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Abstract. We consider a large class of so-called dynamical Belyi maps and study the Galois
groups of iterates of such maps. From the combinatorial invariants of the maps, we construct
a useful presentation of the geometricGalois groups as subgroups of automorphismgroups of
regular trees, in terms of iteratedwreath products.Using results on the reduction of dynamical
Belyi maps modulo certain primes, we obtain results on the corresponding arithmetic Galois
groups of iterates. These lead to results on the behavior of the arithmetic Galois groups under
specialization, with applications to dynamical sequences.

Introduction

Let f : P
1
K → P

1
K be a rational map defined over a number field K . The Galois

theory of the iterates f n = f ◦ · · · ◦ f : P
1
K → P

1
K was first studied in the work of

Odoni [13], and has applications both in number theory and in arithmetic dynamics.
Specializing the iterates f n at a K -rational place a ∈ P

1
K , we obtain a tower of

number fields (Kn,a)n≥1. Many recent papers study the question of the distribution
of the primes of K that ramify in this tower.

We denote the Galois group of f n byGn,K = Gn,K ( f ) and the Galois group of
its specialization at a by Gn,a = Gn,a,K ( f ). For places a avoiding a finite subset
of P

1
K , the limitG∞,a = lim←−n

Gn,a acts on the infinite d-ary regular tree T∞, where
d = deg( f ). We obtain an arboreal representation, and hence a map of G∞,a to
the automorphism group Aut(T∞) of the tree; this is why we call the group G∞,a

an arboreal Galois group. A paper by Jones [9] provides a survey of the theory of
arboreal representations. A central question is to characterize when G∞,a embeds
in Aut(T∞) as a subgroup of finite index [9, Question 1.1]. As Jones discusses, this
question may be considered as an analog of Serre’s open image theorem. We take
a different perspective and study a class of rational maps for which the image of
G∞,a has infinite index in Aut(T∞).
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The maps we study in this paper are Belyi maps f : P
1
K → P

1
K with exactly 3

ramification points, which we assume to be 0, 1,∞. We normalize the coordinate
on the target projective line such that the ramification points are fixed by f . A
map f satisfying these properties is called a normalized (dynamical) Belyi map
and is completely determined by its (combinatorial) type (Definition 1.1.2), which
tabulates the ramification indices. In particular, allmapsmaybedefinedover K = Q

(Proposition 1.1.3). All normalized Belyi maps are so-called post-critically finite
(PCF) maps, since the forward orbit of each ramification point is preperiodic. A
result of Jones and Pink [9, Theorem 3.1] states that the index [Aut(T∞) : G∞,a]
is infinite for PCF maps, and hence for ours, as well.

The arborealGalois groupG∞,a of a specialization of a PCFmap is amysterious
group,which is hard to describe in general. The case that f is a polynomial of degree
deg( f ) = 2 has been extensively studied, see e.g. [12,15]. In [3], the authors
consider the case of the cubic polynomial f (x) = −2x3 + 3x2, providing the first
completely explicit result on its Galois theory. This cubic polynomial is the easiest
example of a normalized Belyi map.

A related problem, which is very interesting but difficult in general, is to deter-
mine the primes that ramify in the tower of number fields (Kn,a)n≥1. For PCFmaps
f , it is known that only finitely many primes ramify in the whole tower (Kn,a)n≥1.
This was proven in [1, Theorem 1.1] in the case that f is a polynomial and in [4,
Theorem 1] in the general case; see also [10, Theorem 3.2].

The goal of this paper is to study the Galois group G∞,a and the primes rami-
fying in the corresponding tower of number fields for normalized Belyi maps. The
class of normalized Belyi maps we study in this paper contains maps of arbitrarily
large degree, which are not necessarily polynomial. Explicit expressions exist for
these maps; Proposition 1.1.4 gives a sample. However, we do not rely on these to
prove general results for this class of maps.

Instead, we systematically use the Galois-theoretical characterization of these
maps (Sect. 1) and exploit the description of their Galois groups as an iterated
wreath product. In particular, the combinatorial description of the monodromy of
f (in terms of its combinatorial type) yields a combinatorial description of the
monodromy of its iterates, which enables us to explicitly determine the geometric
Galois groups Gn,Q for all n ≥ 1 in Theorem 2.3.1. Furthermore, the product
discriminant that we introduce in Sect. 2.4 allows us to study the arithmetic Galois
groupsGn,Q and tomake a comparisonbetween the arithmetic andgeometricGalois
groups in Sect. 2.4. Finally, in analyzing the properties of the specialized Galois
groups Gn,a (Theorem 3.2.2) our full understanding of the ramification structure
of iterates of dynamical Belyi maps plays a key role. Another important ingredient
is that the reduction behavior of a normalized Belyi map f , like its monodromy,
can also be completely expressed in terms of its combinatorial type, often yielding
explicit and easy to apply criteria for good and bad reduction. Normalized Belyi
maps were already studied in the context of arithmetic dynamics in our previous
paper [2], where we proved a first result on the reduction of normalized Belyi maps
(Proposition 1.2.4). In the current paper, we exploit this approach more fully to
study the Galois theory of the towers (Kn,a)n≥1 for normalized Belyi maps.
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Normalized Belyi maps form a very rich source of PCF maps. The techniques
for studying their iterates presented here illustrate that the whole class of maps may
be analyzed by general methods, which makes the class accessible for future appli-
cations in arithmetic dynamics. Just to mention one possible application: Remark
3.1.6 sketches how our results may be used to explicitly construct infinite towers
of number fields branched over an explicit finite set of primes. Our knowledge on
the reduction of a normalized Belyi map yields a much smaller set containing the
branched primes than could be expected from previous work.

We now describe our results more precisely. Our first main result completely
describes the geometric groups Gn,Q as subgroups of Aut(Tn) for any n ≥ 1,
excluding two exceptional cases in small degree. The geometric group Gn,Q is the

Galois group of f n : P
1
Q

→ P
1
Q
considered as map defined over Q.

Theorem 1. (Theorem 2.3.1) Let f be a normalized Belyi map and let En ⊆
Aut(Tn) be the subgroup defined in Definition2.1.2. With two exceptions the group
Gn,Q is either isomorphic to En or to the n-fold iterated wreath product of Ad with
itself. The case distinction only depends on the type of f and is independent of n.

The two possibilities for Gn,Q can be described totally explicitly. For example,
there is an easy formula for its index in Aut(Tn) (Lemma 2.1.3(1)).

In general, the Galois group Gn,Q of f n , considered as map defined over Q,
is strictly larger than Gn,Q. In Corollaries 2.4.4 and 2.4.6 and Remark 2.4.7 we
describe exactly when Gn,Q = Gn,Q for all n ≥ 1.

Hilbert’s Irreducibility Theorem implies that Gn,a = Gn,Q for a in a dense
open subset of P

1
Q
. We give an explicit criterion on a and the type of the normalized

dynamical Belyi map f that guarantees that Gn,a = Gn,Q = Gn,Q = En for all
n ≥ 1:

Theorem 2. (Theorem 3.2.2) Let a ∈ P
1(Q) \ {0, 1,∞} be chosen such that Con-

ditions 3.1.5 are satisfied for some choice of distinct rational primes p, q1, q2, q3.
Assume that Gn,Q = Gn,Q for all n ≥ 1. Then Gn,a 	 Gn,Q for all n ≥ 1.

While the conditions we impose are somewhat involved, it is not hard to find
instances where all conditions are satisfied; Remark 3.1.6 gives a sample.

Theorem 2 is a generalization of the main result (Theorem 1.1) of [3], in which
the authors consider the special case that f (x) = −2x3 + 3x2 is a concrete poly-
nomial of degree 3. Our Conditions 3.1.5 generalize Condition (†) in that paper.
The general strategy for proving our results is similar to that of [3]. However, the
details of the proofs are quite different. The authors of [3] can rely on ad hoc argu-
ments in terms of the explicit polynomial f (x) that do not extend directly. In our
much more general setting, we exploit the Galois-theoretic properties of normal-
ized Belyi maps and the group-theoretic properties of arboreal Galois groups as
iterated wreath products instead.

Our last main result is an application to arithmetic dynamics. Let f be a nor-
malized Belyi map of degree d ≥ 3. For any c ∈ P

1(Q), we may construct the
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dynamical sequence { f i (c)}i≥0, where f 0(c) = c, and study the primes dividing
at least one non-zero finite term of the sequence. (Note that since normalized Belyi
maps fix 0, 1,∞, the only interesting dynamical sequences are those avoiding these
three points.)

Theorem 3. (Corollary 4.2.1(2)) Let K be the splitting field of f and consider the
non-zero preimages of zero under f , denoted c j ∈ K. Suppose that for each c j the
analogues ofConditions 3.1.5 are satisfied for distinct K -primes p j , q1, j , q2, j , q3, j .
Define a dynamical sequence {bi }i≥0 by b0 ∈ Q\{0, 1} and bi = f (bi−1) for i ≥ 1.
Then the set of prime divisors of the entries of this sequence has natural density
zero.

Outline of the paper In Sect. 1, we introduce normalized (dynamical) Belyi maps
and formulate known facts on their Galois groups. We also recall some results from
[2] on reduction of normalized Belyi maps. In Sect. 2 we consider the automor-
phism group Aut(T∞) of an infinite regular tree. We prove our first main result,
Theorem 2.3.1, which describes the groups Gn,Q as subgroups of Aut(Tn), and
prove Corollary 2.4.4, which compares Gn,Q with Gn,Q.

Section3 treats the specializationsGn,a .Our secondmain result, Theorem3.2.2,
proves sufficient conditions guaranteeing thatGn,a 	 Gn,Q for all n ≥ 1. In Sect. 4,
we show in Theorem 4.1.2 that the proportion of elements ofGn (and hence ofGn,a ,
when Conditions 3.1.5 are satisfied) that fix a leaf tends to zero as n tends to infinity.
This is applied to derive consequences for prime divisors of dynamical sequences
in Corollary 4.2.1.

1. Dynamical Belyi maps

1.1. Normalized Belyi maps of type (d; e1, e2, e3)
In this section we introduce the class of Belyi maps that we will study in this paper.
Recall that a Belyi map is a finite cover f : X → P

1 of smooth projective curves
over C that is branched exactly over x1 = 0, x2 = 1, and x3 = ∞. A Belyi map
has genus zero if X has genus g(X) = 0.

Remark 1.1.1. A dynamical Belyi map is a genus-0 Belyi map f such that
f ({0, 1,∞}) ⊆ {0, 1,∞}. This notion was introduced in [18]. In this case the
nth iterate of f , which we denote by f n , is also a Belyi map of genus zero. All
dynamicalBelyimaps arepost-critically finite; amap f : P

1 → P
1 is post-critically

finite (PCF) if each of its ramification points has finite forward orbit.

Definition 1.1.2. (1) A Belyi map f is called single cycle if there is a unique
ramification point over each of the three branch points.

(2) A single-cycle genus-0 Belyi map is called normalized if its ramification points
are 0, 1, ∞, and moreover f (0) = 0, f (1) = 1, and f (∞) = ∞.

