = L1 ® L2 where
L1, L, is the O¢ -torsor given by the conormal bundle of the marked point el e?
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in C1, C; respectively.

C
ejtlﬂ%j
S

The characteristic MXJ. is globally generated by the generator 1; € N that

~.

maps to Mec T The associated torsor, the inverse image in M ¢ C call £y i The
torsor L1 ; is isomorphic to the torsor of the line bundle fl’.k Ox ;(=D) because the
torsor of the N-generator on X ; is the torsor of O x;(=D) by Lemma 1.1 and every

map of torsors is an isomorphism. Next note that V; € I'(S, ﬂ;’;), i.e., both Vi, V,

lie in the facet Fg of M. We have Mc]. loj = (n;‘ﬂé)lej ®Nand 1; = (V;, we)
in this, hence

((n;(‘CVj)lej) ® CZJ; = C]lj |ej .

Now (e/)* j = id§ and (ej)*f* = ev* hence Ly, ® £w€ is isomorphic to the
torsor of ev OX ( D). Now use that on X we have 1 + 1, = 1 and to 1 is
associated the tr1v1al torsor since N — M is a global section. This is just saying
Ox,(—=D)|p is dual to Oy, (—D)|p. Putting it all together yields

Ly, @ L ® Ly, = L @evi Of (—D) @ (Lot ® L,2)"
®L,"™ ®evi Oy (D)
~ 03,
O

A consequence of Lemma 6.4 is that the inverse image of every element of K in
M%P is a trivial torsor and thus has sections. The next step is to produce a section
s1, € I'(S, £7,) that is in fact uniquely determined by filling the dashed arrow in
the diagram

(Mc)y =—— (f*Mx),

T T (6.8)

(T*Mg)y<-—---N

by means of 1 — 57, in order to make it commutative at stalks at points 7 in the
image of the section § — C that marks the node e. Once this is done, we will take
a quotient of M s that identifies all these sections, so that we get a map from N into
the quotient that is defined compatibly for all nodes.

Let e be a gluing node (alias edge of f‘p) of acurve f : C/S — X glued
from Cp, C3 as in (5.3). Let Vi, V; be the adjacent vertices of ['c with r(V;) = i.
Let n be a point in the node locus of e, then n necessarily maps to D under f, so
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P, = MX fay = NZ. The top horizontal arrow in (6.2) at e is the map fe: Po—

nz)’\ -~

Q ®nN2in (3.2) for Q MS ,7(np and thisis given by f : N2 0 x Q,see
Lemma 6.1. We can be more explicit by using (6.7) denoting as before V; : Q" — N
the map sending an integral tropical curve to the distance of V; from the origin. We
find

foi N2> Q@ N2, (A1, k) > MV + A Va, (wekt, wer2))  (6.9)

and indeed f.(1, 1) = (Vi + V2, (we, we)) ~ (Vi + weqe + V2, (0,0)) = 1, by
(6.7). As part of the datum of X — k, namely the map on log structures N — My,
we are given as the image of 1 under this, a lift of (1, 1) in My and we look at its
localization in (Mx),. Locally at f (), we can choose a chart of the log structure
of X given by

N? = Mx. ) = Ox.ray = (Blz1, 22/ (21, 22) 2120y € +> 20 (6.10)

for B = Op, s and z; a local equation of D in X; at f(17). We may assume this
chart is compatible with the chart on k, i.e., (1, 1) maps to the given section of M x
that comes from the chart of k. Using (6.10) and the fact that we are given basic
stable log maps C; — X, we obtain maps

Ne; = (MxIx)ray = Mx,.rap = My (6.11)

fori = 1, 2 whose composition with M¢, ;, — MC, n = M @ N sends ¢; to
(Vi, we). In particular, by (6.9), taking the sum of (6.11) overi = 1, 2 yields at the
level of characteristic sheaves the desired top horizontal map of (6.1) up to adding
extra summands of N to which we map trivially. In order to form this sum also at
the level of actual log structures, we need to lift torsors from C; to C. Concretely,
let 5; denote the image of ¢; under (6.11). We wish to lift 5; to as section s; € (Mc),,
such that sq, :=s1-52 € (¥ /\/15),7 Once we choose a chart Q oy N2 — Mc)y
compatible Wlth the chart (6.10), the lifts 51, s» are given uniquely by the following
essential Lemma (cf. [31, Proposition 7.1], [20,24,30]).

Lemma 6.5. Foralocalring (A, m), let R denote the Henselization of A[x, y]/(xy)
in the ideal generated by mand x, y. Let Ry, Ry be the I‘{enselization of Alx],Aly]
inm+ (x), m + (y) respectively. Given a € R and b € R;, there are unique

a, b € R that project to a, b respectively and satisfy the property ab € A.

