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Abstract. Let K be a compact Lie group and V a finite-dimensional representation of K .
The orbitope of a vector x ∈ V is the convex hull Ox of the orbit Kx in V . We show that if
V is polar then Ox is a spectrahedron, and we produce an explicit linear matrix inequality
representation. We also consider the coorbitope Oo

x , which is the convex set polar to Ox .
We prove that Oo

x is the convex hull of finitely many K -orbits, and we identify the cases in
which Oo

x is itself an orbitope. In these cases one has Oo
x = c · Ox with c > 0. Moreover

we show that if x has “rational coefficients” then Oo
x is again a spectrahedron. This provides

many new families of doubly spectrahedral orbitopes. All polar orbitopes that are derived
from classical semisimple Lie algebras can be described in terms of conditions on singular
values and Ky Fan matrix norms.

Introduction

Let K be a compact Lie group, and let V be a finite-dimensional real representation
of K . The orbitope of a vector x ∈ V , denoted Ox , is the convex hull of the orbit
Kx in V . Orbitopes are highly symmetric objects that are interesting from many
perspectives, like convex geometry, algebraic geometry, Lie theory, symplectic
geometry, combinatorial geometry or optimization. We refer to [18] for a broad
overview with plenty of explicit examples.

Here our focus will be on properties of orbitopes that are particularly rele-
vant to optimization, and more specifically, to semidefinite programming. We are
interested in existence and explicit construction of spectrahedral representations
for orbitopes and related convex bodies. For this we consider a particular class
of group representations, namely polar representations of connected compact Lie
groups. As far as the orbit structure is concerned, all such representations arise
from Riemannian symmetric spaces M = G/K as actions of the isotropy group
on the tangent space at a point. In other words, each polar representation comes
from a Cartan decomposition g = k ⊕ p of a real semisimple Lie algebra g, as the
adjoint representation of K on p. Dadok [7] showed that these representations have
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very particular properties. At the same time they comprise all the familiar actions
of the classical unitary, orthogonal or symplectic groups on (skew-) hermitian or
symmetric matrices.

Our main results are as follows. We prove that every orbitope Ox in a polar
representation is a spectrahedron, i.e. an affine-linear slice of the psd matrix cone.
In fact we produce an explicit linear matrix inequality representation for any such
orbitope (Theorem4.4). So far, this resultwas knownonly for a few scattered classes
of examples. We also consider the dual convex bodyOo

x , called the coorbitope of x .
We prove that Oo

x always is the convex hull of finitely many K -orbits, and we
identify those orbits explicitly (Corollary 6.6). In particular, we isolate the cases
when Ox is a biorbitope (Theorem 6.7), meaning that Oo

x is an orbitope as well.
Remarkably, Ox is always self-polar up to positive scaling when it is a biorbitope
(Theorem 6.9). Moreover, we show that whenever the orbitope Ox can be “defined
over the rational numbers Q”, the coorbitope Oo

x is again a spectrahedron, and we
find an explicit linear matrix inequality for it (Theorem 7.2). So far, only very few
examples of doubly spectrahedral sets were known [20]. Our result provides many
new series of sets with this property.

The main and all-important tool for our results is Kostant’s convexity theorem
[13]. It allows to reduce most questions considered here to a Cartan subspace, and
even to a Weyl chamber. In this way the questions become polyhedral in nature.

The paper is organized as follows. Polar representations and orbitopes are
recalled in Sect. 1. The general background on semisimple real Lie algebras and
their restricted root systems is summarized in Sect. 2, as far as it will be needed
here. Kostant’s theorem is stated in Sect. 3, together with a few immediate conse-
quences. Spectrahedral representations for polar orbitopes are constructed inSect. 4.
In Sects. 5 and 6 we relate the facial structure ofOx to the momentum polytope Px ,
with an emphasis on maximal faces of Ox resp. facets of Px . Since the maximal
faces of Ox correspond to the extreme points of the polar set Oo

x , this allows us
to identify biorbitopes. Doubly spectrahedral orbitopes are considered in Sect. 7.
Finally, in Sect. 8 we list all polar orbitopes that are derived from semisimple Lie
algebras of classical type. All these orbitopes have descriptions in terms of singular
values of matrices over R, C or H. Typically, they consist of intersections of balls
of various radii with respect to different Ky Fan matrix norms.

Some of the results presented here are taken from the 2018 doctoral thesis [12]
of the first author, written under the guidance of the second.

1. Polar representations and orbitopes

1.1. We recall the notion of polar representation, following Dadok [7]. Let K be
a Lie group with Lie algebra k, and let K → O(V ) be a linear representation of
K on a (finite-dimensional) real vector space V , preserving a fixed inner product.
For every x ∈ V , the linear subspace ax = (kx)⊥ of V meets every K -orbit [7,
Lemma 1]. A vector x ∈ V is said to be regular if the orbit Kx has maximal
dimension. The subspaces ax , for x regular, are called the Cartan subspaces of the
representation. The Cartan subspaces are all K -conjugate if, and only if, they are
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orthogonal to the K -orbits passing through them [7, Prop. 2]. The representation ρ

is said to be polar if these equivalent conditions are satisfied.
Every Riemannian symmetric space M gives rise to a polar representation,

namely the action of the isotropy group on the tangent space Te(M) at a point
e ∈ M . In other words, let G be a connected real semisimple Lie group with Lie
algebra g, let g = k⊕ p be a Cartan decomposition, and let K ⊆ G be the analytic
subgroup corresponding to k. Then K is a maximal compact subgroup ofG, and the
adjoint action of K on p is an example of a polar representation. This representation
is irreducible if and only if g is simple as a Lie algebra. Conversely, as far as the
orbit structure is concerned, these are the only examples of polar representations
of connected Lie groups:

Proposition 1.2. (Dadok [7, Proposition 6]) Let V be a polar representation of
a connected Lie group H. There is a real semisimple Lie algebra g with Cartan
decomposition g = k ⊕ p, together with a vector space isomorphism f : V → p,
such that f (H · x) = Ad(K ) · f (x) for every x ∈ V , where K ⊆ Aut(g) is the
analytic subgroup with Lie algebra k.

Remark 1.3. Let V = ⊕n
i=1 Vi be the irreducible decomposition of an arbitrary

polar representation of K . Then each irreducible summand Vi is again a polar
representation of K (Dadok [7, Theorem 4(i)]). Moreover, if x = ∑n

i=1 xi ∈ V
with xi ∈ Vi for all i , thenOx = Ox1 ×· · ·×Oxn withOxi = convVi (Kxi ). Indeed,
such a direct product decomposition holds for the K -orbit of x byDadok’s theorem,
and hence it holds for the convex hulls as well. In other words, every polar orbitope
is a cartesian direct product of irreducible polar orbitopes.

1.4. Recall that a spectrahedron inRn is the solution set of a linearmatrix inequality
(LMI). So S ⊆ Rn is a spectrahedron if there exist complex hermitian matrices
A0, . . . , An of some size d × d such that

S =
{
x ∈ Rn : A0 +

n∑

i=1

xi Ai � 0
}
,

where A � 0means that A is positive semidefinite (all eigenvalues are nonnegative).
Note that an LMI with complex hermitian d ×d matrices may be converted into an
equivalent LMI with real symmetric 2d × 2d matrices, which is why spectrahedra
are often defined via real symmetric LMIs.

1.5. Let V be a linear representation (real and finite-dimensional) of a compact Lie
group K . Given x ∈ V , the convex hull conv(Kx) of the orbit of x in V is called
the (K -) orbitope of x . We usually denote it by Ox = conv(Kx), assuming that K
and V are understood. The orbitope Ox is a compact convex set on which K acts,
and whose set of extreme points coincide with the orbit Kx .

We will study orbitopesOx = conv(Kx) in polar representations V of compact
connected Lie groups K . Using Proposition 1.2, we can and will always assume
that V = p where g = k ⊕ p is a Cartan decomposition of a real semisimple Lie
algebra g, and that the action is the adjoint action of the analytic subgroup K of
Aut(g).



188 T. Kobert, C. Scheiderer

1.6. If V is a vector space over R, the dual vector space is denoted by V ∨ =
Hom(V, R). The convex hull of a set M ⊆ V is written conv(M). Our notation
for matrix groups and matrix Lie algebras tries to follow the conventions in [11].
In particular, SU (n), SO(n), Sp(n) are the classical compact Lie groups, su(n),
so(n), sp(n) are their Lie algebras, etc. The diagonal n × n matrix with diagonal
entries a1, . . . , an is denoted diag(a1, . . . , an).

2. Background on semisimple real Lie algebras

We use standard notation and terminology for semisimple Lie groups and Lie
algebras, and we’ll recall it briefly here. As a general reference we refer to Knapp’s
monograph [11], in particular to Chapter 6.

2.1. Let g be a semisimple Lie algebra over R, hence a finite direct sum of simple
(nonabelian) Lie algebras over R. Recall that if g is simple then either g has a
structure as a (simple) Lie algebra over C, or else gC := g ⊗ C is a simple Lie
algebra over C.

Let θ be a Cartan involution on g and g = k ⊕ p the corresponding Cartan
decomposition. With respect to the Killing form 〈−,−〉 of g, the decomposition
k ⊕ p is orthogonal, and the restriction of 〈−,−〉 to k (resp. p) is negative (resp.
positive) definite.

2.2. Choose amaximal commutative subspaceaofp, and let� ⊆ a∨ = Hom(a, R)

be the system of restricted roots of (g, a). This is an abstract root system, possibly
non-reduced. Fixing an ordering on a∨ we have the sets �+ ⊆ � of positive
restricted roots and � = {β1, . . . , βn} ⊆ �+ of simple restricted roots.