(3) The (combinatorial) type of a single-cycle genus-0 Belyi map f is the tuple
(d; e1, e2, e3), where d = deg( f ) and ei is the ramification index of the unique
ramification point above xi .
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Note that normalized (single-cycle genus-0) Belyi maps f are dynamical Belyi
maps, and hence PCF maps. They even satisfy the stronger condition of being con-
servative, which means that they are PCF maps such that each of their ramification
points is a fixed point.

The Riemann–Hurwitz formula implies that the type of a single-cycle genus-0
Belyi map of type (d; e1, e2, e3) satisfies

2d + 1 = e1 + e2 + e3. (1.1.1)

A Belyi map of type (d; e1, e2, e3) is automatically single cycle. All Belyi maps
considered in this paper are assumed to be normalized (single-cycle genus-0 dynam-
ical) Belyi maps from now on.

To exclude trivial cases we always assume that all normalized Belyi maps
of type (d; e1, e2, e3) have exactly three ramification points, i.e., ei > 1 for all
1 ≤ i ≤ 3. For simplicity we will moreover always assume that e1 ≤ e2 ≤ e3.
Permuting the ei corresponds to changing coordinates on both projective lines
simultaneously, therefore these inequalities pose no restriction. An abstract type is
a tuple (d; e1, e2, e3) such that

2 ≤ e1 ≤ e2 ≤ e3 ≤ d

and such that (1.1.1) holds.
The following result is classical; a proof can be found in [2, Proposition 1]. Note

that the normalization condition completely fixes the coordinates on both projective
lines.

Proposition 1.1.3. For each abstract type C := (d; e1, e2, e3) there is a unique
normalized Belyi map f of type C. Moreover, this Belyi map is defined over Q.

Proposition 1.1.3 implies that a normalized Belyi map f is completely deter-
mined by its type. All proofs in this paper only depend on the type of f and do not
use the explicit equation for f . However, it is not too difficult to explicitly calculate
the normalized Belyi map of a given type, as the following result illustrates.

Proposition 1.1.4. Let d ≥ 3 and k ≥ 1.

(1) The unique normalized Belyi map of type (d; d − k, k + 1, d) is

f (x) = cxd−k(a0x
k + · · · + ak−1x + ak),

where

ai := (−1)k−i

(d − i)

(
k

i

)
and c = 1

k!
k∏
j=0

(d − j).

(2) The unique normalized Belyi map of type (d; d − k, 2k + 1, d − k) is

f (x) = xd−k
(
a0xk − a1xk−1 + · · · + (−1)kak

(−1)kakxk + · · · − a1x + a0

)
,
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where

ai :=
(
k

i

) ∏
k+i+1≤ j≤2k

(d − j)
∏

0≤ j≤i−1

(d − j) = k!
(
d

i

)(
d − k − i − 1

k − i

)
.

Proof. This is [2, Propositions 2 and 3]. ��
Let f be a normalized Belyi map of type (d; e1, e2, e3). Associated with f is

a generating system (g1, g2, g3), which describes the quotient of the topological
fundamental group π1(P

1 \ {0, 1,∞}, ∗) corresponding to f . In our situation, a
generating system consists of three permutations gi ∈ Sd for 1 ≤ i ≤ 3, where gi is
a single cycle of length ei , that satisfy the relation g1g2g3 = 1. This motivates the
terminology single cycle. The generating system for f is unique up to simultaneous
conjugacy by elements of Sd . The group G( f ) := 〈g1, g2, g3〉 is the Galois group
of the Galois closure of the cover f : P

1
Q

→ P
1
Q
, i.e., the Galois group of the

splitting field of f (x) − t over Q(t). Liu–Osserman [11, Lemma 2.1] show that
the triple (g1, g2, g3) is weakly rigid in the sense that it is unique up to uniform
conjugacy in Sd . However, in the case that G( f ) � Sd the generating system is
not unique up to uniform conjugacy in G( f ), i.e., the triple is not rigid. In this
case G( f ) is not necessarily the Galois group of the cover f : P

1
Q

→ P
1
Q
, even

though the map f is defined over Q. We discuss this phenomenon in more detail
in Sect. 2.4. We refer to [16, Chapter 2] for a general introduction to this topic.

Lemma 1.1.5. Let f be a normalized Belyi map of type C = (d; e1, e2, e3).
(1) Assume C �= (6; 4, 4, 5). Then the Galois group G( f ) of the Galois closure of

f : P
1
Q

→ P
1
Q
is isomorphic to Sd if at least one ei is even, and to Ad otherwise.

(2) Define

g1 = (d, d − 1, . . . , e3, 1, 2, . . . , d − e2 − 1, d − e2),

g2 = (d − e2 + 1, d − e2 + 2, . . . , d − 1, d),

g3 = (e3, e3 − 1, . . . , 2, 1).

(1.1.2)

Then (g1, g2, g3) is a generating system for f .

Proof. The first statement is proved in [11, Theorem 5.3]. The second statement is
[11, Lemma 2.1]. ��

1.2. Reduction of normalized Belyi maps

In this section we recall from [2, Section 4] the definition of and some results on
the reduction of normalized Belyi maps.

We identify the cover f with the rational function that defines it. Without loss
of generality we may assume the following holds:

(1) Wemay write f (x) = xe1 f1(x)/ f2(x), with f1, f2 ∈ Z[x] such that f1(0) �= 0
and f2(0) �= 0;
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(2) The polynomials f1, f2 satisfy gcd( f1, f2) = 1 and have coprime leading
coefficients;

(3) The greatest common divisor of all coefficients of f is 1.

Definition 1.2.1. Let f be a normalized Belyi map of type (d; e1, e2, e3) and let p
be a prime. The reduction f of f at p is defined as f = xe1 f 1/ f 2, where f i is
the reduction of fi modulo p (as a polynomial with coefficients in Z).

Definition 1.2.1 is a simplification of the definition in [2, Section 4], taking into
account the result of [2, Proposition 4].

The following proposition lists some properties of the reduction of a normalized
Belyi map. The proof uses the assumption that f is a normalized Belyi map of type
C in an essential way, see [2, Example 4].

Proposition 1.2.2. Let f be a normalized Belyi map of type C = (d; e1, e2, e3)
and let p be a prime.

(1) The rational function f ∈ Fp(x) is non-constant.
(2) We have f (0) = 0, f (1) = 1, and f (∞) = ∞.

Proof. The statement is not stated explicitly in [2] in this form, but it follows
immediately from the proof of [2, Proposition 4] and [2, Remark 6]. ��
Definition 1.2.3. (1) A normalized Belyi map f has bad reduction at a prime p if

f has strictly smaller degree than f . Otherwise, f has good reduction at p.
(2) A normalized Belyi map f has good monomial reduction at p if it has good

reduction at p and its reduction is f (x) = xdeg( f ).
(3) A normalized Belyi map f has good separable reduction at p if it has good

reduction at p and its reduction is a separable rational map. A rational map in
Fp(x) is separable if and only if it is not contained in Fp(x p), if and only if it
defines a separable map P

1
Fp

→ P
1
Fp
.

If a normalizedBelyimap f has good separable reduction at p then its reduction
f is also a normalized Belyi map and f has the same type as f . This follows from
the proof of [2, Proposition 5]. Good monomial reduction is a special case of good
inseparable reduction. InProposition3.1.2weuse it to characterize the irreducibility
of specializations of f and its iterates.

The following result allows us to prescribe the reduction of a normalized Belyi
map by purely combinatorial conditions on its ramification indices.

Proposition 1.2.4. Let f be a normalized Belyi map of combinatorial type
(d; e1, e2, e3).
(1) Assume that p > d. Then f has good separable reduction at p.
(2) Write d = pnd ′ where p � d ′. Then f has good monomial reduction at p if and

only if e2 ≤ pn.

Proof. Statement (1) follows from [2, Corollary 2]. Statement (2) is [2, Theorem
1]. ��



8 I. I. Bouw et al.

2. Arboreal Galois groups

2.1. Automorphisms of the d-ary regular tree

Let Tn be the regular d-ary rooted tree of level n (cf. Fig. 1).
We label the vertices of the tree as follows: the root of the tree corresponds

to the level 0, and has the empty label (). The vertices at level i are labeled as
(�1, . . . , �i ) with � j ∈ {1, . . . , d}. Here (�1, . . . , �i−1) is the unique vertex at level
i − 1 which is connected to (�1, . . . , �i ) by an edge. For the vertices of Tn at level
n, also called the leaves, we additionally use the numbering

1 +
n∑

k=1

(�k − 1)dk−1 ∈ {1, 2, . . . , dn} instead of (�1, . . . , �n). (2.1.1)

SinceAut(Tn) acts faithfully on the leaves of the tree Tn , the choice of the numbering
induces an injective group homomorphism

ιn : Aut(Tn) ↪→ Sdn . (2.1.2)

In this paper we use the convention that permutations act from the right.
Rather than considering Aut(Tn) as a subgroup of Sdn it is more convenient for

our purposes to view Aut(Tn) as a subgroup of the n-fold iterated wreath product
of Sd by itself. The structure of Aut(Tn) as n-fold iterated wreath product is

Aut(Tn) 	 Aut(Tn−1) � Aut(T1) for n ≥ 2. (2.1.3)

This isomorphism is induced by the decomposition of Tn as the subtree T1 (con-
sisting of the levels 0 and 1), and d copies of Tn−1 each consisting of the complete
subtree of Tn with root ( j) for j ∈ {1, . . . , d}. We remark that Aut(T1) 	 Sd , but
that the iterated wreath product Aut(Tn) is a strict subgroup of Sdn for n ≥ 2.

Equation (2.1.3) allows us to write the elements of Aut(Tn) as tuples

(σ , τ ) = ((σ1, . . . , σd), τ ) with σ j ∈ Aut(Tn−1) and τ ∈ Aut(T1) 	 Sd .

(2.1.4)

Fig. 1. The regular 3-ary tree
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Using this identification, an element of Aut(Tn) acts on vertices of Tn as

(�1, . . . , �n) · ((σ1, . . . , σd), τ ) = ((�1)τ, (�2, . . . , �n)σ�1). (2.1.5)

In other words, τ permutes the d complete subtrees isomorphic to Tn−1, and σ j

acts on the complete subtree with root ( j).
Let (�1, . . . , �m) be a vertex of Tn at levelm ≤ n−1 and let i = 1+∑m

k=1(�k −
1)dk−1. We denote the complete subtree of Tn with root (�1, . . . , �m) by

Tn(�1, . . . , �m) = T i
n . (2.1.6)

Correspondingly, we denote the group of permutations that only permute the leaves
of T i

n and fix all other leaves of Tn by

S (T i
n ) = {(σ , τ ) ∈ Aut(Tn) | (σ , τ ) acts trivially outside T i

n ). (2.1.7)

We may view S (T i
n ) as a subgroup of Sdn via ιn .

For future reference, we note that

((σ ′
1, . . . , σ

′
d), τ

′) · ((σ1, . . . , σd), τ ) = ((σ ′
1σ(1)τ ′ , . . . , σ ′

dσ(d)τ ′), τ ′τ),

((σ1, . . . , σd), τ )−1 = ((σ−1
(1)τ−1, . . . , σ

−1
(d)τ−1), τ

−1)),

((σ1, . . . , σd), τ )−1((ξ1, . . . , ξd),−)((σ1, . . . , σd), τ )

= ((σ−1
(1)τ−1ξ(1)τ−1σ(1)τ−1, · · · ),−).

