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Abstract. We construct Fano threefolds with very ample anti-canonical bundle and Picard
rank greater than one from cracked polytopes—polytopeswhose intersectionwith a complete
fan forms a set of unimodular polytopes—using Laurent inversion; a method developed
jointly with Coates–Kasprzyk. We also give constructions of rank one Fano threefolds from
cracked polytopes, following work of Christophersen–Ilten and Galkin. We explore the
problem of classifying polytopes cracked along a given fan in three dimensions, and classify
the unimodular polytopes which can occur as ‘pieces’ of a cracked polytope.

1. Introduction

We explain how to construct an extensible database of Fano manifolds in each
dimension. In particular, we develop a combinatorial framework, based on the
notion of cracked polytopes introduced in [44]. We show that this framework is
flexible enough to obtain every Fano threefold with −K X very ample and b2 ≥ 2,
famously classified by Mori–Mukai [34–38]. We show how one may extend these
constructions to the rank one case – adapting work of Christophersen–Ilten [11,
12]—and to cases for which −K X is not very ample.

To implement ourmethodwefirst fix a unimodular rational fan� of dimensionn
containing r rays. The ray map of� sends the i th element of the standard basis ofZr

to the primitive generator of the i th ray. The transpose of this map is an embedding
of lattices and, tensoring with C

�, defines an embedding of affine spaces. The fan
� also determines an embedded degeneration of (C�)n to a union of toric strata
of C

r . The co-ordinate ring of the central fibre of this degeneration is given by
a Stanley–Reisner ring associated to the fan. Our prototypical example is the fan
for P

n , which determines the embedded degeneration {x1 · · · xn+1 = t} ⊂ C
n+1

obtained as t → 0. Given such a fan�, our general procedure consists of two steps.

(i) Intersecting the fan� with a lattice polytope P , we describe how the embedding
of (C�)n determined by � may be compactified to an embedding of the toric
variety X P in a non-singular toric variety Y . This is based on [44] and joint
work [17] with Coates and Kasprzyk.
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(ii) The embedding of affine spaces determined by� admits various possible defor-
mations, and we explicitly construct embedded deformations in Y by homoge-
nizing the co-ordinate rings of such families.

In this article the fans � we consider are simple enough that we can deform
the corresponding embeddings explicitly. However, in Sect. 6 we outline a poten-
tially sweeping generalisation using the work of Gross–Hacking–Keel [25] and
Gross–Hacking–Siebert [26]. In particular, the authors construct mirror families to
log Calabi–Yau varieties which deform the embeddings of the affine spaces and
vertex varieties described above. In work in progress with Barrott and Kasprzyk
we determine precisely when these families admit a fibrewise compactification in
Y in the two-dimensional setting.

The connection between mirror log Calabi–Yau families and Fano threefolds
is also currently being investigated by Corti–Hacking–Petracci in [18]. When fully
established such work would guarantee the existence of a smooth Fano associated
to each mirror Minkowski polynomial, see [1,16]. In this context the current work
forms a bridge between these (log) deformation theoretic constructions and the
constructions ofMori–Mukai by providing explicit toric degenerations—embedded
in a toric ambient space—from which one may deduce a birational description of
general fibres.

The current work fits into another program of research, directed toward a novel
approach to Fano classification. In [16] Coates–Corti–Galkin–Kasprzyk identify
(a number of) mirror Laurent polynomials for each family of Fano threefolds.
These constructions rely on the computation of the quantum period (part of the
small J -function) of each Fano threefold, which in turn relies on the existence of
good models of these Fano varieties; either as toric complete intersections, or via
representation theoretic constructions. We make heavy use of these constructions,
noting that these constructions are usually compatible with Laurent inversion. We
note that the connection between toric degenerations andmirror symmetry is further
explored by Ilten–Lewis–Przyjalkowski [29]. The Laurent polynomials discussed
above are superpotentials for certain Landau–Ginzburg models. We refer to work
of Clarke [13] for a duality construction for toric Landau–Ginzburg models which
generalises that of Givental/Hori–Vafa [23,28], and uses similar ideas to those
appearing in the constructions we present below.

Fixing a complete (generalised) fan—which we refer to as the shape—we say
a polytope is cracked along � if its intersection with each maximal cone of �

is unimodular, see Definition 2.2. In [17] we show that embeddings of X P into
toric varieties, compactifying the embedding of affine varieties described above,
are described by scaffoldings. Moreover, in [44] we show that embeddings of X P

into non-singular toric ambient spaces Y correspond to the combinatorial condition
that the scaffolding is full, see Definition 2.7 and Theorem 2.8.

Theorem 1.1. Every smooth Fano threefold with a very ample anti-canonical bun-
dle and b2 ≥ 2 can be obtained by smoothing a Gorenstein toric Fano variety. In
particular these can be constructed as deformations of toric embeddings provided
by Laurent inversion, applied to a cracked polytope together with a full scaffolding
S. Moreover, we may assume that the shape of the scaffolding S appears in Table 1.
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Table 1. The shape varieties used to construct Fano threefolds

Z ρ(Z) Z ρ(Z)

pt 0 d P7 3
P
1 1 d P6 4

P
2 1 Z10 = d P7 × P

1 4
P
3 1 d P6 × P

1 5
P
1 × P

1 2 Z12 5
P
2 × P

1 2 d P ′
5 × P

1 6
P
1 × P

1 × P
1 3

We note that a related result on the existence of toric degenerations of Fano
threefolds has recently appeared in work of Kasprzyk–Katzarkov–Przyjalkowski–
Sakovics [31].

We recall that the ideal of X P in the homogeneous co-ordinate ring of the toric
ambient space Y is determined by the choice of shape �: for example, if TV(�) is
a product of projective spaces, a full scaffolding with this shape realises X P as a
toric complete intersection. Extending the list of shapes given in Table 1 to include
the varieties Z2g−2 for g ∈ {2, 8, 9, 10, 12} defined in Sect. 3, we obtain members
of every family of Fano threefolds with very ample anti-canonical bundle from a
cracked polytope and full scaffolding. We consider the Fano threefolds for which
−K X is not very ample in Sect. 4.2.

We suggest that four-dimensional cracked polytopes form classes of polytopes
from which it is natural to algorithmically construct Fano fourfolds. We note, by
way of example, that each of the 738 families of Fano fourfolds which appear in
[14] can be constructed from a polytope cracked along the fan determined by a
product of projective spaces via a full scaffolding.
Conventions Throughout this article N will refer to an 3-dimensional lattice, and
M := hom(N , Z) will refer to the dual lattice. Given a ring R we write NR :=
N ⊗Z R and MR := M ⊗Z R. For brevity we let [k] denote the set {1, . . . , k}
for each k ∈ Z≥1. We work over the field C of complex numbers throughout this
article. Given a reflexive polytope P ⊂ NR, we assume throughout that X P is
the toric variety associated to the fan of cones over faces of P . Cracked polytopes
will always be contained in MR; in particular if Q is a polytope cracked along a
(generalised) fan �, � is a (generalised) fan in MR. Given a variety Y , and an
identification Pic(Y ) ∼= Z

r , we write O(a1, . . . , ar ) for the line bundle of (multi)
degree a = (a1, . . . , ar ) ∈ Z

r .

2. Cracked polytopes and Laurent inversion

The method Laurent inversion—introduced in [17]—was developed to construct
models of Fano manifolds embedded in toric varieties. To describe this method we
first fix a splitting N = N̄ ⊕ NU of N . We fix a Fano polytope P ⊂ NR and a
smooth toric variety Z (the shape), such that N̄ is the character lattice of the dense
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torus in Z . The central definition in the Laurent inversion construction is that of
scaffolding. Loosely, a scaffolding is a collection of polytopes associated to nef
divisors on Z whose convex hull is equal to P; we define the notion of scaffolding
precisely in Definition 2.3. From a scaffolding S we construct a polytope QS which
projects to P◦. The toric variety X P embeds into the toric variety YS associated
to the normal fan of QS . Moreover, the corresponding ideal in the homogeneous
co-ordinate ring of YS is determined by Z . We then test explicit deformations of the
equations cutting out X P in YS to attempt to construct an embedded smoothing.

In this article we often work with generalised fans �, that is, fans whose cones
are not necessarily strictly convex. In particular, we do not assume that the minimal
cone of � is zero-dimensional.

Definition 2.1. We say that a (not necessarily strictly convex) rational polyhedral
cone σ is unimodular if the quotient σ̄ of σ by the maximal linear subspace con-
tained in σ is a unimodular cone; that is, if the primitive ray generators of σ̄ extend
to an integral basis. We say that a generalised fan� is unimodular if all of its cones
are unimodular.

For general choices of S, the variety YS may be highly singular: for example
YS need not be Q-Gorenstein. In [44] we explored the (restrictive) conditions on S
which ensure that YS is non-singular, and introduced the following notion.

Definition 2.2. [44, Definition 2.1] Fix a convex polyhedron P ⊂ MR containing
the origin in its interior, and a unimodular generalised fan �. We say P is cracked
along � if every tangent cone of P ∩ C is unimodular for every maximal cone C
of �.

The shape Z is the toric variety associated to the quotient �̄ of� by its minimal
cone, and we will often find it convenient to say that P is cracked along the fan
�̄. It follows from [44, Proposition 2.5] that any cracked polytope is reflexive. In
three dimensions the converse holds, in the sense that any reflexive polytope is
cracked along some complete unimodular fan. Indeed, consider the fan � defined
by taking the cone over every face of a maximal triangulation of the boundary
of P; the polytopes obtained by intersecting maximal cones of � with P are all
standard simplices. Some examples of cracked polytopes are displayed in Fig. 1.
The polytope shown in the left-hand image of Fig. 1 is cracked along the product
of R

2 with the fan determined by P
1, while the polytope shown in the right-hand

image is cracked along the fan determined by P
1 × P

1 × P
1.

Definition 2.3. [17, Definition 3.1] Fix a smooth projective toric variety Z with
character lattice N̄ . A scaffolding of a polytope P is a set S of pairs (D, χ)—where
D is a nef divisor on Z and χ is an element of NU—such that

P = conv
(

PD + χ

∣∣∣ (D, χ) ∈ S
)

.

We refer to Z as the shape of the scaffolding, and elements (D, χ) ∈ S as struts.
We also assume that there is a unique s = (D, χ) such that v ∈ PD + χ for every
vertex v ∈ verts (P).
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Fig. 1. Examples of cracked polytopes

As described in [17], scaffolding can be regarded as a generalisation of the
notion of nef partition. These were introduced by Borisov in [6] and famously used
to construct mirror partners of Calabi–Yau complete intersections by Batyrev–
Borisov [5].

Scaffolding a polytope P determines an embedding of X P into an ambient
space YS . This is the main result of [17]; see also the treatment given in [44, §3].
We recall that given a toric variety X , which contains the complex torus T as a dense
open set, the group of torus invariant divisors is denoted DivT (X). Moreover, if X
determines a fanwith l rays, DivT (X) is canonically isomorphic toZ

l after ordering
these rays.

Definition 2.4. [17, Definition A.1] Given a scaffolding S of P we define a toric
variety YS , associated to the normal fan �S of the polytope QS ⊂ M̃R :=
(DivTM̄

Z ⊕ MU ) ⊗Z R, itself defined by the inequalities
{ 〈

(−D, χ),−〉 ≥ −1 for all (D, χ) ∈ S〈
(0, ei ),−

〉 ≥ 0 for i ∈ [�],
where ei denotes the standard basis of DivTM̄

Z ∼= Z
�.

We let ρ denote the ray map of the fan �̄ determined by Z , and set ρs :=
(−D, χ) for each s = (D, χ) ∈ S. We also define a map of lattices,

θ := ρ� ⊕ Id : N̄ ⊕ NU DivTM̄
(Z) ⊕ NU

N Ñ .

The map ρ� : N̄ → DivTM̄
(Z) is the character-to-divisor map for Z , and we

recall that this map also plays a key role in Clarke’s mirror constructions [13].

Theorem 2.5. [17, Theorem 5.5]A scaffolding S of a polytope P determines a toric
variety YS and an embedding X P → YS. This map is induced by the map θ on the
corresponding lattices of one-parameter subgroups.
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Fig. 2. Scaffolding the polytopes dual to those in Fig. 1

Remark 2.6. We can provide an explicit generating set for the ideal of X P in the
homogeneous co-ordinate ring of YS using the map θ . In particular, a hyperplane
containing the image of θ defines a function h on the set of ray generators of �S .
X P then satisfies the equation

∏
{v:h(v)≥0}

zh(v)
v −

∏
{v:h(v)<0}

zh(v)
v = 0,

where products are taken over the ray generators of�S , and zv is the homogeneous
co-ordinate on YS corresponding to the ray generated by v.

Recall that each facet F of P◦ is dual to a vertex F� of P , contained in a cone
σ of �. Taking σ is minimal among such cones, σ corresponds to a non-singular
toric stratum Z(σ ) of the toric variety TV(�̄). It is shown in [44, Proposition 2.8]
that the facet F of P◦ is a Cayley sum PD1 � · · · � PDk , where {Di : 1 ≤ i ≤ k} is
a set of nef divisors on Z(σ ), and k = dim(σ̄ ) + 1. We call a face of P◦ vertical
if it is contained in a factor PDi of some facet F = PD1 � · · · � PDk and some
i ∈ {1, . . . , k}, see [44, Definition 2.10].

Definition 2.7. [44, Definition 4.1] Given a Fano polytope P ⊂ NR cracked along
a generalised fan � in MR we say a scaffolding S of P with shape Z := TV(�̄)

is full if every vertical face of P is contained in a polytope PD + χ for a unique
element (D, χ) ∈ S.

We show in [44] that full scaffoldings on cracked polytopes give rise to embed-
dings X P → YS where YS is smooth in a neighbourhood of X P . Full scaffoldings of
the polytopes dual to those shown in Fig. 1 are illustrated in Fig. 2. The scaffolding
shown in the left hand image in Fig. 2 consists of a pair of line segments and a
pair of points, while the scaffolding shown in right hand image consists of a pair
of cubes which intersect at the origin.

