
manuscripta math. 167, 345–363 (2022) © The Author(s) 2021

Salomón Alarcón · Leonelo Iturriaga · Antonella Ritorto

Nonnegative solutions for the fractional Laplacian
involving a nonlinearity with zeros

Received: 23 June 2020 / Accepted: 7 January 2021 / Published online: 30 January 2021

Abstract. We study the nonlocal nonlinear problem
{

(−�)su = λ f (u) in �,

u = 0 on RN \�, (Pλ)

where � is a bounded smooth domain in R
N,N > 2s, 0 < s < 1; f : R → [0, ∞) is a

nonlinear continuous function such that f (0) = f (1) = 0 and f (t) ∼ |t |p−1t as t → 0+,
with 2 < p+1 < 2∗

s ; and λ is a positive parameter. We prove the existence of two nontrivial
solutions uλ and vλ to (Pλ) such that 0 ≤ uλ < vλ ≤ 1 for all sufficiently large λ. The first
solution uλ is obtained by applying the Mountain Pass Theorem, whereas the second, vλ,
via the sub- and super-solution method. We point out that our results hold regardless of the
behavior of the nonlinearity f at infinity. In addition, we obtain that these solutions belong
to L∞(�).

1. Introduction

This paper concerns with the existence of nonnegative solutions of the following
nonlocal nonlinear elliptic problem{

(−�)su = λ f (u) in �,

u = 0 on R
N\�,

(1.1)

where� is a bounded smooth domain inRN , N > 2s, 0 < s < 1; f : R → [0,∞)

is a nonlinear continuous function such that f (0) = f (1) = 0 and f (t) ∼ |t |p−1t
as t → 0+, with 1 < p < N+2s

N−2s = 2∗
s − 1; and λ is a positive parameter.
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In the case s = 1, the local version of (1.1) is reduced to the problem
{−�u = λ f (u) in �,

u = 0 on ∂�,
(1.2)

where f is a nonnegative continuous function.
When f is positive, it is known that its behavior at zero and/or infinity can get

to play a crucial role in the existence question of solutions. This situation can be
clearly observed for the choice f (t) = t p, p > 1, in star-shape domains, on which
we know that there exist positive solutions in C2(�) ∩C(�) to (1.2) if and only if
p < N+2

N−2 . For fairly general nonlinearities, and using different approaches, many
other authors have also studied the influence of the behavior at zero and/or infinity
of f in the existence question, see for example [2,3,7,8] among other research
papers.

When f is nonnegative and has one zero, the existence issue of solutions to
(1.2) is different, as was noted in [16]. This study has been extended to problems
where the Laplacian was replaced by the p-Laplacian [13,14] or Pucci’s operators
[1,20]. In all these works, it was shown that there exist two positive solutions
for sufficiently large λ and by assuming some additional conditions on f . We
also know two interesting contributions which have arisen recently. Firstly, by
considering f nonnegative and having r zeros, in [11], it was proved that (1.2)
has 2r positive solutions provided only that f verifies a suitable non-integrability
condition near each of its zeros. Secondly, in [4] was proved existence of positive
solutions independently of the behavior of f near zero or infinity, for f Lipschitz
having an isolated positive zero and verifying an additional growth hypothesis
around such zero.

In the case 0 < s < 1, the existence of nonnegative solutions to (1.1) also
has been studied. Indeed, such as the local problem, the behavior at zero and/or
infinity of f also can get to exert an influence on the existence of nonnegative
solutions. Again the choice f (t) = t p, p > 1, in star-shape domains, leads to
nonexistence of bounded positive solutions, see [19]. We also know some recent
research involving the fractional Laplacian, where some nonlinearities were con-
sidered. Based on a variational principle, in [15], it was proved multiplicity result
when the nonlinearity leads to the well known convex-concave problem; whereas in
[5], nonlinearities exhibiting semi-linear and super-linear growth were considered
and by using analytic and probabilistic tools, some Ambrosetti-Prodi type results
were stablished. However, as far as our knowledge is concerned, there is no results
in literature that addresses nonlinearities with zeros when 0 < s < 1. Therefore,
this is an interesting topic to investigate, which is the main objective of this paper.

To put into perspective our result, throughout this paper we consider f : R →
[0,∞) being a continuous function that verifies the following conditions:

(F1) lim
t→0+

f (t)

|t |p−1t
= 1 for some 1 < p < N+2s

N−2s ,

(F2) f (1) = 0 and f (t) > 0 for t ∈ (0, 1) ∪ (1, 2),
(F3) there exists M0 > 0 such that the map t 
→ f (t) + M0t is increasing for

t ∈ R.



Nonnegative solutions for the fractional Laplacian 347

Observe that a such function f verifies f (0) = 0 due to (F1).
Our main result is the following.

Theorem 1.1. Let f : R → [0,∞) be a continuous function verifying (F1) −
(F3). Then, there exists λ̄ > 0 such that for λ > λ̄ the problem (Pλ) admits two
nonnegative solutions uλ, vλ ∈ Xs

0(�). Moreover, 0 ≤ uλ < vλ ≤ 1.

The main ideas behind of the proof relies on known arguments for solving this
type of problems. However, this issue is non-trivial, by which we need to treat the
problem under an appropriate approach that allows to apply such arguments and,
in this way, to save several technical difficulties that arise in the nonlocal case.

