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Abstract. We show that the pseudoeffective cone of k-cycles on a complete complexity-one
T -variety is rational polyhedral for any k, generated by classes of T -invariant subvarieties.
When X is also rational, we give a presentation of the Chow groups of X in terms of
generators and relations, coming from the combinatorial data defining X as a T -variety.

1. Introduction

A T -variety is a normal algebraic variety X with an effective action of an alge-
braic torus T , defined over an algebraically closed field of characteristic 0. The
complexity of a T -variety is defined as dim X − dim T , thus T -varieties of com-
plexity zero correspond to the toric varieties. For toric varieties there is a well-
known correspondence between the geometry of a variety and combinatorial data
coming from the T -action. There has in recent years been developed a similar
quasi-combinatorial language for describing T -varieties of higher complexity, start-
ing with Altmann and Hausen’s paper [1]. Following this, there have been many
papers studying the geometrical and combinatorial properties of T -varieties (see
for instance [3,5,12,13,17,19] and the references in [4]).

Here we will study algebraic cycles on T-varieties of complexity one. Our first
main result is a description of the cones of effective cycles:

Theorem 1.1. The pseudoeffective cones Effk(X) of a complete T -variety X of
complexity one are rational polyhedral, generated by classes of invariant subvari-
eties.

This generalizes Scott’s results on the pseudoeffective cone of curves on a T -
variety [20]. In general there are not many examples where all pseudoeffective
cones of cycles are known. Our result gives a large class of examples where these
are rational polyhedral.When X is rational, it is known that X is aMori dream space
[12], so the statement was previously known for the cone of curves and effective
divisors. However, the result applies also in the non-rational cases, showing that
while the T -varieties X are notMori dreamspaces, their cones of curves anddivisors
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are still rational polyhedral. Moreover, even in the case X is rational, and thus Mori
dream, it is not a priori clear that the effective cones of cycles of intermediate
dimensions should be rational polyhedral, as was shown by [7, Example 6.10].

Our second main result gives a presentation for the Chow groups of X , in the
case X is a rational complete complexity-one T -variety. The result is inspired by two
different well-known results. First of all, for toric varieties, Fulton and Sturmfels
showed that invariant subvarieties generate the Chow groups, and moreover they
described the relations between these generators [9, Proposition 2]. On the other
hand, for a rational complete T -variety of complexity one, Altmann and Petersen
give an analogous short exact sequence describing its Picard group [5, Corollary
2.3]. These two results give some hints to how the Chow groups of a -one T -variety
might look. Our second main result gives a complete description of these.

To explain the result, we first recall some basic facts about T -varieties. If X
is a complete rational T -variety of one it comes equipped with a rational quotient
map, that is, a rational map f : X ��� P

1, and another complete rational T -variety
of one, ˜X , with a T -equivariant blow-up map r : ˜X → X which resolves f ; thus
there is a map g : ˜X → P

1 such that f ◦ r = g whenever defined. Following [13],
we have that X corresponds to a fan � giving the general toric fiber of g, as well as
finitely many special fibers which correspond to polyhedral complexes with tailfan
�. We denote by P the following set: If the set of points in P1 such that the fiber is
not general has size at least 2 then P equals this set. If this set is smaller, then P is
the union of this set with (1 or 2) additional arbitrary points of P1. In addition we
need to keep track of the data of which cones correspond to varieties contracted by
r (see Section 2 for more details).

Letting the dimension of X be n + 1 and � be the fan describing the general
fiber of g (which is the toric variety X�) we define, for a non-negative integer k,
the following sets:

Rk =Cones of dimension n+1−k corresponding to subvarieties not contracted
by r .

Vk = Faces of dimension n − k of polyhedral subdivisions corresponding to
fibers of points in P , such that the tailcone corresponds to a subvariety not contracted
by r .

Tk = Cones of dimension n − k corresponding to subvarieties contracted by r .

Theorem 1.2. For a complete rational T-variety X of one there is for any 0 ≤ k ≤
dim X an exact sequence
⊕

F∈Vk+1

M(F)
⊕

τ∈Rk+1

(M(τ ) ⊕ Z
P/Z)

⊕

τ∈Tk+1

M(τ )→ Z
Vk ⊕ Z

Rk ⊕ Z
Tk →Ak(X)→ 0,

where for a rational polyhedral cone τ in NQ, M(τ ) = τ⊥ ∩ M. Also M(F) is the
character lattice of the toric variety corresponding to F.

The maps will be described below. For k = n this coincides with the exact
sequence of Altmann and Petersen. The above results also generalizes the results
of Laface, Liendo and Moraga [17], where they give a presentation of the rational
Chow ring of a complete complexity-one T -variety which is contraction-free, that
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is, when X = ˜X . Being contraction-free is however quite restrictive, for instance
their rational Chow ring is generated by divisors [17, Lemma 4.1], which is not
true in general. We do not have an explicit description of the ring structure of a
general complexity-one T -variety, although we believe that the results in this paper
will be useful in describing it. We illustrate our results by studying examples such
as toric downgrades (meaning we only remember the action of a codimension one
torus on a toric variety), projectivizations of rank-two toric vector bundles and the
Grassmannian Gr(2, 4), none of which (in general) are contraction-free.

2. Preliminaries on T -varieties

The papers [1,3] give a general framework for describing T -varieties of any com-
plexity, we briefly recall the set-up. Denote by T 	 (K∗)n a torus of dimension n
and let M and N denote the lattices of characters and one-parameter subgroups of
T , respectively. K is an algebraically closed field of characteristic 0.

Recall that any polyhedron � can be decomposed as a Minkowski sum σ + P ,
where σ is a unique polyhedral cone, called the tailcone, and P is a polytope. Fixing
a polyhedral cone σ ⊂ NQ, we consider the semigroup under Minkowski addition

Pol+
Q
(N , σ ) = {� ⊂ NQ|� is a polyhedron with tailcone σ }

We also allow ∅ as an element of Pol+
Q
(N , σ ). Let Y be a normal and semiprojective

variety (meaning it is projective over some affine variety) and let CDiv(Y ) denote
the group of Cartier-divisors on Y . We consider “divisors” of the form

D =
∑

Z

�Z ⊗ Z ,

where �Z is an element of Pol+
Q
(N , σ ) and the Z are Q-Cartier divisor on Y , such

that only finitely many �Z differ from the tailcone. For u ∈ σ∨ ∩ M , we may
consider the evaluation

D(u) =
∑

Z |�Z �=∅
min〈�Z , u〉Z ∈ CDivQ(Y ),

which is a finite sum, since the minimum for any Z such that�Z equals the tailcone
is 0. We call D a p-divisor on (Y, N ) if D(u) is semiample for all u ∈ σ∨ ∩ M , as
well as big for u in the interior of σ∨ ∩ M . To a p-divisor D we can associate the
sheaf of rings OY (D) = ⊕

u∈σ∨∩M OY (D(u)). Then X = Spec�(Y,OY (D)) is
an affine T-variety of complexity dim Y . Also ˜X = SpecY OY (D) is T-variety of
complexity dim Y and there is an equivariant map r : ˜X → X . We say that X is
contraction-free if X = ˜X .