Theorem 2.8. [44, Theorem 1.1] Fix a polytope P ⊂ MR, and a rational gen-
eralised fan � in MR such that the toric variety Z := TV(�̄) is smooth and
projective. Given a scaffolding S of P with shape Z, we have that the target of the
corresponding embedding is smooth in a neighbourhood of the image of X P if and
only if P is cracked along � and S is full.
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2.1. Torus quotients

Every n-dimensional toric variety X (over C) may be described as the quotient of
a Zariski open set of affine space C

n+r by a complex torus T := (C�)r . Recalling
that, if X is determined by a fan in N whose rays generators ν1, . . . , νn+r form a
spanning set of N , we have an exact sequence

0 L Z
n+r ν

N 0

where ν : ei → νi for each i ∈ {1, . . . , n + r}. The character lattice L
� of T fits

into the dual sequence,

0 M (Zn+r )�
R

L
� 0.

Moreover we recall that if X is smooth there is a canonical identification L
� ∼=

Pic(X), while if X is Q-factorial there is a canonical identification of L
�
R

:= L ⊗Z

R ∼= Pic(X)R. The map R : (Zn+r )� → L
� is called the weight data for the toric

variety. Recall that the possible fans in N , with rays generated by a subset of
{ν1, . . . , νn+r }, and such that the associated toric variety is projective, are indexed
by the cones of a fan contained in the effective cone Eff(X) ⊂ Pic(X)R. This fan
is called the secondary fan or GKZ decomposition.

Fixing a maximal cone (or chamber) σ in the secondary fan, the corresponding
toric variety can be described as the torus quotient

Xσ = (
C

n+r\Z(σ )
)
/T,

whereT := (L�⊗ZC
�), theweights of the torus action are given by R, and the Z(σ )

is the irrelevant locus. Choosing a point (or stability condition) ω in the interior of
σ , the irrelevant locus is defined by setting

Z(σ ) := V
(
xi1 · · · xir : ω ∈ 〈Ri1 , . . . , Rir 〉

)
,

where Ri = R(ei ) for each standard basis vector ei , i ∈ [n + r ]. Some of the
constructions described in Sect. 4 make use of stability conditions contained in a
codimension one cone (or wall) in the secondary fan.

Under an additional condition, we can use theGIT presentation of a toric variety
to streamline the construction of the variety YS from a scaffolding S.

Assumption 2.9. There is a basis B = {bi ∈ NU : i ∈ [dim NU ]} such that

{(0, b) : b ∈ B} ⊆ S.

We assume for the remainder of this section that every scaffolding satisfies
Assumption 2.9. With this condition, the cone generated by

B ∪ {ei : i ∈ [dimDivTM̄
(Z)]},

where the vectors ei form the standard basis in the based lattice DivTM̄
(Z), defines

a smooth torus invariant point in YS . We next explain how to form a weight matrix
and stability condition which determine the variety YS directly from the scaffolding
S. This construction follows [17, Algorithm 5.1].
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Construction 2.10. Given a scaffolding S with shape Z of a polytope P , index the
elements of S by [s], and let (Di , χi ) denote the i th element of S. It follows from
our assumptions on S that the ray matrix of �S is in echelon form

(
In

−D1 · · · −Dr

χ1 · · · χr

)
,

where [s]\[r ] indexes the elements (Di , χi ) ∈ S of the form (0, bi ), for a basis
{bi : i ∈ [dim NU ]}, and n = dim Ñ . Thus R, the transpose of the kernel matrix,
is given by

R =
⎛
⎜⎝ Ir

−χ1 D1
...

...

−χr Dr

⎞
⎟⎠ .

The variety YS is defined using the a polarising torus invariant divisor given by the
sum of all rays corresponding to elements of S. The (multi) degree of this divisor
is given by the sum of the first s columns of R. That is, the stability condition used
to define YS is given by the sum of (1, . . . , 1)T with the columns of the matrix
(χ1, . . . , χr )

T

If Z is a product of c projective spaces, there is a partition of the columns
of R containing the vectors Di ∈ DivTM̄

(Z). In particular, the standard basis in
DivTM̄

(Z) partitions into c sets C1, . . . , Cc, such that Ci consists of divisors pulled
back from the standard projection to the i th projective space factor. For each i ∈ [c]
the degree of the line bundle Li cutting out X P in YS is given by the sum of the
columns in Ci . In particular, there is a distinguished binomial zm1 − zm2 in Li ,
where m1 is the sum of standard basis vectors in (Zn+r )� corresponding to the
columns of Ci , and m2 is the unique lift of Li ∈ L

� to (Zr )�: the subspace of
(Zn+r )� corresponding to the first r columns of R. It is shown in [17], see also [44,
§3], that X P is the vanishing locus of these c binomials.

Example 2.11. Fix a 3-dimensional reflexive polytope P , and let Z be a crepant
resolution of the toric variety determined by the normal fan of P . In particular,
N̄ = N and NU = {0}. Let S := {(D, 0)}, where D ∈ | − K Z | is the toric
boundary of Z . Hence P = PD , and the corresponding 1 × n weight matrix R is
equal to

(
1 1 · · · 1), where n = 1+dimDivTM (Z) columns. The stability condition

is equal to 1 ∈ L
� ∼= Z, and henceYS ∼= P

n−1. This is nothing but the anti-canonical
embedding of X P into projective space.

Example 2.12. In [17, Example 3.5] we consider two distinct scaffoldings for the
polygon P associated with the toric del Pezzo surface of degree six. One of these
is illustrated in Fig. 3. The scaffolding illustrated in Fig. 3 has shape Z = P

1 × P
1

and—letting Di,a denote the pullback of {a} ⊂ P
1 along the i th projection for each

i ∈ {1, 2} and a ∈ {0,∞}—we define

S := {{D1,0 + D2,0}, {D1,∞ + D2,∞}}.
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Fig. 3. The scaffolding corresponding to the embedding of d P6 in P
2 × P

2

Applying Construction 2.10 to S we obtain the weight matrix
(

I2
1 0 1 0
0 1 0 1

)
.

and stability condition ω = (1, 1). This is a GIT presentation of the toric variety
P
2×P

2. The variety X P ∼= d P6 is the vanishing locus of the binomials x1y1 = x0y0
and x2y2 = x0y0, where xi and yi denote homogeneous co-ordinates on the P

2

factors.

3. Rank one Fano threefolds

Toric degenerations of rank one Fano manifolds have been obtained by Ilten and
Christophersen [11,12], using the deformation theory of Stanley–Reisner rings
developed by Altmann–Christophersen [2,3]. Using these results—and the work
of Galkin [22] on small toric degenerations—we obtain cracked polytopes P cor-
responding to each of the 15 rank one Fano threefolds X with very ample anti-
canonical bundle. In particular, we describe degenerations of these 15 Fano three-
folds X to the toric varieties X P . We remark that, since the toric degenerations in
this case occur in the anti-canonical embedding, the use of cracked polytopes in
this context is rather trivial; see Example 2.11.

Remark 3.1. We refer to the enumeration of three dimensional reflexive polytopes
used in this article as ‘PALP ID’ in acknowledgement of the original work of
Kreuzer–Skarke [33]. We note however that, as well as its implementation in PALP
(‘a Package for Analyzing Lattice Polytopes’), this database has been implemented
in SageMath [46] and Magma [7], and that polytopes with a given ID may be
obtained from the Graded Ring Database [9].

To specify the toric varieties Z2n for n ∈ {6, 7, 8, 9, 11}which appear in Table 2,
we set Z10 := d P7 × P

1, and let �a
1, . . . , la

5 denote the torus invariant divisors of
d P7 × {a} ⊂ Z10 for each a ∈ {0,∞}.
• Z12 is the blow up of Z10 := d P7 × P

1 in a toric invariant line �01 ⊂ Z10.
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Table 2. Rank one Fano threefolds

Fano PALP ID Equations Shape Fano PALP ID Equations Shape

P
3 1 − pt V8 4251

⎧⎪⎨
⎪⎩

x1x2 − x20
x3x4 − x20
x5x6 − x20

P
1 × P

1 × P
1

Q3 2 x1x2 − x20 P
1 V10 4143 Section 3.2 d P7 × P

1

B5 246 Section 3.1 d P7 V12 3869 Section 3.2 Z12

B4 434

{
x1x2 − x20
x3x4 − x20

P
1 × P

1 V14 3298 Section 3.2 Z14

B3 742 x1x2x3 − x30 P
2 V16 3034 Section 3.2 Z16

B2 428 Section 3.3 Z2 V18 2703 Section 3.2 Z18
V4 4312 x1x2x3x4 − x30 P

3 V22 1943 Section 3.2 Z22

V6 4287

{
x1x2 − x20
x3x4x5 − x20

P
1 × P

2 .

• Z14 is the blow up of Z12 in the strict transform (and pre-image) of �∞
2 ⊂ Z10.

• Z16 is the blow up of Z14 in the strict transform of the line �05 ⊂ Z10.
• Z18 is the blow up of Z16 in the strict transform of the line �∞

3 ⊂ Z10.

The fans determined these varieties define triangulations of the sphere via radial
projection. The sequence of blowupmaps described induces the starring operations
on these triangulations described in [12]. We define the variety Z22 to be a crepant
resolution of the toric variety determined by the normal fan of the reflexive polytope
with ID 1942. Similarly, we define the variety Z2 to be a crepant resolution of the
toric variety determined by the normal fan of the (self-dual) reflexive polytope with
ID 428.

The Fano variety P
3 is toric, while Q3, B3, B4, V4, V6, and V8 are well known

to be toric complete intersections. These admit toric degenerations to the varieties
defined by the equations given in Table 2. The variety B2 is also a toric complete
intersection (indeed, a hypersurface in P(1, 1, 1, 1, 2)), but since this weighted pro-
jective space is not Gorenstein we treat this case separately in Sect. 3.3. To describe
the scaffolding associated to each of these Fano threefolds, let d be the dimension
of the shape variety Z , set N̄ := Z

d and NU := Z
3−d . Letting {e1, . . . , e3−d}

denote the standard basis of NU , we define

S := {(0, e1), . . . , (0, e3−d), (D, χ))},
where D ∈ |− K Z | is the toric boundary of Z , and χ = (−1, . . . ,−1) ∈ NU . This
scaffolding is illustrated in the case B3 in Fig. 25 (setting a = 1 and b = 3).

3.1. Pfaffian equations and B5

The Fano threefold B5 is a linear section of the Grassmannian Gr(2, 5). We make
heavy use of the fact that the ideal of the image of the Plücker embedding

Gr(2, n) ↪→ P
(n
2)−1
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is generated by 4×4Pfaffians of a skew-symmetric n×n matrix; entries ofwhich are
the Plücker co-ordinates of Gr(2, n). Hyperplane sections can then be obtained by
replacing entries with linear combinations of a subset of the Plücker co-ordinates.
For example, B5 can be described as the Pfaffians of the matrix

⎛
⎜⎜⎜⎜⎝

0 x0 x1 x2 x0
0 t x0 x3 x4

0 x0 x5
0 t x0

0

⎞
⎟⎟⎟⎟⎠

for a fixed value of t �= 0. Note that this since matrix is skew-symmetric we omit
lower diagonal entries. Varying t defines a flat family, the central fibre of which is
the projective cone over a toric variety with two ordinary double points, obtained
from d P5 bymoving the four points at whichP

2 is blown up to two pairs of infinitely
close points, and contracting the pair of resulting − 2 curves in the central fibre.
Setting t = 0 recovers five equations generating the ideal of a toric variety in P

5.
This toric variety is isomorphic to X P , where P denotes the toric variety with
ID 742. The embedding X P → P

5 is the embedding of X P determined by the
scaffolding S = {(0, 1), (D, 0)}, where 1 ∈ NU ∼= Z and D ∈ −K Z (recalling that
Z = d P7) is the toric boundary of Z .

3.2. Higher genus Fano threefolds

The varieties V2n−2 for n ∈ {6, 7, 8, 9, 10, 12} are linear sections of the Mukai
varieties Mn [39]. Toric degenerations of these are related—by work of Ilten–
Christophersen [12]—to the convex deltahedra in the cases n < 12, while varieties
in the family V22 admit a toric degeneration to a variety with ordinary double point
singularities, see [22].

Given a Fano toric variety Z , let its dual Z� be toric variety associated to the
normal fan of the convex hull of the ray generators of the fan determined by Z .

Proposition 3.2. The toric varieties V2n−2 admit toric degenerations to the Fano
toric varieties Z�

2n−2 dual to Z2n−2 for each n ∈ {6, 7, 8, 9, 10, 12}.
Proof. If n < 12 we recover the triangulations Tn of S2 used in [12] to construct
degenerations of Fano threefolds by removing the origin from NR

∼= R
3 and radially

projecting the fan �n determined by Z2n−2. The result then follows immediately
from [12, Proposition 2.3]. In the case n = 12 we observe that Z�

22 contains only
ordinary double point singularities, and hence admits a smoothing. It is shown in
[22] that the general fibre of this smoothing is a member of the family V22. ��

In the cases n ∈ {6, 7, 8} we can provide an explicit description of the toric
degeneration.

(i) V10: varieties in this family can be described by the Pfaffians of a 5 × 5 skew-
symmetric matrix, and one quadric equation. We can form a toric degeneration
following Sect. 3.1.
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(ii) V12: varieties in this family can be described via a systemof 9Pfaffian equations,
and we refer to the treatment of 2–21 in Sect. 4 for a description of a toric
degeneration using the same shape variety.

(iii) V14: varieties in this family can be described as the vanishing of the 4 × 4
Pfaffians of a 6× 6 skew matrix. An explicit toric degeneration is given by the
4 × 4 Pfaffians of the matrix (1) below.