Specifically, we obtain the first solution uλ by truncating the nonlinearity and
taking λ large enough, where we have assumed only the local condition at zero (F1).
The behavior of the norms, according to the parameter λ of the possible solutions, is
based on the De Giorgi-Nash-Moser theory, precisely on Moser’s iterative scheme.
Such procedure was introduced in the mid 1950s and early 1960s, we refer to
[9,18]. An important fact in the proof is that the functional energy associated with
the truncated problem has theMountain Pass (MP) geometry. Thus, we can control,
in terms of the parameter λ, the MP level and the norm of the MP solution.

Respect to the second solution, we impose the conditions (F2) and (F3) on
f , which are widely known when applying the sub- and super-solution method
in problems like (1.1) with s = 1. Here we show that this idea still remains hold
by defining properly sub- and super-solutions in our nonlocal context, it is when
0 < s < 1.

The document is organized as follows: in Sect. 2 we offer a brief review of the
fractional spaces of Sobolev in the context of our problem and recall some useful
results. In Sect. 3 we look for the first solution, while in Sect. 4 we find the second
solution, which ends the proof of Theorem 1.1

2. Functional framework and preliminaries

In this section, we offer a brief review of the fractional Sobolev spaces in the
context of our problem. Let S (RN ) be the Schwartz space of rapidly decaying
smooth functions, i.e.,

S (RN ):=
{
ϑ ∈ C∞(RN ) | sup

x∈RN
|xαDβϑ(x)| < ∞ for all α, β ∈ N

N
0

}
.

Here, we are considering the fractional Laplacian (−�)s , with s ∈ (0, 1), of a
function ϑ ∈ S (RN ) defined in the principal-value sense as

(−�)sϑ(x):=c(N , s)P.V.
∫
RN

ϑ(x) − ϑ(y)

|x − y|N+2s dy

= −c(N , s)

2

∫
Rn

ϑ(x + z) − 2ϑ(x) + ϑ(x − z)

|z|N+2s dz.
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where c(N , s):=( ∫
RN

1−cos ζ1
|ζ |N+2s dζ

)−1 is a normalization constant. We remark that
the fractional Laplacian also can be viewed as a pseudo-differential operator of
symbol |ξ |2s defined for any function ϑ inS (RN ) as

(−�)sϑ = F−1(|ξ |2sF (ϑ)),

where F denotes Fourier transform, i.e.,

F (ϑ)(ξ) = (2π)−
N
2

∫
RN

e−iξ ·xϑ(x) dx for all ξ ∈ R
N ,

and F−1 its inverse, i.e.,

F−1(ϑ̂)(x) = (2π)−
N
2

∫
RN

eiξ ·x ϑ̂(ξ) dξ for all x ∈ R
N ,

where ϑ̂ :=F (ϑ), that verifies ϑ̂ ∈ S (RN ). See [10, Proposition 3.3].
We consider now the fractional Sobolev space Hs(�) defined as

Hs(�) =
{
h ∈ L2(�) | |h(x) − h(y)|

|x − y| N+2s
2

∈ L2(� × �)

}

endowed with the norm

‖h‖Hs (�):=
(∫

�

|h(x)|2 dx +
∫

�×�

|h(x) − h(y)|2
|x − y|N+2s dx dy

) 1
2

,

where the term

[h]Hs (�):=
(∫

�×�

|h(x) − h(y)|2
|x − y|N+2s dx dy

) 1
2

,

is the so-called Gagliardo seminorm of h. Denote by Hs
0 (�) the closure of C∞

0 (�)

with respect to the norm ‖ · ‖Hs (�).
In order to correctly encode the homogeneous Dirichlet boundary conditions

in the variational formulation, we need to work in a suitable functional analytical
setting. In this way, it is convenient to introduce the set

Q:=(RN × R
N )\(�c × �c)

where

�c:=R
N\�,

and consider the function K : RN\{0} → (0,∞) that is defined as

K (x):=|x |−(N+2s).

We also consider the set Xs(�) being the linear space of all Lebesgue measurable
functions from R

N to R such that the restriction to � of any function u belongs to
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L2(�), and the map (x, y) 
→ (u(x) − u(y))
√
K (x − y) belongs to L2(Q). The

space Xs(�) endowed with the norm

‖u‖Xs (�) = ‖u‖L2(�) +
(∫

Q
|u(x) − u(y)|2K (x − y) dx dy

) 1
2

.

We remark that ‖ · ‖Hs
0 (�) and ‖ · ‖Xs (�) are not the same space because � × �

is strictly contained in Q, so that this makes the classical fractional Sobolev space
approach not sufficient for studying the nonlocal problem.

Now, we introduce the space

Xs
0(�):={u ∈ Xs(�) : u = 0 a.e. in �c}

endowed with the norm induced by the norm of Xs(�); that is,

‖u‖Xs
0(�):=‖u‖L2(RN ) +

(∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy

) 1
2

.

Note that ‖ · ‖Xs
0(�) is truly a norm in Xs

0(�), since for every u ∈ Xs
0(�), one has

that u = 0 a.e. in �c.
Before continuous we recall some properties of the fractional Sobolev space

that we will use in next sections (see for example [17]).

Lemma 2.1. Let s ∈ (0, 1), N > 2s, and � an open bounded domain in R
N with

C0,1-boundary. Then, the following assertions hold:

(i) There exists a positive constant C, depending only on N and s, such that for
any u ∈ Xs

0(�),

‖u‖2
L2∗s (�)

= ‖u‖2
L2∗s (RN )

≤ C
∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy.