Proof. Note that via extension by zero, x’ = ax and y’ = by define elements in R
and we then find the existence of a, b to follow from [20, Lemma 2.1 (¢ = u,, b =
uy)] and their uniqueness is [20, Lemma 2.2]. O

Let us now study the dependence on choices. Any other chart (6.10) in reference
to the given one has the form e; +— azj, ez — a~1z, for some a € B* which
then can be absorbed in an accordingly different chart Q &y N2 — (/\//TC),] by
multiplying the image of (0, e;) by b and (0, e3) by b~ for b a w,’th root of £*(a).
This operation leaves 51, invariant and it even leaves the inclusion of (7r*/\7 §)yin
(M), pointwise invariant.
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Next, look at the effect of a change of chart @ O N?2 — (.//\/T c)n while keeping
the compatibility with (6.10) and also keeping (71*/\/1 sy 1nvar1ant (not necessarily
pointwise) are given by multiplying the image of (0, ¢;) in (Mc),, by some w,’th
root of unity ¢;. As long as ¢1{> = 1, this leaves (71*/\/15),7 pointwise invariant but
more generally, this acts on (71*/\/25),7 via multiplication by ¢;¢&. Everything we
did is compatible with generizations n ~~ n’, so we obtain the following result.

Proposition 6.6. Let i, : S — C denote the section of & : C — S that marks the
node e. The sheaf of sets on S given by the isomorphism classes of commutative
diagrams of log structures (on S and C)

iT'\Me —— i ' (f*My)

| |

./\//TS NXO§

that lift (6.8) along i.(S) is a torsor under [Ly, (the w, th roots of unity).

Let S denote the fibre product of the total spaces of the torsors obtained from the
edgese € E (F ) via Proposition 6.6. Itisa [, M, -torsor over S and carrles the
scheme- and log-structure pulled back from (S, /\/ls) Let (C MC) — (S MA)
be the log-smooth curve that is the pullback of (C, Mc) — (S, M s) under S S.

—=gp
Lemma 6.7. Define L := @, Z1, as a sublattice of M5 and let L be its

Le>s1, 1 78p . Lo
saturation. The inclusion L —— M§ extends canonically to an injection

L5 /\//\l%p. In particular, also K5 C L% lifts (see Lemma 6.3).

Proof. This is a tautology and follows by construction: a pomt n “eS that lies above

n € S is identified with an 1som0rphlsm class of charts MS N = /\/ls » whose
groupification injects L to M Sy as prescribed by the assertion and also maps L%

into M pn by mapping the additional elements to roots of products of the s7, and
the choice of roots is uniquely defined by 7. O

We can now define the quotient Mgp M2 /K %4t and obtain Mg M%p X
S

Mz < where Mz 5 is the pullback of MstoS. We have a surjection M §— Mgand
for Mz to be a log structure, it suffices to show that the structure map f\/\lg - O3
factors through this surjection. This follows if we verify that the torsors given by
the non-trivial elements in the N”-summand in (6.6) map to zero in Og. And indeed,
this is because the sections g, are nowhere zero in S, hence all £y, and thus their
products and powers map to zero. We obtain Mg := MC o My Mz to have a

log smooth map (C ,Me) — (S , M) that in fact canonically extends as ihe left
column in the diagram (3.1), namely the bottom horizontal map f5 : k — S sends
the generator of N to 57, (since with the quotient by K** all 51, got identified, we
just call their equivalent class s, just like all 1, got identified with 1). To obtain
(3.1), by Proposition 6.6, it remains to argue why and how the top horizontal map in
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the diagram (3.1) is defined away from the nodes. For simplicity, we omit various
decorations of ~on spaces in the following. Le., we now sit on only C; or only C»
and here the map f is completely determined by realizing that, for 79 : X — k
denoting structure map of the target,

M1y, = MY, @0 w5
and then considering the commutative diagram
Mgp|c- )Mgp

c G
~
~N
~
~
~
~

gp gp 8p
”*MS lc; fi*(MX lx;) =—— fi*MXi

e |

fraMPIc, ¢

that yields as the dashed arrow away from the gluing nodes a natural homomorphism
(fery* . Mip — Mgép compatible with fs in the sense of (3.1). Furthermore,
the induced map (f2P)* : M‘;’(p — Mgcp maps f*Myx into M¢ and is the top
horizontal map in (6.2). Hence, away from the splitting nodes, we obtain the desired
map f*Myx — M as the induced map

[*Mx = f*Mip X AP My — M%p XA Mc = Me.

We obtained a basic stable log map

(C, Mg) ——

—x
nl l (6.12)
— -k

(5. Mg) —

that lifts (6.2) and when applying the splitting construction of the previous section
(up to taking the quotient §S—8) gives back the curves f; : C;/S — X/k that we
started with.

To conclude this section, it remains to observe that when producing S, we
marked a bit too much. Indeed (6.12) has a non-trivial group of automorphisms,
namely p; acting by pullback of the left column of the diagram along endomor-
phisms of the log structure Mg — M that modify a chart by pointwise fixing
F% and multiplying the image of g by ¢ € p; where ¢ is the element found in the

proof of Lemma 6.2, i.e., so that /\_/l%p = ?%p DqZ.Ifp € m%[l] is the primitive
generator whose perp is ?§ then p(1) = [ by Sect. 4 and p(g) = 1. This shows

that the described action fixes s1. Furthermore, it acts transitively on the sheets of
S — S by means of the injection u; — [], tw,, ¢ — ¢le (this injects because
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t~he l, are coprime sincel = lem({w,}) and I, = [/w,). We denote the quotient by
S := S/ and let C be the quotient log smooth curve above it. We observe

deg(5 — §) = % (6.13)

7. The splitting stack

The purpose of this section is to first recall Olsson’s stack Z;JES which classifies
maps of fine log schemes 7 — S for fixed S. We then introduce a new stack Eogls(pl
that surjects to Z:;Ek where k denotes the standard log point. A typical local model
for Z;gk is given by an injection of monoids # : N — (. Subject to A, a typical

local model for Loglipl is given by a choice of facet in Q with the property that its
intersection with the image of 4 is trivial.