The vanishing 4 × 4 Pfaffians of the matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

0 −x1 x2 t f1 x3 x4
0 tg1 x5 x1 x6

0 x7 x2 x0
0 x0 x8

0 th1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

define a toric degeneration of V14, a general linear section of Gr(2, 6), where xi

are homogeneous co-ordinates on P
9 and f1, g1, and h1 are general linear forms

on P
9. The scaffolding S in each case is equal to the singleton set {(D, 0)}, where

D is the toric boundary of Z .

3.3. The quartic hypersurface in P(1, 1, 1, 1, 2)

Recall that the toric variety YS defined by a full scaffolding of a cracked polytope
P is non-singular in a neighbourhood of the image of P . This excludes certain
constructions of Fano manifolds as hypersurfaces as weighted projective spaces.
In particular, consider the scaffolding (with shape P

2) of the polytope P with ID
3313 illustrated in Fig. 25, setting (a, b) = (1, 4). We have that N̄ ∼= Z

2, NU ∼= Z,
and S = {(0, 1), (D0 + D1 + 2D2,−1)}; where Di := {xi = 0} ⊂ P

2. Computing
the corresponding weight matrix we find

R = (
Ir χ D

) = (
1 1 1 1 2

)
.

Thus X P is the vanishing locus of a section ofO(4) in P(14, 2) := P(1, 1, 1, 1, 2).
Notice that P◦ is not cracked along the fan of P

2. To obtain a construction from a
cracked polytope we first embed P(14, 2) into P

10 via the linear system defined by
sections of O(2). Sections of O(2) define the integral points of a polytope in Z

4

given by the convex hull of the points given by the columns of the matrix

0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

.

The quartic equation x0x1x2x3 = y2 defines a projection of this polytope to the
reflexive polytope P with ID 428. This polytope is self-dual, and we take the
scaffolding of P with shape Z given by a crepant resolution of X P , covering P
with a single strut. This scaffolding corresponds to the anti-canonical embedding
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of X P into P
10, which is the intersection of the image of the Veronese embedding

of P(14, 2) with a (binomial) quadric. Deforming this quadric deforms X P to a
general quartic hypersurface in P(14, 2).

4. Constructions of Fano manifolds

There are 98 Fano threefolds with very ample anti-canonical bundle. Indeed, Fano
threefolds which do not have very ample anti-canonical bundle are classified in
[30]. These fall into five hyperelliptic cases, and two examples for which the anti-
canonical system is not free. In the previous section we described constructions
from cracked polytopes of the 15 of these which have Picard rank one. We now
explain constructions in the remaining 83 cases. In particular, for each of these 83
Fano threefolds X , we exhibit a generalised fan � and polytope P cracked along
� such that—for some full scaffolding of S with shape Z := TV(�̄)—the toric
variety X P admits an embedded smoothing in YS to X .

Examples from ‘Quantum periods for 3-dimensional Fano manifolds’ Explicit con-
structions of Fano threefolds are provided in [16]. The authors use these construc-
tions to compute (part of) the J -function of each Fano threefold using either the
Quantum Lefschetz principle, or the Abelian-non Abelian correspondence. In par-
ticular, each Fano threefold X is exhibited either as a complete intersection in a
weak Fano toric variety, or as the degeneracy locus of amap of homogeneous vector
bundles.

Proposition 4.1. Fix a Fano threefold X, such that the model of X in [16] describes
X as the vanishing locus of a section of a split vector bundle � = L1 ⊕ · · · ⊕ Lc

on a toric variety Y . In addition, we insist that the divisor

−KY − L1 − · · · − Lc

is ample. There is a reflexive polytope P, shape variety Z, and full scaffolding S of
P such that YS ∼= Y , and X P admits an embedded smoothing to X in Y .

We note that the format described above covers many, though not all, the con-
structions of Fano threefolds which appear in [16]. The remaining examples either
require the use of spaces with actions of non-abelian Lie groups, or require weak-
ening the condition that −KY − L1 − · · · − Lc is ample.

Proof. Tables 3, 4 and 5 list binomial equations cutting out toric varieties to which
Fano varieties in the various families satisfying our hypotheses degenerate. The
leading monomial in each case is square-free and defines a subset of the columns
Ci of the weight matrix listed in [16] for each i ∈ {1, . . . , c}. In every case the
sets Ci are pairwise disjoint, and disjoint from a subset C of columns which define
a basis of Pic(Y ). Reversing Construction 2.10, we can obtain a scaffolding from
the weight matrices given in [16] and the binomial expressions listed in Tables 3,
4 and 5. The rank one complete intersection cases are listed in Table 2.

It follows from [44, Theorem 1.1], and smoothness of YS , that the polytope P◦
is cracked along the fan determined by Z , and S is full. ��
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Fig. 4. Constructing 2–18 via Laurent inversion

Example 4.2. Consider a Fano threefold X in the family 2–18. X is a double cover
of P

1 × P
2, branched in a divisor with bidegree (2, 2). The construction in [16]

describes this Fano threefold as a hypersurface in the projectivisation of a rank 3
split vector bundle on P

2.
Consider the scaffolding S with shape Z = P

2 illustrated in the left hand image
in Fig. 4. That is, N̄ ∼= Z

2, NU ∼= Z, and S = {(D1 + D2, 0), (D0 + D2,−1)},
where Di = {xi = 0} for homogeneous co-ordinates (x0 : x1 : x2) on P

2. This
scaffolding exhibits X P as the hypersurface given by the vanishing locus of the
binomial zy2x3 − y21 x21 , in the toric variety with weight matrix

y1 x1 x2 x3 y2 z
1 0 0 0 1 1
0 1 1 1 0 1

such that the class (2, 1) is ample. Note that the weight matrix—up to a permutation
of the columns—and stability condition ω = (2, 1) are identical to those appearing
in [16, p. 40]. Thus the general member of the linear system O(2, 2) is a Fano
threefold in the family 2–18.

Of the 83 Fano threefolds with very ample anti-canonical divisor and b2 ≥ 2, 68
of the constructions given in [16] coincide with constructions from full scaffoldings
on cracked polytopes.Of these 67 constructions are summarised inTables 3, 4 and 5.
The construction given in [16, p. 58] expresses varieties in the remaining family,
3–2, as a hypersurface in a toric variety F which cannot obtained using a full
scaffolding of a cracked polytope. However, in the remarks on the construction
given in [16, p. 59], the authors describe a second construction using a toric variety
G. This toric variety does coincide with a toric ambient space obtained from a full
scaffolding of a cracked polytope.

The column Equations in each table describes a generating set for the ideal in
the homogeneous co-ordinate ring of the ambient variety Y described in [16]. The
first monomial of each binomial is always square-free, and may be used to identify
columns of the weight matrix defined by Y . If Y is a product of projective spaces
the co-ordinates are not named in [16], and we name these x0, . . . , xm for the first
projective space factor P

m , y0, . . . , yn for the second, etc.
We now provide constructions from cracked polytopes of the 15 Fano threefolds

whose construction in [16] is not directly related to a full scaffolding of a cracked
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Table 3. Scaffolding constructions for Picard rank 2 Fano threefolds

Fano Equations Shape Fano Equations Shape

2–4 x1y1y2y3 − x0y30 P
3 2–23

{
xs3s4 − s0x5
s1s2 − s20

P
2 × P

1

2–5 s1xx3x4 − x32 P
3 2–24 x1y1y2 − x0y20 P

2

2–6 x1x2y1y2 − x20 y20 P
3 2–25 x1y1y2 − x0y20 P

2

2–7

{
x1y1y2 − x0y20
y3y4 − y20

P
1 × P

2 2–27 xi yi − x0y0, i ∈ [2] P
1 × P

1

2–9

{
x1y1 − x0y0
x2x3y2 − x20 y0

P
1 × P

2 2–28 s1s2s3x − s0y P
3

2–10

{
x4x5 − x22
xx3s1 − x22

P
1 × P

2 2–29 x3x4 − x22 P
1

2–11 s0s1xx4 − s2x23 P
3 2–30 s1s2x − s0x4 P

2

2–12 xi yi − x0y0, i ∈ [3] P
1 × P

1 × P
1 2–31 s2x4 − s0x3 P

1

2–13

⎧
⎨
⎩

x1y1 − x0y0
x2y2 − x0y0
y3y4 − y20

P
1 × P

1 × P
1 2–32 x1y1 − x0y0 P

1

2–15 s0s1s2x − s23 x4 P
3 2–33 − pt

2–16

{
s0s1x − s2x3
x4x5 − x23

P
2 × P

1 2–34 − pt

2–18 x1y1w − x20 y20 P
2 2–35 − pt

2–19

{
s1x5 − s0x4
xs2s3 − s0x4

P
2 × P

1 2–36 − pt

Table 4. Scaffolding constructions for Picard rank 3 Fano threefolds

Fano Equations Shape Fano Equations Shape

3–3 x1y1z1z2 − x0y0z20 P
3 3–19 s1xx4 − x23 P

2

3–6 x22 y0 − s1xx3y1 P
3 3–20 s1t3 − s0t2 P

1

3–7

{
x1y1z1 − x0y0z0
y2z2 − y0z0

P
2 × P

1 3–21 y1s − t x0y22 P
1

3–8 s1xy1y2 − x2y20 P
3 3–22 x1s − t y20 P

1

3–9 y1xs1s2 − y20 3–23 s2v − s1x0u P
1

3–10 s1t3xy − x24 P
3 3–24 x2y1 − s0xy0 P

1

3–11 s1s2xy1 − s0x3y0 P
3 3–25 − pt

3–12

{
s3xy1 − x1y0
x2y2 − x1y0

P
2 × P

1 3–26 − pt

3–13

⎧⎨
⎩

x1y1 − x0y0
x2z1 − x0z0
y2z2 − y0z0

P
1 × P

1 × P
1 3–27 − pt

3–15 s1s2y − s0t3z P
2 3–28 − pt

3–17 x1y1z1 − x0y0z0 P
2 3–29 − pt

3–18 s1xx3y0 − s0x2y1 P
3 3–30 − pt

3–31 − pt
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Table 5. Scaffolding constructions for Picard rank 4 Fano threefolds

Fano Equations Shape Fano Equations Shape

4–1 x1y1z1w1 − x0y0z0w0 P
3 4–7

{
y1u1 − x0u0
z1u2 − x0u0

P
1 × P

1

4–3 y0y1 − s20 t20 x2 P
1 4–8 x2y2 − s0xt0y P

1

4–4 x1y1v − x0y0z0u P
2 4–9 z1u − x0y0v P

1

4–5 x3y4 − x22 y2 P
1 4–10 to 4–13 − pt

polytope. In six cases (2–14, 2–17, 2–20, 2–21, 2–22, 2–26) the corresponding
construction in [16] does not describe the Fano threefold as a toric complete inter-
section. In the remaining nine cases (2–8, 3–1, 3–4, 3–5, 3–14, 3–16, 4–2, 4–6,
5–1) the construction given in [16] expresses the Fano threefold X as the vanishing
locus of a section of split vector bundle � = L1 ⊕ · · · ⊕ Lc on a toric variety Y ,
such that L := −KY −∑

i Li is nef but not ample. In the latter case the embedding
cannot come from a scaffolding S, since Construction 2.10 uses L to polarise the
ambient space.

Remark 4.3. Note that the numbering for the rank 4 Fano threefolds replicates that
in [16], which differs from the original list of Mori–Mukai by the insertion of the
family 4–2 which was omitted from the original classification (some lists instead
append this family as 4–13).

Rank 2, number 8 Varieties in the family 2–8 are either,

(i) the double cover of B7 (the blow up ofP
3 at a point) with branch locus amember

B of |−K B7 | such that B∩D is non-singular, where D is the exceptional divisor
of the blow up B7 → P

3, or;
(ii) the specialisation of (i) where B ∩ D is reduced but singular.

We make use of the construction given in [16], which embeds Fano threefolds
in the family 2–8 as hypersurfaces of bi-degree (2, 4) in the toric variety Y , defined
by the weight matrix

y x0 z x1 x2 x3
1 1 1 0 0 0
0 1 2 1 1 1

and a choice of stability condition in the chamber 〈(0, 1), (1, 2)〉. The coincidence
of these two constructions is proved in [16, p. 31].

Consider the scaffolding S = {D} of the reflexive polytope P with PALP ID
3263, with shape Z = P

1 × d P ′
5. Here we take d P ′

5 to be the blow up of P
1 × P

1

at three of its torus invariant points, and D ∈ | − K Z | is the toric boundary of Z .
This scaffolding corresponds to the anti-canonical embedding X P → P

9, see
Example 2.11. To exhibit an explicit smoothing in this embedding we consider
another scaffolding of P—with shape Z ′ = P

2 × P
1—shown in Fig. 5. Note that
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Fig. 5. The scaffolding used to construct 2–8

P◦ is not cracked along the fan determined by Z ′. The scaffolding S′ defines an
embedding X P → YS′ where YS′ is the toric variety defined by weight matrix

y x0 z0 z1 x1 x2 x3
1 1 1 1 0 0 0
0 1 2 2 1 1 1

and stability condition ω = (1, 2)—note that ω is contained in a wall. The toric
variety X P is the vanishing locus of a section of E := O(1, 2) ⊕ O(2, 4).

Lemma 4.4. The vanishing locus of a general section of E is a Fano threefold 2–8.