Altmann and Hausen [1] shows that any affine T-variety arises from a p-divisor
in this way.

If D and D′ both are p-divisors on (Y, N ) we define their intersection D ∩ D′
as having coefficient �Z ∩ �′

Z on Z . We say that D ⊂ D′ if �Z ⊂ �′
Z for all Z .

In that case we say that D is a face of D′ if the induced map X (D) → X (D′) is
an open embedding; there is a technical condition [3, Proposition 3.4] for checking
this, which we do not recall here.
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Definition 2.1. A finite set S of p-divisors on (Y, N ) is called a divisorial fan if the
intersection of any two p-divisors is a common face of both and S is closed under
intersections.

The condition on the intersections comes from the fact that one can glue the
varieties X (D), X (D′) along the open set X (D ∩D′). Then Altmann, Hausen and
Süss [3] show that any T -variety arises from a divisorial fan in this way.

While the arguments in this paper are mostly geometric, the perspective of a
divisorial fanwill be useful. Also, in complexity one, there is a different perspective,
due to Ilten and Süss [13], which has the advantage of avoiding the technical
condition about the open embeddings X (D) → X (D′). We will alternate between
these perspectives, depending on what is most convenient.

We now specialize to the case where Y is a curve, denoted by C , which we can
assume is a smooth curve [1, Corollary 8.12]. Also we generally denote the divisor
Z by p, since divisors on curves correspond to sums of points. For a p-divisor D
on C we define its degree degD as the Minkowski sum

∑

p �p.

Definition 2.2. A marked fansy divisor on C is a formal sum � = ∑

Sp ⊗ [p]
together with a fan � ⊂ NQ and a subset K ⊂ � such that

(1) Each Sp is a complete polyhedral subdivison of NQ such that tail(Sp) = � for
all p.

(2) If σ ∈ K has full dimension then Dσ = ∑Dσ
p ⊗ [p] is a p-divisor, where Dσ

p
is the polyhedron in Sp with tail(Dσ

p ) = σ .
(3) for a full dimensional cone σ ∈ K and a face τ of σ , τ ∈ K if and only if

degDσ ∩ τ �= ∅.
(4) If τ is a face of σ , then τ ∈ K implies that σ ∈ K .

The subsets degDσ glue to a subset deg� ⊂ NQ.
Then [13] shows that any complete T-variety of complexity one corresponds

to a marked fansy divisor. In other words, in this case we only need to remember
the polyhedral subdivisions of the fibers as well as the set K which records which
subvarieties are contracted by r .

Given a complete rational complexity one T -variety defined by a divisorial fan
S, one can associate a marked fansy divisor by taking the polyhedral subdivisions
given by S and letting K consist of all cones σ such that there exists D ∈ S with
tailcone σ and such that no coefficients of D equals ∅. The variety ˜X is given as a
marked fansy divisor by the same subdivisions as for X but with K = ∅.

The intuition here is the following: For any point p ∈ Y the fiber of g is the toric
variety (possibly non-reduced, non-irreducible) corresponding to the polyhedral
subdivison at the point p. The fan � defines a toric variety which is the general
fiber, but at some points there might be other fibers. Nevertheless these fibers are
all unions of toric varieties. The T-action on ˜X restricted to a fiber of g is just the
T-action on the fiber as a union of toric varieties.

Example 2.3. Figure 1 shows polyhedral subdivisions for a complexity-one T -
variety X of dimension three, with three special fibers. Its tailfan is the fan �

of the blow up of P1×P
1 in two points contained in P1×0. The subdivisions alone
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Fig. 2. Everything except the gray area is deg�

do not define X , we also need to specify the subset K . If we for instance choose
that K contains all maximal cones of �, we get from Fig. 2 that all rays except the
one generated by (0,−1) are also in K .

This choice of K corresponds to the projectivization of a rank-two non-split
toric vector bundle over P1 × P

1, see Section 6.

3. Subvarieties of T -varieties of complexity-one

Given a fan �, we denote by X� the associated toric variety, by B� the torus-
invariant boundary of X� and by T� the torus. For σ ∈ �, let V (σ ) denote the T-
invariant subvariety of X� of codimension dim σ associated to σ . It is a toric variety
with torus T (σ ), whose lattice of one-parameter subgroups is N (σ ) = N/Nσ ,
where Nσ is the lattice generated by σ ∩ N .

Fix a complete T-variety of complexity-one X with tailfan �. On the variety ˜X
there are various subvarieties arising from the combinatorial structure defining it.
For a point p ∈ C and a face F of the polyhedral complex Sp defining the fiber
g−1(p) there is the T-orbit orb(p, F) of dimension codim F , the closure is denoted
by Z p,F = orb(p, F) ⊂ ˜X .

We denote the generic point of C by η. For any cone σ ∈ � there is a T-
invariant subvariety Bσ which is given by the closure of orb(η, σ ), in other words
Bσ dominates C and in the general fiber is given by the subvariety V (σ ) ⊂ X� . We
define B = ∪ρ∈�(1) Bρ . Then B is a finite union of divisors on ˜X , each of which
themselves is a T-variety of complexity-one [12, Proof of Proposition 4.12]. This
fact will be important in the proof of Theorem 3.1.

Fix any ray ρ ∈ � . Locally, ˜X is given by a p-divisor D = ∑

Z DZ Z with
tailcone σ . For a ray ρ, let π : NQ → NQ/Qρ denote the projection sending ρ

to 0. Then Dρ = ∑

Z π(DZ )Z is a new p-divisor on Y with tailcone π(σ); this
defines Bρ as a T-variety [12, Proof of Proposition 4.12].

On X some of the subvarieties Bσ are contracted, namely those where σ is in
K . In this case r(Bσ ) is contracted to a variety of dimension one less. We denote
the corresponding orbit closure r(Bσ ) in X by Wσ . We also denote r(Z p,F ) by
Wp,F , for any p, F . When σ /∈ K then Bσ is not contracted and we also denote
the corresponding subvarieties of X by the same symbol.
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We are interested in studying the pseudoeffective cones Effk(X) inside the
group Nk(X) of cycles modulo numerical equivalence, which by definition is the
closure of the cone of effective k-cycles.

Theorem 3.1. The pseudoeffective cones Effk(X) of a complete T-variety X of
complexity one are rational polyhedral, generated by classes of invariant subvari-
eties.

Proof. We first show the statement for the contraction-free case, in other words
when X = ˜X . Fix a subvariety V of dimension k of ˜X and choose a basis v1, ..., vn

of the lattice N . Let λi be the one-parameter subgroup of T corresponding to vi .
We have a corresponding action K∗ × ˜X → ˜X for each λi . Let V1 be the flat limit
as t goes to zero of λ1 · V . Similarly let Vi be the flat limit as t goes to zero of
λi · Vi−1. Then Vn is an effective cycle numerically equivalent to V and invariant
under the entire torus action. Now for any irreducible component W of Vn we have
two possibilities: Either W dominates C or it is contained in a fiber ˜X y .