2.3. Let t be a maximal commutative subalgebra of the centralizer Zk(a) of a in k.
Then h := it⊕a is a commutative subalgebra of gC (the complexification of g) for
which hC is a Cartan algebra of gC. The rank of gC will be denoted by l = dim(h),
the real rank of g by n = dim(a).

The Killing form of gC restricted to h is a euclidean inner product on h, denoted
by 〈−,−〉. All roots of (gC, hC) are real-valued on h. We let� ⊆ h∨ = Hom(h, R)

be the root system of (gC, hC). Extending the ordering on a∨ suitably to h∨ (e.g.
take the lexicographic order on h∨ = (a + it)∨ with a before it [11, p. 377]), we
let �+ ⊆ � be the positive roots and � = {α1, . . . , αl} ⊆ �+ the simple roots.

2.4. Let G = Aut(g)0, the identity component of the automorphism group of g.
The Lie algebra of G is naturally identified with g. The analytic subgroup K ⊆ G
with Lie algebra k is a maximal compact subgroup ofG, and K acts on (k and) p via
the adjoint action. We denote this action simply by gx := Ad(g)x , for g ∈ K and
x ∈ p. Every element of p is K -conjugate to an element of a. Note that the K -action
preserves the quadratic (Killing) form on p. This action is a polar representation
of K , and as far as the orbit structure is concerned, every polar representation of a
connected Lie group arises in this way (Proposition 1.2).



Spectrahedral representation of polar orbitopes 189

2.5. Note that the direct sum decomposition h = it⊕ a is orthogonal with respect
to the Killing form. The restriction map r : h∨ → a∨ satisfies r(�+) ⊆ �+ ∪ {0}
and r(�) ⊆ � ∪ {0}. Conversely, there exists an involution α → α′ on � such that
for every β ∈ �, the set {α ∈ � : r(α) = β} has the form {α, α′} with α ∈ �.

2.6. From the inner product 〈−,−〉 on h we get linear isomorphisms h
∼→ h∨ and

a
∼→ a∨. We use them to transfer the inner product from h to h∨ and from a to a∨.
For every restricted root β ∈ � let sβ : a∨ → a∨ denote the root reflection

γ → γ − 2〈β,γ 〉
|β|2 β. We always write W = 〈sβ : β ∈ �〉 for the (restricted) Weyl

group of (g, a). Via the identification a
∼→ a∨ we consider W as a reflection group

on a as well: For β ∈ �, if hβ ∈ a is the element with 〈hβ, x〉 = β(x) for all x ∈ a,
then sβ acts on a by sβ(x) = x − 2β(x)

|hβ |2 hβ . It is well known that W is naturally

isomorphic to NK (a)/ZK (a) [11, 6.57].
We always denote by

C = {
x ∈ a : β1(x) ≥ 0, . . . , βn(x) ≥ 0

}

the (closed) Weyl chamber for the action of W . So C is a polyhedral convex cone,
and every element of a is W -conjugate to a unique element of C .

2.7. Letλ1, . . . , λl be the basis of h∨ that is dual to� = {α1, . . . , αl}, so 〈αi , λk〉 =
δik for i, k = 1, . . . , l. Similarly, letμ1, . . . , μn ∈ a∨ be defined by 〈β j , μk〉 = δ jk
for j, k = 1, . . . , n. The fundamental weights of (gC, hC) are the linear forms ωi ∈
h∨ defined by ωi = 1

2 |αi |2λi (i = 1, . . . , l), so 2〈ωi ,αk 〉
|αk |2 = δik for i, k = 1, . . . , l.

For each linear combination ω = ∑l
i=1 miωi with integer coefficients mi ≥ 0,

there exists a unique (up to isomorphism) irreducible representation of gC with
highest weight ω. The irreducible representation of gC with highest weight ωi is
called the i th fundamental representation of gC, we’ll denote it by ρi (i = 1, . . . , l).

2.8. As before, let � ⊆ �+ ⊆ h∨ resp. � ⊆ �+ ⊆ a∨ be the systems of simple
resp. simple restricted roots. We need to relate the dual bases of � and � to each
other. Given α ∈ �, let λα ∈ h∨ be defined by 〈λα, α′〉 = δα,α′ for each α′ ∈ �.
Given β ∈ �, let μβ ∈ a∨ be defined by 〈μβ, β ′〉 = δβ,β ′ for each β ′ ∈ �. (So if
α = αi then λα = λi , and similarly if β = β j then μβ = μ j .) The following fact
is certainly well-known, but we haven’t been able to find a suitable reference for it:

Lemma 2.9. Let α ∈ �. If β := r(α) �= 0 then r(λα) = qμβ for some rational
number q > 0. If r(α) = 0 then r(λα) = 0.

In fact the argument shows that r(λα) = μβ if α is the only element of � that
restricts to β, and r(λα) = 1

2μβ if there are two such elements.

Proof. Let a∨ → h∨, μ → μ̃ denote the linear map that is adjoint to the restriction
map r : h∨ → a∨, so 〈λ, μ̃〉 = 〈r(λ), μ〉 for λ ∈ h∨ andμ ∈ a∨. Let�0 = {α ∈ �:
r(α) = 0} and �1 = � � �0. The Cartan involution θ of g induces id on it and
−id on a. The dual involution θ∨ on h∨ satisfies −θ∨(�) ⊆ �. For α ∈ � we
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abbreviate α′ := −θ∨(α). If α ∈ �1, then the only elements of � that restrict to
β = r(α) are α and α′ (see [4, Prop. 29.9] for these facts).

Let β ∈ � be a restricted simple root, and let α ∈ � with r(α) = β. From
α′ = −θ∨(α) we see α + α′ = 2β̃. If λ ∈ h∨ is dominant, i.e. satisfies 〈λ, γ 〉 ≥ 0
for all γ ∈ �, we conclude 〈r(λ), β〉 = 〈λ, β̃〉 = 1

2 〈λ, α + α′〉 ≥ 0. This shows

cone(r(λ1), . . . , r(λl)) ⊆ cone(μ1, . . . , μn) (1)

in a∨.
On the other hand, for γ ∈ � the inner product 〈μ̃β, γ 〉 = 〈μβ, r(γ )〉 is

1 if r(γ ) = β, and 0 otherwise. Therefore μ̃β = 1
2 (λα + λα′). In particular,

μβ = r(μ̃β) = 1
2r(λα + λα′), which proves the reverse inclusion of (1).

If α′ = α then r(λα) = μβ . It remains to consider the case α′ �= α. From
α + α′ = 2β̃ we see 〈r(λα), β〉 = 〈λα, β̃〉 = 1

2 , and similarly 〈r(λα′), β〉 = 1
2 .

On the other hand, r(λα + λα′) = 2μβ , together with (1), implies that r(λα),
r(λα′) are positive scalar multiples of μβ , since μβ generates an extreme ray of
cone(μ1, . . . , μm). Altogether it follows that r(λα) = r(λα′) = 1

2μβ .
Finally assume r(α) = 0, and let γ ∈ � be arbitrary with β = r(γ ) �= 0.

Then 〈r(λα), β〉 = 〈λα, β̃〉 = 1
2 〈λα, γ + γ ′〉 since 2β̃ = γ + γ ′, see above. But

α /∈ {γ, γ ′} since r(γ ) = r(γ ′) = β �= 0. Hence 〈r(λα), β〉 = 0. This for all
β ∈ � shows r(λα) = 0. ��

3. Kostant’s convexity theorem

We assume the setup of Sect. 2. So g is a semisimple real Lie algebra with Cartan
decomposition g = k ⊕ p and maximal abelian subspace a of p. This gives us the
system � ⊆ a∨ of reduced roots of (g, a), on which the reduced Weyl group W
acts. After fixing an ordering we have the simple positive roots � and the Weyl
chamber C ⊆ a.

The key technical tool for this paper is Kostant’s convexity theorem, together
with its consequences. To a large extent, it allows to reduce the study of the polar
orbits Kx and their orbitopes Ox to a Weyl chamber, whereby the K -action on p
gets replaced by the W -action on a. We now recall this theorem.

3.1. Let T ⊆ a be the cone that is dual to C (with respect to the W -invariant inner
product). If � = {β1, . . . , βn} then T = {x ∈ a : μ1(x) ≥ 0, . . . , μn(x) ≥ 0}
where μ1, . . . , μn ∈ a∨ is the dual basis of � as in 2.7. For x ∈ a, the convex hull
Px := conv(Wx) of the (restricted) Weyl group orbit of x will play a central role.
In Hamiltonian geometry, Px is called themomentum polytope associated to x [17],
a term that we will adopt. According to Kostant, Px is characterized as follows:

Proposition 3.2. [13, Lemma 3.3] Let x ∈ C and y ∈ a.

(a) y ∈ Px if and only if x − wy ∈ T for every w ∈ W.
(b) If y ∈ C then y ∈ Px if and only if x − y ∈ T .

In particular, Px ∩ C = {y ∈ C : μ j (y) ≤ μ j (x) for j = 1, . . . , n}.
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Recall that the Killing form of g restricts to a euclidean inner product on p.
Let π : p → a denote the orthogonal projection from p to a. Kostant’s convexity
theorem says:

Theorem 3.3. [13, Theorem 8.2] If x ∈ a then π(Kx) = Px .

We record a few immediate consequences. Recall thatOx = conv(Kx) denotes
the convex hull of the K -orbit of x in p.