(2.1.8)

Here − denotes the trivial permutation.
For every m ≤ n we write πm for the natural projection

πm : Aut(Tn) → Aut(Tm),

which corresponds to restricting the action of an element of Aut(Tn) to the subtree
Tm consisting of the levels 0, 1, . . . ,m.

Definition 2.1.1. (1) Define sgn2 : Aut(T2) → {±1} by setting

sgn2(((σ1, . . . , σd), τ )) = sgn(τ )

d∏
i=1

sgn(σi ). (2.1.9)

Here sgn is the usual sign on Aut(T1) via the identification Aut(T1) 	 Sd
induced by the choice of labeling of the vertices.

(2) For n > 2 we define

sgn2 := sgn2 ◦π2 : Aut(Tn) → {±1}. (2.1.10)

We call sgn2 the wreath-product sign.

Using (2.1.8), one may check that sgn2 is a group homomorphism. We define a
subgroup En of Aut(Tn) using the wreath-product sign.We show in Corollary 2.2.4
below that the Galois group of f n is a subgroup of En .
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Definition 2.1.2. Define the subgroup En ⊆ Aut(Tn) by

En =
{
Aut(T1) if n = 1,
(En−1 � E1) ∩ ker(sgn2) ⊆ Aut(Tn−1) � Aut(T1) = Aut(Tn) otherwise.

Lemma 2.1.3. (1) For all d ≥ 2 and n ≥ 2 we have

[Aut(Tn) : En] = 2d
n−2+dn−3+···+d+1.

(2) Assume that d is odd. Then the wreath-product sign onAut(Tn) agrees with the
restriction of the usual sign on Sd2 via the embedding ιn from (2.1.2):

sgn2 : Aut(T2) → {±1}, sgn2((σ , τ )) �→ sgn ◦ι2((σ , τ )).

Proof. The definition of En (Definition 2.1.2) implies that

|En| = |En−1|d · |E1|/2.

Since E1 = Aut(T1), the definition of the wreath-product sign (2.1.10) implies
that

[Aut(Tn) : En] = 2 ([Aut(Tn−1) : En−1])d .

Statement (1) follows from this by induction.
To prove Statement (2), we first note that for any (σ , τ ) ∈ Aut(T2) we may

write

(σ , τ ) = (σ ,−) ◦ ((−), τ ).

Since sgn2 is a group homomorphism, it suffices to treat the elements on the right
hand side separately.

From (2.1.5) it follows that ((−), τ ) acts as the product of d disjoint per-
mutations of the same cycle type as τ . We conclude that the sign in Sd2 of
the image of ((−), τ ) under ι2 is sgn(τ )d . This equals the wreath-product sign
sgn2(((−), τ )) = sgn(τ ) if d is odd.

Now let (σ ,−) = ((σ1, . . . , σd),−) ∈ Aut(T2) with σi ∈ E1 = Aut(T1). This
element acts as the product

∏
i σi , where each σi acts on the subtree of T i

2 , i.e., as
element ofS (T i

2 ). (See (2.1.7).) We may therefore identify (σ ,−) with its image
under ι2 in Sd2 . We conclude that

sgn2((σ ,−)) =
∏
j

sgn(σ j ) = sgn(ι2(σ1, . . . , σd)).

This finishes the proof of Statement (2). ��
Note that it follows from the proof of Lemma 2.1.3(2) that for d even the

wreath-product sign (2.1.9) is not compatible with the natural sign on Sd2 .
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2.2. A generating system for f n

Let f be a normalizedBelyimap. Recall that f n = f ◦· · ·◦ f denotes the nth iterate
of f , which is again a normalized Belyi map.We start by defining the Galois groups
that are the central object of study in this paper. We then determine a generating
system for f n in terms of a generating system for f .

Let K be a field of definition of f . Since f is aBelyimap,wemay assume that K
is a number field.Moreover, since f is normalized, it follows fromProposition 1.1.3
that wemay take K = Q. Write F0 := K (t) for the function field of P

1
K . Since K is

a field of definition for f n for all n, the field K is integrally closed in the extension
of function fields corresponding to the map f n : P

1
K → P

1
K , which we denote by

Fn/F0. We choose a normal closure Mn/F0 of Fn/F0 such that Mn contains Mn−1
for any n ≥ 1.

The extension of function fields
(
Fn ⊗K Q

)
/Q(t) corresponds to f n : P

1
Q

→
P
1
Q
considered as map over the algebraic closure Q of the number field K . Note

that
(
Mn ⊗K Q

)
/Q(t) is a normal closure of

(
Fn ⊗K Q

)
/Q(t).

Definition 2.2.1. For arbitrary n ≥ 1 we define

Gn,Q = Gal(Mn/F0), Gn,Q = Gal(
(
Mn ⊗K Q

)
/Q(t)).

Note that G1,Q = G( f ) as defined in Sect. 1.1.
It follows from the definitions that

Gn,Q ⊆ Gn,Q. (2.2.1)

In general it is not true that Gn,Q = Gn,Q, see Remark 2.4.1. In the case that

we have equality in (2.2.1) we say that the Galois extension
(
Mn ⊗K Q

)
/Q(t)

descends to Q(t) or in short that the group GnQ descends to Q.
Our convention that the normal closure Mn contains Mm for all m ≤ n implies

that Gn,Q, and hence Gn,Q, naturally has the structure of a wreath product. Iden-

tifying the sheets of f n above a chosen base point in P
1(Q) \ {0, 1,∞} with the

leaves of the tree Tn yields an inclusion

Gn,Q ↪→ Aut(Tn) 	 Aut(Tn−1) � Aut(T1). (2.2.2)

In the rest of the paper we fix this inclusion.
Our next goal is to determine a generating system (g1,n, g2,n, g3,n) for f n for

all n in terms of a fixed generating system (g1,1, g2,1, g3,1) for f . Since Gn,Q =
〈g1,n, g2,n〉, we can use this to determine the groupGn,Q.We refer to Theorem 2.3.1
for the precise result.

Remark 2.2.2. By the single-cycle condition, the fiber above 0 in f n contains a
unique point with ramification index en1 . (This is the point x = 0.) Additionally,
for each 0 ≤ i ≤ n − 1 there are exactly (d − e1)dn−1−i ramification points
with ramification index (e1)i . (These are exactly the points in the inverse image



12 I. I. Bouw et al.

f −n+i (0)which are not in f −n−1+i (0).) The analogous statements with 0 replaced
by 1 or ∞ and e1 by e2 or e3, respectively, also hold. This description determines
the cycle type of the group elements of a generating system of f n considered as
elements of Sdn . For our purposes we need more precise information, which the
following proposition supplies.

A number is said to be in the support of a permutation if it appears in one of
the cycles of the permutation, i.e., if it is not fixed by the permutation.

Proposition 2.2.3. Let (g1,1, g2,1, g3,1) be a generating system of f such that 1 is
in the support of g1,1. For any n ≥ 2, inductively define

g1,n = ((g1,n−1, −, · · · , −), g1,1);
g2,n = ((−, · · · , −, g2,n−1, −, · · · , −), g2,1), where g2,n−1 is in position (1)g1,1;
g3,n = ((−, · · · , −, g3,n−1, −, · · · ,−), g3,1), where g3,n−1 is in position (1)g1,1g2,1.

Here again− denotes the trivial permutation. Then (g1,n, g2,n, g3,n) is a generating
system for f n.

Proof. This follows by considering the image of the sheets of the Belyi map under
f n = f ◦ f n−1, using the notation introduced in (2.1.4). ��

A generating system for f was given in Lemma 1.1.5(2).

Corollary 2.2.4. For all n ≥ 2 we have that

Gn,Q ⊆ En .

Proof. We have already seen that Gn,Q ⊆ Aut(Tn). Since Gn,Q is generated by the
g j,n , it suffices to check that g j,n ∈ En for j = 1, 2, 3.

The inductive definition of g j,n given in Proposition 2.2.3 implies that
π2(g j,n) = g j,2 and that sgn2(g j,2) = 1 for j ∈ {1, 2, 3}. The statement for
n = 2 follows. The statement for arbitrary n ≥ 2 follows by induction from the
definition of En (Definition 2.1.2). ��
Definition 2.2.5. Define

Nn,Q = ker(πn−1 : Gn,Q → Gn−1,Q) ⊆ Gn,Q.

Note that (σ , τ ) ∈ Gn,Q is contained in Nn,Q if and only if (σ , τ ) fixes all

vertices of the tree Tn at the levels 1, . . . , n − 1. For any 1 ≤ i = 1+ ∑n−1
k=1(�k −

1)dk−1 ≤ dn−1, the subtree T i
n with root (�1, . . . , �n−1) contains exactly d leaves.

Definition 2.2.6. For 1 ≤ i ≤ dn−1, we define

Ni
n,Q

:= Nn,Q ∩ S (T i
n ).
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Thegroup Ni
n,Q

is naturally a permutationgroupon thed letters (�1, . . . , �n−1, s)

for s = 1, . . . , d; recall from (2.1.1) that i = 1+∑n−1
k=1(�k −1)dk−1. We therefore

obtain an identification

Ni
n,Q

⊆ N 1
n,Q

⊕ · · · ⊕ Ndn−1

n,Q
= Nn,Q ⊆ (Sd)

dn−1
.

With this identification, we may write

Nn,Q = {(ρ1, . . . , ρdn−1
) | ρi ∈ S (T i

n ) for all 1 ≤ i ≤ dn−1} ⊆ (Sd)
dn−1

.

(2.2.3)

Lemma 2.2.7. The group Ni
n,Q

is a subgroup of Ad for all i ∈ {1, . . . , dn−1}.
Proof. We prove this for i = 1; the proof for other i is identical. First let n = 2.
If σ = (ρ1,−, · · · ,−) is an element of Ni

2,Q
, then sgn2(σ ) = sgn(ρ1) = 1

by Corollary 2.2.4. Now let n ≥ 2. If σ = (ρ1, . . . , ρdn−1
) is in Nn,Q, then

(ρ1, . . . , ρdn−2
) is an element of Nn−1,Q, sinceGn can be identifiedwith a subgroup

of Gn−1 � G1 for any n ≥ 2. Hence the proof follows by induction on n. ��
In the rest of this section, we fix a normalized Belyi map f of type C =

(d; e1, e2, e3). We use Proposition 2.2.3 to construct suitable elements in Nn,Q.
This is a first step towards determining Gn,Q in Theorem 2.3.1.

Lemma 2.2.8. Let f be a normalized Belyi map of type (d; e1, e2, e3) and let
(g1,1, g2,1, g3,1) be a generating system of f . For any n ≥ 2 and j ∈ {1, 2, 3} we
define

α j,n := (g j,n)
en−1
j .

(1) Then

α j,n ∈ Nn,Q.

(2) Write ρi
j for the component of α j,n in S (T i

n ) using the notation from (2.2.3).
Then

ρi
j =

{
g j,1 if i = 1 + ∑n−1

k=1(�k − 1)dk−1 with �k ∈ supp(g j,1) for all k,
− otherwise.

(3) Conjugation by the elements of Gn,Q acts transitively on N 1
n,Q

, . . . , Ndn−1

n,Q
for

all n ≥ 2.