Proof. General sections of E do not vanish at the torus invariant point defined by
the vanishing of all co-ordinates except z1. There is a projection from this point to
the toric variety Y ′, the toric variety defined by the same weight matrix as Y , but
stability condition ω = (1, 2). The wall spanned by (1, 2) is a flipping wall, and the
birational transformation induced by crossing this wall is given by (the cone on) a
Pachner move in the fan determined by Y . The intermediate variety has the non-Q
factorial point given by the vanishing of all homogeneous co-ordinates (labelled as
for Y ) except z. The image of the vanishing locus X of a general section of E in Y ′
misses this singularity. Hence the resolution of Y ′ induced by moving the stability
condition from (1, 2) into the chamber 〈(1, 2), (0, 1)〉 restricts to an isomorphism
of X , and the result follows from [16, p. 31]. ��

Consider the embedding ϕO(1,2) : YS′ → P(H0(YS′ ,O(1, 2)))� = P
10. Com-

posing ϕO(1,2) with the embedding ι : X P → YS′ , the pull-back of the line bundle
OP10(1) is the anti-canonical class on X P by adjunction. Moreover X P is the
intersection of ϕO(1,2)(YS′) with a quadric and a hyperplane in P

10. In particular,
restricting to this hyperplane, we obtain the anti-canonical embedding of X P in P

9.
Restricting to members of a general pencil of hyperplanes – and intersecting with a
general pencil of quadrics—we see that X P deforms in P

9 to a variety in the family
2–8.
Rank 2, number 14 This example is the first of a sequence of examples—along
with 2–20, 2–22, and 2–26—to make use of polytopes cracked along the fan of
Z := d P7. The corresponding embeddings are defined using the five 4×4 Pfaffians
of a 5 × 5 matrix of polynomials in the homogeneous co-ordinate ring of a toric
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Fig. 6. The scaffolding used to construct 2–14

variety.Varieties in the family 2–14 are the blowup of B5 (a three dimensional linear
section of Gr(2, 5)) in an elliptic curve which is the intersection of two hyperplane
sections.

Consider the polytope P with PALP ID 3028 together with the scaffolding
with shape Z displayed in Fig. 6. We have that N̄ ∼= Z

2, NU ∼= Z, and S =
{(0, 1), (D, 0), (D,−1)}, where D is the toric boundary of Z = d P7.

The variety YS is determined by the weight matrix

x0 x1 x2 x3 x4 x5 x6 y
1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1

and stability condition ω = (2, 1). The corresponding secondary fan is shown in
Fig. 7. The variety YS is consequently the blow up of P

6 in a codimension 2 linear
subspace. The ideal of X P in YS is obtained by homogenizing the 4 × 4 Pfaffians
of the skew-symmetric matrix

⎛
⎜⎜⎜⎜⎝

0 x0y x1 x2 x0y
0 0 x3 x4

0 x0y x5
0 0

0

⎞
⎟⎟⎟⎟⎠

. (2)

Consider the contraction YS → P
6, and observe that the intersection of the

image of X P with the centre V := {x0 = x1 = 0} is a cycle of five (−1)-curves.
Replacing the two 0 non-diagonal entries in (2) with general linear forms, this
cycle of (−1)-curves becomes a (codimension 3) non-singular curve of genus one.
Blowing up V produces a flat family deforming X P to a Fano threefold in the family
2–14.
Rank 2 number 17Varieties in the family 2–17 are the blow up of a quadric threefold
in an elliptic curve of degree 5. We consider the polytope P with PALP ID 1528,
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Fig. 7. Secondary fan for the variety YS used in the construction of 2–14

Fig. 8. The scaffolding used to construct 2–17

together with the scaffolding S shown in Fig. 8 using the shape variety Z = P
1 ×

d P7.
The scaffolding S determines the toric variety YS ∼= P

4×P
3. Letting x0, . . . , x4

and y0, . . . , y3 denote homogeneous co-ordinates on the respective projective space
factors, X P is the vanishing locus of the binomial x0y0 = x1y1, and the five 4 × 4
Pfaffians of the skew-symmetric matrix

⎛
⎜⎜⎜⎜⎝

0 y0 y2 y3 y0
0 t f1 x2 x4

0 x0 x3
0 t f2

0

⎞
⎟⎟⎟⎟⎠

,

where t = 0 and fi are general linear equations in x0, . . . , x4. One of these five
Pfaffians describes the threefold x2x3− x0x4 = 0 in P

4, while the other 4 equations
have bidegree (1, 1). It is shown in [16, p. 38] that varieties in the family 2–17 may
be obtained as the vanishing loci of general sections of the bundle

E := (S� � OP3(1)) ⊕ (det S� � OP3(1)) ⊕ (det S� � OP3)

on the varietyGr(2, 4)×P
3. TheGrassmannianGr(2, 4) ⊂ P

5 is a quadric fourfold,
while sections of the line bundle det S� define hyperplane sections in P

5. Moreover,
the binomial x0y0 = x1y1 defines a section of the bundle obtained by pulling back



286 T. Prince

Fig. 9. The scaffolding used to construct 2–20

(det S� � OP3(1)) to the product of a hyperplane section in P
5 with P

3. We claim
that the remaining four Pfaffian equations define a section of the pull-back of
(S� � OP3(1)) to this hyperplane section. Representing a point in Gr(2, 4) as the
row-space of a 2 × 4 matrix

M =
(

y1,1 y1,2 y1,3 y1,4
y2,1 y2,2 y2,3 y2,4

)
,

a section of the bundle S� is determined by a vector z = (z1, z2, z3, z4) ∈ C
4, and

this section vanishes precisely when z lies in the row space of M . This happens
when the maximal minors of the matrix

M̄ =
⎛
⎝

z1 z2 z3 z4
y1,1 y1,2 y1,3 y1,4
y2,1 y2,2 y2,3 y2,4

⎞
⎠

vanish. Writing the 2× 2 minors of M (the Plücker co-ordinates) as x0, . . . , x5 we
have that sections of S� are defined by four equations of degree 1 in the variables
{xi : i ∈ {0, . . . , 5}} and constants {zi : i ∈ {1, . . . , 4}}. Replacing each zi with
the homogeneous co-ordinate yi−1 we recover the 4 remaining Pfaffian equations
found above, up to a linear relation eliminating x5. That is, X P admits an embedded
flat deformation to a variety in the family 2–17.
Rank 2 number 20 Varieties in the family 2–20 are the blow up of B5 (a three
dimensional linear section of Gr(2, 5)) in a twisted cubic. Consider the polytope P
with PALP ID 1910 together with the scaffolding with shape Z = d P7 displayed
in Fig. 9.

The corresponding toric variety YS is isomorphic to BlP3P
6. Moreover, the

variety X P is the blow up of the vanishing locus of the five 4 × 4 Pfaffians of
⎛
⎜⎜⎜⎜⎝

0 x0 x1 x2 x0
0 0 x3 x4

0 x0 x5
0 0

0

⎞
⎟⎟⎟⎟⎠

, (3)
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where x0, . . . , x6 are homogeneous co-ordinates onP
6, in the locus {x0 = x1 = x6}.

Note that the ideal x2x4 = x3x5 = x2x5 = 0 defines a (degenerate) twisted cubic.
Replacing the two zero non-diagonal entries in (3)with general homogeneous forms
of degree one we obtain a flat deformation of X P ↪→ YS to the blow up of B5 in a
twisted cubic.
Rank 2 number 21Varieties in the family 2–21 are the blow up of a quadric threefold
in a rational curve of degree 4. These are shown in [16, p. 43] to be zero loci of
sections of the vector bundle

E = (S� � OP4(1))
⊕2 ⊕ (det S� � OP4)

on Gr(2, 4) × P
4. Consider the polytope with PALP ID 703, with the scaffolding

shown in Fig. 10. This scaffolding has shape Z = Z12, the shape used in the
construction of Fano threefolds in the family V12. The ambient space YS defined by
this scaffolding is isomorphic toP

4×P
4 with co-ordinates x0, . . . , x4 and y0, . . . , x4

respectively. The equations cutting out X P inYS can be read off as relations between
labelled lattice points in Fig. 11. In particular if u1 + v1 = u2 + v2, where ui and
vi are lattice points labelled with variables zi and wi for each i ∈ {1, 2}, points
in X P satisfy the equation z1w1 = z2w2. There are nine such binomial equations,
which can be written as the 4×4 Pfaffians of the following pair of matrices (setting
t = 0),

⎛
⎜⎜⎜⎜⎝

0 y0 t y3 y2 y1
0 x2 x0 x3

0 x1 x0
0 t x4

0

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0 y0 t y1 y3 y4
0 x4 x1 x0

0 x0 x3
0 −t x2

0

⎞
⎟⎟⎟⎟⎠

.

Note that these matrices both determine the Pfaffian equation x1x3 − x20 +
t x2x4 = 0, which defines a toric degeneration of a quadric threefold.

Following the treatment of the variety 2–17, we observe that each set of five
Pfaffian equations defines a section of (the pullback to a hyperplane section of)
S� �OP4(1). Thus the general member of the family given by the set of 9 Pfaffian
equations is isomorphic to a Fano threefold in the family 2–21.

Rank 2 number 22 Varieties in the family 2–22 are the blow up of B5 in a
conic. Consider the polytope P with PALP ID 1857, and the scaffolding with shape
Z = d P7 displayed in Fig. 12. The variety YS is the blow up of P

6 in a plane; the
toric variety determined by the weight matrix

y x0 x1 x2 x3 x4 x5 x6
1 0 0 0 0 1 1 1
0 1 1 1 1 1 1 1

and stability condition ω = (1, 2). X P is cut out by the five 4 × 4 Pfaffians of
⎛
⎜⎜⎜⎜⎝

0 x0 t f0,1 x2 x3
0 x4 x5 x0y

0 x0y x6
0 t f1,1

0

⎞
⎟⎟⎟⎟⎠
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Fig. 10. The scaffolding used to construct 2–21

Fig. 11. Ray generators of Z12

where fi, j is a generic polynomial of bi-degree (i, j), and t = 0. The ambient
variety YS is obtained from P

6 with co-ordinates x0, . . . , x6 by blowing up the
plane � := {x0 = x1 = x2 = x3 = 0}. The Pfaffian equations defining X P pull
back to the single equation x5x6 = t x4 f1,1 on this locus. Hence, for general values
of t , the equations define the blow up of B5 (cut out by 5 Pfaffian equations in P

6)
in a non-degenerate conic.

Rank 2 number 26 Varieties in the family 2–26 are the blow up of B5 in a line.
Consider the polytope P with PALP ID 1434 and scaffolding with shape Z =
d P7 displayed in Fig. 13. The variety YS is the blow up of P

6 in the line with
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Fig. 12. The scaffolding used to construct 2–22

Fig. 13. The scaffolding used to construct 2–26

homogeneous co-ordinates {x4, x5}. Consider the one-parameter family

⎛
⎜⎜⎜⎜⎝

0 x0 x1 x2 x0
0 t f1 x3 x4

0 x0 x5
0 tg1

0

⎞
⎟⎟⎟⎟⎠

,

where f1 and g1 are general linear forms with no terms in x4 or x5. Varying t , this
family contains the line with co-ordinates x4 and x5 for all values of t . Blowing up
this line we obtain a flat family embedded in YS × A

1
t with central fibre X P , and

general fibre a Fano threefold in the family 2–26.
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Fig. 14. The scaffolding used to construct 3–1

Rank 3 number 1 Varieties in the family 3–1 are double covers of P
1 × P

1 × P
1

branched along a divisor of tri-degree (2, 2, 2). Our treatment of this family is sim-
ilar to that of 2–8. Consider the Fano polygon P with PALP ID 3875, illustrated in
Fig. 14.We give P the ‘anti-canonical’ scaffolding; covering P with the polyhedron
of sections of the toric boundary on the shape variety Z = P

1×d P6. This scaffold-
ing reproduces the anti-canonical embedding X P → P

8, see Example 2.11. We
exhibit an explicit smoothing by factoring the anti-canonical embedding through a
map to a toric variety obtained from a non-full scaffolding of P . Figure 14 shows a
scaffolding S′ of P with shape Z ′ := P

1 × P
2. The scaffolding S′ consists of three

elements, and defines the toric variety YS′ with weight matrix

x0 y0 z0 x1 y1 z2 w0 w1

1 0 0 1 0 0 1 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1

and stability condition ω = (1, 1, 1). The hypersurface X P is the vanishing
locus of the binomial w0w1 = x20 y20 z20, a section of the line bundle L1 with
tri-degree (2, 2, 2)—and x1y1z1 = x0y0z0—a section of the line bundle L2 tri-
degree (1, 1, 1). Note that the variety YS′ is not Q-factorial along the line on which
x0 = y0 = z0 = x1 = y1 = z2 = 0. General linear sections though this non-
isolated singularity are isomorphic to the affine cone V overP

1×P
1×P

1, polarised
by the line bundle of tri-degree (1, 1, 1).

Consider a general section s of E = L1 ⊕ L2, and its vanishing locus X .
Projecting away from the point at which all co-ordinates except w0 vanish, X is an
isomorphism onto its image in a toric variety Y ′. The variety F which appears in
the construction in [16, p. 57] is obtained from the variety Y ′ by a making one of
the three possible small resolutions of the singularity V . Since the variety X does
not intersect the singular locus of Y ′ this resolution restricts to an isomorphism of
X . The rest of the example follows our treatment of the family 2–8: the complete
linear system determined by L2 defines an embedding YS′ → P

9 and varying a
quadric section in the anti-canonical embedding of YS′ smooths X P .
Rank 3 number 4 Fano threefolds in this family are obtained by blowing up the
fibre of the projection map X2–18 → P

2, where X2–18 is a double cover of P
2 × P

1

branched in a divisor of bidegree (2, 2). In [16, p. 60] it is shown that varieties in
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Fig. 15. The scaffolding used to construct 3–4

this family may be obtained as hypersurfaces of tri-degree (2, 2, 2) contained in
the toric variety Y defined by the weight matrix

x0 x1 y z t0 t1 w

1 1 1 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1

together with a stability condition ω in the chamber 〈(1, 0, 0), (1, 1, 0), (1, 1, 1)〉.
We compare these toric hypersurfaces to the threefolds obtained by scaffolding
the polytope P with PALP ID 2603 shown in Fig. 15. This scaffolding has shape
Z = P

1 ×P
1, and hence defines a codimension 2 toric complete intersection in the

toric variety YS with weights:

a0 a1 b0 b1 b2 c0 c1
1 1 1 1 1 0 0
0 0 1 1 1 1 1

and stability conditionω = (2, 1). Let X be the vanishing locus of a general section
of the vector bundle E := O(1, 2) ⊕ O(2, 2). Note that the line bundle O(1, 2) is
not nef on YS . We define a Segre type map φ : Y → YS , setting

φ : (x0, x1, y, z, t0, t1, w) �→ (x0, x1, w, yt0, yt1, zt0, zt1).