(ii) There exists a constant C > 1, depending only on N, s and �, such that for
any u ∈ Xs

0(�),

∫
Q

|u(x) − u(y)|2K (x − y) dx dy ≤ ‖u‖2Xs (�)

≤ C
∫
Q

|u(x) − u(y)|2K (x − y) dx dy,

that is,

‖u‖Xs
0
(�) =

(∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy

) 1
2

is a norm in Xs
0(�) equivalent to the usual norm.

(iii) The embedding Xs
0(�) ↪→ Lr (�) is continuous for any r ∈ [1, 2∗

s ], and com-
pact for any r ∈ [1, 2∗

s ).
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For convenience, from now on the space Xs
0(�) is endowed with the equivalent

norm

‖u‖Xs
0(�):=

(
1

2

∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy

) 1
2

.

Finally, we give the notion of weak solution that we use throughout this paper.
We say that u ∈ Xs

0(�) is a weak solution to (1.1) if

1

2

∫
RN×RN

(u(x) − u(y))(v(x) − v(y))K (x − y) dx dy = λ

∫
�

f (u)v dx

for every v ∈ Xs
0(�).

3. The first solution

Let f : R → [0,∞) be a continuous function. Throughout this section, we only
assume hypothesis (F1) on f . The principal outcome of this section is the next
theorem.

Theorem 3.1. Let f : R → [0,∞) be a continuous function such that (F1) is
verified. Then, there exists λ∗ > 0 such that for any λ > λ∗ the problem (1.1)
admits a nonnegative solution uλ. Moreover,

lim
λ→+∞ ‖uλ‖L∞(�) = 0.

To proveTheorem3.1,we first introduce an auxiliary problem. Sincewe are looking
for solutions uλ close to zero in the L∞-norm, we truncate the problem (1.1) as
follows.

For R ∈ (0, 1), we consider the truncated problem

{
(−�)su = λ fR(u) in �,

u = 0 on �c,
(3.1)

where

fR(t) =
{

f (t+) if |t | ≤ R,
f (R)

Rp
(t+)p otherwise,

and t+ = max{0, t}. Note now that problem (3.1) has a variational structure. Indeed,
its weak formulation is given by

⎧⎪⎪⎨
⎪⎪⎩

1

2

∫
RN×RN

(u(x) − u(y))(v(x) − v(y))K (x − y)dx dy

= λ
∫
�

fR(u)v(x) dx ∀v ∈ Xs
0(�),

u ∈ Xs
0(�),
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and its associated energy functional JR,λ : Xs
0(�) → R is given by

JR,λ(u) = 1

4

∫
RN×RN

|u(x)− u(y)|2K (x − y) dx dy −λ

∫
�

FR(u(x)) dx, (3.2)

where FR is the primitive of fR , that is, FR(t) = ∫ t
0 fR(τ ) dτ .

Next lemma shows that if (3.1) has a solution, then it is nonnegative.

Lemma 3.2. Let R ∈ (0, 1). Assume that problem (3.1) admits a solution uλ,R ∈
Xs
0(�), then uλ,R ≥ 0 a.e. in �.

Proof. If uλ,R ∈ Xs
0(�), then uλ,R ∈ Xs(�) and uλ,R = 0 a.e. �c. To simplify

notation, let us denote v = uλ,R . Then v+, v− ∈ Xs
0(�). Taking v− as a test

function in the weak formulation of (3.1) and, since

(v(x) − v(y))(v−(x) − v−(y))
= (v+(x) − v−(x) − v+(y) + v−(y))(v−(x) − v−(y))
= −(v−(x))2 − v+(y)v−(x) + v−(y)v−(x)

−v+(x)v−(y) + v−(x)v−(y) − (v−(y))2

= −(v−(x) − v−(y))2 − (v+(y)v−(x) + v+(x)v−(y)),

then we get

0 =
∫

�

fR(−v−(x))v−(x) dx =
∫

�

fR(v(x))v−(x) dx

=
∫
RN×RN

(v(x) − v(y))(v−(x) − v−(y))K (x − y) dx dy

= −
∫
RN×RN

(v−(x) − v−(y))2K (x − y) dx dy

−
∫
RN×RN

(v+(y)v−(x) + v+(x)v−(y))K (x − y) dx dy,

which implies that ‖v−‖Xs
0(�) = 0, because v+(y)v−(x) + v+(x)v−(y) ≥ 0 for

a.e. (x, y) ∈ R
N × R

N , that leads to v ≥ 0 a.e. in �. ��
In the sequel, we verify that the energy functional JR,λ given by (3.2) has the

Mountain Pass geometry for all R sufficiently small.

Lemma 3.3. Let λ > 0, and Jλ,R be given by (3.2). Then, for each sufficiently small
R, there exist positive numbers ρλ and βλ such that

(i) JR,λ(u) ≥ βλ for any ‖u‖Xs
0(�) = ρλ. Moreover,

lim
λ→+∞ ρλ = 0 = lim

λ→+∞ βλ.

(ii) There exists a function e ∈ Xs
0(�) such that ‖e‖Xs

0(�) > ρλ and JR,λ(e) < 0.
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Proof. (i) From (F1), there exists a constant α1 > 0 such that FR(t) ≤ α1|t |p+1,
for all sufficiently small R. Then, by (iii) of Lemma 2.1, we get

JR,λ(u) = 1

4

∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy − λ

∫
�

FR(u(x)) dx

≥ 1

4

∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy − α1λ

∫
�

|u(x)|p+1 dx

≥ 1

4
‖u‖2Xs

0(�) − λC‖u‖p+1
Xs
0(�)

= ‖u‖2Xs
0(�)

(
1

4
− λC‖u‖p−1

Xs
0(�)

)
.