Proof. Let i ∈ {1, 2, 3} and n ≥ 2 arbitrary. Using (2.1.8) one computes that

α j,n = ((σ1, . . . , σd),−), where σi =
{

αi,n−1 if i ∈ supp(g j,1),

− otherwise.

(2.2.4)
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Expression (2.2.4) for α j,n implies that α j,n fixes all vertices on level one. If
α j,n−1 ∈ Nn−1,Q then α j,n fixes all vertices of the tree on levels 2, . . . , n − 1, as
well. It follows that α j,n ∈ Nn,Q. Statement (1) of the proposition is vacuous for
n = 1. The statement therefore follows by induction on n.

Moreover, α j,n acts as α j,n−1 on the subtree Tn(�1) of Tn with root (�1) if
�1 ∈ supp(g j,1) and acts trivially otherwise. Statement (2) therefore also follows
by induction on n.

Statement (3) follows by induction, as well, since G1,Q = G( f ) is a transitive
subgroup of Sd . ��

In the following proposition we exclude two types in small degree. For C =
(6; 4, 4, 5) we have that G1,Q is S5 (embedded as a transitive group in S6), hence
is isomorphic to neither S6 nor A6. For C = (4; 3, 3, 3) we have that G1,Q 	 A4.
However in this case Proposition 2.2.9 fails. (In the case that C = (4; 3, 3, 3) the
group Ni

n,Q
is the Klein 4-group.)

Proposition 2.2.9. Let f be a normalized Belyi map of type C. Assume that C /∈
{(6; 4, 4, 5), (4; 3, 3, 3)}. Then

Ni
n,Q

	 Ad

for all 1 ≤ i ≤ dn−1 and all n ≥ 2.

Proof. Lemma 2.2.8(3) states that Gn,Q acts transitively on the set of subgroups

Ni
n,Q

for i = 1, . . . dn−1. Therefore it suffices to prove the proposition for a specific

value of i . We prove that Ni0
n,Q

is a non-trivial normal subgroup of G1,Q for some

value i0, by showing it is normal and contains a non-trivial element βn . Since Ad

is simple for d ≥ 5 and Ni
n,Q

≤ Ad for all i by Lemma 2.2.7, it follows that

Ni0
n,Q

= Ad . In the remaining cases d ∈ {3, 4} the statement can be shown by

treating each type separately.
Claim 1 Let i0 := 1 + ∑n−1

k=1(e3 − 1)dk−1. There exists a non-trivial element

βn ∈ Ni0
n,Q

, hence Ni0
n,Q

is non-trivial. Define

βn := [α1,n, [α2,n, α3,n]] = α1,n[α2,n, α3,n]α−1
1,n[α2,n, α3,n]−1, (2.2.5)

where [α2,n, α3,n] = α2,nα3,nα
−1
2,nα

−1
3,n is the commutator. Recall that

α j,n = ((σ1, . . . , σd),−) ∈ Gn−1 � G1,

where σi = α j,n−1 ∈ Gn−1 for i in the support of g j,1 and trivial otherwise. Since
the generating system is weakly rigid, to prove the claim it suffices to prove that
the element βn is a non-trivial element in Ni0

n for the generating system of Lemma
1.1.5(2). We use this generating system for the rest of this proof.

With this choice we have

supp(g1) ∩ supp(g2) ∩ supp(g3) = {e3}.
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By induction we find that the component ρi of βn in Ni
n,Q

satisfies

ρi =
{ [g1, [g2, g3]] if i = i0,

− otherwise.

Hence βn ∈ Ni0
n,Q

as claimed.

To show that βn is non-trivial, it suffices to show that [g1,1, [g2,1, g3,1]] is non-
trivial. This is an explicit calculationusing thegenerating system inLemma1.1.5(2).
For instance, one checks that e3 is not sent to itself. We conclude that βn is non-
trivial, and Claim 1 follows.

Claim 2 Ni0
n,Q

is a normal subgroup of Ad .

By Lemma 2.2.7, Ni0
n,Q

is a subgroup of Ad . It follows from (2.1.8) that the

conjugates of βn by the elements α j,n ∈ Nn,Q are also in Ni0
n,Q

for j ∈ {1, 2, 3}. The
group G1,Q is generated by the g j,1. Since g j,1 is the component of α j,n in Ni0

n,Q

for j ∈ {1, 2, 3}, the group Ni0
n,Q

contains the element σ−1ρi0σ for all σ ∈ G1,Q.

Since Ad ⊆ G1,Q we conclude that Ni0
n,Q

is a normal subgroup of Ad . This proves

Claim 2.
As explained in the beginning of the proof, the statement for d ≥ 5 follows

from Claims 1 and 2. The remaining cases can be checked separately. ��

2.3. Determination of Gn,Q for normalized Belyi maps

Let f be a normalized Belyi map of type (d; e1, e2, e3). In this section, we com-
pletely determine the group structure of the groups Gn,Q (Definition 2.2.1) as a
subgroup of Aut(Tn). We refer to Lemma 1.1.5 for the description of G1,Q.

Theorem 2.3.1. Let f be a normalized Belyi map of type C = (d; e1, e2, e3) /∈
{(4; 3, 3, 3), (6; 4, 4, 5)}.
(1) Assume that G1,Q 	 Sd . Then

Gn,Q 	 En .

(2) Assume that G1,Q 	 Ad, i.e., that all e j are odd. Then Gn,Q is the n-fold
iterated wreath product of Ad with itself.

The key step in the proof of Theorem 2.3.1 is determining the size of the group
Gn,Q.

Lemma 2.3.2. Let f be a normalized Belyi map. Fix an integer n ≥ 2 and assume
that En−1 	 Gn−1,Q. Then

[(Sd)dn−1 : Nn,Q] = 2d
n−2

.

Note that the assumption that En−1 	 Gn−1,Q for n = 1 states that G1,Q =
E1 	 Sd .
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Proof. Let χ denote the following homomorphism, induced by the sgn function on
each of the components Ni

n,Q
:

χ : Nn,Q → F
dn−1

2 , (ρi )1≤i≤dn−1 �→ (dlog−1(sgn(ρ
i )))1≤i≤dn−1 ,

where the discrete logarithm dlog−1 sends 1 �→ 0 and −1 �→ 1. Proposition 2.2.9

implies that the kernel of χ equals N 1
n,Q

⊕ · · · ⊕ Ndn−1

n,Q
	 (Ad)

dn−1
. Therefore, χ

induces an injection

χ : Nn,Q := Nn,Q/
(
⊕1≤i≤dn−1Ni

n,Q

)
↪→ F

dn−1

2 .

For the remainder of the proof we identify Nn,Q with its image in F
dn−1

2 .
Since e1 + e2 + e3 = 2d + 1 is odd and we assume that G1,Q 	 Sd , at least

one of the e j is even. It follows that there is a unique j such that e j is odd. Let
s ∈ {1, 2, 3} be one of the indices such that es is even. Since at most one of the e j
equals d, we may assume that es �= d.

Lemma 2.2.8(2) implies that exactly en−1
s entries of the element αs,n ∈ Nn,Q

are es-cycles, and all other entries are trivial. It follows that exactly en−1
s entries of

the corresponding element αs,n ∈ Nn,Q are non-trivial, i.e.,equal to 1. Moreover,

dividing the indices once more into dn−2 blocks of d indices, where the i th block
corresponds to the vertices of T i

n−1, we see that, for each αs,n , exactly en−2
s of these

blocks contain exactly es non-trivial entries. In this proof we denote the i th block
by B(i). Our choice of numbering implies that

B(i) = {1 + (i − 1)d, 2 + (i − 1)d, . . . , d + (i − 1)d},

but we do not need this in what follows. A vector x ∈ F
dn−2

2 with exactly en−1
s

non-trivial entries distributed in this way among the blocks is said to satisfy the
block condition.

Equation (2.1.8) implies that conjugation by Gn,Q yields a well-defined action

on Nn,Q, by permutation of the coordinates of x = (x1, . . . , xdn−1) ∈ Nn,Q respect-
ing the block structure. The assumption that Gn−1,Q 	 En−1, together with the
observation that the projection Gn,Q → Gn−1,Q is surjective, implies that the orbit

of αs,n under this action consists of all x ∈ F
dn−1

2 that have exactly en−1
s entries

equal to 1 and satisfy the block condition.
For every subsetI ⊆ {1, 2, . . . , dn−1}with |I | = en−1

s , we denote by ξI the

element of F
dn−1

2 such that (ξI )i = 1 if i ∈ I , and (ξI )i = 0 otherwise. With
this notation, the elements in the orbit of αs can be described as ξI for some I
satisfying the following properties:

(1) For 1 ≤ i ≤ dn−2, let I (i) := I ∩ B(i). Then I (i) �= ∅ for exactly en−2
s

values of i , and
(2) if I (i) �= ∅ for some i , then |I (i)| = es .
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Let H = ∩dn−2

i=1 Hi denote the intersection of all hyperplanes

Hi :=
⎧⎨
⎩x ∈ F

dn−1

2 |
∑

b∈B(i)

xb = 0

⎫⎬
⎭ .

Claim The elements ξI forI satisfying properties (1) and (2) above generate
H .

Fix k, � and i such that 1 ≤ k < � ≤ d and 1 ≤ j ≤ dn−2. Let ξk,�; j denote
the vector whose entries are 1 in the positions k + ( j − 1)d and � + ( j − 1)d and
0 otherwise. Note that ξk,�; j ∈ H .

To prove the claim it suffices to show that for all 1 ≤ j ≤ dn−2 and for all
1 ≤ k < � ≤ d, the vectors ξk,l; j are in the linear hull of the ξI . Using that
Gn,Q acts transitively on the blocks, it suffices to prove this for j = 1. Since

N 1
n,Q

⊆ Gn,Q acts transitively on B(1) by Proposition 2.2.9, we may moreover

assume that (k, �) = (1, 2). In other words, it suffices to show that ξ1,2;1 ∈ H .
Define

I (1) = {1, . . . , es+1} − {2} and I ′(1) = {1, . . . , es+1} − {1}.
For any 2 ≤ i ≤ en−2

s , we define the set I (i) = {b + (i − 1)d | 1 ≤ b ≤ es}.
Then letting I = (∪en−2

s
i=2 I (i)) ∪ I (1) and I ′ = (∪en−2

s
i=2 I (i)) ∪ I ′(1), we see

that ξ1,2;1 = ξI + ξI ′ ∈ H . This proves the claim.
The claim inductively implies that

[(Sd)dn−1 : Nn,Q] = 2d
n−1

|Nn,Q| = 2d
n−2

.

This proves the lemma. ��
Now we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. In Corollary 2.2.4 we have shown thatGn,Q is a subgroup
of En for all n ≥ 1.

Case 1 Assume that G1,Q = E1 = Aut(T1) 	 Sd .
To prove Statement (1), it suffices to show that the groupsGn,Q and En have the

same cardinality. Since Gn,Q is a subgroup of Aut(Tn) for all n ≥ 1, the definition
of Nn,Q implies that

[Aut(Tn) : Gn,Q]
[Aut(Tn−1) : Gn−1,Q] = [(Sd)dn−1 : Nn,Q] = 2d

n−2
.