If it is contained in a fiber ˜X y , then since it is irreducible it is contained in an
irreducible component of the fiber. There are only finitely many components which
are different from X� . In each of these there are only finitely many irreducible
invariant subvarieties. Thus if W is contained in one of these special fibers it has
to equal one of these finitely many subvarieties. If it is contained in a general fiber
then, since the map ˜X → C is flat, it is algebraically equivalent to a cycle in one
fixed general fiber. In particular it is also numerically equivalent. Thus W can be
written as an effective sum of finitely many generators.

If it is not contained in a fiber, then we claim it has to be contained in the
boundary divisor B. Indeed, if not, then there is a point y ∈ C such that ˜X y 	 X�

and such that there is x in (˜X y \ By) ∩ Wy = T� ∩ Wy . Then T� acting on x will
be a set of dimension n in the fiber ˜X y . But then Wy has to have dimension at least
n, since it is invariant under the entire torus action. However by assumption it is
a proper closed subset of X� which has dimension n, so its dimension must be
smaller than n.

Thus when W is not contained in a fiber, it is contained in B which is a finite
union of T -varieties of complexity one of smaller dimension than ˜X . Since we are
on ˜X we know that no varieties are contracted by r , in particular any p-divisor must
have ∅ as a coefficient. Thus any p-divisor for a component Bρ of B, which by the
above description is given by projecting the polyhedral coefficients of a p-divisor
for ˜X , will also have an empty coefficient. In particular Bρ = ˜Bρ , in other words it
is also contraction-free. A T-variety of dimension one and complexity one is simply
a curve. The proposition is obviously true for any curve, thus by induction it is true
for any contraction-free T -variety of complexity one.

Now we consider the case of the general X . By the same argument as above,
any subvariety V of X of dimension k can be written as an effective sum of T -
invariant irreducible subvarieties. By [1, Theorem 10.1] any irreducible T -invariant
subvariety of X is the image of a T -invariant subvariety of ˜X under r . From this
we get that V can be written as an effective sum of the images of the generators of
Effk(˜X). This proves the theorem also for X . ��
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In fact the above proof gives some information about the generators of the
pseudoeffective cones of X :

Corollary 3.2. Let X be a complete contraction-free T-variety of complexity one, in
other words such that ˜X = X. Then the pseudoeffective cone Effk(X) is generated
by Bτ , where dim τ = n + 1 − k and Z y,F , where y ∈ Y and dim F = n − k.

Proof. The proof of Theorem 3.1 implicitly describes the generators: Any effective
irreducible k-cycle W of dimension less than dim X has to either be contained in
some Bρ , ρ ∈ �(1) or in some fiber ˜X y .

If it is contained in a fiber ˜X y then, since the fiber is a union of irreducible toric
varieties, it has to be contained in one of them, say the one corresponding to the
vertex v of Sy . After possibly replacing any compact face containing v with the
corresponding cone emanating from v we have a complete fan �′ with vertex v

defining the toric variety. Now we know that as a cycle in X�′ , W can be written as
an effective sum W ≡ ∑

Fi ∈�′(n−k) ai V (Fi ). Letting ji : V (Fi ) → ˜X denote the
inclusion, we have that ( ji )∗V (Fi ) = Zv,Fi . Thus in this case W can be written as
a positive sum of the finitely many Zv,F .

Next we note, as in the proof of Theorem 3.1, that any boundary divisor in ˜X
is also contraction-free. If an effective cycle is contained in some boundary divisor
Bρ we argue by induction on codim W . If codim W = 1 then since W is contained
in Bρ and they are both irreducible of the same dimension, we must have W = Bρ ,
hencewe are done. If codim W > 1 then by induction W can bewritten as a positive
sum of Bp(τ ) and Zv,p(F), where p : NQ → NQ/Qρ is the projection. Denoting by
j : Bρ → ˜X the inclusion we have that j∗(Bp(τ )) = Bτ and j∗(Zv,p(F)) = Zv,F .
Thus we are done by induction. ��

To study the generators of the pseudoeffective cones for general X we need to
also take into account the varieties that are contracted by r . First of all, it follows
from [19, Proof of Proposition 3.13] that for any invariant subvariety Z of aT-variety
˜X we have that

dim g(Z) + dim r(Z) − dim(Z) ≥ 0.

This fact, combinedwith the fact thatwe always have dim(Z) ≥ dim(r(Z)), implies
that if dim(g(Z)) = 0 then Z is not contracted. Moreover if dim(g(Z)) = 1 and
Z is contracted then dim(r(Z)) = dim(Z) − 1. If Bσ has codimension k in ˜X
(equivalently σ is of dimension k), then if Bσ is contracted by r to Wσ (meaning
σ ∈ K ) it has to be contracted to a subvariety of codimension k + 1 in X .

We will describe the images of the contracted varieties. We denote by μ(F) the
smallest positive integer in N/Nσ such that vF is a lattice point.

Lemma 3.3. Let σ ∈ � and consider Bσ ⊂ ˜X as a complexity-one T -variety with
respect to the torus T (σ ). Then for a face Zq,F with tailcone σ we have that the
generic stabilizer group of the corresponding divisor in Bσ is cyclic of order μ(F).

Proof. By the proof of [12, Proposition 4.12] Bσ is described as a T -variety by
projecting the coefficients from N to N/Qσ . By [12, Proposition 4.11] the order
of the generic stabilizer group is cyclic of the stated order. ��
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We can determine the difference of generic stabilizers of a general fiber Z p,σ

and its image r(Z p,σ ) . Since the map r is equivariant any t ∈ T in the stabilizer
of Z p,F will be in the stabilizer of the image r(Zq,F ), for any F with tailcone
σ . Each Z p,F is a toric variety with an effective action of a corresponding torus.
For a general fiber this torus has lattice of one-parameter subgroups N/Nσ , while
in general it will be a lattice containing this: The lattice L F generated by the unit
vectors together with the vertex vF in N/Nσ . By [1, Proposition 5.2 ii] the stabilizer
of a point in X is given by a torus associated to a certain lattice. For a point in Z p,F

this lattice is L F by [1, Proposition 7.10]. Since all Z p,F are mapped to the same
image by the proof of Lemma 3.4, the stabilizer of r(Zq,σ ) will thus simply be the
group generated by the stabilizers of all Z p,F . Letting L be the lattice generated
by all integer linear combinations of the unit vectors together with set of vF , for all
Z p,F with the tailcone of F equal to σ , we obtain a lattice L containing the lattice
N/Nσ . The difference of stabilizers [Stab(Zq,σ ) : Stab(r(Zq,σ ))] will thus equal
the lattice index [L : N/Nσ ]. We denote this number by sσ .