For a fine log scheme S, denote by Z\OES the Artin stack over S due to Olsson
[32] that is defined as follows. The objects over a scheme morphism 7 — S are the
morphisms 7 — S of fine log schemes over T — S. The morphisms from 7" — §
to T’ — S are the log morBfEs/ms h: T — T over S for which i* M’ — M is

an isomorphism. The stack Log g is an algebraic stack locally of finite presentation

over S (see [32, Theorem 1.1]). Let Logs be the open substack of Z;gs classifying
fs log schemes over S (see [32, Remark 5.26]).

Definition 7.1. Recall that k = Spec(N e k) denotes the standard log point.

We denote by Eogls(p1 the category fibred in groupoids over the category (Sch/k)
of schemes over k = Spec k whose fibre over T — Kk is the groupoid of triples

(T,h,F)

where (T, h : Ny @ k3 — M) is an object in Logk and F is a subsheaf of M

satisfying that:

(1) Forevery t € T, F;is a facet of M; (i.e., ab € F; = a,b € F;).

(2) For the log structure o : M — OT’ﬂM\J—' =0.

(3) Foreveryt € T, (F7, 1)P @7z R = ./\/l;ép ®7 R where 1 is the image of 1 under
the induced homomorphism 4; : Nr7— M and (F7, 1) is the submonoid of
M; generated by F; and 1.

The morphisms from (T, h, F) to (T', h’, F') are the morphisms from (T, h) —

(T’, 1) in Logk for which F goes to F'.

Note that by Condition (2) the pair (F, ¢ ) is also a log structure on 7. Note
also that instead of F we may give a sheaf of facets 7 C M with suitable properties
because by (1) we have that F is the inverse image of its projection F in M.

It is straightforward to check that Eogf(pl is a stack over k. Below, we will show
that the forgetful morphism

Log™ — Logk, (T,h,F) > (T, h)
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is a representable, proper, and “normalization” map (see Proposition 7.4).
Let Q be a toric monoid and g be a nonzero element of Q. Consider Spec(Q —
k[Q]/(g)), where (g) denotes the ideal of k[ Q] generated by the character x 9.

Lemma 7.2. By taking T = Spec(Q — k[Q]/(¢)) and N < Q, 1+ g for h
there is a morphism

Spec(k[Q1/(q)) — Logk
that is representable and smooth in the ordinary sense.

Proof. By the toroidal characterization of log smoothness [19, Theorem 3.5], the
map T — Spec k is log smooth. By the classifying properties of Logk, [32,
Theorem 4.6 (ii) and Cor 5.31], we find that the map in the assertion is smooth.
The map is representable by [32, §4, Rem. 4.2]. O

Recall the convention Q¥ = Hom,,,,(Q, N) and that p= = {p € Q| p(p) = 0}
for p € QV[1] gives a bijection between facets of Q and QV[1].

Lemma 7.3. (1) The reduced scheme Spec(k[Q1/(g))™® of Spec(k[Q]1/(q)) is

canonically isomorphic to

U SeecklQ1/(Q\o")).
peQV[1]:p(q)#0
the union of the closed subschemes of Spec(k[Q1/(q)) defined by the ideals

generated by Q\p™ for varying p.
(2) The fibre product Spec(K[Q1/(q)) X £og £0g;pl is representable by the disjoint
union

[  SpeckiQl/(Q\p")
peQV[1]:p(q)#0

of irreducible components of Spec(k[Q1/(g))™¢.

Proof. Let T := Spec(k[Q]/(g)) and T, := Spec(lk[Q]/(Q\,oJ-)). Recall the
well-known fact that the divisor div(x?) of the character x4 as a rational function

on Spec(k[Q]) is ZPGQVU] p(q)T ,. This proves (1).
For (2), we first construct a natural 7-morphism

1
]_[ T, > T Xrog Logy’. (7.1)
p:p(q)#0

Note that the affine coordinate ring of 7T, has two expressions k[p*] and

k[Q1/(Q\p1) which are isomorphic via the inclusion p~ C Q. Hence on T
we can consider two induced log structures: F defined by Spec(p* — k[p"]) and
M, defined by Spec(Q — k[Q1/(Q\p1)). Fort € T ,, denote by «; the natural

homomorphism Q — OTp»’_' Then ot,_l(O; 2 C pt, sosince pt C Qisafacet,
T T,

Fp = ot/ 'Of ) € Q/e (O ) = My,
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is also one. Let ¢, denote the inclusion Zp — T.Thepair (1, F — Mrp <~ NZ/J)
can be considered as an object of (T X £g, Eogls(pl)(zp).
. 1

Conversely, we construct a natural T-morphism from T X roe, Eoglip to
]_[p:p(q)#) T,. Suppose that we are given a morphism § — T X £, Eoglipl by
datah : S — T,Ng @ ki — Mg <« Fs such that Ng & ki — My is the
pullback of N7 @ k; — My under h. Suppose S is connected. Fix s € S, the
composition g5 : Q — Mr j;) — Mg 5 induces a chart, so Q¢ := gs_l(./\/l;§)

is a face of Q and g induces an isomorphism Q/Qy = Ms,g. In particular,
g‘v_l(?s,g) is a facet pJ- of Q for a unique p with p(qg) # 0. Since g, is com-
patible with specialization, p* is independent of the choices of s € S. By (2) of
Definition 7.1, h : § — T factors through § - T ) — T.