The last equality is the statement of Lemma 2.3.2. The expression for [Aut(Tn) :
En] in Lemma 2.1.3(1) implies that

[Aut(Tn) : En]
[Aut(Tn−1) : En−1] = 2d

n−2
,

as well. It follows that |Gn,Q| = |En|. This proves the theorem in the first case.
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Case 2 Assume that G1,Q 	 Ad .
In this case Gn,Q is a subgroup of the n-fold iterated wreath product of Ad with

itself. The statement of the theorem in this case therefore follows by induction on
n using Proposition 2.2.9.

This finishes the proof of the theorem. ��

2.4. Descent

In this section we determine the groups Gn,Q (Definition 2.2.1) under certain con-
ditions. Recall from (2.2.1) that

Gn,Q ⊆ Gn,Q ⊆ Aut(Tn), for all n ≥ 1.

Theorem 2.3.1 implies that

[Aut(Tn) : Gn,Q] =
{
2d

n−2+dn−3+···+d+1 if G1,Q 	 Sd ,

2d
n−1+dn−2+···+d+1 if G1,Q 	 Ad and C �= (4; 3, 3, 3).

If we can show for some normalized Belyi map f that Gn,Q = Gn,Q for all n ≥ 1,
then we have found an explicit description of G∞,Q := lim←−n

Gn,Q, and we have
shown that this group satisfies [Aut(T∞) : G∞,Q] = ∞.

Remark 2.4.1. It is not true in general that Gn,Q = Gn,Q. In fact, this may already
fail for n = 1 when G1,Q � Sd . Consider a normalized Belyi map f of type
(d; e1, e2, e3) with all ei odd. Recall from Lemma 1.1.5(1) that then G1,Q 	 Ad .
It follows that

Ad 	 G1,Q ⊆ G1,Q ⊆ Aut(T1) 	 Sd .

Using the notation from Sect. 1.2, we have that G1,Q 	 Ad if and only if the
discriminant 
( f − t) of xe1 f1 − t f2, considered as polynomial in x over Q(t), is
a square in Q(t), and G1,Q 	 Sd otherwise. For simplicity, we restrict to the case
that f is a polynomial, i.e., that e3 = d. In this case, a formula for the discriminant
of f is given in [1, Proposition 3.1]:


( f − t) = (−1)(d−1)(d−2)/2dd�( f )d−1te1−1(t − 1)e2−1,

where �( f ) denotes the leading coefficient of f . Proposition 1.1.4(1) gives an
explicit expression for �( f ). The formula for the discriminant, together with the
expression for �( f ), implies that if f is a polynomial and d is odd, then
( f − t) is
never a square in Q(t). We note that a formula for 
( f − t) in the non-polynomial
case may be deduced from [4, Proposition 1].

The structure of Aut(Tn) as an iterated wreath product implies that the case
n = 2 plays a key role in determining G∞,Q. Recall that f n denotes the nth iterate
of f .

Proposition 2.4.2. Let f be a normalized Belyi map of type C = (d; e1, e2, e3). If
G2,Q = G2,Q, then Gn,Q = Gn,Q for all n ≥ 2.
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Proof. We first assume that G1,Q = Sd . We prove the statement by induction on
n ≥ 2. Assume that the statement holds for n−1, i.e., we have Gn−1,Q = Gn−1,Q.
Theorem 2.3.1(1) implies that

En = Gn,Q ⊆ Gn,Q ⊆ Aut(Tn).

The induction hypothesis implies that

Gn,Q ⊆ Gn,Q ⊆ Gn−1,Q � G1,Q = Gn−1,Q � G1,Q = En−1 � E1.

The second inclusion follows from the structure of Gn,Q as a wreath product
induced by the decomposition f n = f ◦ f n−1. Lemma 2.1.3(1) implies that
[En−1 � E1 : En] = 2. We conclude that Gn,Q equals either Gn,Q = En or
En−1 � E1. The definition of the wreath-product sign (Definition 2.1.1) implies that
we can distinguish the two possible groups by considering their images under π2.
Since π2(Gn,Q) = G2,Q and π2(Gn,Q) = G2,Q, the result follows in this case.

Now assume that G1,Q = Ad . Theorem 2.3.1(2) implies that Gn,Q is the n-fold
iterated wreath product of Ad with itself. We denote this group by E+

n . As in the
previous case, we conclude from the induction hypothesis that

Gn,Q ⊆ Gn,Q ⊆ Gn−1,Q � G1,Q = Gn−1,Q � G1,Q = E+
n−1 � E+

1 .

Note that the wreath product sign restricted to E+
n is trivial. The statement follows

as in the first case. ��
We write f (x) = g(x)/h(x), where g, h ∈ Z[x] are relatively prime as poly-

nomials in Z[x]. We define the discriminant of the rational map f (x) − t as the
discriminant of the polynomial g(x) − th(x), viewed as a polynomial in x over
Q(t). In other words, 
( f − t) is in Q[t] and


( f − t) := 
(g(x) − th(x)).

Let L be the splitting field of g(x)− th(x) over Q(t) and let ti for i = 1, . . . , d
be the roots of g(x) − th(x) in L .

Lemma 2.4.3. Let f (x) be a rational map in Q(x). The Galois group G2,Q
(attached to f ) is a subgroup of ker(sgn2) if and only if the product 
( f (x) −
t)

∏
i 
( f (x) − ti ) is a square in Q(t).

Proof. Let σ = ((σ1, . . . , σk), τ ) be in G2,Q ≤ Aut(T2) and let D = 
( f (x) −
t)

∏
i 
( f (x) − ti ). Then we will show that σ(

√
D) = sgn2(σ )

√
D.

Let ti j , for 1 ≤ j ≤ d, denote the roots of f (x) − ti for all i . We can identify
ti j with the vertex (i, j) of the tree T2. By (2.1.5) the action of σ on ti j is given by

σ(ti j ) = tτ(i)σi ( j).

We note here that, for i = 1, . . . , d,
√


( f − ti ) lives in some quadratic extension
of L. Hence

σ(
√


( f − ti )) = σ

⎛
⎝∏

j<k

(ti j − tik)

⎞
⎠ =

∏
j<k

(tτ(i)σi ( j) − tτ(i)σi (k))



20 I. I. Bouw et al.

= sgn(σi )
√


( f − tτ(i)).

Similarly, σ(
√


( f − t)) = sgn(τ )
√


( f − t) and hence

σ(
√
D) = sgn2(σ )

√
D.

This concludes the proof. ��
Corollary 2.4.4. Let f be a normalized Belyi map of type C = (d; e1, e2, e3).
Assume that G1,Q = Sd . Then Gn,Q = Gn,Q for all n ≥ 1 if and only if the product

( f (x) − t)

∏
i 
( f (x) − ti ) is a square in Q(t).

Next, wewill compute the discriminant product in Lemma 2.4.3 for a dynamical
Belyi map of type C = (d; e1, e2, e3). Let us write 
( f (x) − t) = a( f )te1−1(1−
t)e2−1 with a( f ) ∈ Q.

Proposition 2.4.5. Let f (x) = g(x)/h(x) be a normalized Belyi map of type C =
(d; e1, e2, e3). Then


( f (x) − t)
∏
i


( f (x) − ti ) = u(1 − t)2(e2−1)t2(e1−1),

where u = (−1)(d+1)(e1−1)a( f )d+1h(0)e1−1g(1)e2−1/�(g)e1+e2−2.

Proof. For f (x) = g(x)/h(x) as above we have 
(g(x) − ti h(x)) =
a( f )te1−1

i (1 − ti )e2−1 and hence

∏
i


(g(x) − ti h(x)) = a( f )d
d∏

i=1

(ti )
e1−1

d∏
i=1

(1 − ti )
e2−1.

Using the fact that g(x) − th(x) = �(g)
∏d

i=1(x − ti ), substituting x = 0 and
x = 1, we compute that

d∏
i=1

ti = (−1)d+1h(0)

�(g)
t and

d∏
i=1

(1 − ti ) = g(1)

�(g)
(1 − t).

Therefore we find that


( f (x) − t)
∏
i


( f (x) − ti )

= a( f )d+1te1−1(1 − t)e2−1
d∏

i=1

(ti )
e1−1

d∏
i=1

(1 − ti )
e2−1

= a( f )d+1te1−1(1 − t)e2−1
(

(−1)d+1h(0)

�(g)
t

)e1−1 (
g(1)

�(g)
(1 − t)

)e2−1

,

as claimed. ��
Corollary 2.4.6. (1) Let d be odd.
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(a) Let f be a normalized Belyi map of type (d; e1, e2, e3 = d) such that e1 or
e2 is even. Then f is a polynomial such that G1,Q = Sd and Gn,Q = Gn,Q

for all n ≥ 1.
(b) Let f be a normalized Belyi map of type (d; d − k, 2k + 1, d − k) with k

odd. Then G1,Q = Sd and Gn,Q = Gn,Q for all n ≥ 1.
(2) Let f be a normalized Belyi map such that G1,Q = G1,Q = Ad. Then Gn,Q =

Gn,Q for all n ≥ 1.

Proof. (1) Proposition 2.4.5, together with the explicit expression for f in Propo-
sition 1.1.4 and the assumption that d is odd, implies in both cases that

( f (x) − t)

∏
i 
( f (x) − ti ) is a square. (In the situation of Statement (a)

one has that h(0) = g(a) = 1. In the situation of Statement (b) one has that
h(0) = �(g) = a0.
The statement follows therefore from Corollary 2.4.4.

(2) We have that Gn,Q is a subgroup of the n-fold iterated wreath product of Ad

with itself, since it can be identified with a subgroup of Gn−1,Q �G1. Hence the
result follows from Theorem 2.3.1 and the fact that Gn,Q ⊂ Gn,Q.

��
Remark 2.4.7. (1) One may treat the case that d is even using the formula in Propo-

sition 2.4.5, though the statements are not quite as nice in this case. For instance,
let f (x) = −(d − 1)xd + xd−1 for d ≥ 4. Note that f has combinatorial type
(d; d − 1, 2, d). Assume that d is even and G1,Q = Sd . Then we find that
G2,Q = G2,Q if and only if d is divisible by 4.

(2) Assume that G1,Q = Ad and that G1,Q = Sd . By Proposition 2.4.5 and

Lemma 2.4.3, the group G2,Q is contained in ker(sgn2) if and only if a( f )d+1

is a square inQ. SinceG1,Q = Sd , we know that a( f ) is not a square. It follows
that G2,Q is contained in ker(sgn2) if and only if d is odd.

3. Specialization

In this section we prove some explicit results on the specialization of normalized
Belyi maps f . For any n ≥ 1, Hilbert’s Irreducibility Theorem implies that there
exists a non-empty Zariski-open set Hn = Hn( f ) ⊆ P

1(Q), called a Hilbert set,
such that specializing the parameter t to a ∈ Hn does not change the Galois group.
In this section we determine explicit elements a ∈ Hn( f ) for all n. This means
that we get an explicit tower of number fields (Kn,a)n≥1 with prescribed Galois
groups (Definition 3.1.1) by specializing to these values of a.

These elements are determined by Conditions 3.1.5. Conditions 3.1.5 can be
thought of as the analogue of Conditions (†) of [3], and Proposition 3.1.3 as the
analogue of [3, Proposition 3.4].