Corollary 3.4. If x ∈ a then Ox ∩ a = Px . Hence π(O) = O ∩ a holds for every
K -invariant convex subset O of/p.

Proof. Theorem 3.3 implies π(Ox ) = Px , and hence Ox ∩ a ⊆ Px . The reverse
inclusion is obvious since Wx ⊆ Kx . The second assertion follows from the first,
since every K -orbit in p meets a. ��
Corollary 3.5. If x, y ∈ a are K -conjugate then they are W-conjugate. Every
K -orbit in p intersects C in a unique element.

Proof. Both statements are equivalent, so it suffices to prove the second. Let x, y ∈
C be K -conjugate. Then Px = Py by Theorem 3.3, so Proposition 3.2(b) implies
±(x − y) ∈ T , whence x − y = 0. ��
Example 3.6. Let n ≥ 2 and g = sl(n, R), the real n × n matrices of trace zero.
The resulting polar representation is the natural action of the special orthogonal
group K = SO(n) on p = sym0(n, R), the trace zero symmetric real matrices. The
standard choice fora is to take all diagonalmatrices inp. The (restricted)Weyl group
is W = Sn , the symmetric group, acting by permutation of the diagonal elements
of x ∈ a. So the momentum polytope Px is the permutahedron of x , namely
the convex hull of all permutations of x . Kostant’s theorem 3.3 specializes to the
(symmetric) Schur–Horn theorem (see [10, 4.3.45 and 4.3.48], [14,18]). Likewise,
the hermitian version of the Schur–Horn theorem arises from Theorem 3.3 if we
take k = su(n, C) and g = kC, so we get the adjoint action of the special unitary
group K = SU (n) on (traceless) hermitian n × n matrices, with the analogous
theorem.

In Sect. 8 we will discuss examples of polar orbitopes in a systematic way.

4. Polar orbitopes as spectrahedra

4.1. In general, orbitopes under compact connected linear groups K can’t be
expected to be spectrahedra. Examples are suitable SO(2)-orbitopes like the 4-
dimensional Barvinok–Novik orbitope [23], or the Grassmann orbitope G3,6 of
dimension 20 [18, Theorem 7.6], where the group K = SO(6) is even semisim-
ple. Using results from [21] it is easy to construct orbitopes under the 2-torus
K = SO(2) × SO(2) which are not even linear projections of spectrahedra, for
example the convex hull of {(s, s2, s3, t, t2, st, st−1) : s, t ∈ C, |s| = |t | = 1} in
C7. In fact it can be shown that in sufficiently high dimension, “most” (in a suitable
sense) orbitopes under SO(2) × SO(2) fail to be projected spectrahedra [12].
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Given this general situation,we think the following theoremall themore remark-
able:

Theorem 4.2. Any orbitope in a polar representation V of a connected Lie group
K is a spectrahedron.

4.3. By Proposition 1.2 wemay assume that g = k⊕p is a Cartan decomposition of
a real semisimple Lie algebra, and that K has Lie algebra k and acts on V = p via the
adjoint representation. We provide an explicit linear matrix inequality description
for any such orbitope.

Fix a, h together with compatible orderings (2.3), and let otherwise notation
be as in Sect. 2. In particular, � = {α1, . . . , αl} is the system of simple roots of
(gC, hC), and � = {β1, . . . , βn} is the system of simple restricted roots of (g, a).
For each j = 1, . . . , n choose an index i = i( j) ∈ {1, . . . , l} with r(αi( j)) = β j ,
and let ρ j : gC → End(Vj ) be the (complex) irreducible representation of gC with
highest weight ωi( j). So ρ j is the i( j)th fundamental representation of gC, see 2.7.
There exists an hermitian inner product on Vj making ρ j (x) self-adjoint for all
x ∈ p (Lemma 4.6(a) below). In particular, ρ j (x) has real eigenvalues for every
x ∈ p. A more precise version of Theorem 4.2 is:

Theorem 4.4. Given x ∈ p, the orbitope Ox = conv(Kx) consists of all y ∈ p
such that for each j = 1, . . . , n, all eigenvalues of ρ j (y) are less or equal than the
largest eigenvalue of ρ j (x). In other words,

Ox = {
y ∈ p : ρ j (y) � c j · id, j = 1 . . . , n

}

where c j is the maximal eigenvalue of ρ j (x).

Upon choosing orthogonal bases of the representation spaces Vj , this is an
explicit description ofOx by linearmatrix inequalities, involving hermitianmatrices
in general. We remark that the fundamental representations ρ j of gC are very well
known and understood [24], in particular so for the classical Lie algebras.

Remark 4.5. Theorem 4.4 implies in particular that all faces in a polar orbitope
are exposed, since this is true in every spectrahedron. This fact was proved before
by Biliotti et al. [1]. Some spectrahedral representations contained in, or closely
related to, Theorem4.4were constructed bySanyal et al. [18], namely for symmetric
Schur–Horn orbitopes (see Example 3.6), and also for skew-symmetric Schur–Horn
orbitopes (see Example 8.7) and Fan orbitopes (see Example 4.8 and Remark 8.5).
These latter orbitopes, as considered in [18], do not directly fall under the assump-
tions of Theorem 4.4, since the groups acting there are not connected (full instead
of special orthogonal groups). It is not hard, however, to recover the results from
[18] in our setup, see Remark 8.5. In Saunderson et al. [20], a spectrahedral repre-
sentation for the convex hull of the special orthogonal group SO(n) (and for its dual
convex body) was found, see also Remark 4.9 and Example 7.7 below. Otherwise
we believe that our result is new.

Before we give the proof of Theorem 4.4, recall the followingwell-known facts.
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Lemma 4.6. Let ρ : gC → End(V ) be a (complex) representation of gC.

(a) There exists an hermitian inner product on V that makes ρ(x) self-adjoint for
every x ∈ p.

(b) If ρ is irreducible with highest weight ω, and if x ∈ C, then ω(x) is the largest
eigenvalue of ρ(x). (Recall that C denotes the Weyl chamber, see 2.6.)

Proof. (a) Since g1 := k ⊕ ip ⊆ gC is a compact real form of gC, there is an
hermitian inner product on V that is invariant under this Lie algebra, i.e. ρ(y)
is anti-self adjoint for every y ∈ g1. In particular, ρ(x) is self-adjoint for every
x ∈ p.

(b) Let χ1, . . . , χr ∈ h∨ be the weights of ρ, with χ1 = ω. For x ∈ a, the eigenval-
ues of ρ(x) are χ1(x), . . . , χr (x). Every χi has the form ω − ∑l

i=1 kiαi with
integer coefficients ki ≥ 0. Since x ∈ C we have αi (x) ≥ 0 for each index i ,
from which the claim is obvious. ��

4.7. Proof of Theorem 4.4. Let x ∈ p, let c j = ωi( j)(x) be the largest eigenvalue
of ρ j (x), and write O(x) := {y ∈ p: ρ j (y) � c j · id for j = 1, . . . , n}. Both sets
Ox and O(x) are K -invariant. To prove equality Ox = O(x), it therefore suffices
to show Ox ∩ C = O(x) ∩ C , since every K -orbit meets the Weyl chamber C
(Corollary 3.5).

So let x, y ∈ C . See 2.7 to Lemma 2.9 for notation in the following discus-
sion. Since ρ j has highest weight ωi( j), the largest eigenvalue of ρ j (y) is ωi( j)(y)
(Lemma 4.6(b)). Hence y ∈ O(x) if and only if ωi( j)(y) ≤ ωi( j)(x) = c j for
j = 1, . . . , n. By Lemma 2.9, the restriction r(ωi( j)) ∈ a∨ is a positive scalar mul-
tiple of μ j (recall that ωi( j) = 1

2 |αi( j)|2λi( j), j = 1, . . . , n). So y ∈ O(x) if and
only if μ j (y) ≤ μ j (x) for j = 1, . . . , n. By Proposition 3.2(b) this is equivalent
to y ∈ Px . On the other hand, y ∈ Px is equivalent to y ∈ Ox by Corollary 3.4. ��

Example 4.8. We illustrate the statement of Theorem 4.4. Let n ≥ 3, and consider
the action of (g, h) ∈ K = SO(n) × SO(n) on x ∈ Mn(R) by gxht . This is a
polar representation of K that arises from the split real form of Dn , i.e. from the
simple Lie algebra

g = so(n, n) = {
x ∈ M2n(R) : j x + xt j = 0

}
, j =

(
In 0
0 −In

)

. (2)

Note that g consists of all block matrices

x =
(
u w

wt v

)

(3)

with u, v, w ∈ Mn(R) and u, v skew-symmetric, and p ⊆ g is the subspace
of all symmetric such matrices, i.e. with u = v = 0. As maximal commutative
subspace of p we take the space a of all matrices (3) with u = v = 0 and w =
diag(x1, . . . , xn) diagonal. Denote such a matrix by x = (x1, . . . , xn). The simple
roots βi = αi act on x as αi (x) = xi − xi+1 (1 ≤ i < n) and αn(x) = xn−1 + xn .
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Hence the Weyl chamber C consists of all x ∈ awith x1 ≥ · · · ≥ xn−1 ≥ |xn|. The
fundamental weights μi = λi are λi (x) = x1 + · · · + xi (i ≤ n − 2) and

λn−1(x) = 1

2

(
x1 + · · · + xn−1 − xn

)
, λn(x) = 1

2

(
x1 + · · · + xn−1 + xn

)
.