The above two natural morphisms are inverse to each other. O

Proposition 7.4. (1) The morphism

1
L[ Zp — [Iogls;p
0.9.p

obtained via (7.1) is representable, smooth, and surjective. Here, the disjoint
union runs over all toric monoids Q with nonzero element q and p € Q"[1]
such that p(q) # 0.

(2) The fibred category Eog:(p is a pure zero-dimensional algebraic stack over K.

(3) The forgetful morphism L',ogiip SR Logy is representable, affine, proper and
surjective. Every map V. — Logg from a normal variety V factors uniquely
through the forgetful morphism L',ogls(pl — Logk.

(4) Given an object (T, h : Ny @k; — Mr) of Logy, the inverse image in Eogls(pl
is in natural bijection with the set

{,0 e (T, My) | p(h(1)) £0, p € My (1] forall i € T}.

Proof. By [32], Theorem 1.1 and Remark 5.26, see also page 777 in loc.cit. for the
notations Sp, Sg in Corollary 5.25, we conclude that Log is an algebraic stack
and

]_[[Spec(k[Q])/ Spec(k[Q*P1)] X [spec(k[N)/ Spec(kizn] Spec(k) — Logk
0.q
(7.2)

is representable, étale, and surjective where N — Q is given by 1 — ¢. The map
in Lemma 7.2 factors through this etalé cover, hence

[ [ Spec(kiQ1/(9)) — Logk
Q.9

is smooth, representable and surjective. Assertion (1) now follows by base change
to Logiipl via Lemma 7.3, (2).
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The claim in (2) that L',ogls(p1 is an algebraic stack now follows from [6, Lemma
C.5]. The stack Log is pure zero-dimensional because the left hand side in (7.2)

is pure zero-dimensional. By part (2) of Lemma 7.3, the map L',ogls(pl — Logg is

finite and surjective, so Eogipl is also pure zero-dimensional.

Part (3) is similarly a direct consequence of Lemma 7.3.

To show (4), first consider the special case where T has a global chart, say
T = Spec(Q — R) for some k-algebra R and the map to k given by ¢ € O,
then the natural map 7 — Logk factors canonically through the map given in
Lemma 7.2 and the statement of (4) follows directly from Lemma 7.3 (2). The
general case reduces to the special case by choosing an atlas and checking that
the statement of (4) is compatible with localization. The latter follows from the
discussion in Sect. 4.1: the collection of elements p, one for each chart, naturally

glues to global section of M; O

8. Decomposing moduli stacks of curves

Let .#, , denote the moduli stack of prestable curves with its natural log smooth
structure [20], [14, Appendix A] over the trivial log point k. Using the splitting
stack introduced in the previous section, we define

1
M = Log 4, X Log, Lok P! = Log s, X Log, Log,,
M= %g,n(x/k’ B).

Objects of .# are diagrams of the form (3.1) but with W = k. Forgetting the right
column in the diagram defines a map of log stacks .# — .#,, , and forgetting the
top row in the diagram defines a map to k. Taken together, we obtain a log map
M — My n ¥x k and thus a map # — N that we call forget-target-morphism.
By abuse of notation, we will omit the underline on .# and write .#Z — 90 for this
map. Since .#, , is of pure dimension 3g — 3 + n, the same holds true for £og///w
by [32, Corollary 5.25]. Proposition 7.4 now implies that 99t and 901! are of pure
dimension 3g — 3 + n as well.

If C — Sisanobjectin P! then, by Definition 7.1, we have a global section
s1 = h(l) € T'(S, Mgs) whose image in I'(S, Ms) we denote by 1. We also
have, by Proposition 7.4 (4), p € I'(S, ﬂ;) with [ := p(1) # 0. Furthermore, we
have a map /\/lg/ S 5 M s from the natural log structure ./\/lg/ 5 on Mgy to the
one given with the object. If e is a node of a fibre of C — § over a point s € S,

there is an N-summand in M?{S and its generator maps to an element ¢, in M ;.
We call the node e a splitting node if I, := p(q.) # 0 and note that if this is the
case, this node doesn’t ever get smoothed anywhere over S (since g, then generates
(Ms/pt) ® Q which is nowhere trivial on S since p(ge) # 0). If I o denotes the
graph obtained from collapsing all non-splitting edges in a fibre of C — §, we find
that all fibres of C — S are marked by this graph. Adding markings ny and genera
gv as obtained from C as decorations to the graph I’ 0> We obtain part of the data of
Sect. 2. We set w, := é which may be rational a priori. For fixed g, n, let 2(g, n)
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denote the set of graphs with vertices decorated by gy, ny and edges with rational
w, satisfying (2.4) and (2.5).

The stack 9T is too big for our purpose of arriving at the statements of Lemma 8.1
and Lemma 8.2 below. To be able to state these lemmata, we will therefore choose
a sufficiently small open substack 9ty with the property that the forget-target-
morphism .#Z — 90t factors through the open embedding 9ty C 91 as follows.
Let P : M — N be a smooth presentation. For every point x in the image of
M — M, let x € M be a point so that P(X) = x and let U, — M be an étale
neighbourhood of X that is a chart for the log structures at x. We define 9% to be
the union of P (Uy) for x running through the points in the image of .#Z — M. We
define M = DMy x gy M.