Hence, by taking ρλ = (8λC)
−1
p−1 and βλ = ρ2

λ

8 , we conclude the proof of
assertion (i).

(ii) Take u ∈ Xs
0(�)\{0}, u ≥ 0, and consider ϕ(t) = JR,λ(tu), for t ∈ R. It

follows that

lim
t→+∞ ϕ(t) = −∞.

Then by choosing t0 > 0 sufficiently large so that ϕ(t0) < 0 and e = t0u /∈
Bρλ(0), assertion (ii) holds.

��
As already mentioned, the energy functional JR,λ of the truncated problem

(3.1) has the geometry of the Mountain Pass Theorem for all sufficiently small R.
Since fR is a purely power for large values, it is not difficult to prove that JR,λ is a
C1-functional which satisfy the Palais-Smale condition. Consequently, we get the
next existence result.

Lemma 3.4. Let λ > 0. Then, for each sufficiently small R the problem (3.1) admits
a nontrivial nonnegative solution uλ,R ∈ Xs

0(�).

Note that the function uλ,R ∈ Xs
0(�) in Lemma 3.4 satisfies

JR,λ(uλ,R) = cλ,R and J ′
R,λ(uλ,R) = 0, (3.3)

where cλ,R corresponds to the Mountain Pass level, that is,

cλ,R := inf
{

sup
t∈[0,1]

JR,λ(γ (t)) : γ ∈ C([0, 1]; Xs
0(�)), γ (0) = 0, γ (1) = uλ,R

}
.

Lemma 3.5. Let λ > 0. If R > 0 is sufficiently small, then

lim
λ→+∞ cλ,R = 0. (3.4)
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Proof. From (F1), we have that there exists a constant d > 0 such that

FR(t) ≥ d t p+1 for all t ≥ 0 and for all sufficiently small R.

Consider now the positive constant βλ and the function e ∈ Xs
0(�) given in Lemma

3.3. Since 0 < βλ ≤ cλ,R , from Lemma 3.3 (ii), we get

cλ,R ≤ max
t∈[0,∞]

(
1

4
‖te‖2Xs

0(�) − λ

∫
�

FR(te)

)

≤ max
t∈[0,∞]

(
1

4
‖e‖2Xs

0(�)t
2 − λd‖e‖p+1

L p+1(�)
t p+1

)

≤ t2λ
‖e‖2Xs

0(�)

4

(p − 1)

p + 1
,

where t p−1
λ =

‖e‖2
Xs0(�)

2λ‖e‖p+1

L p+1(�)
(p+1)d

. Since tλ → 0 as λ → +∞, we immediately

deduce that (3.4) holds, which completes the proof. ��
We now are interested in establishing the convergence rate of the solution uλ,R

of (3.1) in terms of the Mountain Pass level cλ,R . The following lemma points in
that direction.

Lemma 3.6. Let λ > 0 and uλ,R ∈ Xs
0(�) the function obtained in (3.3). Then,

there exists 0 < R̄ < 1 such that ‖uλ,R‖Xs
0(�) = O(c

1
2
λ,R) for any 0 < R ≤ R̄. In

particular, if 0 < R ≤ R̄, then

lim
λ→+∞ ‖uλ,R‖Xs

0(�) = 0.

Proof. Thanks to (F1), we have that there exists 0 < R̄ < 1 such that for any
0 < R ≤ R̄, there are positive constants α0 and α1 such that (p+1)α0 > 4α1, and

α0t
p ≤ fR(t) ≤ α1t

p for all t ≥ 0.

Notice that since uλ,R is a weak solution of (3.1), then

1

2

∫
RN×RN

(uλ,R(x) − uλ,R(y))(v(x) − v(y))K (x − y) dx dy

= λ

∫
�

fR(uλ,R)v(x) dx

for every v ∈ Xs
0(�), and

JR,λ(uλ,R) = cλ,R

= 1

4

∫
RN×RN

|uλ,R(x) − uλ,R(y)|2K (x − y) dx dy

− λ

∫
�

FR(uλ,R(x)) dx .
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Then by taking v = uλ,R and by combining the two previous equalities, for any
α1

α0(p+1) ≤ θ < 1
4 we get

cλ,R =
(
1

4
− θ

)∫
RN×RN

|uλ,R(x) − uλ,R(y)|2K (x − y) dx dy

− λ

∫
�

FR(uλ,R(x)) dx + λθ

∫
�

fR(uλ,R)uλ,R

≥
(
1

4
− θ

)
‖uλ,R‖2Xs

0(�) + λ

(
θα0 − α1

p + 1

)∫
�

|uλ,R |p+1 dx

≥
(
1

4
− θ

)
‖uλ,R‖2Xs

0(�),

which finishes the proof. ��
Next lemma follows the arguments given in [6] (see also [12]), and it gives us

the boundedness in the L∞-norm of any solution in Xs
0(�) of the problem (3.1).

Lemma 3.7. If u ∈ Xs
0(�) is a nonnegative solution of (3.1), then the u belongs to

L∞(�). Moreover, there exists a constant L > 0 such that

‖u‖L∞(�) ≤ λ
1

2∗s −p−1 L‖u‖
2∗s −2

2∗s −p−1

L2∗s (�)
.