By Proposition 3.2, the momentum polytope for x ∈ C is described by Px ∩ C =
{y ∈ C : λi (y) ≤ λi (x), i = 1, . . . , n}. The first fundamental representation ρ1 of g
is the natural representation (2), the higher ones are the exterior powers ρi = �iρ1
(1 ≤ i ≤ n − 2). Moreover, ρn−1 and ρn are the two half-spin representations. So
dim(ρi ) = (2n

i

)
for i ≤ n − 2, and dim(ρn−1) = dim(ρn) = 2n−1. Expressing

the ρi by matrices one arrives at explicit spectrahedral representations of the K -
orbitopes Ox , for x ∈ Mn(R). These representations are closely related to [18,
Theorem 4.7], where the group acting is O(n) × O(n) instead of our K .

Remark 4.9. For general x ∈ p, none of the n linear matrix inequalities describing
Ox in Theorem 4.4 can be left out. For special x this may be different. We illustrate
this remarkwith just one example, deferring a detailed discussion to a later occasion.

Consider again the action of K = SO(n)×SO(n) onMn(R), as inExample 4.8,
and take x = In ∈ Mn(R), the identity matrix, so x = (1, . . . , 1) in notation
of Example 4.8. The orbitope is Ox = conv SO(n), the convex hull of the group
SO(n). Due to the special choice of x , the description of the momentum polytope
simplifies. For y ∈ C , the condition y1 ≤ 1 implies

∑k
i=1 yi ≤ k for every

k = 1, . . . , n. So Px ∩ C is already described by the two inequalities λ1(y) ≤ 1
and λn−1(y) ≤ n−2

2 . We conclude that Ox = conv SO(n) satisfies

conv SO(n) =
{
y ∈ Mn(R) :

(
0 y
yt 0

)

� I, ρn−1

(
0 y
yt 0

)

� n − 2

2
I
}

since both sets agree when intersected withC . This recovers one of the main results
of Saunderson et al. [20, Theorem 1.3]. (In the notation of loc. cit., given a matrix
y = (yi j ) ∈ Mn(R), the 2n−1 × 2n−1 matrix

∑n
i, j=1 yi j A

(i j) constructed there

corresponds to the endomorphism ρn

(
0 2y
2yt 0

)

. The extra factor 2 accounts for

the apparent difference between their result and ours.) See Example 7.7 below for
a spectrahedral representation of the polar convex set SO(n)o.

5. Face correspondence

5.1. As before let g = k ⊕ p be a Cartan decomposition of a semisimple real Lie
algebra g. For general setup and notation see Sect. 2. We continue to denote the
orthogonal projection p → a byπ . Let x ∈ p, and let Px be themomentumpolytope
of x (3.1). If Q is any face of Px , then FQ := Ox ∩ π−1(Q) is a face of Ox . For
any w ∈ W there exists g ∈ NK (a) with w = gZK (a). The projection π : p → a
is easily seen to commute with the action of NK (a), and therefore FwQ = gFQ

holds. Hence the assignment Q → FQ induces a map from W -orbits of faces of
Px to K -orbits of faces of Ox .
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The following theorem asserts, in particular, that this map is bijective. This
fact was originally proved by Biliotti et al. [1, Theorem 1.1]. We give a new proof
that we think is considerably easier. Note however that [1] proves a more precise
result, implying in particular that the faces FQ ofOx are themselves orbitopes under
suitable groups.

Theorem 5.2. Let x ∈ p, let F be a face of the orbitope Ox .

(a) There exists a face Q of Px and an element g ∈ K such that F = gFQ.
(b) If Q′ is another face of Px with F ⊆ g′FQ′ for some g′ ∈ K, then there exists

w ∈ W such that wQ ⊆ Q′.

In particular, Q → FQ induces a bijective correspondence between W-orbits of
faces of Px and K -orbits of faces of Ox , compatible with inclusion of faces.

For the proof observe the following lemma:

Lemma 5.3. Let x ∈ p, let Q be a face of Px , and let y ∈ Px with Py ∩ Q �= ∅.
Then wy ∈ Q for some w ∈ W.

Proof. We can assume Q �= Px . Since every face of a polytope is exposed, there
is a supporting hyperplane H ⊆ a of Px with Q = H ∩ Px . Since Py ⊆ Px and
H ∩ Py is not empty, the hyperplane H is a supporting hyperplane of Py as well.
In particular, Q′ = H ∩ Py is a face of Py , and therefore contains an extreme point
y′ of Py . Thus y′ ∈ Q′ ⊆ H ∩ Px = Q, and y′ = wy for some w ∈ W since
Py = conv(Wy). ��
5.4. Proof of Theorem 5.2.

(a) Let F be a face of Ox . By Theorem 4.2, Ox is a spectrahedron, so all faces are
exposed. Hence there exist z ∈ p and c ∈ R such that H = {y ∈ p : 〈y, z〉 = c}
is a supporting hyperplane of Ox with H ∩ Ox = F . Upon replacing F with
gF for some g ∈ K we can assume z ∈ a, since z is K -conjugate to an element
of a. Then H ∩ a is a supporting hyperplane of Px , and so Q := H ∩ Px is a
face of Px . Clearly F = FQ .

(b) By (a) it suffices to show: If Q, Q′ are faces of Px , and if gFQ ⊆ FQ′ for some
g ∈ K , then there exists w ∈ W with wQ ⊆ Q′. Let y ∈ relint(Q). Since
Q ⊆ FQ we have gy ∈ FQ′ , and therefore π(gy) ∈ Q′. On the other hand,
π(gy) ∈ π(Ky) = Py . So Lemma 5.3 applies and shows wy ∈ Q′ for some
w ∈ W . Since y ∈ relint(Q), this implies wQ ⊆ Q′.

In particular, if Q, Q′ are faces of Px for which FQ and FQ′ are K -conjugate,
then Q and Q′ are W -conjugate.

Recall that a face Q of a polytope P is called a facet if dim(Q) = dim(P)− 1.

Corollary 5.5. The maximal proper faces of Ox are precisely the K -conjugates of
the faces FQ, where Q is a facet of Px . ��
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5.6. We apply this result to the study of the coorbitopeOo
x . First recall the definition

of the polar of a convex set. Let V be a real vector space, dim(V ) < ∞. For any
set M ⊆ V let Mo = {l ∈ V ∨ : ∀ x ∈ M l(x) ≤ 1}, the polar set of M . Usually a
euclidean inner product 〈−,−〉 on V will be fixed, then we identify Mo with the
set {y ∈ V : ∀ x ∈ M 〈x, y〉 ≤ 1}. If M is compact and 0 is an interior point of M ,
the same holds for Mo.

If the compact group K acts on V and x ∈ V , the polar set of the orbitope
Ox = conv(Kx) is called the coorbitope of x [18]. Clearly the group K acts onOo

x ,
but in general Oo

x won’t be a K -orbitope. Below (Corollary 5.9 and Theorem 6.7)
we’ll identify those cases when this happens.

5.7. For any irreducible abstract root system (V, �) (possibly non-reduced), the
Weyl group W acts irreducibly on V . For any 0 �= x ∈ V , the polytope Px =
conv(Wx) therefore contains an open neighborhood of the origin. If (V, �) is not
necessarily irreducible and x ∈ V , it follows that the polytope Px is full-dimensional
if and only if every irreducible component of � contains a root α with α(x) �= 0.
Moreover in this case, 0 is an interior point of Px .

Let K → SO(V ) be a polar representation, and let x ∈ V . The previous
discussion implies that when V is irreducible, the origin is an interior point of Ox

as soon as x �= 0. When V is an arbitrary polar representation of K , let V = ⊕
Vi

be the decomposition into irreducible K -modules as in Remark 1.3, and let x =∑
i xi ∈ V with xi ∈ Vi . ThenOx = Ox1 ×· · ·×Oxn by Remark 1.3. ThereforeOx

is full-dimensional in V iff 0 is an interior point of Ox , and both are equivalent to
xi �= 0 for each index i . It is also equivalent that π(Kx) = Ox ∩ a (Corollary 3.4)
is full-dimensional in a.

When studying the orbitope Ox , we can obviously assume that Ox is full-
dimensional (or equivalently, 0 is an interior point of Ox ), by the previous discus-
sion.

Proposition 5.8. Let x ∈ p such that Ox is full-dimensional, and let Oo
x ⊆ p be the

associated coorbitope. The K -orbits of extreme points ofOo
x are in natural bijective

correspondence with the W-orbits of facets of the polytope Px . In particular, Oo
x is

the convex hull of finitely many K -orbits in p.

Proof. First recall the following general and easy fact (see [22, 2.1.4], for example).
Let O ⊆ Rn be any compact convex body which contains a neighborhood of 0, and
let Oo ⊆ Rn be the convex body polar to O. For any face F of O let F̂ = {y ∈
Oo : ∀ x ∈ F 〈x, y〉 = 1}. Then F̂ is an exposed face of Oo, and F → F̂ restricts
to an inclusion-reversing bijection between exposed faces of O and exposed faces
of Oo, with inverse map G → Ĝ.

To prove the proposition we can assume x ∈ C . Let Fac(x) be a set of rep-
resentatives of the W -orbits of facets of Px . Let z be an exposed extreme point of
Oo
x = {y ∈ p : ∀ g ∈ K 〈gx, y〉 ≤ 1}, and write Gz := ẑ = {y ∈ Ox : 〈y, z〉 = 1}.