It is easily verified that thismap is homogeneous, and thatφ� : Pic(YS) → Pic(Y ) is

given by the matrix

(
1 0 0
0 1 1

)T

. Hence the stability condition ω = (2, 1), is mapped

into the wall spanned by (1, 0, 0) and (1, 1, 1). Let Y ′ be the toric variety defined
by weight matrix M and stability condition (2, 1, 1).
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Lemma 4.5. Y is a small resolution a non-isolated singularity of Y ′ which is disjoint
from the divisor {w = 0}.
Proof. There is a morphism π : YS → P1, expressing YS as a P

4 bundle over P
1

with co-ordinates (a0 : a1). Similarly, Y and Y ′ admit projections to P
1 with co-

ordinates (x0 : x1). The projection Y ′ → P
1 coincides with the composition of π

with the inclusion ι : Y ′ ↪→ YS .Given apointa ∈ P
1, the intersectionπ−1(a)∩ι(Y ′)

is isomorphic to the projective closure of the (affine) ODP singularity in P
4 with

co-ordinates (b0 : b1 : b2 : c0 : c1). The (smooth) variety Y is obtained by making
one of the two possible small resolutions of this line of conifold singularities. Note
however that, for any fibre of π , the divisor {b0 = 0} is disjoint from the singular
locus of Y ′. Since ι�b0 = w, the locus w = 0 is disjoint from the singular locus of
Y ′. ��

Note that Y ′ is a hypersurface in YS and determines an element of the divi-

sor class associated to O(1, 2), cut out by det

(
b1 c0
b2 c1

)
. Moreover, we have that

φ�(2, 2) = (2, 2, 2); hence, by Lemma 4.5, any hypersurface cut out by a member
of the linear system (2, 2, 2) on Y is the vanishing locus of a section of E on YS .
Rank 3 number 5 It was shown in [16, p. 62] that varieties in the family 3–5 are
codimension 2 complete intersections in the toric variety Y , determined by the
weight matrix

x0 x1 y0 y1 y2 z0 z1 t
1 1 0 0 0 1 1 0
0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1

and a stability condition in the chamber 〈(1, 0, 0), (0, 1, 0), (1, 1, 1)〉. Varieties X
in the family 3–5 are obtained as zero loci of sections of the bundle O(1, 2, 1)⊕2.
The secondary fan for Y is illustrated in Fig. 16. Consider the scaffolding of the
polytope P with PALP ID 1837 shown in Fig. 17. The variety YS is determined by
the weight matrix

a0 a1 b0 b1 b2 c0 c1
1 1 0 0 0 1 1
0 0 1 1 1 1 1

and stability condition (2, 1). The toric variety X P is cut out of YS by a pair of
binomial sections ofO(1, 2). Observe that the linear system (1, 2) is not nef on YS ,
and has base locus B = {b0 = b1 = b2 = 0}. We claim that Y is obtained from
YS by blowing up B. It is clear that the weight matrix defining Y is the same as the
defining the toric variety BlB YS . Moreover, the map defined by setting

φ : (x0, x1, y0, y1, y2, z0, z1, t) �→ (x0t, x1t, y0, y1, y2, z1, z2)

has pull-back defined by the matrix

[φ�] =
⎛
⎝
1 0
0 1
1 0

⎞
⎠ .
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Fig. 16. Secondary fan of the toric variety Y , used to construct 3–5

Fig. 17. The scaffolding used to construct 3–5

Hence, considering the ample class ω = (2, 1), φ�ω = (2, 1, 2), it remains
to analyse the effect of crossing the wall in the secondary fan of Y generated by
(1, 0, 0) and (1, 1, 1). We observe that moving the stability condition into this wall
contracts the divisor t = 0 (defining the ray generated by (0, 0, 1)) to the locus
{y0 = y1 = y2 = 0}.

We claim that vanishing loci of general sections of E := O(2, 1)⊕2 are smooth.
If so, the blow up of the base locus is an isomorphism on general sections, as the
restriction of the base locus to a general fibre is a Cartier divisor. Smoothness
follows directly from the Jacobian condition. Indeed, sections of E are of the form

c0 f1 + c1g1 + a0 f2 + a1g2,

where f j and g j are homogeneous polynomials of degree j ∈ {1, 2} in b0, b1, b2.
Taking two such sections the corresponding Jacobian matrix, evaluated at b0 =
b1 = b2 and—without loss of generality—a0 = c0 = 1, has the form

(
0 L

)
; a

block matrix consisting of a 2× 2 zero block and a 2× 3 matrix L of linear forms
in c1. Since the locus F in P

5 where a 2× 3 matrix drops rank has codimension 2,
any projective line in this space which misses F determines a matrix L which does
not drop rank.
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Fig. 18. The scaffolding used to construct 3–14

Rank 3 number 14We consider the reflexive polytope P with PALP ID143, together
with the scaffolding S with shape Z = P

1 shown in Fig. 18. This scaffolding
expresses X P as a hypersurface of tri-degree (3, 1, 1) in the toric variety YS with
weight matrix

x0 x1 x2 y0 y1 z0 z1
1 1 1 0 1 0 2
0 0 0 1 1 0 0
0 0 0 0 0 1 1

and stability condition ω = (3, 1, 1). Note that YS is not Q-factorial at the point
w := {x0 = x1 = x2 = y0 = z0 = 0}. However, since the monomial y1z1 defines
a section of O(3, 1, 1)—and this does not vanish at w—a general hypersurface
X with tri-degree (3, 1, 1) misses this locus. Moving ω ∈ Pic(YS)R to (4, 1, 1)
induces a resolution of this singularity which restricts to an isomorphism of X , and
recovers the ambient space considered in [16, p. 70]. Hence, by the argument given
in [16, p. 70], the hypersurface X is isomorphic to a Fano variety in the family
3–14.

Remark 4.6. We could also construct varieties in this family using the scaffolding
S′ obtained by combining the two struts containing the origin in NR into a single
line segment of length two. This produces an embedding X P → YS , where YS is
given by the weight matrix

s x0 x1 x2 y z
1 0 0 0 1 1
0 1 1 1 1 2

and stability condition ω = (1, 3). X P is the vanishing locus of the binomial
yz = s2x30 .

Rank 3 number 16 Varieties in this family are obtained by blowing up B7 = Blpt P
3

with centre the strict transform of a twisted cubic passing through the centre of the
blow up B7 → P

3.
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Fig. 19. The scaffolding used to construct 3–16

We can recover the construction used in [16, p. 71] using a scaffolding of a
reflexive polytope. Indeed, consider the polytope P with PALP ID 1092, together
with the scaffolding S, with shape Z = P

1 × P
1, displayed in Fig. 19. Note that

this scaffolding is not full, and P◦ is not cracked along the fan defined by Z . The
toric variety YS is determined by the weight matrix

x0 x1 x2 y0 z s z0 z1
1 1 1 0 0 1 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 0 1 1

together with the stability condition ω = (2, 2, 1). The toric variety X P is defined
by the vanishing of a pair of binomial sections of O(1, 1, 1). A stability condition
which lies in the cone spanned by 〈(1, 0, 0), (1, 1, 0), (1, 1, 1)〉 determines the toric
variety ŶS used in [16] to construct Fano varieties in 3–16. However ω lies in the
wall spanned by (1, 1, 0) and (1, 1, 1). Moving ω into the chamber used in [16]
resolves the singular locus {x0 = x1 = x2 = y0 = z0 = z1 = 0}. However general
sections of O(1, 1, 1) do not vanish along this point, and hence the intersection of
two general divisors of tri-degree (1, 1, 1) are isomorphic to varieties in the family
3–16.

In order to provide a construction using a cracked polytope, we consider the
scaffolding S′ of P with shape Z = d P6, also shown in Fig. 19.

The scaffolding S′ defines the weight matrix

x0 x1 x2 x3 y0 y1 y2 y3 y
1 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1

and stability condition (2, 1). Let Y denote the toric variety determined by the
weight matrix

1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1

and stability condition (2, 1). Note that general sections of O(1, 1)⊕2 define sub-
varieties of Y isomorphic to YS′ . There is a map θ : YS ↪→ Y—analogous to the
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Segre embedding map P
2 × P

2 → P
8 – sending

(x0, x1, x2, y0, z, s, z0, z1)

�→ (x0y0, x1y0, x2y0, s, x0z0, x0z1, x1z0, x1z1, x2z0, x2z1, z).

We have that θ�O(1, 0) = O(1, 1, 0), while θ�O(0, 1) = O(0, 0, 1). Hence the
ample line bundle O(2, 1) pulls back to O(2, 2, 1). This class is not ample on ŶS

and the image of the induced morphism ŶS → Y factors through the contraction
ŶS → YS . Indeed, we have the commutative diagram of embeddings

X P YS Y

X P YS′

.

We can deform X P in YS by moving the section of O(1, 1, 1)⊕2 cutting out X P .
Alternatively, we obtain varieties in the family 3–16 as codimension 4 subvarieties
of YS′ by fixing the embedding YS → Y and moving the sections used to cut out
YS′ in Y .
Rank 4, number 2Varieties in this family are obtained fromP

1×P
1×P

1 by blowing
up a curve of tri-degree (1, 1, 3).

We consider the polytope with PALP ID 1081, together with the scaffolding
shown in Fig. 20, with shape Z = P

2. This scaffolding describes X P as a hypersur-
face of tri-degree (1, 1, 2) in the toric variety YS determined by the weight matrix

x0 x1 y0 y1 z0 z1 z2
1 1 0 0 0 0 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1

and stability condition ω = (1, 2, 1). The variety YS is the projectivisation of the
bundle O⊕2 ⊕ O(0, 1) on P

1 × P
1. Note that the line bundle O(1, 1, 2) is not

nef, and that its base locus is section of the projection YS → P
1 × P

1 defined by
z0 = z1 = 0. Blowing up this base locus we obtain the variety F considered in [16,
p. 82]. To check smoothness of general hypersurfaces in this linear system, note
that general sections of L have the form

f = z20 f1,1 + z0z1g1,1 + z21h1,1 + z0z2 f1 + z1z2g1,

where f1,1 and g1,1 are polynomials of bidegree (1, 1) in x0, x1, y0, y1, while f1, g1
are linear polynomials in x0, x1. Restricting the Jacobian to the locus z0 = z1 = 0,
we see that the locus { f = 0} is singular precisely when f1 = g1 = 0. However
this locus is empty for general choices of f1 and g1.

Since the restriction of the base locus of this linear system to a smooth member
X is a Cartier divisor in X , its blow up is an isomorphism.Hence such hypersurfaces
X are members of the family 4–2, and X P is the central fibre of a toric degeneration
in this family.
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Fig. 20. The scaffolding used to construct 4–2

Fig. 21. The scaffolding used to construct 4–6

Rank 4 number 6 Varieties X in the family 4–6 are obtained by blowing up P
2 ×P

1

in curves of bidegree (1, 2) and (0, 1) respectively. Consider the polytope P with
PALP ID 426, together with the scaffolding S with shape P

1 × P
1 illustrated in

Fig. 21.
The toric variety YS is defined by the weight matrix

s0 s1 s2 y0 y1 x0 x1 x2
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 1 1 1 0 0 0

and stability condition ω = (1, 1, 2). The secondary fan of YS is illustrated in
Fig. 22.

The variety YS is isomorphic to PP1×P2(O⊕2⊕O(1, 0)); and the two chambers
in the secondary fan correspond to isomorphic varieties—despite the presence of
a non-trivial flopping locus. The projection π : YS → P

2 × P
1 corresponds to

projecting out the variables si for all i ∈ {0, 1, 2}. The toric variety X P is cut out
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Fig. 22. Secondary fan of the toric variety YS

of YS by the binomial equations

s2x2 = s0x0y0 s1x1 = s0x0.

These are sections of the line bundles L1 and L2, with weights (1, 1, 1) and (1, 1, 0)
respectively. Note that the line bundle L1 is nef while L2 is not.

Let X be the vanishing locus of a general section s = l1 + l2 of E := L1 ⊕ L2.
The section l1 ∈ �(YS, L1) has the general form s0 f1,1 + s1g1,1 + s2h1, where
f1,1 and g1,1 have bi-degree (1, 1) in x0, x1, x2 and y0, y1 respectively; while h1
has bi-degree (1, 0). Similarly l2 has the general form s0 f1 + s1g1, where f1 and
g1 have bi-degree (1, 1).

Fibres of the restriction of π to X are given by the kernel of the matrix

(
f1,1 g1,1 h1
f1 g1 0.

)

That is, π is a graph away from the locus at which this matrix has rank ≤ 1. This
locus in P

2 × P
1 has two connected components, one given by h1 = f1,1g1 −

g1,1 f1 = 0, a curve of bidegree (1, 2), and the other by f1 = g1 = 0, a curve of
degree (0, 1). Thus the morphism π exhibits X as a Fano threefold in the family
4–6.
Rank 5 number 1 Varieties in this family are obtained by first blowing up a quadric
in a conic—obtaining a variety V in the family 2–29—and blowing up V in three
exceptional lines. Consider the scaffolding S of the polytope with PALP ID 1083
with shape P

2, illustrated in Fig. 23.
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Fig. 23. The scaffolding used to construct 5–1

That is, we consider general hypersurfaces X of tri-degree (1, 2, 1) in the toric
variety YS defined by the weight matrix

s0 s1 x0 x1 x2 y0 y1
1 1 0 1 1 0 −1
0 0 1 1 1 0 0
0 0 0 0 0 1 1

and stability condition (2, 1, 1). The variety YS admits a map to P
1 (with co-

ordinates (s0 : s1)), giving YS the structure of a P
2 × P

1 fibre bundle. The variety
X also admits a morphism to P

1, whose fibres are surfaces of bi-degree (2, 1) in
P
2 × P

1. Projecting P
2 × P

1 to P
2 we see that any such smooth fibre is the blow

up of P
2 in four (general) points; that is, isomorphic to the del Pezzo surface d P5.