Lemma 3.4. Assume σ ∈ � and that σ ∈ K . Then all faces Z p,F with tail F = σ

are mapped to Wσ under the contraction map r. Moreover we have the equality
μ(F)r∗([Z p,F ]) = sσ [Wσ ] of numerical classes, for F with tailcone σ .

Proof. This follows from [1, Theorem 10.1]: Two faces Z p,F and Z y,G of the same
polyhedral divisor D are identified under r if they have the same normal cone λ

and if D(u) = 0 for some u in the relative interior of λ (if C = P
1 this is in fact

equivalent to Z p,F being identified with Z y,G).
Let σ ∈ K be a maximal cone. There is a polyhedral divisorDσ with tailcone σ

and no empty coefficients. For any coefficient�σ
p ofDσ the associated normal cone

is the point 0, moreover D(0) = 0, thus Wp,�σ
p
is identified with Wq,�σ

q
for any

points p, q ∈ C . In particular, the entire Bσ in ˜X is mapped to any fixed subvariety
of the form Wp,�σ

p
.

If τ ∈ K is notmaximalwehave that∩τ�σ degDσ ∩τ �= ∅byDefinition 2.2 (3).
This implies that in any fiber Sp the intersection∩τ�σ �σ

p �= ∅, which implies that in
any fiber there is only one face Fp with tailcone τ . LetDτ be the p-divisor having the
corresponding faces Fp as coefficients. We have Fp = τ + Q p, where Q p is some
polytope in NQ. Letting vp be a vertex of Q p, we have that Fp = τ+vp+(Q p−vp).
Since there is only one face of Sp with tailcone τ , the polytope Q p − vp must be
contained in the linear span of τ . This implies that all Fp have the same normal
cone λ. We wish to show that

Dτ (u) =
∑

min〈Fp, u〉 = 0

for u in the relative interior of λ. We have that min〈Fp, u〉 = 〈vp, u〉, since u by
definition is normal to any point in the linear span of τ . Since degDτ = degDσ ∩
τ ⊂ τ we must also have that

∑

vp ∈ τ , thus 〈∑p vp, u〉 = 0, which is what we
wanted to show. Thus Z p,Fp is identified with Zq,Fq for any p, q ∈ C , thus the
horizontal subvariety Bτ maps to any Wp,Fp .

For the last claim, we have that for a general fiber q the map r restricted to Zq,σ

is finite of order sσ , thus r∗(Zq,σ ) = sσ Wσ . For a subvariety Z p,F of a special fiber
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the stabilizer group will have order sσ
μ(F)

, thus r∗(Z p,F ) = sσ
μ(F)

Wσ , which proves
the claim. ��
Proposition 3.5. Let X be a complete T-variety of complexity one. Then the pseu-
doeffective cone Effk(X) is generated by the following classes:

• Bτ , where dim τ = n + 1 − k and τ /∈ K
• Wy,F , where y ∈ Y and F ⊂ Sy has dimension n − k and tail(F) /∈ K
• Wσ where σ has dimension n − k and σ ∈ K .

Proof. As noted earlier Effk(X) is the image of Effk(˜X) via r∗, thus we know that
r(Bτ ) and r(Z p,F ) generate Effk(X) as above. However we can omit r(Bτ ) for
τ ∈ �(n + 1 − k) ∩ K since r∗(Bτ ) = 0 in this case. Fixing σ ∈ K of dimension
n − k we have by the lemma above that all classes r∗(Z p,F ), for any point p and
F with tailcone σ , are proportional, thus it is more convenient to only remember
the single representative Wσ instead of all the different Wp,F . ��

4. Chow groups

We now assume X is a rational and complete T-variety of complexity one with
tailfan �. Recall that r denotes the contraction map ˜X → X . We say that a cone
σ ∈ � is contracted by r if σ ∈ K . Also recall that P is the following set: If the
set of points in P

1 such that the fiber of r is not general, has size at least 2 then P
equals this set. If this set is smaller, then P is the union of this set with (1 or 2)
additional arbitrary points of P1. Fix k and, inspired by the above result, define the
following sets
Rk = Cones in � of dimension n + 1 − k not contracted by r corresponding to
subvarieties Bσ .
Vk = Faces of dimension n − k of fibers of points in P , such that the tailcone is
not contracted corresponding to subvarieties Wp,F , for p ∈ P , tail F /∈ K .
Tk = Cones in � of dimension n − k contracted by r corresponding to subvarieties
Wσ .

Note that we will show in the proof below that invariant subvarieties corre-
sponding to faces of points that have general fibers are in the group generated by
the other subvarieties (inside the Chow-group), thus we do not require these as
generators.

Then there is a surjection

Z
Rk∪Vk∪Tk → Ak(X) → 0 (1)

For k = n this is the surjection for the Picard group of X given in [5] (note that
Tn is always empty). Altmann and Petersen also describe the relations between the
generators:

0 → Z
P/Z ⊕ M → Z

Vn∪Rn → Pic(X) → 0.

Recall that P is the set of points p in P
1 where the polyhedral subdivison Sp do

not equal �. If P has size less than 2 then we simply add points so that P has
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size 2. This corresponds to fixing a T -invariant structure on P
1. Without loss of

generality we assume ∞ ∈ P . The first map is given by the following: generators
for ZP/Z correspond to principal divisors [p] − [∞] on P1, one such generator is
mapped to

∑

p,v μ(v)Wp,v − ∑

∞,v μ(v)W∞,v . A character m ∈ M is mapped to
∑

v μ(v)〈m, v〉Wp,v + ∑

Rn
〈m, ρ〉Bρ . Here μ(v) is the smallest integer such that

μ(v)v is a lattice point.

Theorem 4.1. For a rational complete complexity-one T-variety X there is for any
0 ≤ k ≤ dim X an exact sequence

⊕

F∈Vk+1

M(F)
⊕

τ∈Rk+1

(M(τ ) ⊕ Z
P/Z)

⊕

τ∈Tk+1

M(τ )→ Z
Vk ⊕ Z

Rk ⊕ Z
Tk →Ak(X)→ 0.

The maps are given as follows:
Any F ∈ Vk+1 corresponds to an invariant subvariety of an irreducible com-

ponent of a fiber p (possibly several components, if so pick one). We denote the
character lattice of the corresponding toric variety by M(F). Then m ∈ M(F)

maps to

∑

dim G=n−k,F⊂G
tail G /∈K

〈m, vF,G〉Z p,G +
∑

dim G=n−k,F⊂G
tail G∈K

〈m, vF,G〉 stail G

μ(G)
Wtail G ,

where vF,G generates N (F)/N (G). This is the usual notion of rational equivalence
on a toric variety.