By the fact just recalled, Gz is a maximal face of Ox , and so Gz = gFQ for some
Q ∈ Fac(x) and some g ∈ K (Theorem 5.2, Corollary 5.5). It is easily checked
that Ghz = hGz for any h ∈ K . If u ∈ Oo

x is another exposed extreme point, and if
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Gu = hFQ for some h ∈ K , then Ggh−1u = gh−1Gu = Gz , whence gh−1u = z,
so u and z are K -conjugate. This shows that the exposed extreme points ofOo

x con-
sist of finitely many K -orbits, each of them corresponding to a different W -orbit
of facets of Px . Since exposed extreme points are dense within all extreme points
(Straszewicz’ theorem, e.g. [22, 1.4.7]), we conclude that all extreme points of Oo

x
are exposed.

For each facet Q of Px we claim conversely that F̂Q is an (exposed) extreme
point of Oo

x . Indeed, otherwise F̂Q would be a minimal exposed face of Oo
x of

dimension ≥ 1. But such a face cannot exist, since all extreme points of Oo
x are

exposed. Altogether we have proved the bijection between K -orbits of extreme
points of Oo

x and W -orbits of facets of Px . ��
Corollary 5.9. Let x ∈ p. The coorbitope Oo

x is a K -orbitope itself if, and only if,
all facets of the polytope Px are W-conjugate. ��

We will determine these cases explicitly in the next section, after having dis-
cussed the facets of Px in more detail.

Note that under the equivalent conditions of Corollary 5.9, the coorbitope Oo
x

is a spectrahedron itself, by Theorem 4.2. In Sect. 7 we will uncover many more
cases where this holds.

6. Facets of the momentum polytope

In the previous section, a close relation was established between the faces of the
orbitope Ox and the faces of the momentum polytope Px . The faces of the latter
can be described in terms of root data. We start by recalling this description.

6.1. Let (V, �) be an abstract root system (which may be non-reduced), fix an
ordering ≤ on V , and let � = {β1, . . . , βn} be the corresponding system of simple
positive roots. Let μ1, . . . , μn be the dual basis of � in V , so 〈βi , μ j 〉 = δi j for
1 ≤ i, j ≤ n. Let W be the Weyl group, and let C = {x ∈ V : 〈βi , x〉 ≥ 0,
1 ≤ i ≤ n}, the closed Weyl chamber associated to �.

Let x ∈ C be a given point and write Px = conv(Wx). A subset I ⊆ � is
said to be x-connected if every connected component of I contains a root β with
〈β, x〉 �= 0. (Of course, connectedness notions refer to the Dynkin graph.) Let
WI be the subgroup of W generated by the root reflections sβ where β ∈ I . The
following result is quoted from Casselman [5, Theorem 3.1], where it is proved in
the more general context of arbitrary finite Coxeter groups. As Casselman remarks,
the result is already implicit in much older work of Satake [19] and Borel and Tits
[3]. A related discussion can also be found in [2, §6] and [1, §4].

Theorem 6.2. Let x ∈ C. The map I → conv(WI x) induces a bijection between
the x-connected subsets I of � and the W-orbits of faces of Px = conv(Wx). For
any such I one has dim conv(WI x) = |I |.

Here we are mainly interested in the facets of Px . Assume that Px is full-
dimensional in V , or equivalently, that every connected component of � contains
a root β with 〈β, x〉 �= 0 (see 5.7). For facets the theorem gives:
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Corollary 6.3. Let x ∈ C such that Px is full-dimensional, and let I (x) denote the
set of indices i ∈ {1, . . . , n} for which � � {βi } is x-connected. For i ∈ I (x) let

Px (i) := {y ∈ Px : μi (y) = μi (x)}.
Then Px (i) is a facet of Px . Conversely, every facet of Px is W-conjugate to Px (i)
for a unique index i ∈ I (x).

Proof. Let i ∈ I (x). Clearly, Px (i) is a face of Px , and is proper since Px is
full-dimensional. Let W ′ := W��βi = 〈sβ : β ∈ �, β �= βi 〉. Then conv(W ′x) ⊆
Px (i) holds sinceμi (sβ j (y)) = μi (y) for every j �= i . By Theorem 6.2, conv(W ′x)
is a facet of Px , so we have equality. The remaining assertion follows directly from
Theorem 6.2 as well. ��

We will also use the following (well-known) fact:

Lemma 6.4. Let x ∈ C such that Px is full-dimensional. Then μi (x) > 0 for every
i = 1, . . . , n.

Proof. It is enough to prove this in the case where the root system is simple and
0 �= x ∈ C . Since β j (x) ≥ 0 for all j = 1, . . . , n and β j (x) > 0 for at least one j ,
the lemma follows from the fact that the inverse of the Cartan matrix has strictly
positive coefficients [15]. ��
6.5. Now again consider the adjoint representation of K on p. We apply Corol-
lary 6.3 to the system � of restricted roots of (g, a). In this way we are going to
identify explicitly the K -orbits of extreme points of the coorbitope Oo

x (see Propo-
sition 5.8).

Let x ∈ C ⊆ a such that Px is full-dimensional, and let I (x) = {i ∈
{1, . . . , n} : � � {βi } is x-connected} (as in Corollary 6.3). For every i ∈ I (x)
we have the facet Px (i) = {y ∈ Px : μi (y) = μi (x)} of Px . For easier notation, let
us write Fi instead of FPx (i) = {y ∈ Ox : π(y) ∈ Px (i)}. By Theorem 5.2, Fi is
a maximal proper face of Ox , and every maximal proper face is K -conjugate to Fi
for a unique index i ∈ I (x) (using also Corollary 6.3). Given i ∈ I (x), there is a
unique extreme point zi of Oo

x that corresponds to Fi under polarity, characterized
by Fi = ẑi = {y ∈ Ox : 〈y, zi 〉 = 1} (see proof of Proposition 5.8). The points
zi , for i ∈ I (x), represent the pairwise different K -orbits of extreme points in Oo

x .
Using Corollary 6.3 we identify these points as follows.

Let i ∈ I (x), let hμi ∈ a be the element satisfying 〈hμi , y〉 = μi (y) for all
y ∈ a. Note that C is the cone generated by hμ1 , . . . , hμn . By Lemma 6.4 we have
μi (x) > 0. We claim that zi = hμi /μi (x).

Indeed, the element z := hμi /μi (x) satisfies 〈y, z〉 = 〈π(y), z〉 =
μi (π(y))/μi (x) for all y ∈ Ox . Since π(y) ∈ Px (Corollary 3.4), this shows
〈y, z〉 ≤ 1, with equality if and only if π(y) ∈ Px (i). So we have proved:

Corollary 6.6. Let x ∈ C such that Px is full-dimensional. The coorbitope Oo
x ⊆ p

is the convex hull of the union of the K -orbits of the elements zi = hμi /μi (x) ∈ C,
for i running through I (x). ��
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A particularly interesting case arises when |I (x)| = 1, i.e. the polytope Px has
only oneW -orbit of facets. By Corollary 5.9 it is equivalent that the coorbitope Oo

x
is a K -orbitope itself. We will say that Ox is a (K -) biorbitope in this case, and we
can characterize it as follows:

Theorem 6.7. Let 0 �= x ∈ C such that Px is full-dimensional. Then Ox is a K -
biorbitope if, and only if, the Lie algebra g is simple, the restricted root system �

is not of type Dn (n ≥ 4) or En (n = 6, 7, 8), and the following holds: there is a
simple restricted root β ∈ � with γ (x) = 0 for all γ ∈ � � {β}, and such that
� � {β} is connected.

In other words, the condition is saying that β(x) �= 0 for only one simple
restricted root β, that β sits at an end of the restricted Dynkin graph �, and that �
has at most one other end. In 8.12 and 8.13 we’ll make all biorbitopes explicit for
the classical Lie algebras.

Proof. By Corollary 6.6, Ox is a biorbitope if and only if Px has only one W -orbit
of facets. One sees immediately that this can hold only when the restricted root
system � is irreducible. Therefore we may assume that the Lie algebra g is simple.

Let �1 = {β ∈ � : β(x) �= 0}. We say that β ∈ � is a boundary root if � � {β}
is connected. If �1 contains a non-boundary root then Px has two non-conjugate
facets. Indeed, choose two different boundary roots βi and β j . Then Px (i) and
Px ( j) are both facets of Px , and are not W -conjugate, according to Corollary 6.3.
Exactly the same argument works if �1 contains two different boundary roots βi ,
β j .

So all facets of Px can only be W -conjugate if �1 consists of just one single
boundary root. Conversely, if this is the case then the conjugacy classes of facets
of Px correspond precisely to the remaining boundary roots. This proves the equiv-
alence in the theorem, since Dn (n ≥ 4) and En (n = 6, 7, 8) are precisely the
simple root systems with more than two boundary roots. ��
Example 6.8. Let n ≥ 4 and g = so(n, n), so K = SO(n) × SO(n). For the
description of a, C , the αi and λi see Example 4.8. The restricted root system is
of type Dn . If we take x = (1, . . . , 1) as in Remark 4.9, we have αi (x) = 0 for
all i �= n, so I (x) = {n} is a singleton set. Yet Px has two W -orbits of facets,
represented by the facets Px (1) = {y ∈ Px : y1 = 1} and Px (n − 1) = {y ∈ Px :
y1 + · · · + yn−1 − yn = n − 2}. Hence the orbitope Ox = conv SO(n) has two K -
orbits of maximal dimensional faces, a fact already proved in [18, Theorem 4.11].
This means that the coorbitope Oo

x = SO(n)o is not an orbitope, rather

SO(n)o = conv(Kz1 ∪ Kzn−1)

by Corollary 6.6, where z1 = (1, 0, . . . , 0) and zn−2 = 1
n−2 (1, . . . , 1,−1)

(notation as in Example 4.8 and Remark 4.9). A similar remark applies when
x = (1, 0, . . . , 0) (here Ox is the unit ball of the nuclear norm on Mn(R), see
Example 8.4) and of x = (1, . . . , 1,−1) (here Ox is the convex hull of O−(n),
which is of course linearly isomorphic to conv SO(n)).
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Remarkably,wheneverOx is a biorbitope, the coorbitopeOo
x is a positive scaling

of Ox :

Theorem 6.9. Let g be simple and 0 �= x ∈ C, and assume that Ox is a biorbitope,
i.e. |I (x)| = 1. Then there is a real number c > 0 such that Oo

x = c · Ox .