For fixed g, n, let Q2(g, n) denote the set of graphs with vertices decorated by
gv, ny and edges with w, satisfying (2.4) and (2.5) and let

Q(g, n, B) :=im(Q(g, n, ) - Q(g, n))
be the (finite) image of the map that forgets By. For I' € Q(g, n, B) let Mr be the
open and closed substack of Sﬁzp ! whose points are marked by I" by the discussion

in the preceding paragraphs.
Lemma 8.1. imgpl = reag.np M

Proof. We only need to show that Sﬁ?)p] is contained in the right hand side. Every
point x in 9 lies in a chart Uy, of the log structure of some point y that is contained

. . . . -V . —-—V

in the image o — 9Mp. This implies tha is aface o , and for the
th ge of 4 — My. Th plies that M, . f: f My, , and for th

latter we have an interpretation as a parameter space of integral tropical curves by

Lemma 4.4. The points of the inverse of y in fmf)pl are in bijection with the elements

of ﬂlv] y[11 that evaluate non-trivial on 1 by Proposition 7.4 (4). By (4.8), these
same elements yield elements of €2(g, n, B) under Trop and so the corresponding
graphs with By forgotten lie in Q(g, n, 8). By Sect. 4.1, the points in the inverse

image of x in ED”(SPI are indexed by the subset M\&M[l] of M;y’ y[11 which are
therefore also labelled by graphs in Q2(g, n, B). O
We use the composition
Homp : Mr — smf)pl — My
to define
My = M Xop, Mr. 8.1
Let pur: #r — .# denote the forgetful map. By Proposition 7.4,(4) and

mr . L . .
Lemma 8.1, the map [ [ .41 U—> A is surjective. We arrive at a commutative
diagram with Cartesian squares

spl

Uresgn.p 4 — Urcag.np P el Log,’
lﬂﬂf lwsmp l l (8.2)

4 Mo m Logk.

open pr
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Let w : C — .# be the universal curve for .# and f : C — X be the universal
map. Recall that

(Rt (f*Tx )" = Logyom,

is the natural perfect obstruction theory for .Z relative to 9y (see [14, Sect. 5]).
Then similarly uf (R (f*7x k)" defines a perfect obstruction theory for .#p
relative to 91, since the intrinsic normal cone of .Zr relative to 9Mr is closely
immersed to the pullback of the intrinsic normal cone of .Z relative to 9%y by the
Cartesianness of (8.2), Proposition 7.4 and Lemma 7.3.

Lemma 8.2. Under the projective morphisms jion., as an identity in Azg 31, (IMo),
we have

D In(uanp)«[Mr] = [Mo].
reQ(g.n.p)

Proof. The morphisms oy, are affine and proper by Proposition 7.4, (3) and thus
projective. By the Cartesianness of (8.2), it is enough to prove the correspond-
ing statement for the forgetful morphism Eogipl — Logx. The statement can be
checked on the map of presentations as given in Proposition 7.4. The components of
the presentation are studied in Lemma 7.3 and so the claim follows if we show that
the cycle [Spec(k[Q]/(Q\pJ-))] appears with coefficient It in [Speck[Q]/(1)].
By assumption, /r = p(1) and by standard toric geometry /- is the vanishing order
of the character x ! on Spec(k[Q]/ (Q\p™h)), so we conclude the proof. |

Consider M. := Mr xx Spec(k[x]/ (x'™)) in order to have the induced pro-
jective morphism ' : [ [ 9. — Mo be of pure degree one. Hence, by applying
[29, Proposition 5.29] (see also [17]) to i/, we get

Lemma 8.3.

Zreg(g’n,ﬂ) Ir (ur)«[ AT /Dy, :Uj]x: (Rﬂ*f*TX/k)v]
= [ /Mo, (R f*Tx )" 1.

Here and later, [K /M, E] (or sometimes simply [K, E]) denotes the virtual funda-
mental class of a stack K that is relative DM type over a pure dimensional algebraic
stack M, with respect to a relative perfect obstruction complex E of K over M (see
[9,22,25]).

9. Comparing perfect obstruction theories

In this section, we deliver the details for Sect. 1.3. Recall the forgetful maps of
finite graph sets

Q(g,n, B) — Qg.n, p) = Qg,n, p)

where the first map forgets the edge ordering and the second map forgets the By .
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9.1. Gluing of log structures and moduli stacks

For I' € Q(g,n, B), recall A5 and My from (8.1). We decompose .+ in the
obvious way into open and closed substacks .Z that fix the classes By, i.e.,

Q(g.n,p)sT—T

Furthermore, we may consider the edge-labelled stack .# where splitting nodes
are marked. We have an étale forgetful map of the markings .#; — .Zr. We
similarly define 91 with an étale forgetful map M — Mr. Let uy denote the
composition

Mo — iz 1 g,

As a direct consequence of Lemma 8.3, we arrive at the following.

Lemma 9.1.

Y ctgnp) Ty WA M WE (R £ Tip) ]
= [ A /Mo, (R f*Tx i) 1.