If τ ∈ Rk+1 then Bτ itself corresponds to a T-variety of complexity one. The
map comes from this structure, as in the exact sequence of Altmann and Petersen.
Explicitly a generator of ZP/Z corresponds to a divisor [p]−[∞] and it is mapped
to

∑

F,tail F=τ

μ(vF )Wp,F −
∑

F,tail F=τ

μ(vF )W∞,F ,

where vF is the vertex corresponding to the image of F in the divisorial fan cor-
responding to Bτ as a T-variety (see Section 3). A character m ∈ M(τ ) is mapped
to

∑

F∈Vk ,tail F=τ

μ(vF )〈m, vF 〉Wp,F +
∑

σ∈Rk ,τ⊂σ

〈m, σ̄ 〉Bσ ,

where σ̄ is the ray which is the image of σ in N/Nτ .
If τ ∈ Tk+1 then every cone σ ∈ � containing τ will also be contracted by r .

In particular any such σ of dimension n − k lies in Tk . Thus m ∈ M(τ ) maps to

∑

dim σ=n−k,τ⊂σ

〈m, vτ,σ 〉Wσ .

Again this is just the usual notion of rational equivalence on a toric variety.
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Proof. As already noted Proposition 3.5 implies that the final map is surjective.
An invariant subvariety W of X corresponding to some face of a polyhedral

subdivision could be non-normal. By [1, Theorem 10.1] the corresponding sub-
variety of ˜X is the normalization W . Since the map r is the normalization when
restricted to any invariant subvariety, we get that r restricted to any invariant sub-
variety is generically 1 : 1. This implies by [11, Ch. 5, Proposition 3.3] that the
normalization is in this case bijective. By [10, Example 1.2.3] we thus have that
the orders of vanishing of any rational function on W is the same as the orders of
vanishing on W . In particular they can be computed using the usual techniques on
normal toric varieties.

By construction of the maps giving the relations, we see that they are given
by choosing an invariant subvariety Z of dimension k + 1 and choosing a rational
function on Z and taking its divisor. Thus by definition these will give relations in
Ak(X), thus the composition of the two maps are zero.

By [8, Theorem 1] the canonical homomorphism AT
k (X) → Ak(X) is an iso-

morphism, where AT
k (X) is the T-stable Chow group of X . By definition this is the

quotient Z T
k (X)/RT

k (X) of the group Z T
k (X) generated by T-invariant subvarieties

of X modulo the subgroup RT
k (X) generated by divisors of eigenfunctions on T-

invariant (k + 1)-dimensional subvarieties of X . In particular this implies that all
relations in Ak(X) come from divisors on T-invariant subvarieties.

In the exact sequence above we have by construction all such subvarieties and
relations, except that we omit T-invariant subvarieties of general fibers such that the
tailcone is not contracted. Lettingq be a pointwith general fiberwe set P ′ = P∪{q},
thus we now consider q as a special fiber. We show that every new subvariety and
every new relation in the corresponding exact sequence is already generated by
those in the exact sequence from P . Thus we may omit any general fiber, hence the
sequence in the theorem is exact. This is similar to Altmann-Petersen’s proof for
the case of divisors [5, Corollary 2.3].

For any cone σ ∈ �(n − k) where σ /∈ K we get the subvariety Wq,σ as
a summand in Vk . There will also be a new relation coming from considering
σ ∈ Rk+1 and observing that ZP ′

/Z has rank one more than Z
P/Z. The extra

relation expresses Wp,F in terms of the other generators, thus we may omit Wq,σ

as a generator in Vk , as well as the corresponding relation.
There is one more class of relations coming from adding q: Each cone τ of

dimension n − k − 1 with τ ∈ K gives an element in Vk+1. Any m ∈ M(τ ) gives
the relation

∑

τ�σ,dim σ=n−k

〈m, vτ,σ 〉Wq,σ

Now we already have relations saying that

Wq,σ =
∑

H�S∞,tail H=σ

μ(H)W∞,H .

Thus we need to show that the relation
∑

τ�σ,dim σ=n−k

〈m, vτ,σ 〉
∑

H�S∞,tail H=σ

μ(H)W∞,H
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is in the group of relations generated by sequence in the theorem.
Pick a face G of S∞ of dimension n − k − 1 with tailcone τ . Then G = τ + Q,

where Q is a polytope. Letting v be a vertex of Q we have that G = τ +v+(Q−v).
Since dim τ = dim G we must have that (Q − v) is contained in the linear span
of τ . After taking the quotient N/Qτ the image of G will thus be the vertex v̄, the
image of v. Let e1, ..., ek be a Z-basis for v̄⊥ and e0, e1, ..., ek a Z-basis for M(τ ).
We have that M(G) is generated by μ(G)e0, e1, ..., ek . This implies that the lattice
index [N (τ ) : N (G)] equals μ(G). We then have the relation

∑

G�H,dim H=n−k

〈μ(G)ei , vG,H 〉W∞,H .

For any H with tailcone σ we have that μ(G)vG,H = μ(H)vτ,σ , by Lemma 4.2
(see below), thus the relation equals

∑

G�H,tail H=σ

μ(H)〈ei , vτ,σ 〉W∞,H +
∑

G�H,tail H=τ

μ(G)〈ei , vG,H 〉W∞,H ,

where all H in the sums are of dimension n−k. Now, if H containsG, has dimension
n − k and tailcone τ then the image H in N/Qτ is a compact edge e having G has
one of its vertices. The other vertex also corresponds to some G ′ with tailcone τ

and of dimension n − k − 1. There is a similar relation to the above, corresponding
to G ′. Now μ(G)vG,H equals a primitive generator in N/τ ∩ N for the linear space
spanned by e. Similarly μ(G ′)vG ′,H equals a primitive generator the same linear
space, but with different sign. Thus if we sum the relations from G and G ′ the term
W∞,H will cancel. Thus if we sum all the relations corresponding to all possible
such G’s once, we see that the resulting relation is

∑

G

∑

G�H,dim H=n−k,tail H=σ

μ(H)〈ei , vτ,σ 〉W∞,H

By grouping together terms corresponding to the same cone σ we see we can write
this relation as

∑

τ�σ,dim σ=n−k

〈ei , vτ,σ 〉
∑

H�S∞,tail H=σ

μ(H)W∞,H

which is the relation we wanted to show for m = ei . Since this is true for any i it
will also follow for any m by linearity. ��
Lemma 4.2. Assume τ � σ are cones satisfying dim τ + 1 = dim σ . Assume
G � H are faces of some Sp, with tail G = τ , tail H = σ , dim G = dim τ and
dim H = dim σ . Then μ(G)vG,H = μ(H)vτ,σ .