3.1. Irreducibility and ramification conditions

Throughout this section, we fix a normalized Belyi map f of type C :=
(d; e1, e2, e3). Recall that we write f both for the rational function f (x) ∈ Q(x)
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and the corresponding map f : P
1 → P

1 : x �→ t = f (x). As in the beginning
of Sect. 1.2 we write f (x) = xe1 f1(x)/ f2(x) and assume that the polynomials fi
satisfy (1)–(3) introduced there.

Recall that for any n ≥ 1 we write Fn/Q(t) for the extension of function fields
corresponding to the map f n : P

1
Q

→ P
1
Q
and that Gn,Q denotes the Galois group

of the Galois closure of this extension (Definition 2.2.1).

Definition 3.1.1. Let a ∈ P
1(Q) \ {0, 1,∞} such that the numerator f (n, a) of

f n − a is irreducible for all n ≥ 1 and define Kn,a as the extension of K0,a := Q

obtained by adjoining a root of f (n, a). We denote by Gn,a the Galois group of the
normal closure of Kn,a/K0,a .

Proposition 3.1.2. Let f be a normalized Belyi map of type C := (d; e1, e2, e3).
Assume f has good monomial reduction at p for some prime p. Choose a ∈
P
1(Q) \ {0, 1,∞} with νp(a) = 1. Then

[Kn,a : Q] = dn for all n ≥ 1.

In particular, Gn,a is a transitive subgroup of Sdn for all n ≥ 1.

Recall that an explicit criterion for good monomial reduction was given in
Proposition 1.2.4(2).

Proof. Write f (x) = xe1 f1(x)/ f2(x) with f1(x) = ∑d−e1
i=0 ai xi and f2(x) =∑d−e3

i=0 bi xi both in Z[x]. Since f satisfies (1)–(3) from Sect. 1.2 and we assume
it has good monomial reduction at p, we have that

• νp(ai ) = νp(b j ) = 0 for i = d − e1 and j = 0,
• νp(ai ) > 0 for i �= d − e1,
• νp(b j ) > 0 for j �= 0.

We conclude that the numerator of

fa(x) := f (x) − a = xe1 f1(x) − a f2(x)

f2(x)

is an Eisenstein polynomial for p, hence irreducible. Here we have also used that
f (0) = 0 and νp(a) = 1. Moreover, the numerator and the denominator of fa(x)
are relatively prime. The statement follows for n = 1.

Similarly, for n > 1 arbitrary we find

f n(x) = a1+d+···+dn
d−e1

xd
n + p · (terms of degree < dn)

p · (terms of degree ≥ 1) + b1+d+···+dn
0

.

The same argument as for n = 1 therefore also applies to the case of arbitrary n. ��
For a ∈ P

1(Q)\ {0, 1,∞} such that the numerator of f n −a is irreducible, i.e.,
such that [Kn,a : Q] = [Fn : Q(t)] = dn , there exists an isomorphism between the
field extensions

(
Kn,a ⊗Q Q(t)

)
/Q(t) and Fn/Q(t). This isomorphism induces an

inclusion of Galois groups

Gn,a ↪→ Gn,Q. (3.1.1)
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In the rest of this section we fix these inclusions for all n. For more details we refer
to [16, Sections 1.1.1 and 1.1.2].

Proposition 3.1.3 below provides partial information on the ramification of
Kn,a/Q for suitable choices of a. Here we use the reduction of f at a prime q
for which f has good separable reduction. In Proposition 1.2.4(1) we showed
that this holds if q > d. The idea of the proof of Proposition 3.1.3 is similar
to that of Proposition 3.1.2. What we show is that if a ≡ 0 (mod q), then the
ramification of q in Kn,a/Q is the same as the ramification above t = 0 in the
iteration f n : P

1 → P
1, which was described in Remark 2.2.2. We give similar

statements for the ramification above the other branch points t = 1,∞. From this,
we deduce the existence of concrete elements in Gn,a ; see Lemma 3.1.8 below for
the precise statement.

Proposition 3.1.3. Let f be a normalized Belyi map of type (d; e1, e2, e3) and let
q be a prime of good separable reduction for f . Let a ∈ P

1(Q) \ {0, 1,∞} such
that [Kn,a : Q] = dn for all n ≥ 1. Assume additionally that νq(a) > 0.

Then there is a unique sequence {qn}n≥0 such that q0 = q and qn is a prime
ideal of Kn,a lying above qn−1, satisfying the following properties: the ramification
index of qn ∈ Kn,a/Kn−1,a is e1, and all other primes of Kn,a lying above q are
unramified in Kn,a/Kn−1,a.

The analogous statement with e1 replaced by e2 (resp. e3) holds if we require
νq(1 − a) > 0 (resp. νq(a) < 0) instead.

Proof. We only prove the statement in the case that νq(a) > 0; the other two cases
are similar.

The assumption that f has good separable reduction at q implies that this
reduction satisfies

f = xe1 f 1
f 2

,

where f 1 and f 2 are separable polynomials of degree d−e1 and d−e3, respectively,
which are relatively prime. The ramification points of f are exactly 0, 1,∞. Since
the reduction f of f at q is assumed to be separable, f is exactly ramified at
0, 1,∞. Proposition 1.2.2(2) implies that f is also of type (d; e1, e2, e3). It follows
that f 1(0) �= 0 and f 2(0) �= 0. We conclude that there is a unique prime q1 of
K1,a above q0 := q that is ramified. Moreover, the ramification index of this prime
is e1.

The description of the ramification of the map f implies that the Newton poly-
gon of xe1 f1 − a f2 has two q-adic slopes: a slope 0 with multiplicity d − e1 and a
slope−νq(a)/e1 with multiplicity e1. Here we use that e1 > d − e3 = deg( f2) and
that the leading and the constant coefficients of f1 and f2 are both q-adic units.

The choice of q1 implies that there exists a root a1 ∈ K1,a of f (x) − a that
satisfies νq1(a1) = νq(a) > 0. We conclude that the prime q1 and the rational
function f (x)−a1 ∈ K1,a(x) satisfy the hypothesis of the proposition, as well. By
induction, we conclude that there exists a unique ramified prime qn in Kn,a/Kn−1,a .
Moreover, since we assume that [Kn,a : Kn−1,a] = d, the prime qn lies above the
prime qn−1, and its ramification index is e1.
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Let q ′
1 of K1,a be an unramified prime above q0. In this case it follows that

νq ′
1
(a1) = 0. We conclude that all primes above q ′

1 in K2,a are unramified in
K2,a/K1,a . By induction, we conclude that if a prime q ′

n above q is unramified in
Kn,a/Kn−1,a then all primes above it in the tower of number fields are unramified.
This concludes the proof. ��
Remark 3.1.4. In the proof of Proposition 3.1.3 we use that fact that if f has good
separable reduction at a prime q then the reduction f has the same type as the map
f . This property is very specific to the case of normalized single-cycle genus-0
Belyi maps and does not hold without these assumptions on the map. We give an
example to illustrate this.

Let p > 3 be a prime. The map f (x) = x2(x − p) has type (3; 2, 2, 3), but it is
not normalized in the sense of Definition 1.1.2(2). The branch points are also not
normalized to 0, 1,∞. The two ramification points with ramification index 2 are 0
and p, which specialize to the same point modulo p, and this point has ramification
index 3 > 2. In our very special setting this cannot happen.

Propositions 3.1.2 and 3.1.3 suggest the following conditions.

Conditions 3.1.5. Let f be a normalized Belyi map of type (d; e1, e2, e3). Choose
a ∈ P

1(Q)\{0, 1,∞} and distinct primes p, q1, q2, q3 such that the following hold:
f has good monomial reduction at p and good separable reduction at q1, q2, q3,
and we have

νp(a) = 1, νq1(a) > 0, νq2(1 − a) > 0, νq3(a) < 0.

Remark 3.1.6. The results in this paper can be used to construct towers of number
fields that are branched over an explicit finite set of primes. Fix a normalized
Belyi map f of type (d; e1, e2, e3) and a value a ∈ P

1(Q) \ {0, 1,∞} such that
[Kn,a : Q] = dn for all n ≥ 1.Construct the towerQ = K0,a ⊆ K1,a ⊆ K2,a ⊆ . . .

of number fields. We denote the set of rational primes in Q by P. Recall from the
introduction that there is a finite set P ⊆ P such that Kn,a/K0,a is unramified
outside primes lying above P . (This is [4, Theorem 1], using that normalized
Belyi maps are post-critically finite.)

We sketch what we can say about the finite set P in our situation. (This is
a more precise version of [4, Section 5], using the results on the reduction of
normalized Belyi maps from [2].) A subtle point is that there is a difference between
the reduction of a rational function f ∈ Z[x] (defined by reducing the coefficients
modulo p as in Definition 1.2.1) and reduction of the cover f : P

1
Q

→ P
1
Q
. Amodel

over Spec(Zp) of the cover f ⊗Q Qp is required to be finite and flat. Reducing
the rational function f ∈ Z[x] modulo p by reducing its coefficients may yield a
rational function of strictly smaller degree. This happens if and only if f has bad
reduction to characteristic p > 0 in the sense of Definition 1.2.3.

The results of [2, Section 4] can be interpreted as saying that these notions
are closely related for normalized Belyi maps in the single-cycle case. Namely, the
rational function f has good separable reduction at p in the sense ofDefinition 1.2.3
if and only if the Galois closure of the map f : P

1
Qp

→ P
1
Qp

has potentially good
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reduction, meaning that there exist an extension L/Qp and a model of f ⊗Qp L
over Spec(OL) whose special fiber is a separable Galois cover of P

1 branched over
three points. This is very special to the case of normalized single-cycle Belyi maps.

Recall that we have chosen f ∈ Z(x) so that the conditions (1)–(3) in Sect. 1.2
are satisfied. As in [4, Section 5] we letPbad be the set of rational primes for which
the fiber of f at p has degree strictly less than p or is inseparable. (The third case of
[4, Section 5], in which the ramification points coalesce modulo p, does not occur
in our case, by Proposition 1.2.2(2).) Proposition 1.2.4(1) implies that

Pbad ⊆ {p ∈ P | p ≤ d}.
We can determine this set more precisely for a given type: deg( f ) < deg( f ) at
p if and only if p divides the leading coefficient of f . If f has good inseparable
reduction at p, then p| deg( f ). In fact one can show that f has either bad or good
inseparable reduction at the primes p dividing deg( f ). (This may be deduced from
[2, Proposition 5].)

It follows from [4, Theorem 2] that we may take P = Pbad ∪ Pa , where

Pa = {p ∈ P | vp(a) �= 0 or vp(1 − a) > 0},
i.e., the set of primes p such that a is congruent modulo p to one of the branch
points {0, 1,∞} of f .

As a concrete example, consider the polynomial Belyi map of type (d; d −
1, 2, d). Then f (x) = −(d − 1)xd + dxd−1 has good monomial reduction at all
primes dividing d and bad reduction exactly at the primes dividing d − 1, i.e.,
Pbad = {p ∈ P | p|d(d − 1)}. Choosing a = p yields a tower of number fields
only branched over Pbad.