Proof. Since (F1) is verified, it is easy to check that there exists ρ > 0 such that
| fR(t)| ≤ ρ|t |p for all t ∈ R.

Let M > 0 given and consider uM :=min{u, M}. Note that uM belongs to
Xs
0(�) because it is just the composition of u with a Lipschitz function. Consider

now the function

ϕk,M (t) =
⎧⎨
⎩
0 if t ≤ 0,
t2k+1 if 0 < t < M,

(2k + 1)M2k(t − M) + M2k+1 if t ≥ M,

which is Lipschitz as well. Therefore, ϕk,M (uM ) = u2k+1
M ∈ Xs

0(�). We use it as a
test function in the equation that corresponds to the weak formulation to problem
(3.1) verified by u. Then,

1

2

∫
RN×RN

(u(x) − u(y))(u2k+1
M (x) − u2k+1

M (y))K (x − y) dx dy

= λ

∫
�

fR(u)u2k+1
M (x) dx ≤ λρ

∫
�

u p+2k+1(x) dx,

where we have used that uM ≤ u. By using inequality (C.2) of [6], we obtain

1

2

∫
RN×RN

(u(x) − u(y))(u2k+1
M (x) − u2k+1

M (y))K (x − y) dx dy

≥ 4(2k + 1)

(2k + 1 + 1)2

∫
RN×RN

|uk+1
M (x) − uk+1

M (y)|2K (x − y) dx dy
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≥ (2k + 1)

(k + 1)2
C

(∫
RN

(uk+1
M )

2N
N−2s

) N−2s
N

,

and by Hölder’s inequality, we get

(∫
RN

(uk+1
M )

2N
N−2s

) N−2s
N ≤ λρ

(k + 1)2

C(2k + 1)

∫
�

u p+2k+1(x) dx

= λρ
(k + 1)2

C(2k + 1)

∫
�

u p−1u2(k+1) dx

≤ λρ
(k + 1)2

C(2k + 1)

(∫
�

u2(k+1)ldx

) 1
l
(∫

�

u2
∗
s dx

) p−1
2∗s

,

where l = 2∗
s

2∗
s−(p−1) . Taking the limit as M goes to +∞, we obtain

‖u‖L2∗s (k+1)(RN )
≤

(
ρλ(k + 1)2

C(2k + 1)

) 1
2(k+1)

‖u‖L2l(k+1)(�)‖u‖
p−1

2(k+1)

L2∗s (�)
.

Defining k1 ∈ R such a way that 2l(k1 + 1) = 2∗
s , that is,

k1 + 1 = 2∗
s

2l
= 2∗

s − (p − 1)

2
> 1,

it follows that

‖u‖L2∗s (k1+1)(RN )
≤

(
ρλ(k1 + 1)2

C(2k1 + 1)

) 1
2(k1+1)

‖u‖L2∗s (�)
‖u‖

p−1
2(k1+1)

L2∗s (�)

=
(

ρλ(k1 + 1)2

C(2k1 + 1)
‖u‖p−1

L2∗s (�)

) 1
2(k1+1)

‖u‖L2∗s (�)
.

Now, we proceed by induction as 2l(kn +1) = 2∗
s (kn−1 +1), then kn +1 =

(
2∗
s
2l

)n
and

‖u‖L2∗s (kn+1)(RN )
≤

(
ρλ(kn + 1)2

C(2kn + 1)

) 1
2(kn+1)

‖u‖L2l(kn+1)(�)‖u‖
p−1

2(kn+1)

L2∗s (�)

=
(

ρλ(kn + 1)2

C(2kn + 1)
‖u‖p−1

L2∗s (�)

) 1
2(kn+1)

‖u‖L2l(kn+1)(�)

=
(

ρλ(kn + 1)2

C(2kn + 1)
‖u‖p−1

L2∗s (�)

) 1
2(kn+1)

‖u‖
L2∗s (kn−1+1)(�)

≤
n∏

i=1

(
ρλ(ki + 1)2

C(2ki + 1)
‖u‖p−1

L2∗s (�)

) 1
2(ki+1)

‖u‖L2∗s (�)

≤
n∏

i=1

(
ρλ(ki + 1)2

C(2ki + 1)

) 1
2(ki+1)

‖u‖1+
p−1
2

∑n
i=1

1
ki+1

L2∗s (�)
.

(3.5)
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Setting

C1 = ρ
1

2∗s −p−1C
−1

2∗s −p−1 lim
n→∞

n∏
i=1

(
(ki + 1)2

2ki + 1

) 1
2(ki+1)

,

and letting n → ∞ in (3.5) we obtain

‖u‖L∞(RN ) ≤ λ
1

2∗s −p−1C1‖u‖
2∗s −2

2∗s −p−1

L2∗s (�)
.

��
Now, we have all the ingredients to conclude the existence of the first solution

to the problem (1.1) if λ is chosen to be sufficiently large.

Proof of Theorem 3.1. By combining Lemmas 3.4, 3.5, 3.6 and 3.7 we get that for
each sufficiently small R,

‖uλ,R‖L∞(�) ≤ Cλ
−1
p−1 ,

where uλ,R verifies (3.3), and C is a positive constant independent of both R and

λ. Indeed, recalling that cλ,R ∼ λ
− 2

p−1 , we have that

‖uλ,R‖L∞(RN ) ≤ λ
1

2∗s −p−1C1‖uλ,R‖
2∗s −2

2∗s −p−1

L2∗s (�)
= C1

(
λ‖uλ,R‖2∗

s−2

L2∗s (�)

) 1
2∗s −p−1

≤ C
(
λ‖uλ,R‖2∗

s−2
Xs
0(�)

) 1
2∗s −p−1 ≤ C

(
λ(c

1
2
λ,R)2

∗
s−2

) 1
2∗s −p−1

≤ C

(
λ
1− 2∗s −2

p−1

) 1
2∗s −p−1 ≤ Cλ

− 1
p−1 → 0, as λ → +∞.