Hypersurfaces of tri-degree (1, 2, 1) have general form

y0x0(x0 f1 + p1) + y1(x20 f2 + x0 f1q1 + p2),

where pi , qi ∈ C[x1, x2] and fi ∈ C[s0, s1] are homogeneous polynomials of
degree i for each i ∈ {1, 2}. Let X denote the vanishing locus of this polynomial.
Note that X contains the surface {x0 = y1 = 0}. Fixing a point (s0, s1) ∈ P

1, the
d P5 fibre of the projection X → P

1 is obtained byblowing up the intersection points
of the conics C1 := {x0(x0 f1 + p1) = 0} and C2 := {(x20 f2 + x0 f1q1 + p2) = 0}
in P

2 (with homogeneous co-ordinates (x0 : x1 : x2)). First consider the case
x0 = p2 = 0. Choosing a general p2, we find two distinct reduced points α1, α2
in C1 ∩ C2; these are independent of the choice of s = (s0, s1) ∈ P

1. The other
two solutions depend on s, and lie in the line (x0 f1 + p1) = 0. Note that we may
choose co-ordinates such that C1 is defined by {x0x1 = 0}.

Hence we can construct four surfaces, each isomorphic to P
1×P

1, contained in
X : two surfaces—S1 and S2—swept out by {αi }×P

1
(y0:y1), the surface S3 swept out

by C1 over P
1
(s0:s1), and the base locus S4 = {x0 = y1 = 0}. Each of these surfaces
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restrict to exceptional curves in the d P5 fibres. Note that fibres of X → P
1 are not

all smooth—there are two singular fibres—but they are smooth in a neighbourhood
of

⋃
i∈[4] Si . Hence—applying a relative version of Castelnuovo’s criterion—we

can have a morphism X → X ′ which contracts the disjoint surfaces S1, S2, and S3
to sections of the induced morphism π : X ′ → P

1
(s0:s1). The smooth fibres of π are

isomorphic to P
1 × P

1, while singular fibres have a single nodal singularity; these
are isomorphic to P(1, 1, 2). The surface S4 is the strict transform of a surface S′

4,
which intersects every fibre F in a smooth section of − 1

2 KF .
Letting ρ(X) denote the Picard rank of X , we have that ρ(X) = ρ(X ′) + 3.

Since X P—and hence X—has degree 28, we can conclude from the classification
of Fano 3-folds that if ρ(X ′) ≥ 2, X is in the family 5–1. This is easily seen from
the Leray spectral sequence

Hi (P1, R jπ�Q) ⇒ Hi+ j (X ′, Q);
indeed—since H1(F, Q) = 0 for all fibres F of π—we have b2(X ′) = 1 +
h0(P1, R2π�Q). However h0(P1, R2π�Q) ≥ 1 since the surface S′

4 defines a non-
trivial class in H2(F, Q) for every fibre F .

Remark 4.7. Comparing our construction with that of Mori–Mukai [34], they first
consider the blow up of a quadric threefold in a conic. Restricting the projection
P
4 ��� P

1 this blow up defines X ′, a quadric surface bundle over P
1 with two

singular fibres (with singularities are disjoint from the exceptional locus). Note that
the exceptional locus distinguishes a conic C in each fibre of π . To obtain varieties
in 5–1 we then blow up X ′ in three exceptional lines. These lines are sections of
the map X ′ → P

1 defined by a triple of points on the distinguished conic C in each
fibre. That is, the surface S4 is the strict transform of the exceptional locus obtained
by the blow up of the quadric threefold; while Si , i ∈ {1, 2, 3} are obtained by
blowing up exceptional lines.

4.1. Products

The remaining non-toric Fano threefolds X with −K X very ample are products
of non-toric del Pezzo surfaces—that is, d Pk × P

1 for k ∈ {3, 4, 5}— with P
1.

We can easily construct toric degenerations of these from degenerations of d Pk for
each k. Fix a reflexive polygon Q such that Q◦ is cracked along the fan of a shape
variety Z ′, together with a scaffolding S′ of Q with shape Z ′. We can produce a
scaffolding S of conv (Q, (0, 0, 1), (0, 0,−1)) with shape Z := Z ′ ×P

1 by setting
S = {(π�

1 (D), χ) : (D, χ) ∈ S′} ∪ {π�
2 D} where D is the toric boundary of P

1,
and πi is the i th projection from Z ′ × P

1. The example of d P3 × P
1, together with

a scaffolding with shape Z = P
2 × P

1 is illustrated in Fig. 24, setting a = 1 and
b = 3. We thus produce toric degenerations embedded in the following spaces:

(i) d P3 × P
1 → P

3 × P
2,

(ii) d P4 × P
1 → P

4 × P
2,

(iii) d P5 × P
1 → P

1 × P
2 × P

2.
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Fig. 24. The scaffolding used to construct d Pn × P
1 for n ≤ 3

4.2. −K X not very ample

There are 7 families of Fano threefolds X for which −K X is not very ample. These
fall into three distinct groups. We first consider the varieties

(i) B1, a sextic in P(1, 1, 1, 2, 3) ; and,
(ii) V2, a sextic in P(1, 1, 1, 1, 3).

Writing xi for homogeneous co-ordinates of degree 1, and y, z for those of degree
2 and 3 respectively, B1 degenerates to the toric hypersurface x2yz = x60 ; while V2
degenerates to the toric variety x1x2x3z = x60 . These toric varieties correspond to
scaffoldings of non-reflexive toric varieties with shape P

2 and P
3 respectively. The

scaffolding used to construct B1 is illustrated in Fig. 25 in the case (a, b) = (2, 6).
The details of these constructions follow those described in Sect. 3.3.

The second group consists of the following three families of Picard rank 2 Fano
threefolds.

(i) 2–1, the blow up of B1 is an elliptic curve formed by intersecting twomembers
of − 1

2 K B1 .
(ii) 2–2, a double cover of P

1 × P
2 branched along a divisor of bidegree (2, 4).

(iii) 2–3, the blow up of V2 is an elliptic curve formed by intersecting twomembers
of − 1

2 KV2 .

In each case a toric complete intersection construction is given in [16], and each
construction admits a toric degeneration to an embedding described by Laurent
inversion. The corresponding scaffoldings have shapes P

2 × P
1, P

3, and P
2 × P

1

respectively. Letting (x0 : x1 : x2 : y : z) be homogeneous co-ordinates on
P(1, 1, 1, 2, 3), and (s0 : s1) be co-ordinates on P

1, varieties in the family 2–1
degenerate to the toric variety given by the binomial equations

{
x2yz = x60
x1s1 = x0s0
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Fig. 25. The scaffolding used to construct Bi for each i ∈ [3]

in P(1, 1, 1, 2, 3) × P
1. Varieties in the family 2–3 degenerate to the toric variety

given by the binomial equations
{

x2x3y = x40
x1s1 = x0s0

,

where (x0 : x1 : x2 : x3 : y) are homogeneous co-ordinates on P(1, 1, 1, 1, 2).
Finally, varieties in the family 2–2 degenerate to the hypersurface x1y1y2w = x20 y40
in the variety F described in [16, p. 25].

Finally, we have the following two families of products

(i) d P2 × P
1, recalling that d P2 is a quartic in P(1, 1, 1, 2) ; and,

(ii) d P1 × P
1, recalling that d P1 is a sextic in P(1, 1, 2, 3).

Let Q1 and Q2 denote the polygons associated to the toric varieties given by the
binomials {x1x2y = x40 } and {x60 = x1yz} respectively. Q1 and Q2 are triangles
and the corresponding scaffolding (with shape P

2) covers each of these with a
single strut. Hence we can scaffold conv (Qi , (0, 0, 1), (0, 0,−1)) with a pair of
struts—following the constructions made in Sect. 4.1—embedding d P2 × P

1 →
P(1, 1, 1, 2) × P

2 and d P1 × P
1 → P(1, 1, 2, 3) × P

2. These scaffoldings are
illustrated in Fig. 24, setting (a, b) = (1, 4) and (a, b) = (2, 6) respectively.

5. Classifying cracked 3-topes

We consider the combinatorial problem of classifying cracked polytopes, and
present an algorithm to obtain such a classification in three dimensions.

5.1. One-dimensional shape variety

We refer to polytopes cracked along the fan of P
1 as cracked in half, since their

intersection with a pair of half spaces form unimodular polytopes.
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Since polytopes cracked in half are reflexive [44, Proposition 2.5], we can
proceed from the classification of reflexive 3-topes. Given a reflexive polytope
P ⊂ MR, we define VP to be the vector space spanned by the vertices v ∈ P such
that the tangent cone Cv to P at v is not unimodular. If P is cracked along P

1 these
must lie in a proper linear subspace of MR. Moreover, by [44, Proposition 2.8],
no facet of P◦ contains an interior point. We use Magma to search for reflexive
polytopes meeting both these conditions, and obtain a list of 91 reflexive 3-topes.
In 73 cases VP is two-dimensional, and hence unique determines the direction of
the line segments used to scaffold P◦. The remaining polytopes contain a square
facet and admit two possible full scaffoldings.

Testing which of these 91 polytopes are cracked in half, we find there are 82
three dimensional polytopes cracked along the fan of P

1 and we list these reflexive
polytopes in Table 6. These polytopes are specified by their index in the Kreuzer–
Skarke list of reflexive 3-topes. Note that, as elsewhere, we index this list from
zero. The column Fano indicates the families Fano threefolds X for which there
is a mirror Minkowski (as defined in [15,16]) polynomial f such that Newt( f ) is
isomorphic to the reflexive polytope with the indicated ID. Note that in each case
there is at most one such family of Fano threefolds. Applying Laurent inversion to
a full scaffolding on P with shape Z = P

1, we obtain X P as a Fano hypersurface.
We expect to recover X by passing to a general hypersurface, although we have
only partial results in this direction.

Proposition 5.1. [42] For each P in Table 6 with no associated Fano threefold, X P

is not smoothable.

Proof. The list of reflexive 3-topes with no associated Fano in Table 6 is a subset of
the list of non-smoothable Fano threefolds which appears in work of Petracci [42,
p. 10]. ��

Proposition 5.2. [22] For each polytope P indexed in Table 6 such that each torus
invariant point of X P is either a smooth point, or an ordinary double point, X P

smooths to the indicated Fano manifold.

Proof. By Namikawa’s results [40] all such toric varieties admit a smoothing. The
invariants of the smoothed varieties were computed by Galkin in [22]. ��

Assuming the toric Fano varieties associated to the reflexive polyhedra listed
in Table 6 all smooth as indicated, there are 22 non-toric Fano threefolds obtained
from polytopes cracked along the fan of Z = P

1; these are:

Q3, 2–29, 2–30, 2–31, 2–32, 3–14,

3–18, 3–19, 3–20, 3–21, 3–22, 3–23,

3–24, 4–3, 4–5, 4–6, 4–8, 4–9,

4–10, 4–11, 4–12, 4–13.



304 T. Prince

Table 6. Reflexive polytopes cracked in two

PALP ID Fano PALP ID Fano PALP ID Fano

2 Q3 70 2–31 203 3–14
4 Q3 72 2–29 205 3–23
14 2–30 73 3–26 207 3–24
15 – 74 3–25 208 3–20
16 – 75 3–19 212 3–18
18 3–27 76 3–22 214 3–21
19 2–29 77 3–23 215 4–10
20 3–31 78 3–24 216 4–8
21 2–31 79 3–24 217 4–9
22 2–32 80 3–20 218 4–8
23 2–32 81 3–28 289 3–9
24 2–34 131 2–29 341 3–18
34 2–28 143 3–14 344 3–9
46 2–31 171 2–29 346 4–9
52 3–28 178 3–23 354 3–9
55 2–28 180 4–10 374 3–9
57 3–19 181 4–12 393 3–18
58 – 184 3–21 404 3–20
59 – 186 3–14 408 5–2
60 4–13 190 4–12 409 4–6
61 – 191 4–11 426 4–6
62 4–11 192 – 427 4–5
63 3–18 193 – 683 4–5
64 3–22 194 5–2 684 4–3
65 – 195 5–3 727 4–5
66 – 196 4–5 728 4–3
67 4–9 197 – 735 4–3
69 2–28

5.2. Classification algorithm

We present the general form of an algorithm which we can use to classify three-
dimensional polytopes cracked along a given two-dimensional generalised fan �.
Fixing a choice of Z , and letting � denote the corresponding fan, we first divide
cases among possible wrapping polyhedra. In what follows we make use of the
rays �[1] of a generalised fan �, adopting the following conventions.

(i) The set of rays of� coincides with that determined by the standard definition
when � is a fan.

(ii) The set of rays of � is the pair of rays (based at the origin) contained in the
minimal cone of � when the minimal cone of � is one-dimensional.

(iii) The set of rays is empty if the dimension of the minimal cone of � is greater
than one.
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Definition 5.3. Given a polytope P cracked along a generalised fan �, let Cv

denote the tangent cone to P at a point v ∈ P . The wrapping polyhedron of P is
the intersection of cones Cv as v varies over the primitive ray generators of �.

Note that the set of primitive ray generators is empty in the case Z = P
1, and

need not be a subset of the vertex set of P for any choice of shape Z . Given a
ray ρ in a generalised fan �, we let Zρ denote the toric variety associated to ρ as
follows. If � is a fan, Zρ is the usual codimension one subvariety associated to
ρ. If ρ is contained in the one-dimensional minimal cone, we let Zρ be the toric
variety associated to the fan �̄; that is, the quotient of � by its minimal cone.