For the remainder of the section, we fix I' € Q(g, n, B), in particular, edges of
the graph I will be ordered from now on. Recall that for a vertex V we defined
My = Mgy nyuEy (Xrv), Bv),i.e., the moduli stack of genus gy basic stable log
maps to X,y) of class By with ny unconstrained markings and further markings
indexed by e € Ey with contact order w, to D. We also consider the stack ., V=
Mg, nyUEy of prestable curves, see the beginning of Sect. 8.

The diagram

Mt v Mr

¢rl \ ©.1)

Ov Ay ——=1ly Log.uy —= Logny.ay =B

commutes, where ¢r is defined by the splitting construction of Sect. 5; w, w’ are
morphisms that forget the targets of stable log maps; f is defined by taking the

homomorphism @VM%V /5, ]-'SQ/ s (i.e., taking only the “facet data”) and finally

5 is defined by taking the sum EBW\/I%Wg - By Ms,.
Recall that D carries the trivial log structure. We define the O p-module Np /X
by the exact sequence

0—>ND/xi—>Txi|D—>TD—>0. (92)
Note that Np,x, is isomorphic to Op (unlike Np, X;)-

Lemma 9.2. (1) s is érale.
(2) The morphism § is of Deligne-Mumford-type and smooth.
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3)

w*Lgn ’5¢F< D v ND/XI)

ecE()

where B = Log[q, M-

MecE(r)we

(4) The morphism ¢r is of Deligne-Mumford-type and étale of degree -
Here, if T' has only one vertex, then we set Il,cprywe = 1.

Proof. For (1): This is straightforward by the lifting criterion for formally étale
morphisms.

For (2): First note that § is of DM-type since there is no infinitesimal automor-
phism o of a geometric point of M with f(o) = id. Now to prove f is smooth,
it is enough to show f is formally smooth since it is locally of finite presentation.
The corresponding lifting property of f can be checked by considering charts of log
morphisms. Let / be a nilpotent ideal of a finitely generated ring A over k and let
S = Spec(A/I). We may assume that there is a chart

MS/S 0 11 N

N

Os

of /\/lc/ S5 Mg < Na O3 . By Definition 7.1, there exists a unique lifting to
Spec(A) of the log structure on M. It is also obvious that MC/S — Mg and
Mg < N @ Og have lifts, which may not be unique.

For (3): Since Np,x, is a trivial line bundle, it is enough to show that ]LgﬁF /%B
is also a trivial bundle of rank | E (I")|. For this we will describe an Og-basis of the
set of isomorphism classes of liftings to S[e€] := Spec(Ogle] /62), fixing the log
structure of the facet, of a given object

N .
(C/S.N&® O} -5 Ms <« M5/
of Mr over any scheme S. For each ¢ € E(I"), we define a lifting

x h+e

(Cle]/S[el, N @ (Oslel) Milel < MS 1)) 9.3)

as follows. The monoid homomorphism of 4’ : N — g can be transformed to
the trivial homomorphism up to a unique isomorphism of M fixing Fs, since
Oy is a divisible group, and F and N generate M ®z Q. For each sphttmg node
g, there is the corresponding canonical submonoid sheaf N, C M/ s satlsfymg
Ny =N, @ Og by Lemma 6.4 which deals with £y, = 1 & Og. Therefore j, is
determined by j.(14) for all splitting nodes ¢. Define j.(14) = j(14) for g # e,
Je(l4) = j(14) +€ for ¢ = e. We can check that j, is well-defined and the liftings
(9.3) for e € E(T") form a basis of the set of the isomorphism classes of liftings.
We can do this construction for a smooth surjective cover S — IMr.
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_ Finally, (4) follows from the gluing construction in Sect. 6 that gave the preimage
S of any scheme S mapped to the target of ¢r and (6.13) readily computes the degree
of ¢r. 0O

LetusfixI' € fZ(g, n, B) and for a vertex V we define
My = Eog(///gV,nVUEV. 9.4)

Note that we don’t take the product with Logk like we did for 9. Let €y be the
universal curve over My, i.e., the pullback from .Z, ov.nyUEy - The natural perfect
obstruction theory on .Zy is given by

Ry fU T, )" = Loaty jomy

where vy : Cy — .Y is the universal curve (also the pullback from .#,,, ., UE,)
and fy : Cy — X,(v) the universal map and (-)* means taking RHom (-, O). We
take the outer tensor product of these obstruction theories on [ [, .Zy via

E = gv(RJTV’*fJTXr(V)/K)V — L := ng@/& = LHV@/HV&

which is the natural perfect obstruction theory on [[ .#y relative to [, My,
e.g., by [9, Proposition 5.7]. The isomorphism L. = LLyy,, 4, /11, 9m, between cotan-
gent complexes can be seen by the distinguished triangles associated to towers of
projections starting from .#y, xi Ay, — My, xx My, — My, xx My, and
base changes.

9.2. Tangent sheaves and morphisms
The universal curve 77 : C; — )y .4y is obtained via pushout from the Cy, as in

(5.3). The universal curve Cr of . as well as various other universal curves are
defined by the following fibre product diagram in log stacks

CF (’:mr Q://[g,,, C///
M Mr Eogu///gyn ~ M

starting from the log universal curve € 4 of Log 4, ,. The underlying universal
curve C of ./r fits into the fibre product diagram

ér

Cr —C,

/Ay ? @v My,
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which defines ¢r that we also denote ¢. On C r we consider the following diagram
with exact triangles as rows that we will prove to be commutative:

Tcr/@mr - @VTCr/Q’vnr ‘Qv_r - @erﬂ‘cr/th,- ..