The Chinese Remainder Theorem implies that we may also choose a such
that the Conditions 3.1.5 are satisfied. For example for d = 9 we may choose
a = 60/11, and we findPbad = {2, 3} andPa = {5, 7, 11}. The infinite tower of
number fields (Kn,a)n≥1 corresponding to f only ramifies above {2, 3, 5, 7, 11}.
Combining Corollary 3.2.3 from the next section with Corollary 2.4.4 and 2.4.6
yields that Gn,a,Q = En for all n ≥ 1.

Using the explicit expressions in Proposition 1.1.4 it is easy to find many more
results along these lines.

Lemma 3.1.8 below translates Conditions 3.1.5 into a statement on the existence
of certain elements h j,n,a ∈ Gn,a . We start by setting up some notation. Since
Gn,a ⊆ Gn,Q ⊆ Aut(Tn), we may define subgroups of Gn,a analogous to the
subgroups Nn,Q and Ni

n,Q
defined in Definitions 2.2.5 and 2.2.6.

Definition 3.1.7. Define Nn,a := ker(Gn,a → Gn−1,a) and Ni
n,a := Ni

n ∩S (T i
n ).

Analogous to (2.2.3), we may write elements of Nn,a as tuples (ρ1, . . . , ρdn−1
),

where ρi ∈ Ni
n,a ⊆ S (T i

n ).

Lemma 3.1.8. Let f be a normalized Belyi map satisfying Conditions 3.1.5 for
a choice of a, p, q1, q2, q3. For n ≥ 2 and j ∈ {1, 2, 3} there exist elements
h j,n ∈ Gn,a such that the following conditions hold.
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(1) The elements h j,n ∈ Gn,a are conjugate to g j,n in Gn,a.
(2) The element h j,1 ∈ G1,a is a single cycle of length e j .
(3) For n ≥ m, we have that πm(h j,n) = h j,m.
(4) We have

α j,n,a := h
en−1
j
j,n ∈ Nn,a,

where the components αi
j,n,a of α j,n,a in S (T i

n ) for 1 ≤ i ≤ dn−1 are either

single cycles of length ei or trivial. The permutation αi
j,n,a is non-trivial for

exactly en−1
j values of i .

Proof. For n ≥ 1 and j ∈ {1, 2, 3} let h j,n ∈ Gn,a be a generator of the inertia
group of q j in Gn,a . Then Proposition 3.1.3 implies that h j,n is conjugate in Gn,a

to g j,n . Hence Statement (1) holds. For n = 1, the h j,1 are single e j -cycles for
j = 1, 2, 3, proving Statement (2). Moreover, it is clear that we may choose the
h j,n for varying n consistingly, guaranteeing that Statement (3) holds.

Arguing as in the proof of Lemma 2.2.8, we conclude that the elements α j,n,a

are contained in Nn,a for j ∈ {1, 2, 3}. Statement (1) implies that α j,n,a has the
same cycle type as α j,n (defined in Lemma 2.2.8) when considered as an element
of Sdn . Statement (4) follows therefore immediately from Lemma 2.2.8. ��

3.2. Comparing Gn,a and Gn,Q

In this section we compare the Galois groups Gn,a ⊆ Gn,Q and give sufficient
conditions on a for these groups to be equal for all n ≥ 1. The key step is to show
that the geometric Galois group Gn,Q is a subgroup of Gn,a for all n if Conditions
(3.1.5) are satisfied. We show this using the explicit elements of Gn,a we produced
in Lemma 3.1.8 and by arguing as in Sects. 2.2 and 2.3.

Proposition 3.2.1. Let f = xe1 f1/ f2 be a normalized Belyi map of type
(d; e1, e2, e3) �= (6; 4, 4, 5). Assume f satisfies Conditions 3.1.5 for a choice
of a, p, q1, q2, q3.

(1) We have that G1,Q ⊆ G1,a ⊆ Sd . In particular, G1,a 	 Sd in the case that
G1,Q 	 Sd .

(2) For n ≥ 2 and 1 ≤ i ≤ dn−1, the image of the projection map

Nn,a → S (T i
n ), (ρ1, . . . , ρdn−1

) �→ ρi

contains G1,Q ⊆ Sd as a subgroup.

Proof. The existence of the prime p of good monomial reduction implies that the
Galois group G1,a ⊆ Sd of K1,a/Q is a transitive group on d letters (Proposi-
tion 3.1.2). The conditions on a with respect to the primes qi imply that G1,a
contains elements h1,1, h2,1, h3,1, which are pure cycles of length e1, e2, e3 respec-
tively, where e1 + e2 + e3 = 2d + 1 (Lemma 3.1.8(2)).
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We argue as in the proof of [11, Theorem 5.3] to show that G1,a contains a
subgroup isomorphic to G1,Q. We start by proving that G1,a is primitive. To reach
a contradiction, suppose that G1,a is not primitive. Since G1,a is transitive on d
letters, there exists a number m|d (with 1 < m < d) and a division of {1, 2, . . . , d}
into d/m blocks of lengthm such that every element ofG1,a either has order strictly
less than m and acts trivially on the blocks, or has order mk for some k ≥ 1. Now
we distinguish the following cases.

• If all ei are strictly less than m, then 2d + 1 = e1 + e2 + e3 < 3m ≤ 3d/2,
since m ≤ d/2, by assumption. We obtain a contradiction.

• If all ei are a multiple of m, then 2d + 1 = e1 + e2 + e3 is divisible bym. Since
m|d we obtain a contradiction.

• Assume that exactly one of the ei is strictly less than m; this is necessarily e1,
since 1 < e1 ≤ e2 ≤ e3. Write e2 = mk2 and e3 = mk3 for some k2, k3 ≥ 1.
We obtain 2d + 1 = e1 + m(k2 + k3). Since m|d, we have e1 ≡ 1 (mod m).
This implies that e1 > m, and we obtain a contradiction.

• If exactly two of the ei (that is, e1 and e2) are strictly less thanm, then a similar
argument shows that e1 + e2 ≡ 1 (mod m) so e1 + e2 = 1+m ≤ 1+d/2. But
then e3 = (2d+1)−(e1+e2) ≥ 3d/2 > d, which again yields a contradiction.

Hence G1,a is primitive, as claimed. For d > 10, the group G1,a contains a
cycle of length e ≤ (d − e)! (namely, h1,1). Hence, byWilliamson’s Theorem [17],
we have that G1,a is isomorphic to either Ad or Sd . If at least one of the ei is even,
then G1,a is isomorphic to Sd . In both cases we therefore have that G1,a contains
G1,Q (Lemma 1.1.5(1)). For d ≤ 10, the statement follows from the case-by-case
analysis in the proof of [11, Theorem 5.3]. Statement (1) follows.

The group Nn,a contains the elements α1,n,a, α2,n,a, α3,n,a from Lemma 3.1.8(4).
Recall that Gn,a is a transitive group on dn letters. In particular, it follows that
conjugation by Gn,a acts transitively on the dn−1 blocks of d indices, where the
i th block corresponds to the vertices of T i

n . It therefore suffices to prove Statement
(2) for i = 1.

Replacing α j,n,a by a conjugate underGn,a , wemay assume that the component
α1
j,n,a inS (T 1

n ) is non-trivial. Note that the group elements we conjugate by may
depend on j ∈ {1, 2, 3}. We conclude that the image of Nn,a under projection to
S (T 1

n ) contains an e1-cycle, an e2-cycle, and an e3-cycle. We denote this image
by G1

n,a .
The group G1

n,a may be identified with the Galois group of the specialization of
f at a point bwith f n−1(b) = a. The corresponding field extension K1,b of K0,b :=
Q defined by f may therefore be identified with a subextension of Kn,a/Kn−1,a
(cf. Definition 3.1.1). Since [Kn,a : K0,a] = dn (Proposition 3.1.2), it follows that
[K1,b : K0,b] = d. We conclude that G1

n,a is a transitive group on d letters. The
argument from the proof of Statement (1) shows that G1,Q ⊆ G1

n,a ⊆ Sd . This
proves Statement (2). ��

Theorem 3.2.2 below extends the conclusion of Proposition 3.2.1(1) that
G1,Q ⊆ G1,a under Conditions 3.1.5 to arbitrary n. Phrased differently, we show
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that we do not need additional conditions on a in passing from n = 1 to arbitrary
n. We exclude exactly the same types as in Theorem 2.3.1.

Theorem 3.2.2. Let f be a normalized Belyi map of type (d; e1, e2, e3) /∈
{(4; 3, 3, 3), (6; 4, 4, 5)}. Choose a ∈ P

1(Q) \ {0, 1,∞} and distinct prime num-
bers p, q1, q2, q3 such that Conditions 3.1.5 hold. Then

Gn,Q ⊆ Gn,a for all n ≥ 2.

Proof. We argue as in the proofs of Sect. 2.2. The statement of the theorem for
n = 1 holds by Proposition 3.2.1(1).

After replacing the h j,1 by a conjugate under G1,a ⊃ Ad we may assume that

| supp(h1,1)| ∩ | supp(h2,1)| ∩ | supp(h3,1)| = 1. (3.2.1)

Here we have also used that 2d + 1 = e1 + e2 + e3. (For the generating system
from Lemma 1.1.5(2), the unique integer in the intersection is e3.) In the case
that G1,Q 	 Sd we have that G1,Q = G1,a 	 Sd , and in this case we may even
assume that h j,1 = g j,1 for all j ∈ {1, 2, 3}. More precisely, from the fact that
the generating system from Lemma 1.1.5(2) is weakly rigid it follows that we may
assume that h j,1 = σ−1g j,1σ for all j ∈ {1, 2, 3} and some σ ∈ Sd which is
independent of j .

The proof of Lemma 2.2.8(2) may be applied to the elements α j,n,a defined in
Lemma 3.1.8(4). In the current situation we conclude that the component αi

j,n,a of

α j,n,a inS (T i
n ) satisfies

αi
j,n,a =

{
an e1-cycle if i ∈ supp(hh,1),

trivial otherwise.

The following claim is analogous to Claim 1 in the proof of Proposition 2.2.9.
Claim 1We have that Ni

n,a �= ∅ for some 1 ≤ i ≤ dn .
Consider the commutator

βn,a := [α1,n,a, [α2,n,a, α3,n,a]].
Since α2,n,a, α3,n,a ∈ Nn,a , it follows from Eq. (2.1.8) that the component β i

n,a of
βn,a inS (T i

n ) is

β i
n,a = [αi

1,n,a, [αi
2,n,a, α

i
3,n,a]] ∈ Ni

n,a .

Arguing as in the proofs of Lemma 2.2.8 and Proposition 2.2.9 we conclude that
the component β i

n,a for i = 1 + ∑n−1
k=1(�k − 1)dk−1 is non-trivial if and only if

�k ∈ supp(h1,1) ∩ supp(h2,1) ∩ supp(h3,1) for all 1 ≤ k ≤ n − 1. Equation (3.2.1)
implies that β i

n,a is non-trivial for a unique i0, i.e., βn,a ∈ Ni0
n . Moreover, the i0-th

component β i0
n,a equals

[h1,1, [h2,1, h3,1]] �= id.
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The last statement may for example be checked explicitly using the fact that
(h1,1, h2,1, h3,1) is uniformly conjugate under Sd to (g1,1, g2,1, g3,1), together with
the explicit expression for the g j,1 given in Lemma 1.1.5(2). Claim 1 is now proved.