Proof. We may assume e1, ..., ek is a basis for N (H) and e1, ..., ek+1 is a basis for
N (G). N (τ ) is a sublattice of N (H) and there is an upper triangular integer matrix
B such that {bi = Bei } is a basis for N (τ ). In particular the indexμ(G) = [N (G) :
N (τ )] equals the product of the diagonal entries βi of B. We may also assume that
b1, ..., bk is a basis for N (σ ). By definition vτ,σ is a generator of N (τ )/N (σ ), in
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our chosen basis we can choose it as the image of bk+1 in the quotient. Similarly the
image of ek+1 is a generator of N (G)/N (H). Thus we see that βk+1vG,H = vτ,σ .
We also have thatμ(H) = [N (H) : N (σ )] = β1 · · · βk . In particular βk+1 = μ(G)

μ(H ,
which proves the statement. ��
Notation 4.3. We denote the number of elements of Rk, Vk, Tk by rk, vk, tk , respec-
tively.

Example 4.4. Let X = Gr(2, 4) which we can identify with the quadric

V (p12 p34 − p13 p24 + p14 p23) ⊂ P
5.

The group SL4(K) acts on Gr(2, 4) and contains the subgroup of diagonal matrices
which is a 3-dimensional torus and which acts effectively on Gr(2, 4) making it
into a T -variety of complexity one. The rational quotient Y is naturally identified
with the moduli space of marked genus 0 curves M0,4 	 P

1 (see [15]). The iden-
tification is defined as follows. We now think of Gr(2, 4) as the space of lines in
P
3 = P(V ) where V has basis x1, ..., x4. If l ∈ Gr(2, 4) is a general line then the

intersections l ∩ {xi = 0} will give four points p1, p2, p3, p4 on l. Then the cross
ratio CR(p1, p2, p3, p4) defines the rational map to P

1. In this way we obtain all
values in P

1 except {0, 1,∞}. The points 0, 1,∞ are obtained by the non-general
lines in the sets V (p14)∪V (p23), V (p12)∪V (p34), V (p13)∪V (p24), respectively.

In coordinates the map is given as follows: On the open affine set D(p12) a
point in Plucker coordinates maps to (p13 p24 : p23 p14) ∈ P

1. The indeterminancy
locus is given when both coordinates equals 0, we see that this locus consists of the
eight planes

T +
k = V ({pi j |k ∈ {i, j}})

T −
k = V ({pi j |k /∈ {i, j}}).

We can resolve the quotient map by blowing up the union of the eight planes to
get a map ˜X = BlGr(2, 4) → P

1. We will reinterpret this example in the language
of T -varieties.

The paper [2] exhibits a divisorial fan for Gr(2, 4): Let N = Z
4/Z and

let e1, e2, e3, e0 denote the image of the standard basis vectors of Z
4, thus

e0 = −e1 − e2 − e3. The tailfan � is the toric threefold with maximal cones
Cone(±e1,±e2,±e3 ± e4|there are exactly 2 pluses and 2 minuses). This has 6
maximal cones, 12 cones of dimension two and 8 rays. The special fibers correspond
to the boundary divisors M0,4 \ M0,4 of reducible genus 0 curves, of which there are
three. They correspond to partitions (({1,4}, {2,3}), ({1, 2}, {3, 4}), ({1, 3}, {2, 4}),
we may assume these correspond to the points 0, 1,∞, respectively.

The fiber over 0 corresponds to replacing the origin with the compact edge f23
with vertices (0, 0, 0) and (−1,−1, 0). Similarly in the fiber over 1 we insert the
edge f12 with vertices (0, 0, 0) and (−1, 0,−1) and over ∞ the edge f13 with
vertices (1, 1, 1) and (1, 0, 0) (the polyhedra which is written in [2, Theorem 4.2]
is a shifted version of the above, with rational coefficients. By [2, p.8 Remark 2]
the true p-divisor correspond to a shift turning all polyhedra into lattice polyhedra,
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which is what we have done.) The p-divisor containing the edge fi j has the empty
coefficient over the other two special fibers. For a cone σ of � the faces of the
special fibers with tailcone σ all belong to the same p-divisor. See Fig. 3.

Thus we get the following numbers:

r3 = 0, v3 = 6, t3 = 0

r2 = 0, v2 = 3, t2 = 8

r1 = 0, v1 = 0, t1 = 12

r0 = 0, v0 = 0, t0 = 6.

The six invariant subvarieties V (pi j ) correspond to V3. V2 corresponds to the sub-
varieties V (p12, p34), up to permutation, while t2 = 8 says exactly that there are
eight invariant subvarieties of codimension two which are blown up by r , they
correspond to the sets T ±

k . Thus we get an exact sequence

Z
18 → Z

11 → A2(Gr(2, 4)) → 0

The Z
11 has generators W12, W13, W23 corresponding to the edges fi j , and E±

i
corresponding to the rays ±ei . The Z

18 corresponds to six copies of Z3, one for
each vertex of a special fiber. Fixing for example the vertex v = (0, 0, 0) of f13,
we have that this is the vertex of a toric variety with rays with directions
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The relations we get from this will be

div(1, 0, 0) = E+
1 + E−

0 − W13

div(0, 1, 0) = E+
2 + E−

0 − W13

div(0, 0, 1) = E−
3 − E−

0 .

Doing this for all vertices we see that all E−
i are identified, call this class E−,

similarly all E+
i are identified, call this E+ and all Wi j are identified, call this W .

Then this gives a presentation

A2(Gr(2, 4)) 	 Z(E+, E−, W )/(E+ + E− − W )

which we see is isomorphic to a well known presentation of this group, namely

Z(s1,1, s2, s21 )/(s1,1 + s2 − s21 )

Here the s1, s2, s1,1 correspond to Schubert cycles in the Chow ring of Gr(2, 4).
Similarly there is an exact sequence

Z
22 → Z

12 → A1(Gr(2, 4)) → 0

The generators of Z12 correspond to the 12 two-dimensional faces of �, they are
of the form Cone(ei ,−e j ). Denote the corresponding generator by Zi,− j . The
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relations come from two types: three copies of Z2 coming from the edges fi j .
Writing out the relations we see that they give Zi,− j = Z j,−i . Also there are eight
copies of Z2 corresponding to the rays of �, they give relations Zi,− j = Zx,−k .
Combining these we see that all Zi,− j are identified, thus A1(Gr(2, 4)) is one-
dimensional, as expected.

5. Toric downgrades

In this section we study the example of downgrading a toric variety to only consider
it as a T-variety of complexity one. We use the methods described in [14]. Not
surprisingly the exact sequence of Theorem 4.1 coincides with the exact sequence
of Fulton-Sturmfels.

We now consider a toric variety coming from a fan � living in Z
n+1 ⊗ Q. We

choose a splitting Zn+1 = Z
n ⊕Z = N ⊕Z and consider X� only with the action

of TN . We then have an exact sequence

0 → N → N ⊕ Z → Z → 0

The Z corresponds to the quotient, which for us will be P1. By construction there
will only be two special fibers, over 0 and ∞. We denote by s the projection
N ⊕Z → N and by φ the map N ⊕Z → Z. For a cone σ ∈ � we get a polyhedral
divisor with tailcone σ ∩ N and coefficient s(σ ∩ φ−1(1)) over [0] and coefficient
s(σ ∩ φ−1(−1)) over [∞].