This means that there exists λ∗ > 0 such that 0 ≤ uλ,R ≤ R < 1 for any λ ≥
λ∗. Hence, according to Lemma 3.4, uλ:=uλ,R becomes a nontrivial nonnegative
solution of the original problem (1.1) since f (uλ) = fR(uλ,R) when 0 ≤ uλ ≤ R.
Therefore, the proof is completed. ��

4. The second solution

The aim of this section is to prove that if λ > 0 is sufficiently large, then there
exists a second solution to problem (1.1). We will reach the goal by means of the
sub- and super-solution method.

For convenience, we start by considering an auxiliary problem. Let g : �×R →
R de a function. In what follows we will assume on g the following,

(G1) g(x, t) is a Carathéodory function (i.e. g(·, t) is measurable for all t ∈ R and
g(x, ·) is continuous for a.e. x ∈ �), and g(·, t) is bounded if t belongs to
bounded sets.
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(G2) There exists M > 0 such that the map t 
→ g(x, t) + Mt is nondecreasing
for a.e. x ∈ �.

Consider now the auxiliary problem{
(−�)su = g(x, u) in �,

u = 0 on �c.
(4.1)

For dealing with (4.1), it is convenient to introduce a precise definition of sub- and
super-solution in our context, which we do with the help of the following lemma.

Lemma 4.1. [17, Lemma 1.26] Let ϕ ∈ C2
0 (�) and u ∈ Xs(�) ∩ L∞(�c). Then,

the following equalities hold true:∫
RN×RN

(u(x) − u(y))(ϕ(x) − ϕ(y))K (x − y) dx dy

=
∫
Q
(u(x) − u(y))(ϕ(x) − ϕ(y))K (x − y) dx dy

=
∫
RN×RN

u(x)(2ϕ(x) − ϕ(x + y) − ϕ(x − y))K (y) dx dy.

According the previous lemma, and since

(−�)su(x) = c(N , s)P.V.
∫
RN

u(x) − u(y)

|x − y|N+2s dy

= −1

2
c(N , s)

∫
RN

u(x + y) + u(x − y) − 2u(x)

|y|N+2s dy,

we can see that for any u ∈ Xs(�) ∩ L∞(�c) and ϕ ∈ C2
0 (�) it is verified

∫
�

(−�)su(x)ϕ(x) dx = c(N , s)P.V.
∫
RN×RN

(u(x) − u(y))(ϕ(x) − ϕ(y))K (x − y) dx dy

= c(N , s)P.V.
∫
Q

(u(x) − u(y))(ϕ(x) − ϕ(y))K (x − y) dx dy

=
∫
�
u(x)(−�)sϕ(x) dx .

Now, we introduce the notion of sub- and super-solution associated to (4.1) that we
use here.

Definition 4.2. Let g : �×R → R a Carathéodory function.We say that functions
u ∈ L1(�) and u ∈ L1(�) are respectively a sub-solution and a super-solution of
(4.1) if is respectively satisfied∫

�

u(x)(−�)sφ(x) dx ≤
∫

�

φ(x)g(x, u(x)) dx

and ∫
�

u(x)(−�)sφ(x) dx ≥
∫

�

φ(x)g(x, u(x)) dx,

for all φ ∈ C2
0 (�), φ ≥ 0 in �.
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Other important tool to prove the existence of a second nontrivial solution to (1.1)
is a weak comparison principle for a related problem. Despite the proof is straight-
forward, we include it for the reader convenience.

Lemma 4.3. (Weak comparison principle) Letψ : �×R → R be a Carathéodory
function, such that ψ(x, 0) = 0 in �, ψ(x, ·) is nondecreasing, and 0 ≤ ψ(x, t) ≤
C(1 + |t |) for all (x, t) ∈ � × R, for some C > 0. If u1, u2 ∈ Xs(�) ∩ L∞(�c)

are such that∫
�

u2(x)(−�)sϕ(x) dx +
∫

�

ψ(x, u2(x))ϕ(x) dx

≤
∫

�

u1(x)(−�)sϕ(x) dx +
∫

�

ψ(x, u1(x))ϕ(x) dx

for all ϕ ∈ Xs
0(�) with ϕ ≥ 0, and

u2 ≤ u1 on �c,

then

u2 ≤ u1 a.e. in �.

Proof. Let us choose ϕ = (u2 − u1)+ ∈ Xs
0(�). It follows that

0 ≥
∫

�

(u2(x) − u1(x))(−�)s(u2 − u1)
+(x) dx

+
∫

�

[ψ(x, u2(x)) − ψ(x, u1(x))](u2 − u1)
+(x) dx

= c(N , s)P.V.
∫
RN×RN

((u2(x) − u1(x)) − (u2(y) − u1(y)))·
· ((u2(x) − u1(x))

+ − (u2(y) − u1(y))
+)K (x − y)dx dy

+
∫

�

[ψ(x, u2(x)) − ψ(x, u1(x))](u2 − u1)
+(x) dx

= c(N , s)P.V.
∫
RN×RN

(
(u2(x) − u1(x))

+ − (u2(y) − u1(y))
+)2

K (x − y) dx dy

+ c(N , s)P.V.
∫
RN×RN

(u2(x) − u1(x))
+(u2(y) − u1(y))

−K (x − y)dx dy

+ c(N , s)P.V.
∫
RN×RN

(u2(x) − u1(x))
−(u2(y) − u1(y))

+K (x − y) dx dy

+
∫

�

[ψ(x, u2(x)) − ψ(x, u1(x))](u2 − u1)
+(x) dx .