\f T T

Ty =@ [ Txile, . —————>= O [ Txkla,

| | l 9.5)

]

PE = By vl [ T,k & D teevi Tns
7

& TS, /11y My ¢ @y TuLT 4, oy F* Ty 1]

Here, T 4,p denotes the relative tangent complex of a map A — B, i.e., the
dual of the relative cotangent complex IL4,p. For a strict map of fine log stacks
A — B,wehave Ly/p = La/p = LLg/r0g, Dy [33] and the map underlying every
occurrence of T in the diagram is strict. Pullbacks of T are well-defined, see [33].
We refer to the universal map Cr — X by f and Cy - is the closed substack of C-
corresponding to the universal curve Cy of .#y . There is anaturalmapCy  — Cy,
which gives a log structure on Cy - by pullback. This will be denoted by Cy r. The
image of the section .# < C- associated to the node e is denoted by .7,

We now explain how to construct the diagram. Let Cy, , denote the universal
curve on () .#y corresponding to Cy. We denote by ty : Cy o — Cg and
te: O My — QQ the closed immersions attached to V and e.

e The first two lines and the morphisms between them are obtained from the
composition T¢,. [Eomp Ter/omr — f*7Zx/k by tensoring with the partial
normalization exact sequence

0— Oc¢. — @Lv,*(’)gw — @Le(’)e — 0.
\4 e

e The maps uy, iy are defined by the commuting diagram

m

Cr = Cvr X—X
él évl
Co~——Cvo Ay Xrv) X, v
X T > - T> o /
" @ My iy My D

with the squares Cartesian and 7y = 7 o ty. Here we double use notation for
ty,e and my.
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The forgetful morphisms (D, Mx|p) — (D, Mx,|p) — D induce epimor-

phisms Tx/k|p i Tx, xlD i Tpx = Tp. On C, we consider the sheaf
epimorphism

Sviy iy fuTX, )k = ®etex eV Tp/k

éEvv = Y 11y, D) — 12Evs ) D) ©-6)

where V;(e) refers to the vertex V of e with r(V) = i. We define £ as the
kernel of (9.6). This explains the third line of (9.5) before taking pullback under
b : Cr — C. Now the right two vertical morphisms from the second line
to the third line are obtained from f*Ty /kleyr = (f)*tv,*ﬁ’{, fv Tx,, and the
adjunction transformation id = ¢, .t;. These two vertical morphisms uniquely
determine the dashed arrow f*Tx /x --» P*E.

Recall u from (1.3). The bottom row of (9.5) is obtained by applying d** to
the natural exact triangle

Toy a1y my = 4" By Tz, — Tulll.
The bottom central diagonal up-arrow is ¢* applied to the composition

k_ok * * *
T ”VT//[V/SJ?V — lyxlyT "‘VT//lv/fmv
———’

;
Ty

~% *
= LV,*MVWVT///‘//EIRV
~k ~ % k
= ‘V,*”VTCV/CSJ?V - LV**MVfVTXr(V)/K

where the last map is dfy and the second “=" follows from the flatness of wy
as it implies that the natural pullback morphism is an isomorphism.

The bottom right diagonal up-arrow is ¢*7* of the natural map T,[1] —
(IT, eve)*Tal1] (see (1.3)) composed with the isomorphism Ta[1] = &.7p
and adjunction

7 @ evy Tp — @elexlant™ ey Tp = Dele x eV, Ip.

The left long vertical map is the natural map T 4./om. — ¢rT 4, /8 =
¢rT 4, /myom, from (9.1) using that s is étale (by Lemma 9.2, (1)), then apply-
ing 7* and using flatness of 7 to have TCF/Cmr = 7*T 4 /om;- The commu-
tativity of the hexagon that includes this map follows from the commutativity
of (5.5).

We prove the commutativity of the bottom right square. From (1.3), we have a
commuting diagram of cotangent complexes

*u* X, ev’:l,2 Tpxp — w*([[, eve)*Tall] de> DetesxeViTp

| |

7 u* Ry T g, sy ———> 77T, (1]
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where adj is obtained by adjunction of 7* = (. 7™ = (, .. By construction
of the right diagonal up-arrow, the composition map 7*u* Xy T s, om, —
@ete,« €V, Tp coincides with the the composition of the bottom horizontal map
with this diagonal map. We need to show that this agrees with the other path
that goes diagonal first and then horizontal after. To achieve this, we will factor
the left vertical arrow in (9.7). We rewrite the top left corner using

% % k *
XMeevii, Tpxp = NWyeeevy , Tp = Myeely , fyip.«Tp
and consider the commutative diagram

evy .
T * * * T br(v) T
W) Woex by o SViDx (pTx, ) > V.exCy , 4D

. 9.8)
dfy e sty Ldfv
’ devy ,

TCV/Q:SDIV > V.o« Lty jomy

where the bottom left horizontal arrow is adjunction id = ty ¢ «t}, , combined
with ch/gmv = 7y T 4, /om, and ¢, vy, = id*; the map 7,(v) was defined
above (9.6). Since the left vertical map in (9.8) gives the bottom central diagonal
arrow in (9.5) and 7 the horizontal one, we are done verifying the commutativity
of the bottom right square.

e The dashed diagonal arrow in (9.5) is the unique map making the left right
bottom corner commutative by the axioms of triangulated category applied to
the bottom two rows as triangles and Lemma 9.3.