We consider the vector space V = Q
n+1 = Z

n+1 ⊗ Q with basis v1, ..., vn+1
and denote the last coordinate hyperplane by H = {v = ∑

tivi |tn+1 = 0} and
H≥0 = {v = ∑

tivi |tn+1 ≥ 0}, H>0 = {v = ∑

tivi |tn+1 > 0} and similarly for
H≤0, H<0.

Lemma 5.1. A cone σ ∈ � of dimension n − k + 1 corresponds to

(1) an element of Rk if and only if σ ⊂ H.
(2) an element of Vk if and only if σ ⊂ H≤0 or σ ⊂ H≥0, but σ is not contained in

H.
(3) an element of Tk if and only if σ intersects both H>0 and H<0.

Proof. If σ ⊂ H then we see that the tailcone of the associated polyhedral divisor
is σ . Moreover we see that this divisor will have ∅ as coefficient over [0] and [∞],
thus it will not be an element of K.

If σ ⊂ H≤0 then the coefficient of [0] will be empty thus the tailcone will
not lie in K . Moreover the coefficient over [∞] will have dimension n − k as it
will equal a compact polyhedron with vertices corresponding to generators having
strictly positive last coordinate plus the tailcone which corresponds to rays with
zero last coordinate.

If σ intersects both H>0 and H<0, then first of all we see that there will be
no ∅ coefficients. Moreover the tailcone will be the intersection of σ with H . In
particular it will have dimension n − k.

Since any cone σ belongs to only one of the three categories the only if state-
ments follow as well. ��
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Corollary 5.2. For a downgraded toric variety the exact sequence of Theorem 4.1
equals the exact sequence

⊕σ∈�(n−k)M(σ ) → ⊕σ∈�(n+1−k)Z → Ak(X) → 0

from [9, Proposition 1.1].

Proof. This follows from the above lemma, together with the fact that for τ ∈ Rk

the relation coming from Z
P/Z, when the number of special fibers is two, is the

same as the relation coming from the last factor of the torus corresponding to N ⊕Z,
since both are saying that the fibers over [0] and [∞] of the corresponding P

1 are
equivalent. ��

In particular, we see from the above that the number of elements of individual
Rk, Vk, Tk can vary a lot, depending on which subtorus we choose, even if their
sum is constant, equal to the number of cones in � of dimension n − k + 1.

Example 5.3. Let the fan for P2 be given from rays ρ1 = (1, 0), ρ2 = (0, 1), ρ0 =
(−1,−1) and denote the associated divisors by Di . Let E = D1 ⊕ 0 and F =
(D1 + D2) ⊕ D0. Then X = P(E) 	 P(F) and it is a toric variety, however the
different choices for E and F corresponds to different T -structures on X , giving
different polyhedral subdivisions and marked cones defining it as a T -variety, see
Figs. 4 and 5.

For P(E) the only marked cones are the ones containing the ray (1, 0), while for
P(F) all non-zero cones are marked. This is both an example of a toric downgrade,
as well as an example of a toric vector bundle (see the next section).

6. Toric Vector bundles as T -varieties

A well-studied example of T-varieties are toric vector bundles. Fix a toric variety
X� . A vector bundle E on X� is called toric if there is a T-action on the geometric
vector bundle which is compatible with the action on X� and linear on the fibers
of E . Toric vector bundles where classified by Klyachko [16]: they correspond to,
for each ray, a filtration of the fiber E over the identity of the torus, indexed by
integers and satisfying a compatibility condition.

Given an indecomposable toric vector bundle of rank r +1, the projectivization
P(E) can be considered a T-variety of complexity r (if it decomposes then the
complexity is lower). If E splits as a sum of line bundles then P(E) is in fact a toric
variety and can thus be described as a complexity-one T -variety via downgrading.

Fix now a smooth toric variety X� , a toric vector bundle E on X� and fix a
maximal cone σ in�. Any vector bundle on an affine toric variety splits as a sum of
line bundles which again implies that P(E |Uσ ) is a toric variety [18, p.31]. We can
describe P(E |Uσ ) as a T-variety via downgrading the torus action to only remember
the action on the base. The description of P(E) as a T-variety will locally be glued
from such pieces.
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This description of rank-two toric vector bundles as T-varieties is given in [3,
Proposition 8.4]. Fix a maximal cone σ . Then E |Uσ = O(u1) ⊕ O(u2), where
u1, u2 are characters of the torus. Define the four polyhedra

�1 = {v ∈ NQ|〈u1 − u2, v〉 ≥ 1} ∩ σ

�2 = {v ∈ NQ|〈u2 − u1, v〉 ≥ 1} ∩ σ

∇1 = {v ∈ NQ|〈u1 − u2, v〉 ≤ 1} ∩ σ

∇2 = {v ∈ NQ|〈u2 − u1, v〉 ≤ 1} ∩ σ

Fix v1, v2 ∈ E corresponding to the 1-dimensional vector spaces in the Klyachko-
filtration for E on σ . If there are no two distinct such spaces, simply choose any
vectors such that v1, v2 is a basis, preferably vi whose span appears in filtration for
other rays (this minimizes the number of special fibers). Then

D1 = �1 ⊗ v1 + ∇2 ⊗ v2

D2 = ∇1 ⊗ v1 + �2 ⊗ v2

are polyhedral divisors describing P(E |Uσ ). Here vi is considered a point in
P
1 = P(E). Thus the special fibers P correspond to the distinct one-dimensional

subspaces appearing in the Klyachko filtrations.
The description above enables us to write out which cycles get contracted by

the map r : ˜X → X . For a cone σ there are essentially three different cases, corre-
sponding to whether there are no one-dimensional linear spaces in the filtrations on
the rays of σ , or only one distinct one-dimensional linear space, or if there are two
different one-dimensional linear spaces (there cannot be more, by the compatibility
condition for a toric vector bundle).

If u1 = u2 (meaning that there are no one-dimensional spaces) then σ itself is
a cone of the tailfan and both polyhedral divisors have ∅ as a coefficient, hence σ

is non-contracted, hence no face of σ will be contracted.
If u1 ≥ u2, but u1 �= u2 on σ (meaning there is one distinct one-dimensional

space) we have that D1 has tailcone σ and no empty coefficients, thus σ will be
contracted. We see that �2 is ∅. Let u1 = (x1, ..., xn) and u2 = (y1, ..., yn) and
assume xi − yi > 0 for i = 1, ..., s and = 0 for i = s + 1, ..., n. Then

∇1 =
{

(a1, ..., an) ∈ NQ|ai ≥ 0,
s

∑

i=0

ai (xi − yi ) ≤ 1

}

.

We see that ∇1 = τ + P where τ is the n − s-dimensional cone generated by
es+1, ..., en (where σ = Cone(e1, ...en)) and P is the s-dimensional simplex
defined by

P =
{

ai ≥ 0,
s

∑

i=0

ai (xi − yi ) ≤ 1

}

.