Since every term in the last expression is nonnegative,we obtain that (u2−u1)+ = 0
a.e. in RN , which leads to u2 ≤ u1 a.e. in RN . Therefore the proof is completed. ��
Consider now the auxiliary problem (4.1) with the particular choice

g(x, u) = h(x) − ψ(x, u),



Nonnegative solutions for the fractional Laplacian 359

where ψ verifies the hypotheses of Lemma 4.3, and h is a function that belongs to
L2(�). Under these assumptions on ψ and h, we will are able to prove existence
of a solution for the associated equation for this g, which is the content of next
lemma.

Lemma 4.4. Letψ be a Carathéodory function satisfying the hypotheses of Lemma
4.3. Then, for every h ∈ L2(�), the problem

{
(−�)su + ψ(x, u) = h(x) in �,

u = 0 on �c,
(4.2)

admits a unique weak solution u ∈ Xs
0(�). Moreover, the associated operator

T : L2(�) → Xs
0(�), h 
→ u is nondecreasing, and strong-strong continuous,

that is, if hk → h strongly in L2(�), then T hk → Th strongly in Xs
0(�).

Proof. Let u ∈ Xs
0(�) and define

I (u) = 1

4

∫
RN×RN

|u(x) − u(y)|2K (x − y) dx dy

+
∫

�

�(x, u) dx −
∫

�

h(x)u(x) dx,

where �(x, t) = ∫ t
0 ψ(x, τ ) dτ ≥ 0. It is not difficult to show that the functional I

is coercive andweak lower semicontinuous. Indeed, byHölder’s inequality, Lemma
2.1, and Young’s inequality, we get

I (u) ≥ 1

4
‖u‖2Xs

0(�) − ‖h‖L2(�)‖u‖L2(�)

≥
(
1

4
− εC

)
‖u‖2Xs

0(�) − Cε‖h‖2L2(�)

for all sufficiently small ε > 0. Note that we can fix a nonnegative constants B and
a positive constant C such that for every ε > 0 sufficiently small

I (u) ≥ C‖u‖2Xs
0(�) − B for all u ∈ Xs

0(�).

Therefore, I is coercive.
The lower semicontinuity follows from the lower semicontinuity of the Xs

0(�)-
norm, (iii) of Lemma 2.1, and the fact that

lim inf
k→∞

∫
�

�(x, uk) dx ≥
∫

�

�(x, u) dx

if uk ⇀ u in Xs
0(�), thanks to Fatou’s Lemma. Notice that again by (iii) Lemma

2.1, we get the strongly L2(�) convergence by taking a subsequence.
Consequently, by the direct method of calculus of variations, there exists a

unique u ∈ Xs
0(�) such that

I (u) = inf
v∈Xs

0(�)
I (v).
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The fact that T is nondecreasing follows from Lemma 4.3. Let us see T is strong-
strong continuous.

Let {hk}k∈N ⊂ L2(�) be such that hk → h strongly in L2(�). Denote uk =
Thk , u = Th. Since ψ ≥ 0 and uk satisfies the equation in (4.2), from Hölder’s
inequality and Lemma 2.1 we deduce that

‖uk‖2Xs
0(�) ≤ ‖hk‖L2(�)‖hk‖L2(�) ≤ C‖hk‖L2(�)‖uk‖Xs

0(�) ≤ C‖uk‖Xs
0(�).

Then, {uk}k∈N ⊂ Xs
0(�) is a bounded sequence. Thus, there exists a subsequence

{uk j } j∈N such that uk j ⇀ v weakly in Xs
0(�). Thanks to Lemma 2.1, we can

assume in addition uk j → v strongly in L2(�) and a.e. in � by taking another
subsequence if necessary.

Let ϕ ∈ Xs
0(�) and consider it as a test function for the equation in (4.2)

associated to hk . Then,

1

2

∫
RN×RN

(uk j (x) − uk j (y))(ϕ(x) − ϕ(y))K (x − y) dx dy

+
∫

�

ψ(x, uk j (x))ϕ(x) dx

=
∫

�

hk j ϕ dx .

Since hk → h strongly in L2(�), uk j ⇀ v weakly in Xs
0(�), uk j → v strongly in

L2(�) and a.e. in � as k → +∞; and bearing in mind that ψ is a Carathéodory
function, by taking the limit j → ∞ we get

1

2

∫
RN×RN

(v(x) − v(y))(ϕ(x) − ϕ(y))K (x − y) dxdy

+
∫

�

ψ(x, v(x))ϕ(x) dx =
∫

�

hϕ dx .

Due to the uniqueness of solutions to this problem, we get v = u. Notice that
the limit function does not depend on the election of the subsequence. Therefore,
uk ⇀ u weakly in Xs

0(�).
To deduce the strong convergence in Xs

0(�), notice that

‖uk − u‖2Xs
0(�) =

∫
�

(hk − h)(uk − u) dx −
∫

�

(ψ(x, uk) − ψ(x, u))(uk − u) dx .