Lemma 5.4. Fix a shape variety Z determined by a generalised fan � in MR and
a ray ρ ∈ �[1]. Let Zρ denote the codimension one torus invariant subvariety of Z
determined by ρ. There is a canonical inclusion, with bounded image, from the set
wrapping polyhedra of reflexive polytopes P cracked along � to the set of lattice
points in the cone

∏
ρ∈�[1]

{
Amp(Zρ) × (MR/Rρ)

}
.

Proof. Fix a splitting M ∼= Zv ⊕ Mρ , and let �ρ denote the fan in Mρ determined
by Zρ . The tangent cone at v to a wrapping polyhedron for � determines—and
is determined by—a piecewise linear function θ : (Mρ) ⊗Z R → MR which is
linear on each cone of �ρ , sends 0 �→ v, and sends the cones of �ρ into their
corresponding cones in �. The connected component of the complement of the
image of θ which contains the origin must be a convex set. Such maps θ are in
bijection with points in Amp(Zρ) × (MR/Rv) ⊂ DivTMρ

(Zρ) ∼= Z
r , for some

r ∈ Z≥0. Hence the set of possible wrapping polyhedra is contained in the cone
required.

To show this region is bounded, first note that each ray τ of�ρ corresponds to a
cone in� of dimension 2, generated by v and some v′ ∈ M . Since v′ must be in the
same connected component as the origin of MR\θ((Mρ)⊗Z R), the co-ordinate of
θ—regarded as an element ofZ

r—corresponding to τ is bounded. Each pair (ρ, τ ),
where ρ ∈ �[1] and τ ∈ �ρ[1] defines a linear inequality satisfied by any tuple
of piecewise linear maps θ which define a wrapping polyhedron. The intersection
of these half spaces with Amp(Zρ) × (MR/Rρ) defines a polytope, R� , which
contains the image of each wrapping polyhedron. ��

Recall that a polytope is called hollow if it contains no lattice points in its
interior.

Definition 5.5. Let Q be a unimodular hollow polytope in MR. We call Q a (reflex-
ive) piece if 0 ∈ Q and, for any facet F of Q with primitive inner normal vector
w, either 0 ∈ F , or w(F) = −1.

The set of reflexive pieces has an obvious iterative structure: faces of reflexive
pieces which contain the origin are themselves reflexive pieces. Thus the classifica-
tion of reflexive pieces of dimension n makes use of the classification in dimensions
< n. If Q is a 3-tope there are four cases, depending on the minimal dimension d
of the face of Q containing the origin. In particular either
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(i) Q is a reflexive polytope;
(ii) the origin is the unique interior point of a facet of Q;
(iii) the origin is the unique relative interior lattice point of an edge of Q, or;
(iv) the origin is a vertex of Q, and every edge of Q containing v has lattice length

1.

Note that this generalises both the notion of reflexive polytope (the first case)
and the notion of top [10] (the second case).

Assuming that the minimal face of Q containing the origin has dimension d,
we say that a piece Q has type 3− d. Given a smooth cone σ with minimal face τ

of dimension d, we call a reflexive piece Q′ contained in a two-dimensional face
of σ a panel if Q′ ∩ τ has dimension d. Fixing a function p from two-dimensional
faces of σ to panels contained in σ , we can consider the set of pieces P of type
3 − d such that every polygon in the image of p is a facet of P . Let P(p) denote
this set of pieces. Given an element ϕ ∈ R� , let S(ϕ) denote the set of functions
from the collection of two dimensional cones τ of� to panels contained in τ which
are contained in the wrapping polyhedron defined by ϕ, and have one dimensional
intersection with the boundary of this polyhedron.

Algorithm 5.6. Fix a complete generalised fan � in N such that the dimension of
the minimal cone of � is at most one.

(i) Compute the integral points in the polytope R� .
(ii) Exploit symmetries of � to obtain a minimal subset R of R� , containing a

representative of every isomorphism class of cracked polytope in NR.
(iii) Compute the set S(ϕ) for each point ϕ ∈ R, and iterate over this set of

functions.
(iv) For each ϕ ∈ R, p ∈ S(ϕ), and maximal cone σ ∈ �, let pσ be the restriction

of p to the two dimensional faces of σ . There is a finite subset A(ϕ,p, σ ) of
P(pσ ) such that, for each polytope Q in this subset, 〈w, v〉 ≥ −1 for all inner
normal vectors w to facets of Q which do not contain the origin, and vertices
v of polygons in the image of p (note that this image is a strict superset of
pσ ).

(v) For each function from the set of maximal cones σ in � to
∐

σ A(ϕ,p, σ )

such that the image of σ is contained inA(ϕ,p, σ ), test whether the union of
the polytopes in the image is itself a convex reflexive and cracked polytope.

5.3. Classifying pieces

In order to implement Algorithm 5.6 in dimension n we require a database of
pieces in dimension < n. We now treat the classification of pieces in dimension
≤ 3. Note that the classification in dimension n divides into cases depending on
the dimension k of the minimal face containing Q. The cases k = n and k = n − 1
form known classes: indeed, if k = n, the corresponding pieces are polar dual to
smooth polytopes, which have a well-known classification up to dimension 8 by
Øbro [41]. If k = n −1 the definition of reflexive piece coincides precisely with the
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notion of a top [10,20] which is also a unimodular polytope; we call such polytopes
unimodular tops.

In dimension one there are two possible cases, depending on the dimension k
of the minimal face of P containing the origin:

• If k = 1, P = conv (−1, 1) is a line segment of length two.
• If k = 0, P = conv (0, 1).

It is well-known that hollow polytopes in dimension two are either Cayley
polytopes or equal to T := conv ((0, 0), (2, 0), (0, 2)) up to integral affine linear
transformations. Hence we have three cases for pieces P in R

2, depending on the
dimension k of the minimal face of P containing the origin:

• If k = 2, P is a reflexive polygon, of which five are unimodular.
• If k = 1, P = T or a quadrilateral isomorphic to

conv ((0,−1), (0, 1), (1,−1), (1, m)) ,

for some m ∈ Z≥0.
• If k = 0, P is isomorphic to

conv ((0, 0), (0, 1), (0, 1), (1, m)) ,

for some m ∈ Z≥0.

In dimension three we have four possible cases depending on k. In the case
k = 3, P is a unimodular reflexive polytope, of which there are 18. If k = 2, P
is a unimodular top. We do not describe the classification of unimodular tops in
dimension 3, as the algorithm given in Sect. 5.1 to treat the case Z = P

1 does not
rely on this classification. Moreover, this classification is contained in that of all
three dimensional tops made by Bouchard–Skarke [8].

Assume next that k = 1; that is, assume that the origin lies in an edge E of the
piece P ⊂ R

3. Fixing a vertex v ∈ E , and making a change of co-ordinates, we
can assume that the edges incident to v are parallel to the co-ordinate lines, E has
direction e3, and v = (0, 0,−1). Since E is itself a reflexive piece of dimension
one, (0, 0, 1) is a vertex of P . Let F1 and F2 denote the facets of P containing the
origin. For each i ∈ {1, 2}, Fi contains an edge Ei incident to (0, 0, 1)with direction
vectors (1, 0, α1) and (0, 1, α2) respectively, such that, by the unimodularity of Fi ,
αi ≥ −1. Assume without loss of generality that α1 ≥ α2. Since Fi is a reflexive
piece for each i ∈ {1, 2}, if αi > −1 we have that

Fi = conv (e3,−e3, ei − e3, ei + (αi + 1)e3) ;
while if αi = −1 we have that additional possibility that Fi ∼= T . Let α :=
(α1, α2) ∈ Z

2, and, fixing a value of l ∈ Z≥0, define theCayley polytopes P(α, l, 1)
and P(α, l, 2) to be the convex hulls of the points given by the columns of the
matrices

0 0 1 0 1 0 l l
0 0 0 1 0 1 1 1
1 −1 −1 −1 (α1 + 1) (α2 + 1) −1 (α2 + lα1 + 1)
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and

0 0 1 0 1 0 1 1
0 0 0 1 0 1 l l
1 −1 −1 −1 (α1 + 1) (α2 + 1) −1 (α1 + lα2 + 1)

respectively.

Lemma 5.7. Let Pi , i ∈ {1, . . . k} be a collection of d-dimensional lattice polytopes
in R

d . If P := P1 � · · · � Pk ⊂ R
d+k is a unimodular polytope, there is a non-

singular projective toric variety Z such that Pi is the polyhedron of sections of an
ample divisor Di on Z for all i ∈ {1, . . . k}.
Proof. Since Pi1 � Pi2 is a face of P for any i1, i2 ∈ {1, . . . k}, we assume without
loss of generality that k = 2. Since P1 is unimodular, its normal fan defines a
non-singular projective toric variety Z . We claim that P2 = PD for some ample
divisor on Z .

Note that verts (P) = verts (P1)
∐

verts (P2). Moreover, each vertex v of P1 is
contained in d edges of P1 and (d + 1) edges of P . Hence, fixing a facet F of P
containing v and different from P1, F ∩ P1 is equal to a facet G of P1. G contains
(d − 1) edges of P1 incident to v.

The normal fan of P consequently contains a ray for each facet of P1 (or P2),
as well as rays ρ1, ρ2 dual to P1 and P2 respectively. Moreover, each vertex of P1
is dual to a maximal cone, generated by ρ1 and rays corresponding to facets of P1
containing v. Since the same applies to vertices of P2, the toric variety associated
to the normal fan of P has the structure of a fibre bundle over P

1, in particular the
fibres over 0 and ∞ are isomorphic. ��
Lemma 5.8. If α1, α2 > −1, then P is isomorphic to P(α, l, j) for some l ∈ Z≥0
and j ∈ {1, 2}.
Proof. The point (1, 1, 0) cannot lie in the interior of P , and hence there is a u ∈ N
such that 〈u, (1, 1, 0)〉 ≤ −1, but 〈u, p〉 ≥ −1 for any point p ∈ P . In particular,
writing u = (u1, u2, u3), and recalling that that (0, 0,±1) ∈ P , we have that
u3 ∈ {−1, 0, 1}. Similarly, u1 ≥ −1 + u3, u2 ≥ −1 + u3, u1 ≥ −1 − α1u3 and
u2 ≥ −1 − α2u3. Hence, if u3 = 1, u1 ≥ 0 and u2 ≥ 0, but no such points satisfy
u1 + u2 ≤ −1. If u3 = 0, we have the solutions (u1, u2) = (−1,−1), (−1, 0),
or (0, 1). These all define the Cayley sum of a pair of quadrilaterals, as T is not a
panel of P by the assumption that αi > −1 for each i ∈ {1, 2}. Since the panels of
P are Cayley polytopes (the sum of two line segments)—and P is unimodular—P
is the Cayley sum of a pair of polyhedra of sections of ample divisors on a (fixed)
Hirzebruch surface by Lemma 5.7. Such a polytope is isomorphic to P(α, l, j) for
some α, l, and j .

In the case u3 = −1 the bounds αi > −1 for each i ∈ {1, 2}, together with the
inequalities u1 ≥ −1−α1u3 and u2 ≥ −1−α2u3, ensure that there are no further
cases. ��

Note that P(α, 0, 1) = P(α, 0, 2) and P(α,−1, 1) = P(α,−1, 2). Note also
that whenever α1 = α2, P(α, l, 1) ∼= P(α, l, 2), although these polytopes are not
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Fig. 26. Three exceptional pieces

equal. The remaining cases are (α1, α2) = (0,−1) and (α1, α2) = (−1,−1). In
the latter case P is a sub-polytope of conv (−e3, e3, 2e1 − e3, 2e2 − e3), and hence
there are three possible polytopes, illustrated in Fig. 26. In the case (α1, α2) =
(0,−1), we introduce another infinite class of polytopes. Fixing a value of l ∈ Z≥1
define the ‘wedge’ polytope W (l) to be the convex hull of the points given by the
columns of the following matrix,

0 0 0 1 1 l l 2(l − 1)
0 0 2 0 0 1 1 2
1 − 1 − 1 − 1 1 0 − 1 − 1

.

See Fig. 27 for an illustration of such a polytope. We also define

W ′(l) := W (l) ∩ {x : 〈(−1, 1, 0), x〉 ≤ 1}
for each l. There are additional caseswhich appear for small values of l; in particular
we define the polytopes W0(l) to be the convex hull of the points given by the
columns of the following matrix,

0 0 0 1 1 2l − 1
0 0 2 0 0 2
1 −1 −1 −1 1 −1

.

and W ′
0(l) := W0(l) ∩ {x : 〈(−1, 1, 0), x〉 ≤ 1} for each l ∈ {1, 2}.

Lemma 5.9. If α = (0,−1), then P is isomorphic to one of

(i) W (l), for some l ∈ Z≥2,
(ii) W ′(l), for some l ∈ Z≥2,
(iii) W0(l) for l ∈ {1, 2},
(iv) W ′

0(1); or,
(v) P(α, l, 1) for some l ∈ Z≥0.

Proof. Since α = (0,−1) the polytope P is contained in the half-space {x :
〈(0, 1, 1), x〉 ≤ 1}. Moreover P is assumed to be contained in the translate of the
positive orthant based at (0, 0,−1); that is,

P ⊂ A := R≥0 × conv ((0,±1), (2,−1)) .
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Fig. 27. Pieces W (2) and W ′(2)

We claim such pieces P are determined by the facet F = P ∩ {u : 〈u, e�
3〉 = −1}.

Indeed, fixing this polygon F it is easy to verify that

P = A ∩ (F × R).