Proof. We have I (x) = {i} where βi ∈ � is a boundary root (Theorem 6.7). By
Corollary 6.6, Oo

x is the convex hull of Kzi where zi = hμi /μi (x). The element x
itself is a scalarmultiple of hμi sinceβ j (x) = 0 for allβ j ∈ ��{βi }.More precisely
x = βi (x)hμi , since both elements give the same value under everyβ j . This implies
μi (x) = βi (x)μi (hμi ) = βi (x) |μi |2. So zi = hμi /μi (x) = x/βi (x)2|μi |2, and
therefore

Oo
x = 1

βi (x)2 · |μi |2 Ox .

��

7. Doubly spectrahedral orbitopes

Following Saunderson et al. [20] we use the term doubly spectrahedral convex sets
to refer to convex sets S in Rn for which both S and the polar convex set So are
spectrahedra. As remarked in [20], it is a very special phenomenon that the polar
set of a spectrahedron is again a spectrahedron. Apart from polyhedra (which have
this property for obvious reasons) it seems that only one other distinct family of
doubly spectrahedral convex sets is known, namely the homogeneous convex cones
(Vinberg [25] and Chua [6], see [20, 6.1]). In addition, the convex hull of the matrix
group SO(n) is doubly spectrahedral for every n ≥ 1, by the main theorem of [20].
In fact, explicit spectrahedral representations for both conv SO(n) and SO(n)o

were constructed in [20].
Below we show that all polar orbitopes Ox with “rational coordinates” are

doubly spectrahedral as well. Moreover we’ll give explicit linear matrix inequality
representations for those orbitopes and their polars. As a particular case, we recover
the results from [20], see Example 7.7 below.

Let g = k ⊕ p be a real semisimple Lie algebra with Cartan decomposition,
and consider the adjoint representation of K on p as before. We use notation and
conventions from Sect. 2. In particular, a is a maximal abelian subspace of p, and
C ⊆ a is the Weyl chamber with respect to the fixed ordering on a. As before, let
� = {β1, . . . , βn} ⊆ a∨ be the simple positive restricted roots.

Definition 7.1. Given x ∈ a, we say that the K -orbitope Ox = conv(Kx) has
rational coordinates if there is b ∈ R such that β j (x) ∈ Qb for j = 1, . . . , n.

Since any two choices of a ⊆ p are conjugate under K [11, 6.51], and since
every K -orbit in p intersects a in one full W -orbit (Corollary 3.5), the property of
having rational coordinates depends only on the orbit Kx , and neither on the choice
of a nor on the particular choice of a representative of Kx in a.
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Theorem 7.2. Let Ox be a polar orbitope with rational coordinates. Then both Ox

and Oo
x are spectrahedra.

For Ox , a spectrahedral representation has been given in Theorem 4.4.
In Remark 7.6 below we explain how to find one for Oo

x . Explicit descriptions
of these orbitopes are contained in the next section, c.f. Remark 8.9.

Given x ∈ a, let Px = conv(Wx) be the momentum polytope of x as before,
and let Po

x be the polar set of Px in a, i.e.

Po
x = {y ∈ a : ∀w ∈ W 〈wx, y〉 ≤ 1}.

We have the following lemma:

Lemma 7.3. If x ∈ C then Po
x ∩ C = {y ∈ C : 〈x, y〉 ≤ 1}.

Proof. If y ∈ C then 〈wx, y〉 ≤ 〈x, y〉 for every w ∈ W [13, Lemma 3.2].
Therefore, if 〈x, y〉 ≤ 1 then y ∈ Po

x . The opposite inclusion is trivial from the
definition. ��

Recall that π : p → a denotes orthogonal projection to a. Forming the polar
convex body commutes with projection to (or intersection with) a:

Lemma 7.4. Let O ⊆ p be a K -invariant convex set, and let Q := O ∩ a = π(O)

(3.4). Then π(Oo) = Oo ∩ a = Qo (the polar set of Q in a).

Proof. For y ∈ a and z ∈ p we have 〈y, π(z)〉 = 〈y, z〉. From this the lemma
follows immediately. ��

7.5. Proof of Theorem 7.2. We can assume x ∈ C . Since x has rational coor-
dinates we can assume β j (x) ∈ Q for j = 1, . . . , n, after scaling x with a
suitable positive real number. So there exist rational numbers c j ≥ 0 such that
〈x, y〉 = ∑n

j=1 c jμ j (y) for all y ∈ a (namely c j = β j (x)). Hence, and by
Lemma 2.9, there are an integer k ≥ 1 and an integral dominant weight ω ∈ h∨ of
(gC, hC) such that k · 〈x, y〉 = ω(y) for all y ∈ a. By the highest weight theorem,
there is an irreducible representation ρ of gC with highest weight ω. From Lemmas
7.3 and 7.4 we get

Oo
x ∩ C = Po

x ∩ C = {y ∈ C : 〈x, y〉 ≤ 1} (4)

We claim that (4) implies

Oo
x = {y ∈ p : ρ(y) � k · id}. (5)

Indeed, both sets in (5) are K -invariant, so it suffices to check that their intersections
with C coincide. For y ∈ C the largest eigenvalue of ρ(y) is ω(y) = k〈x, y〉
[Lemma 4.6(b)]. So (5) follows indeed from (4), and the theorem is proved.
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Remark 7.6. The highest weights of irreducible representations of (gC, hC) are the
nonnegative integral linear combinations of the fundamentalweightsωi = 1

2 |αi |2λi
(i = 1, . . . , l). The restriction of ωi ∈ h∨ to a is 0 if r(αi ) = 0, and is 1

2m |αi |2μ j if
r(αi ) = β j �= 0, where m ∈ {1, 2} is the number of simple roots in � that restrict
to β (Lemma 2.9). Since the |αi |2 are explicit rational numbers, we see how to find,
for given x ∈ a with rational coordinates, a real number c > 0 and an integral
dominant weight ω of (gC, hC) such that 〈cx, y〉 = ω(y) for all y ∈ a.

Example 7.7. We illustrate the previous remark with the example already studied
in Example 4.8, so consider the action of K = SO(n) × SO(n) on Mn(R) for
n ≥ 3. We take the identity matrix x = In as in Remark 4.9 and are looking for
a linear matrix inequality description of the coorbitope Oo

x = (conv SO(n))o. The
orbitope Ox has rational coordinates since αi (x) = 0 for 1 ≤ i < n and αn(x) = 2
(see Example 4.8). Since 〈x, y〉 = ∑n

i=1 yi = 2λn(y) for y ∈ a, the procedure
in Remark 7.6 leads to the spectrahedral representation

(
conv SO(n)

)o =
{
y ∈ Mn(R) : ρn

(
0 y
yt 0

)

� 1

2
id

}

where ρn is the nth fundamental representation. This is in accordance with Saun-
derson et al. [20, Theorem 1.1], c.f. the remark in Remark 4.9.

For n = 3, Oo
x is a K -orbitope itself. For n ≥ 4, Oo

x is the convex hull of two
K -orbits, but not of one (Example 6.8).

8. Examples

We describe all irreducible polar representations that arise from semisimple Lie
algebras of classical type. Roughly, these are the well-known unitary group actions
on rectangular matrices, and on (skew-) hermitian resp. (skew-) symmetric square
matrices, over K = R, C or H, where H is the skew-field of Hamilton quaternions.
(For K = H there is no action on (skew-) symmetric matrices.) In each case we
mention a standard choice of a maximal abelian subspace a and of a Weyl chamber
C . Using Kostant’s results, in particular Proposition 3.2 and Corollary 3.4, this
allows us to give explicit descriptions of the respective orbitopes in all cases. Natu-
rally, this uses the description of the (reduced) root systems and of the fundamental
weights, for which there are many references (e.g. [11,16,24]). We will see that the
corresponding orbitopes can be described in terms of Ky Fan norm balls, which in
turn are defined using singular values of matrices.

8.1. First recall the singular value decomposition. Let always K be one of R, C

or H, and let U (n, K) denote the unitary group over K, i.e. U (n, K) = {g ∈
Mn(K) : gg∗ = In} where g∗ = gt . So U (n, R) = O(n) is the real orthogonal
group,U (n, C) = U (n) is the usual (complex) unitary group andU (n, H) = Sp(n)

is the symplectic group. Given a (rectangular) matrix x ∈ Mm×n(K) wherem ≥ n,
there exist unitary matrices u ∈ U (m, K) and v ∈ U (n, K), together with real
numbers a1 ≥ · · · ≥ an ≥ 0, such that uxv∗ is the m × n matrix whose upper n
rows are diag(a1, . . . , an) andwhose lowerm−n rows are zero. The ai are uniquely
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determined by x , they are called the singular values of x and denoted σi (x) := ai
(1 ≤ i ≤ n). For K = R or C this is classical (e.g. [10, 2.6.3]), here a21 , . . . , a

2
n are

the eigenvalues of the psd hermitian matrix x∗x . For K = H, essentially the same
is true (with eigenvalues replaced by right eigenvalues), but less well-known; see
[26, 7.2] and [9, 5.7] for details.