For a face τ of σ we have that τ is contracted if and only if degD1 ∩ τ �= ∅. We
see that

degD1 =
{

(a1, ..., an) ∈ NQ|ai ≥ 0,
s

∑

i=0

ai (xi − yi ) ≥ 1

}

.
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A face τ of σ is given by an arbitrary subset S of {1, ..., n}:
τ = Cone(ei |i ∈ S ⊂ {1, ..., n}) = {(a1, ..., an) ∈ NQ|ai ≥ 0, ai = 0 for i /∈ I }
We see that τ is not contracted if and only if S ⊂ {s + 1...., n}.

The last case is if there exists at least one component such that u1−u2 is positive
and at least one component such that it is negative. We have that now D1 and D2
will have distinct full-dimensional tailcones σ1 and σ2, with σ = σ1 ∪ σ2. There
are no empty coefficients in any of the polyhedral divisors, thus all faces of σ1, σ2
are contracted.

The above might seem quite technical and non-illuminating, however if we go
to the Klyachko perspective and reformulate the above in terms of the filtrations
we get the following.

Proposition 6.1. Let X 	 P(E) be a toric vector bundle of rank two on a smooth
toric variety X� . Then there is a divisorial fan for X with tailfan �′ being a
subdivision of �. For a cone τ ∈ �′ the corresponding orbit is not contracted by
the map ˜X → X if and only if τ ∈ � and for any v ∈ τ(1) there doesn’t appear a
one-dimensional space in the filtration Ev( j).

Proof. This is just a reformulation of the above, when we recall that the condition
ui = zi is equivalent to Evi ( j) jumps directly from 0 to E . ��
Example 6.2. The T -variety in Example 2.3 can be obtained as follows. Start with
P
1 × P

1, considered as the toric variety with rays ±ei , i = 1, 2 and consider a
rank-two toric vector bundle on it. The filtrations are given by

Ee1( j) =
⎧

⎨

⎩

E if j ≤ 0
[0] if 0 < j ≤ 1
0 if 1 < j

, Ee2( j) =
⎧

⎨

⎩

E if j ≤ 0
[1] if 0 < j ≤ 1
0 if 1 < j

E−e1( j) =
⎧

⎨

⎩

E if j ≤ 0
[∞] if 0 < j ≤ 1
0 if 1 < j

, E−e2( j) =
{

E if j ≤ 0
0 if 1 < j

where we by [p] mean the one-dimensional vector space in E for which the cor-
responding point in P(E) is p. Then one can easily check that we obtain the data
given in Figs. 1 and 2.

Given E of rank two on X� we partition the cones σ in � into three subsets
as above. For any cone σ we denote the characters associated to E |Uσ by uσ

1 and
uσ
2 . We say that σ ∈ H if uσ

1 = uσ
2 on σ . We say that σ ∈ I if uσ

1 − uσ
2 > 0 and

uσ
2 − uσ

1 > 0 both intersects σ . Lastly σ ∈ J if uσ
1 ≥ uσ

2 (or ≤) on σ , but they are
not equal.

Proposition 6.3. For a rank-two toric vector bundle E on the smooth toric variety
X� we have that for X = P(E) the cycles Rk, Vk, Tk for k < n corresponds
bijectively to the following sets

Rk ↔ �(n − k + 1) ∩ H

Vk ↔ (�(n − k + 1) ∩ J ) ∪ (�(n − k) ∩ J ) ∪ 2(�(n − k) ∩ H)

Tk ↔ (�(n − k + 1) ∩ I ) ∪ (�(n − k) ∩ J ) ∪ 2(�(n − k) ∩ I )
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In particular, by summing these numbers we get rk + vk + tk = #�(n − k + 1) +
2#�(n − k) for k < n.

When k = n we have that the correspondences for Rn and Tn still hold, however
an element of Vn corresponds to (�(1) ∩ J ) ∪ P and rn + vn + tn = #�(1) + #P.

In particular the number of generators in the surjection (1) does not depend on the
bundle E except when k = n.

Proof. This is an application of Lemma 5.1 together with the description of P(E)

as a T -variety, since locally a toric vector bundle is given as a toric downgrade.
The statement on Rk is immediate from Proposition 6.1.
If σ ∈ �(n − k + 1) ∩ J then Dσ

2 = ∇1 ⊗ v1 + �2 ⊗ v2 where ∇1 is a sum
τ + P , where P is a polytope and τ a cone not contracted by r , and �2 equals ∅.
Recall that

∇1 =
{

(a1, ..., an) ∈ NQ|ai ≥ 0,
s

∑

i=0

ai (xi − yi ) ≤ 1

}

The intersection of the hyperplane
∑s

i=0 ai (xi − yi ) ≤ 1 with σ is a face of
dimension n − k contained in the relative interior of σ , with tailcone τ , thus giving
an element of Vk . If σ ∈ �(n − k)∩ J then the corresponding ∇1 itself will give an
element of Vk . If σ ∈ � ∩ H then there will be two different fibers, each containing
σ as a face, however both will have empty coefficients somewhere, thus these fibers
are special fibers, hence they contribute twice to Vk .

If σ ∈ �(n − k + 1)∩ I then in �′, σ will be subdivided by intersecting with a
hyperplane intersecting the interior of σ . The intersection of σ with this hyperplane
is a cone of dimension n − k which will be contracted by r , giving an element of
Tk . If σ ∈ �(n −k)∩ J then by the above σ is contracted thus it defines an element
of Tk . If σ ∈ �(n − k) ∩ I then in �′ it will be subdivided into two different cones
of dimension n − k, both of which will be contracted by r .

For k = n we have the short exact sequence

0 → Z
P/Z ⊕ M → Z Vn∪Rn → Pic(P(E)) → 0

Implying that #�(1) + #P = vn + rn . Moreover we see that as above

Rn ↔ �(1) ∩ H

However an element ofVn (which is simply anyvertexof a special fiber) corresponds
to either �(1) ∩ J (as above) or to the vertex 0 which is a vertex of Sp for any
p ∈ P . ��
Remark 6.4. If E is a direct sum of line bundles, then P(E) is itself a toric variety
X�′ and the presentation of P(E) as a T -variety is simply a toric downgrade. In
this case Proposition 6.3 follows from Corollary 5.2 and the description of the fan
�′ [6, Proposition 7.3.3].

Remark 6.5. Consider once again the varieties in Example 5.3. We see that for E
and F the numbers rk, vk, tk are given by Table 1. We see that rk + vk + tk is
independent of whether we use E or F , as predicted by Proposition 6.3.
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Table 1. The numbers ri , vi , ti for Example 5.3

r2 v2 t2 r2 + v2 + t2 r1 v1 t1 r1 + v1 + t1 r0 v0 t0 r0 + v0 + t0

P(E) 3 0 2 5 7 1 1 9 4 2 0 6
P(F) 5 0 0 5 4 5 0 9 1 5 0 6
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