Hence, by taking the limit as k → +∞, we get that hk → h strongly in L2(�),
uk → u strongly in L2(�) and a.e. in �; and since ψ is a Carathéodory function,
we get uk → u strongly in Xs

0(�), which implies the strong-strong continuity of
T . ��
Theorem 4.5. Let g : �×R → R be such that hypotheses (G1)-(G2) are satisfied.
Consider the problem

{
(−�)su = g(x, u) in �,

u = 0 on RN\�.
(4.3)
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Assume there exist u, u ∈ Xs(�) ∩ L∞(�c), a sub-solution and a super solu-
tion, respectively, with u(x) ≤ u(x) a.e. in �. Then, there exists a minimal (and,
respectively, a maximal) weak solution u∗ (resp. u∗) for the problem (4.3) in the
“interval”

[u, u] = {u ∈ L∞(�) : u(x) ≤ u(x) ≤ u(x) a.e. in �}.
Proof. Consider the set [u, u]with the topology of convergence a.e., and define the
operator S : [u, u] → L2(�) by

Sv(·) = g(·, v(·)) + Mv(·) ∈ L∞(�) ⊂ L2(�)

for any v ∈ [u, u]. By (H1)-(H2), we find that S is nondecreasing and bounded.
Moreover, if vn, v ∈ [u, u] are such that
vn → v a.e. in �. Thanks to (H1), g(x, ·) is continuous. Therefore,

g(x, vn(x)) → g(x, v(x)) in R, a.e. x ∈ �. Clearly, Mvn(x) → Mv(x) a.e.
x ∈ �. Again, by (H1) and the Dominated Lebesgue Convergence Theorem,
S(vn) → S(v) strongly in L2(�).

We have proved the a.e-strong continuity of the operator S, that is, S(vn) →
S(v) strongly in L2(�), if vn → v a.e. in �, with vn, v ∈ [u, u].

Consider H : [u, u] → Xs
0(�) the nondecreasing operator defined by H =

T ◦ S, where T is given in Lemma 4.4. That is, for a function v ∈ [u, u], H(v) is
the unique weak solution of the boundary value problem

{
(−�)su + Mu = g(x, v) + Mv in �,

u = 0 in �c.

Notice that H is a.e-strong continuous, that is, H(vn) → H(v) strongly in Xs
0(�),

if vn → v a.e. in �, with vn, v ∈ [u, u].
Let u1 = H(u) and u1 = H(u). Then, for every φ ∈ Xs

0(�) with φ ≥ 0 we
have that ∫

�

u1(−�)sφ +
∫

�

Mu1φ =
∫

�

(g(x, u) + Mu)φ

≥
∫

�

u(−�)sφ +
∫

�

Muφ

and ∫
�

u1(−�)sφ +
∫

�

Mu1φ =
∫

�

(g(x, u) + Mu)φ

≤
∫

�

u(−�)sφ +
∫

�

Muφ.

Applying Lemma 4.3, and taking into account that H is nondecreasing, we obtain
that u ≤ H(u) ≤ H(u) ≤ H(u) ≤ u, a.e. in �, for any u ∈ [u, u].

By the same reasoning, we can prove the existence of sequences {un}n∈N and
{un}n∈N satisfying

u0 = u, un+1 = H(un),
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u0 = u, un+1 = H(un),

and, for every weak solution u ∈ [u, u] of (PL), we have that
u0 ≤ u1 ≤ . . . ≤ un ≤ u ≤ un ≤ . . . ≤ u1 ≤ u0 a.e. in �.

Then, un → u∗, un → u∗, a.e. in �, with u∗, u∗ ∈ [u, u], u∗ ≤ u∗ a.e. in �.
Since un+1 = H(un) → H(u∗), and un+1 = H(un) → H(u∗) in Xs

0(�) by the
continuity of H , we find that u∗, u∗ ∈ Xs

0(�)with u∗ = H(u∗), u∗ = H(u∗). This
completes the proof. ��

Now, we are able to prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Accoding Theorem 3.1, there exists a λ∗ such that the prob-
lem (1.1) admits a solution uλ for any λ > λ∗. Moreover, following the arguments
given in the proof of Theorem 3.1,

‖uλ‖∞ < 1 for all λ > λ∗.
Hence, if we fix λ0 > λ∗, then u = uλ0 is a sub-solution of problem (1.1) for any
λ > λ0. Indeed, given φ ∈ C2

0 (�) such that φ ≥ 0 in �, we have∫
�

uλ0(−�)sφ dx =
∫

�

φ(−�)suλ0 dx

= λ0

∫
�

f (uλ0)φ dx < λ

∫
�

f (uλ0)φ dx .

On the other hand, u = 1 is a super-solution of the problem (1.1) for any λ > λ0.
Indeed, ∫

�

(−�)sφ dx ≥
∫

�

uλ(−�)sφ dx

= λ

∫
�

f (uλ)φ dx ≥ 0 = λ

∫
�

f (1)φ dx .

Hence, by Theorem 4.5, if we put g(x, u) = λ f (u) for any λ > λ0, then we obtain
another solution vλ of (1.1) for every λ > λ0. Observe that from Theorem 3.1,

lim
λ→+∞ ‖uλ‖L∞(�) = 0.

Therefore, λ0 can be chosen sufficiently large, so that uλ < u ≤ vλ ≤ 1 = ū. In
this way, the proof is completed if we take λ = λ0. ��
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