8.2. Let K = R, C or H, and let V = Mm×n(K) with m ≥ n. For k = 1, . . . , n
and x ∈ V let

‖x‖k := σ1(x) + · · · + σk(x),

sum of the k largest singular values of x . This defines a matrix norm on the space
of matrices, the kth Ky Fan norm ([8] and [10, 7.4.8 and 7.4.10]). In particular, all
balls with respect to any of these norms are convex. Note that the first Ky Fan norm
‖x‖1 = σ1(x) is the operator norm of x . The last one ‖x‖n = ∑n

i=1 σi (x) is called
the nuclear norm and often denoted ‖x‖∗.

In view of Remark 1.3, we restrict our discussion of classical polar orbitopes
to orbitopes that arise from simple real Lie algebras g of classical type.

Example 8.3. Let m ≥ n ≥ 1. Consider K = SO(m)× SO(n) (case K = R) resp.
K = S(U (m) × U (n)) (case K = C) resp. K = Sp(m) × Sp(n) (case K = H),
together with the action of (u, v) ∈ K on x ∈ V = Mm×n(K) by uxv∗. This
is a polar representation, arising from the simple Lie algebra g = so(m, n) resp.
g = su(m, n) resp. g = sp(m, n) (assumem+n �= 2, 4 ifK = R). For a ∼= Rn we
can take the space of real matrices that are diagonal in the upper n rows and zero
below. If (a1, . . . , an) is the diagonal part of such a matrix x , let us write xi := ai .
The case K = R and g = so(m, n) with m = n is exceptional (see Example 8.4
below), so let us first discard it. In all other cases the Weyl chamber C consists of
all x ∈ a with x1 ≥ · · · ≥ xn ≥ 0. Moreover, using Proposition 3.2 we see that

Px ∩ C = {
y ∈ C : y1 + · · · + yk ≤ x1 + · · · + xk (k = 1, . . . , n)

}

If x ∈ C then clearly xi = σi (x), the i th singular value of x . It follows for arbitrary
x ∈ V that

Ox = {
y ∈ V : ‖y‖k ≤ ‖x‖k (k = 1, . . . , n)

}

since both sets are K -invariant and their intersections with C coincide. So Ox is
an intersection of balls with center 0 with respect to the Ky Fan norms ‖ · ‖k
(k = 1, . . . , n), the radii of the balls being the norms of x . Note that the K -orbit
Kx consists of all matrices with the same singular values as x .

Example 8.4. Now consider the exceptional caseK = R andm = n of the previous
example, so we have the natural action of K = SO(n) × SO(n) on V = Mn(R).
Here the Weyl chamber C consists of all x = diag(x1, . . . , xn) ∈ Rn with x1 ≥
· · · ≥ xn−1 ≥ |xn|, and

Px ∩ C =
{
y ∈ C :

k∑

i=1

(xi − yi ) ≥ 0 (k = 1, . . . , n − 1), |xn − yn | ≤
n−1∑

i=1

(xi − yi )
}
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Now the last diagonal entry xn of x ∈ C coincides with the smallest singular value
σn(x) only up to sign. With similar reasoning as in Example 8.3 we conclude

Ox =
n⋂

k=1

{
y : ‖y‖k ≤ ‖x‖k

} ∩
{
y : σn(x) − σn(y) ≤ ‖x‖n−1 − ‖y‖n−1

}
.

Remark 8.5. (Orthogonal vs. special orthogonal group) Let m ≥ n, let K =
SO(m) × SO(n) and K ′ = O(m) × O(n). If m > n, it is easy to see that the
K ′-orbit of an arbitrary matrix x ∈ Mm×n(R) coincides with the K -orbit of x . For
m = n this is true if det(x) = 0, but otherwise K ′x is the union of two distinct
K -orbits, as one sees from the determinant. A spectrahedral representation of the
K ′-orbitope O′

x := conv(K ′x) was given in [18, Theorem 4.7] in the case m = n
(and O′

x was called a Fan orbitope there). Note that O′
x = conv O(n) if x = In .

Moreover, a spectrahedral representation of the coorbitope (conv O(n))o was pro-
vided in [18, (Corollary 4.9)]. Both representations can easily be derived from our
discussion of K -(co)orbitopes.

Example 8.6. Next consider the actions of the classical compact simple Lie groups
on hermitian matrices. Let n ≥ 2, and let K = SO(n) (case K = R) resp.
K = SU (n) (case K = C) resp. K = Sp(n) (case K = H). Let V = {x ∈
Mn(K) : x = x∗}, the space of hermitian n × n-matrices over K, and let V0 =
{x ∈ V : tr(x) = 0}, where for K = H the trace condition has to be replaced
by trd(x) = 0 (reduced trace). We let g ∈ K act on x ∈ V by gxg∗. Clearly
V0 is K -invariant, and V = V0 ⊕ R as K -modules. The action of K on V0 is an
irreducible polar representation, resulting from the simple Lie algebra g = sl(n, R)

resp. g = su(n, C) resp. g = sl(n, H). We let a ∼= Rn−1 be the space of all
real diagonal matrices x = (x1, . . . , xn) with trace zero. The Weyl chamber is
C = {x ∈ a : x1 ≥ · · · ≥ xn}, and for x = (x1, . . . , xn) ∈ a we have

Px ∩ C =
{
y ∈ C :

k∑

i=1

yi ≤
k∑

i=1

xi (i = 1, . . . , n)
}

The K -orbit Kx consists of all hermitian matrices with the same eigenvalues as x
(for K = H one has to speak of right eigenvalues instead of eigenvalues [9]).

In order to describe the K -orbitope Ox we replace x ∈ V0 by x ′ = x + cI ∈ V ,
where c ≥ 0 is chosen such that x ′ � 0, i.e. x ′ is positive semidefinite (psd). Of
course this doesn’t change the orbitope up to an affine-linear isomorphism. So let
x ∈ V be a psd hermitian matrix. Then clearly y � 0 holds for every y ∈ Ox ,
and the sequence σ(y) = (σ1(y), . . . , σn(y)) of singular values coincides with the
sequence of (right) eigenvalues for these y. So we see that

Ox = {
y ∈ V : y � 0, σ (y) � σ(x)

}
,

where for nonincreasing sequences a, b ∈ Rn themajorization relation� is defined
by

(b1, . . . , bn) � (a1, . . . , an): ⇔
k∑

i=1

bi ≤
k∑

i=1

ai
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for k = 1, . . . , n, with equality for k = n [10, 4.3.41]. In terms ofKy Fan norms this
says thatOx is the set of all y ∈ V with y � 0 and ‖y‖k ≤ ‖x‖k for k = 1, . . . , n−1
and ‖y‖n = ‖x‖n (provided that x � 0).

Example 8.7. Next let the unitary group over K act on skew-hermitian matrices
over K by gxg∗. For K = C this is essentially the action of SU (n) on hermitian
matrices, already considered in Example 8.6, since a complex matrix x is skew-
hermitian if and only if i x is hermitian. For the remaining two cases we haveK = R

and K = SO(n) (with n ≥ 3), or K = H and K = Sp(n) (with n ≥ 1), and V
is the space of skew-hermitian (x + x∗ = 0) matrices over K of size n. This is
an irreducible polar representation of K , namely the adjoint action of K on its Lie
algebra V = Lie(K ) (so g = Lie(K )C here.) A maximal abelian subspace can be
described as follows. If K = R and K = SO(n), put m := � n

2 � and let a consist

of all real block matrices x =
(

0 x̃
−x̃ 0

)

where x̃ = diag(x1, . . . , xm); if n is odd,

an extra row (at the bottom) and column (at the right) of zeros has to be added. If
K = H and K = Sp(n), let a consist of all diagonal matrices x = (i x1, . . . , i xn)
with x1, . . . , xn ∈ R.

To describe Weyl chamber and orbitopes, let first K = R and K = SO(n). The
Weyl chamber C consists of all x ∈ a with x1 ≥ · · · ≥ xm ≥ 0 (case n odd), resp.
x1 ≥ · · · ≥ xm−1 ≥ |xm | (case n even). The description of Px ∩ C , for x ∈ C ,
is analogous to Example 8.3 resp. Example 8.4. The singular values of x ∈ C are
x1, x1, . . . , xm, xm , with an extra zero if n is odd. So we get Ox = ⋂m

k=1

{
y ∈

V : ‖y‖2k ≤ ‖x‖2k
}
for n = 2m + 1 odd, and

Ox =
m⋂

k=1

{y : ‖y‖2k ≤ ‖x‖2k} ∩
{
y : σn(x) − σn(y) ≤ ‖x‖n−2 − ‖y‖n−2

}

for n = 2m even. Note that in either case, only the even Ky Fan norms are needed.
If K = H and K = Sp(n), the Weyl chamber C consists of all x ∈ a with

x1 ≥ · · · ≥ xm ≥ 0, and we find again Ox = ⋂n
k=1

{
y ∈ V : ‖y‖k ≤ ‖x‖k

}
for

x ∈ V .

Example 8.8. There remains the action of the complex unitary group K = U (n) on
V = sym(n, C) resp. V = so(n, C) (symmetric resp. skew-symmetric complex
matrices) by gxgt (g ∈ K , x ∈ V ). Again this is an irreducible polar representation
that arises from the simple Lie algebra g = sp(n, R) (for V = sym(n, C)) resp.
g = so∗(2n) (for V = so(n, C)).