Lemma 9.3. Let A — B be a monomorphism in an abelian category A with
enough injectives. Let C® be a complex in A with C' = 0 for alli < 0. Then the
induced homomorphism Hom p+(4)(C*®, A) — Homp+4,(C®, B) is monic.

Proof. Let Kom(A) be the category of cochain complexes of A and let K (A) be
the homotopy category of Kom(.A). First we find injective resolutions 1°, J* of A,
B respectively, replacing A — B by I®* — J* in Kom(.A) with monomorphisms
I' — Jiforalli > 0. We have
HOIIID+(_A)(C., A) = HOIIIK(A)(C., I.) — HomK(A)(C', J.)
= HOH]D+(A)(C., B)

which is easily checked to be monic. O

9.3. Virtual fundamental classes

Recall diagram (1.3). We define a natural perfect obstruction theory on (), .#y rel-
ative to ITy 9y as follows. The virtual class [.Zy, (RnV*f",“Txr(v))v] is obtained
from the perfect obstruction theory that comes from a chain of exact functors

(Rn*f;/kTX,(v)/k)v = Rn*(f\iT}}j_(V)/k(gwn[l])
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— Rn*(ch/cgﬂv ® wx[1])

= R (L7*L gz, jom, ® wx[1])

= Loz omy ® Rmewr[1]

— Lz, /my 9.9)

where the first one is Grothendieck duality, the third one uses the fact that universal
curve 7 is flat, the fourth one is the projection formula, and the last one is the trace
map. We may think of (9.9), under the sequence of exact functors, as an output for
a map of a pair 7, ,,/k < 7*T s, /on, as an input.

Note that s, = (},@y, so if we apply the chain (9.9) of exact functors for
three pairs in the last two lines in diagram (9.5), we obtain a commuting diagram
of exact triangles

(IT, eve)*La[—1] u*E (Rn*(‘:)\/
l \L \L (9.10)
L,[—1] u*L L@v(%v/nvimv

where, by construction, the left vertical map is the natural one coming from the
Cartesian square (1.3). Also as in the construction, we use

(R7T4(Detex eV, Tpjk))’ = (@eev, Tpjk)” = (I, eve) “Lal—1].

Since the left vertical arrow in (9.10) is surjective at 4%, by the two four-lemmas
(that are part of the usual five-lemma), hY of the right vertical arrow in (9.10) is
an isomorphism and 4~ is surjective. Thus, the right vertical arrow in (9.10) is an
obstruction theory (see [9, Def 4.4]). We claim it is a perfect obstruction theory,
ie., (Rm,.€)Y is locally quasi-isomorphic to a complex of free sheaves in degree
—1 and 0. Equivalently, Rm,£ is locally quasi-isomorphic to Eg — E| (for E; free
and in degree i). Indeed, we can take (9.6) as a resolution for &, call this Fy — Fj.
We can replace Fy — F) by [Eg — E1] := [Fo(zj Dj) - Fi & @j Folp;]
for D; suitably chosen local sections of 7 with ) iDj relatively ample so that
Rm.E; is locally free and concentrated in degree O for i = 0, 1, hence giving the
perfectness.
By the functoriality of [9, Proposition 5.10], we conclude from (9.10) that

() Ay, (Rm &)1 = A [y, (R fi Tx,)V]. (911
Vv \%4

Now focus on the middle two lines in (9.5) and note that Ty k|x, — 7Tx, /k is
an isomorphism and so the kernel of the right vertical map is @.t. « vy Np,x, by
the definition of Np,x, in (9.2). The snake-lemma for this 2 x 3-diagram gives the
cokernel of the left vertical arrow, that is, there is a natural exact sequence

0— fTxxi — P E — d?*(eaete,*evj Np,x,) — 0.
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If we apply the chain (9.9) of exact functors for the left trapezoid in diagram (9.5),
we obtain a commuting diagram of exact triangles

\4

A\
¢* (R E)Y —— uj. (Rﬂ*f*TX/k) — 9" ( Decer eve ND/X1> (1]

| |

Lelﬂv/nvmv > L(%F/Dﬁr > w*LQJTr/HVE)ﬁv[I]

9.12)

By Lemma 9.2,(3), the top right corner is isomorphic to w*Lgy,. /o[ 1] and since
L1, oy s = 0 by Lemma 9.2,(1), for the right vertical map to be isomorphic to
the pullback of the natural map Loy, /53 — Loy, 1, om,, We need to prove that
it is an isomorphism. Since the other two vertical arrows are perfect obstruction
theories, the 4-lemma gives that the right vertical map is surjective. However, a
surjective map of free sheaves of the same rank is an isomorphism (as this can be
checked étale locally where they are projective).

Applying functoriality [9, Proposition 5.10] to (9.12), we conclude

(A /Ty My, ¢F (R7E) Y = [Ar /M, ui (R f*Tx ) '] (9.13)

Also, by a special case of functoriality for the étale map ¢r,

[0 /Ty My, ¢ (RmE)V] = ¢ () Ay . (RE) V], 9.14)
\%4

Proof of Theorem 1.5. The result is the composition of the identities Lemma 9.1,
(9.13), (9.14) and (9.11). O
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