Claim 2 Ni
n,a 	 Ad for all 1 ≤ i ≤ dn−1.

Claim 2 follows from Claim 1 as in the proof of Proposition 2.2.9 (Claim 2).
The proof of Lemma2.3.2 applies in this case aswell: in the proof of that lemma,

we only use the fact that exactly (e j )n−1 components of the element α j,n ∈ Nn,Q

are non-trivial. In the current situation, this property follows from Lemma 3.1.8(4).
We conclude that Nn,a contains a subgroup isomorphic to Nn,Q. The statement of
the theorem follows as in the proof of Theorem 2.3.1. ��

The following straightforward corollary of Theorem 3.2.2 summarizes the rela-
tion between the groups Gn,Q, Gn,a , Gn,Q in the case that all assumptions we have
imposed at various places in this paper hold. Recall that we gave explicit conditions
guaranteeing that Gn,Q = Gn,Q for all n ≥ 1 in Corollaries 2.4.4 and 2.4.6.

Corollary 3.2.3. Let f be a normalized Belyi map of type (d; e1, e2, e3) /∈
{(4; 3, 3, 3), (6; 4, 4, 5)}. Choose a ∈ P

1(Q) \ {0, 1,∞} and distinct primes
p, q1, q2, q3 such that Conditions 3.1.5 hold. Assume that Gn,Q = Gn,Q for all
n ≥ 1. Then Gn,a = Gn,Q for all n ≥ 1.

Proof. We have Gn,Q ⊆ Gn,a ⊆ Gn,Q ⊆ Aut(Tn) for all n ≥ 1: the first
inclusion is Theorem 3.2.2, the second one is Eq. (3.1.1, and the third holds by
definition. The assumption that Gn,Q = Gn,Q for all n ≥ 1 therefore implies
that all three groups are equal. The second statement on the index follows from
Lemma 2.1.3(1). ��
Remark 3.2.4. Corollary 3.2.3 also immediately implies that, under the same
assumptions,

[Aut(Tn) : Gn,a] → ∞ as n → ∞.

4. Applications to dynamical sequences

Let f be a normalized Belyi map of degree d such that G1,Q 	 Sd . By Theo-
rem 2.3.1, the iterates f n then have geometric monodromy groups Gn,Q 	 En

for all n ≥ 1, where the groups En are defined in Definition 2.1.2. We prove in
Theorem 4.1.2 that when E1 	 Sd and for any d ≥ 3, the proportion of elements
of En 	 Gn that fix a leaf on level n tends to zero as n tends to infinity. This
generalizes [3, Theorem 5.1], where the authors prove the same for the Belyi map
f (x) = −2x3 + 3x2 of degree d = 3; our proof is inspired by theirs.

Choose a ∈ P
1(Q) \ {0, 1,∞} and distinct primes p, q1, q2, q3 such that Con-

ditions 3.1.5 hold. Then Gn,Q ⊆ Gn,a ⊆ Gn,Q for all n ≥ 1, by Theorem 3.2.2.
Further assume that Gn,Q 	 Gn,Q for all n ≥ 1, so that these inclusions all become
equalities. For f of degree d ≥ 3, Theorem 4.1.2 then shows that the proportion of
elements ofGn,a that fix a leaf tends to zero as n tends to infinity. In Corollary 4.2.1
we derive some arithmetic dynamical consequences from this theorem.
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4.1. Proportion of elements fixing a leaf

Definition 4.1.1. Let n ≥ 1. Define

En,fix = { elements of En that fix a leaf },
An,id = |{ elements of En that act as id on T1}|,
A′
n,id = |{ elements of En,fix that act as id on T1}|,

and for 2 ≤ k ≤ d, let

An,k = |{ elements of En that act as as τ with |supp(τ )| = k on T1}|,
A′
n,k = |{ elements of En,fix that act as as τ with |supp(τ )| = k on T1}|. (4.1.1)

We see that |En| = An,id+∑d
i=2 An,i and |En,fix| = A′

n,id+
∑d−1

i=2 A′
n,i . Recall

from Sect. 2 that

|En+1| = |E1|
2

|En|d = |En|dd!/2. (4.1.2)

Finally, we note that for any n ≥ 1, exactly half of the elements of En−1 � E1 are
contained in En by Definition 2.1.2.

Theorem 4.1.2. Let Tn be the regular d-ary rooted tree of level n. Then

|En,fix|/|En| → 0 as n → ∞.

Remark 4.1.3. Let f be a normalized Belyi map of degree d ≥ 3, such thatGn,Q 	
Gn,Q 	 En for all n ≥ 1. If we choose a ∈ P

1(Q) \ {0, 1,∞} and distinct primes
p, q1, q2, q3 such that Conditions 3.1.5 hold, then Gn,Q 	 Gn,a 	 Gn,Q for all
n ≥ 1, and Theorem 4.1.2 implies that

|Gn,a,fix|/|Gn| → 0 as n → ∞,

where Gn,a,fix = { elements of Gn,a that fix a leaf }.
Proof. By inclusion–exclusion, this yields

A′
n+1,id = 1

2

(
d|En,fix||En |d−1 −

(
d

2

)
|En,fix|2|En |d−2 + · · · + (−1)d−1|En,fix|d

)
.

(4.1.3)

Similarly, an element of En+1,fix that acts as a non-trivial permutation τ on T1
with |supp(τ )| = k is of the form ((σ1, . . . , σd), τ ), where at least one of the σ j

with j /∈ supp(τ ) is in En,fix. Moreover, sgn2(τ )
∏d

j=1 sgn2(σ j ) = 1. This yields

A′
n+1,k ≤1

2
|En |k ·

(
(d − k)|En,fix||En |d−k−1

−
(
d − k

2

)
|En,fix|2|En |d−k−2 + · · · + (−1)d−k−1|En,fix|d−k

)
.

(4.1.4)
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Adding the contributions from (4.1.3) and (4.1.4), dividing out by |En+1|, and
using Eq. (4.1.2) yields

|En+1,fix|
|En+1| ≤ 1

|E1|
((

1 −
(
1 − |En,fix|

|En |
)d

)

+
d−1∑
i=2

|{τ ∈ Sd : |supp(τ )| = i}| ·
(
1 −

(
1 − |En,fix|

|En |
)d−i

))
.

(4.1.5)

For any n ≥ 1, let xn denote |En,fix|/|En|. Then Eq. (4.1.5) shows that xn+1 ≤
φ(xn), where

φ : x �→ 1

d!
d∑

i=0

|{τ ∈ Sd : |supp(τ )| = i}| ·
(
1 − (1 − x)d−i

)
.

The function g(x) = 1 − (1 − x)k is increasing on [0, 1] for any k ≥ 1, hence so
is φ. Since 1 − (1 − x)k ≥ 0 for any x ∈ [0, 1] and any k ≥ 1, we have φ(x) ≥ 0
for any x ∈ [0, 1].

Hence we find that

xn+1 ≤ φ(xn) ≤ · · · ≤ φn(x1) ≤ φn(1),

where x1 = |E1,fix|/|E1| ≤ 1. Let yn denote φn(1). Then {yn}n≥1 is a non-
increasing sequence in the interval [0, 1]. Hence it has a limit y which satisfies
φ(y) = y. Since the only solution to φ(y) = y in [0, 1] is y = 0, the limit
of the yn = φn(1) is zero. Thus, the limit of xn = |En,fix|/|En| is also zero,
as required. ��

4.2. Dynamical sequences

For a set S of prime numbers, let δ(S) denote its natural density if it exists. A
dynamical sequence in a field K is a sequence {ci }i≥0 with ci ∈ K such that
ci = f (ci−1) for some map f : K → K . Prime divisors of entries of such
sequenceswerefirst studiedusingGalois theorybyOdoni in [14]. For four particular
quadratic maps f , Jones [8] shows the density of prime divisors in the dynamical
sequence for f is zero; Gottesman and Tang [6] show non-zero densities can also
occur for quadratic maps. More general treatments of higher degree maps can be
found in e.g. [5], [7].

Corollary 4.2.1. Let f be a normalized Belyi map such that Gn,Q 	 Gn,Q 	 En

for all n ≥ 1.

(1) Choose a ∈ P
1(Q) \ {0, 1,∞} and distinct primes p, q1, q2, q3, such that

Conditions 3.1.5 hold. Consider the sequence {ai }i≥0 where a0 ∈ P
1(Q) \

{0, 1,∞, a} and ai = f (ai−1) for all i ≥ 1. Then δ(S) = 0, where S is the set
of primes q ∈ Q such that ai ≡ a (mod q) for some i ≥ 0.
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(2) Let K be the splitting field of f and consider the d − e1 non-zero preimages
of zero under f , denoted c j ∈ K for 1 ≤ j ≤ d − e1. Suppose that for each
c j there exist primes p j , q1, j , q2, j , q3, j of K such that the natural analogues
of Conditions 3.1.5 hold. Now form the sequence {bi }i≥0 ⊆ Q where b0 ∈
P
1(Q) \ {0, 1,∞}, and bi = f (bi−1) for all i ≥ 1. Then δ(T ) = 0, where T is

the set of rational primes q ∈ P such that q|bi for some i ≥ 0.

Proof. (1) For any n ≥ 1, the set Sn of primes q not dividing a such that ai ≡ a
(mod q) for some 0 ≤ i ≤ n − 1 is finite. Further, if ai ≡ a (mod q) for some
i ≥ n, then the rational map f n(x) − a has a rational root over Z/qZ (namely,
ai−n). It follows from the Chebotarev density theorem that

δ(S) ≤ δ({q ∈ P : q /∈ Sn and f n(x) − a has a root modulo q}) = |En,fix|
|En| ,

so the result follows by letting n → ∞ and using Theorem 4.1.2.
(2) Consider the sequence as a subset of K .Wemay ignore the finitelymany primes

of bad or good inseparable reduction for f , as well as the finitely many primes
dividing b0. Then bi �= 0 for any i ≥ 0, i.e., bi �= c j for any 1 ≤ j ≤ d − e1,
since by our assumption Gn,Q 	 Gn,Q 	 En none of the c j are rational. Let p
be a prime of K such that bi ≡ 0 (mod p) for some, without loss of generality
minimal, value of i ≥ 1. Writing f (x) = xe1 f1(x)/ f2(x) as before, we see
that f1(bi−1) ≡ 0 (mod p) and hence that bi−1 is congruent modulo p (but not
equal) to c j for some 1 ≤ j ≤ d − e1.
Arguing as in Sect. 3, the assumptions on the c j guarantee that Gn,c j ,K 	
Gn,K 	 Gn,Q 	 En for all n ≥ 1. Therefore, we conclude by observing that

δ(T ) = δ({p ∈ P : ∃p | p prime of K such that bi
≡ c j (mod p) for some i ≥ 1 and 1 ≤ j ≤ d − e1})

and arguing as in (1).
��

Remark 4.2.2. Corollary 4.2.1 generalizes [3, Proposition 6.1 and Corollary 6.2]
to normalized Belyi maps of degree d ≥ 3 whose Galois groups satisfy Gn,Q 	
Gn,Q 	 En .
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