First let V = sym(n, C). A maximal abelian subspace a consists of all real
diagonal matrices x = diag(x1, . . . , xn), and the Weyl chamber is C = {x ∈
a : x1 ≥ · · · ≥ xn ≥ 0}. For x ∈ C we have Px ∩ C = {y ∈ C : y1 + · · · + yk ≤
x1 + · · · + xk (k = 1, . . . , n)}. Since xi = σi (x) for x ∈ a, we get

Ox = {
y ∈ sym(n, C) : ‖y‖k ≤ ‖x‖k (k = 1, . . . , n)

}

In the skew-symmetric case V = so(n, C) let m = � n
2 �. For n even, a max-

imal abelian subspace a consists of all block matrices x =
(

0 x̃
−x̃ 0

)

with



206 T. Kobert, C. Scheiderer

x̃ = diag(x1, . . . , xm) a real diagonal matrix. For n odd the description is the
same, except that one row (at the bottom) and one column (at the right) of zeros
has to be added. In either case the Weyl chamber C consists of all x ∈ a with
x1 ≥ · · · ≥ xm ≥ 0. For x ∈ a the singular values of x are x1, x1, . . . , xm, xm ,
together with an extra zero if n is odd. Once more we therefore find

Ox = {
y ∈ so(n, C) : ‖y‖k ≤ ‖x‖k (k = 1, . . . , n)

}

The fact that any (skew-) symmetric complex matrix is unitarily congruent to a real
matrix in a as above is known as Youla’s theorem (see e.g. [10, Theorem 4.4.9]).

Remark 8.9. For all the examples from 8.3–8.8, the following is true: The orbitope
Ox is doubly spectrahedral, provided that all singular values of x are rational num-
bers. This follows from Theorem 7.2.

Remark 8.10. As we have seen, most of the classical irreducible polar orbitopes are
intersections of Ky Fan balls of matrices, possibly intersected with suitable linear
spaces of matrices (like (skew-) symmetric or (skew-) hermitian). It is easy to see
that every Ky Fan ball is a spectrahedron. This gives a second proof of Theorem
4.2 in those cases where Ox is an intersection of such balls:

Proposition 8.11. Let K ∈ {R, C, H} and m ≥ n, let 1 ≤ k ≤ n, and let ‖ · ‖k
denote the kth Ky Fan norm on Mm×n(K) (8.2). Then the unit ball

Bk := {
x ∈ Mm×n(K) : ‖x‖k ≤ 1

}

is a spectrahedron.

Proof. Let A ∈ MN (C) be a complex matrix with eigenvalues θ1, . . . , θN . The kth
exterior power �k A of A is a square matrix of size

(N
k

)
that depends linearly on A,

and whose eigenvalues are the sums θi1 + · · · + θik with 1 ≤ i1 < · · · < ik ≤ N .
If K = H, we replace quaternions with complex 2 × 2 matrices, to avoid the

problem of defining exterior powers of quaternion matrices. Let A ∈ MN (H) be
hermitian (A = A∗), with (real) right eigenvalues θ1, . . . , θN . Write A = A1+ j A2
with A1, A2 ∈ MN (C), and let

Ã =
(
A1 −A2

A2 A1

)

Then Ã is a complexhermitianmatrix of size 2N with eigenvalues θ1, θ1, . . . , θN , θN .
Let us, for this purpose, define �k A to be the complex matrix �k Ã (of size

(2N
k

)
).

Now let K be any of R, C, H, let x ∈ Mm×n(K), and let x̂ ∈ Mm+n(K) be the
hermitian (block) matrix

x̂ =
(
0 x
x∗ 0

)

The (right) eigenvalues of x̂ are±σi (x), i = 1, . . . , n, togetherwithm−n additional
zeros. It follows that x ∈ Bk , i.e. ‖x‖k ≤ 1, if and only if all eigenvalues of�k x̂ are
≤ 1. In other words, this shows that Bk is described by the linear matrix inequality

Bk = {
x ∈ Mm×n(K) : �k x̂ � I

}
.

��
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8.12. Finally, we record the cases when the orbitope Ox is a K -biorbitope. First
consider the action Example 8.6 on hermitian matrices, for K = R, C, H. Up
to scaling and translation there is exactly one biorbitope Ox of this type, namely
for x = diag(1, 0, . . . , 0). The orbit Kx consists of all psd rank one matrices of
(reduced) trace 1. Its convex hull has the rank condition removed:Ox = {y : y � 0,
tr(y) = 1}.
8.13. For the remaining actions Examples 8.3, 8.7 and 8.8 there exist two essen-
tially different biorbitopes. When K = R, we have to exclude the case m = n
in Example 8.3 and the case n even in Example 8.7. Indeed, these are the cases
when the restricted root system is of type D (see Theorem 6.7). Otherwise, the two
biorbitopes are:

(a) x = (1, 0, . . . , 0) and Ox = {y : ‖y‖∗ ≤ 1}, the unit ball in the nuclear norm;
(b) x = (1, . . . , 1) and Ox = {y : ‖y‖1 ≤ 1}, the unit ball in the operator norm.

In case (b) of the actionExample 8.3, the K -orbit Kx is the Stiefelmanifold Vn(Km)

of orthonormal n-frames inKm , at least for n < m.We therefore call these orbitopes
the Stiefel orbitopes. For m = n and K �= R, we get tautological orbitopes: Ox is
the convex hull of SU (n) (case K = C), resp. of Sp(n) (case K = H).

Acknowledgements Supported by DFG Grants SCHE281/10-n (n = 1, 2), partially sup-
ported by EU Horizon 2020 program, Grant Agreement 813211 (POEMA). All support is
gratefully acknowledged. We are also grateful to an anonymous referee for valuable com-
ments.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

[1] Biliotti, L.,Ghigi,A.,Heinzner, P.: Polar orbitopes.Commun.Anal.Geom. 21, 579–606
(2013)

[2] Biliotti, L., Ghigi, A., Heinzner, P.: Coadjoint orbitopes. Osaka J. Math. 51, 935–968
(2014)

[3] Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I. H. E. S. 27, 55–151 (1965)
[4] Bump, D.: Lie Groups, 2nd edn. Graduate Texts in Mathematics, vol. 225. Springer,

New York (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


208 T. Kobert, C. Scheiderer

[5] Casselman, W.A.: Geometric rationality of Satake compactifications. In: Algebraic
Groups and Lie Groups, Australian Mathematical Society Lecture Series, vol. 9. Cam-
bridge, pp. 81–103 (1997)

[6] Chua, C.B.: Relating homogeneous cones and positive definite cones via T -algebras.
SIAM J. Optim. 14, 500–506 (2003)

[7] Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Am.
Math. Soc. 288, 125–137 (1985)

[8] Fan, K.: Maximum properties and inequalities for the eigenvalues of completely con-
tinuous operators. Proc. Nat. Acad. Sci. USA 37, 760–766 (1951)

[9] Farenick,D.R., Pidkowich, B.A.F.: The spectral theorem in quaternions. LinearAlgebra
Appl. 371, 75–102 (2003)

[10] Horn, R.A., Johnson, Ch.R.: Matrix Analysis. 2nd edn. Cambridge (2013)
[11] Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd edn. Progress in Mathematics,

vol. 140. Birkhäuser, Boston (2005)
[12] Kobert, T.: Spectrahedral and Semidefinite Representability of Orbitopes, Ph. D. thesis.

University of Konstanz (2018)
[13] Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci.

E. N. S. 4(6), 413–455 (1973)
[14] Leite, R.S., Richa, T.R.W., Tomei, C.: Geometric proofs of some theorems of Schur–

Horn type. Linear Algebra Appl. 286, 149–173 (1999)
[15] Lusztig, G., Tits, J.: The inverse of a Cartan matrix. Ann. Univ. Timis. 30, 17–23 (1992)
[16] Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras III. Structure of Lie

Groups and Lie Algebras. Encyclopedia of Mathematical Sciences, vol. 41. Springer,
Berlin (1994)

[17] Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Progress in
Mathematics, vol. 222. Birkhäuser, Boston (2004)

[18] Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57, 275–314 (2011)
[19] Satake, I.: On representations and compactifications of symmetric Riemannian sym-

metric spaces. Ann. Math. 71, 77–110 (1960)
[20] Saunderson, J., Parrilo, P.A., Willsky, A.S.: Semidefinite descriptions of the convex

hull of rotation matrices. SIAM J. Optim. 25, 1314–1343 (2015)
[21] Scheiderer, C.: Spectrahedral shadows. SIAM J. Appl. Algebra Geom. 2, 26–44 (2018)
[22] Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Second expanded edi-

tion. Cambridge (2014)
[23] Sinn, R.: Algebraic boundaries of SO(2)-orbitopes. Discrete Comput. Geom. 50, 219–

235 (2013)
[24] Tits, J.: Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes

in Mathematics, vol. 40. Springer, Berlin (1967)
[25] Vinberg, E.B.: The theory of homogeneous convex cones. (English translation). Trans.

Mosc. Math. Soc. 12, 340–403 (1965)
[26] Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57

(1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Spectrahedral representation of polar orbitopes
	Abstract.
	1 Polar representations and orbitopes
	2 Background on semisimple real Lie algebras
	3 Kostant's convexity theorem
	4 Polar orbitopes as spectrahedra
	5 Face correspondence
	6 Facets of the momentum polytope
	7 Doubly spectrahedral orbitopes
	8 Examples
	Acknowledgements
	References