The possible polygons F are also easily classified. Choose co-ordinates onR
2 such

that the origin and (1, 0) are vertices of F . If F ∩ {y = 2} = ∅ both F and P are
Cayley polytopes, and P = P(α, l, 1) for some l ≥ 0. Otherwise F is a (possibly
degenerate) hexagon with vertices given by the columns of

0 1 1 2 2 a
0 0 k1 k2 k3 0,

where a ∈ {1, 2}. Fix a value of k1 ≥ 0. By convexity and unimodularity of F at
(1, k1), we have that k2 = 2(k1 − 1); unless k1 ∈ {1, 2}; which gives the additional
cases (k1, k2) = (1, 1) and (k1, k2) = (2, 3). If a = 2, k3 = 0 and P = W (l) for
some l ∈ Z≥0 or W0(l) for some l ∈ {0, 1}. Otherwise a = 1 and we have that
k3 = 1 (note k3 �= 0 as (1, 0) is vertex of F) by unimodularity of F at the point
(2, k3). In these cases P = W ′(l) for some l ∈ Z≥1 or W ′

0(2). Note that W (1) and
W ′

0(1) are not unimodular. Moreover, P(α, l, 1) = P(α, l, 1) for l ∈ {0, 1}, while
P(α, l, 2) is not unimodular if l > 1. ��

We summarise the above calculations in the following proposition.

Proposition 5.10. If P is a 3-dimensional piece and the origin is contained in
the relative interior of an edge of P, then P belongs to one of the infinite fami-
lies P(α, l, j), one of the three exceptional cases shown in Fig. 26, or one of the
polytopes listed in Lemma 5.9.

Finally, assume that k = 0. For each l ∈ Z≥0 and j ∈ {1, 2}, we define the
Cayley polytopes Q(α, l, j) to be the intersection of P(α, l, j) with the half-space
{u ∈ R

3 : 〈e�
3, u〉 ≥ 0}.
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Fig. 28. Relative arrangement of panels

Fig. 29. An impossible arrangement of panels

Proposition 5.11. If P is a 3-dimensional piece and the origin is a vertex of P,
then P belongs to the infinite family Q(α, l, j). The polytope Q(α, l, j), where
α = (α1, α2), is a reflexive piece if and only if one of the following holds.

(i) α1 ≥ 0, α2 ≥ 0, j ∈ {1, 2}, and l ∈ Z≥0.
(ii) α1 = 0, α2 = −1, j = 1 and l ∈ Z≥0.
(iii) α1 ≥ 0, α2 = −1, j = 2 and l = α1 + 1.
(iv) α1 = −1, α2 = −1.

Note that the only polytope which appears in the fourth case is the standard simplex.

Proof. Thevertex set of a piece P contains the origin, and—in a suitable co-ordinate
system—each of the three standard basis vectors. The polygon Fi := {e�

i = 0}∩ P
is a two dimensional reflexive piece, which were classified above.

Thus we may assume that each polygon Fi is either a standard triangle or a
Cayley sum of line segments. These polygons may be oriented relative to each
other in two distinct ways, illustrated in Fig. 28. We show that the first case does
not include any piece which is not a special case of the second. Polytopes in the first
case contain vertices (1, 0, k1), (k2, 1, 0), and (0, k3, 1). Note that we can assume
that ki ≥ 2. If ki > 2 for any i ∈ {1, 2, 3}, the lattice point (1, 1, 1) is in the interior
of the convex hull of the vertices of P , and hence k1 = k2 = k3 = 2. However, as
P is contained in the half space {u ∈ R

3 : (1, 1, 1) · u ≤ 3}, P is a sub-polytope of
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Fig. 30. The piece Q((1, 0), 1, 1)

the convex hull P ′ of the vertices shown in Fig. 29. Note that every vertex of this
polytope is contained in a panel, and hence P = P ′. Since P ′ is not unimodular it
does not contribute to the list of pieces.

In the second case illustrated in Fig. 30, we observe that P is a Cayley polytope.
Indeed, assuming that P contains the vertices (1, 0, k1), (k2, 1, 0), and (0, 1, k3), P
is the Cayley sum of the facets contained in H0 and H1, where Hk := {u : 〈e�

2, u〉 =
k}. These are both 2-dimensional if α1 ≥ 0 and α2 ≥ 0; and in this case it follows
from Lemma 5.7 that P is of the form Q(α, l, j) for some l ∈ Z≥0 and j ∈ {1, 2}.
The classification of the remaining possible pieces follows from a case-by-case
analysis. The case α = (−1,−1) is trivial. If α = (0,−1), P is contained in the
product of a standard simplex and a ray, and equal to some Q(α, 1, l). If α1 > 0 and
α2 = −1 we note that the polytopes Q(α, 1, l) are not unimodular, while Q(α, 2, l)
is a Cayley polytope P1 � P2, such that P1 is a standard simplex. P2 is a dilate of a
standard simplex by Lemma 5.7, and hence l = α1 + 1. ��

6. Connection to the Gross–Siebert program

The results and computations of this article fit into a larger program of research,
directed toward a novel method of Fano classification. In particular, the authors of
[16] construct a database of polytopes which support a mirror (Minkowski) Laurent
polynomial to a given Fano threefold, see www.fanosearch.net. It is conjectured
that this database describes precisely the toric varieties (associated to Minkowski
polytopes) which smooth to a given Fano threefold.

In this article we have constructed degenerations proving part of this conjec-
ture: every toric variety we obtain by degenerating a Fano threefold appears in the
database generated in [16]. As discussed in the introduction, the Gross–Siebert pro-
gram suggests a general approach to relate toric degeneration and mirror Laurent
polynomials. Loosely, we first degenerate the toric variety X P , associated to the
Newton polytope P of aMinkowski polynomial, to a union of toric varieties. Using

www.fanosearch.net
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methods from tropical and log geometry we can then (attempt to) generate both the
smoothing of X P to a Fano threefold and the Laurent polynomial mirror.

More specifically, we expect that our families are fibrewise compactifications
of families mirror to certain log Calabi–Yau varieties, which may themselves be
constructed from a scaffolding. The two-dimensional version of this program is
current work in progress with Barrott and Kasprzyk [4], and we now outline the
main features of the construction. As remarked in the introduction, if this program
were complete in dimension three, the currentworkwould relate the constructions of
Mori–Mukai with the toric degeneration descriptions obtained viamirror symmetry
considerations.

6.1. Compactifying families of log Calabi–Yau varieties

Fix a scaffolding S of a Fano polytope P with shape determined by the generalised
fan �. Assume, for simplicity, that NU = {0}, and hence N̄ = N ∼= Z

n . The
induced inclusion ι : X P ↪→ YS fits into the commutative diagram

X P YS

(C�)n
C

�(1),

where the horizontal and vertical arrows are closed and open embeddings respec-
tively. Using standard methods, we can degenerate (C�)n into a union of copies
of C

n , determined by the cones of the unimodular generalised fan �. Moreover,
there is a canonical embedding of this degeneration into C

�(1). We propose to
consider the extension of this degeneration over the base of a family of log Calabi–
Yau varieties considered by Gross–Hacking–Keel (in two dimensions) [25], and by
Gross–Hacking–Siebert [26] in higher dimensions.

Assume for now that n = 2, and S is a full scaffolding of P . Let Z denote the
shape variety of S, the toric variety associated to�. We construct a log Calabi–Yau
variety U by blowing up points on the toric boundary of Z , and propose that the
mirror family V → T—constructed in [25]—fits into the following commutative
diagram, where X → T is projective and flat, and V is an open subscheme of X :

X YS × T

V C
�(1) × T

(4)

We construct the variety U using a notion of mutability for the scaffolding S.
We recall from [1] that a mutation of a polygon is determined by a weight vector
w ∈ M ∼= Z

2, and a factor F ⊂ w⊥. We refer to [1] for the full definition of
polytope mutation, but recall that a polytope P admits a mutation with respect to
(w, F) if and only if each

Pa := P ∩ {x : 〈x, w〉 = a}



314 T. Prince

contains a translate of the polytope max(−a, 0)F whenever Pa �= ∅. Fixing a
convention for the orientation of w⊥, a mutation in two dimensions is determined
by the weight vector w; taking F to be a unit length line segment in the one
dimensional vector space w⊥.

Definition 6.1. Given a pair (w, F), we say that S admits a mutation in (w, F) if
the polytope PD + χ admits this mutation for each element (D, χ) ∈ S.

Fix a scaffolding S with shape Z , where Z is a product of projective spaces.
We recall from [17] that there is a standard choice of Laurent polynomials fs , such
that Newt( fs) = PD + χ , where s = (D, χ) ∈ S. Thus there is a standard choice
of Laurent polynomial

f =
∑
s∈S

fs

such that Newt( f ) = P . If S is mutable, the Laurent polynomial f admits an
algebraic mutation [1] (also called a symplectomorphism of cluster type [32]).
Hence we expect that f defines a global function on the variety U defined (in the
2 dimensional case) as follows.

Construction 6.2. Let vρ denote the ray generator of the ray ρ of �. Given a
scaffolding S of P , suppose that S admits a mutation with weight vector vρ and
factor Fρ of lattice length �ρ . Let U be the complement of the strict transform of
the toric boundary of Z under the blow-up π of Z with �ρ distinct reduced centres
on the boundary divisor of Z corresponding to each ray ρ.

The following conjecture is the main result of [4].

Conjecture 6.3. The mirror family V to the log Calabi–Yau U constructed in [25]
fits into the commutative diagram (4).

Conjecture 6.3 offers a systematic way of constructing the deformations we
build by hand throughout this article. The situation in higher dimensions is the
subject of current and exciting research. We particularly refer here to ongoing
work of Corti–Hacking–Petracci [18], which may be interpreted as an extension
of Conjecture 6.3 to higher dimensions, in which the map X P → YS is the anti-
canonical embedding of the Gorenstein toric Fano variety X P .

6.2. Example: A2 cluster variety

We consider a particular case of the mirror family to a log Calabi–Yau in some
detail. Let Z be the toric variety d P7, obtained by blowing up P

1 × P
1 in a single

torus invariant point. Let Ū be the blow up of a (non-special) point on each of the
pair of torus invariant curves C in Z such that C2 = 0. Let U be the complement of
the strict transformof the toric boundary of Z in Ū . It is well known, see for example
[24], that U is the A cluster variety associated to an A2 quiver. The mirror family,
described by [25] using θ -functions, is a family over Spec(k[NE(Ū )]) ∼= A

5
k, for
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Fig. 31. Affine manifold associated to V

a choice of ground field k. Specialising the parameters corresponding to NE(Z) to
1, we obtain the 2-parameter family defined by the 4 × 4 Pfaffians of the matrix

⎛
⎜⎜⎜⎜⎝

0 1 x1 x2 1
0 t1 x3 x4

0 1 x5
0 t2

0

⎞
⎟⎟⎟⎟⎠

, (5)

where x1, . . . , x5 denote the theta functions corresponding to the five rays shown in
Fig. 31. The parameters t1 and t2 correspond to the curve classes of the exceptional
locus of the contraction Ū → Z . We associate an integral affine manifold (with
singularities) to U , illustrated in Fig. 31. The singular locus consists of a pair

of focus-focus singularities. There is a monodromy operator conjugate to

(
1 1
0 1

)

associated to each focus-focus singularity such that the subspace invariant under
each operator is parallel to the ray containing the corresponding singular point.

Fix a Fano polygon P together with a scaffolding S which has shape Z . An
example of such a scaffolding is shown inFig. 33.Given an element s = (D, 0) ∈ S,
let si denote the i th co-ordinate of D ∈ DivT (Z) = Z

5, using the ordering of the
basis elements shown in Fig. 31. Recalling that the scaffolding S defines a toric
embedding X P → YS , let xi be the homogeneous coordinate corresponding to the
i th basis element in DivT (Z) for each i ∈ {1, . . . , 5}.

The scaffolding S determines an embedding of X P of codimension 3.Moreover,
explicitly computing the ideal of this toric embedding, the image of X P in YS is
given by the 4 × 4 Pfaffians of the matrix

⎛
⎜⎜⎜⎜⎝

0
∏

s ys1+s4−s5
s x1 x2

∏
s ys2+s4−s3

s
0 0 x3 x4

0
∏

s ys3+s5−s4
s x5
0 0

0

⎞
⎟⎟⎟⎟⎠

. (6)

Note that each of the exponents of entries in the matrix appearing in (6) is
non-negative as, writing s = (D, 0), D is nef for any s ∈ S. In fact the nef cone of
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Fig. 32. Example of a strut with shape Z

Fig. 33. Example scaffolding with shape Z

d P7 is defined by the inequalities s3 + s5 ≥ s4, s2 + s4 ≥ s3, and s1 + s4 ≥ s5. This
can easily deduced from Fig. 32, which illustrates a general polygon with shape Z .

The variety X P fits into the two-parameter family defined by the 4×4 Pfaffians
of the matrix

⎛
⎜⎜⎜⎜⎝

0
∏

s ys1+s4−s5
s x1 x2

∏
s ys2+s4−s3

s

0 t1
∏

s ys1+s3−s2
s x3 x4
0

∏
s ys3+s5−s4

s x5
0 t2

∏
s ys2+s5−s1

s
0

⎞
⎟⎟⎟⎟⎠

if and only if the exponents s1 + s3 ≥ s2 and s2 + s5 ≥ s1 are non-negative for each
s ∈ S. However, this is immediately equivalent to the mutability S with respect to
theweight vectors (1, 0) and (0, 1). Hence,mutability of the scaffolding is precisely
the condition required for the mirror family to admit a compactification in YS .

For example, consider the polygon P , with scaffolding S shown in Fig. 33.
This is evidently a mutable scaffolding, and indeed a general fibre of the family has
equations is identical to those used to construct the log del Pezzo surface X5,5/3 in
[19].
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6.3. The Gross–Siebert algorithm

As well as the approach exploiting the results [25,26] detailed above, we may
attempt to make direct use of the Gross–Siebert algorithm, introduced in [27]. The
existence of this algorithm entails a powerful smoothing result, namely that any
locally rigid, positive, pre-polarized tori log Calabi–Yau space arises from a formal
degeneration of log Calabi–Yau pairs. Moreover, the extension of these families to
families over an analytic base with canonical co-ordinates is known (at least in the
Calabi–Yau context) and we refer to the article [45] of Ruddat–Siebert for further
details.

Therefore, if we can adapt our constructions to define such a toric log Calabi–
Yau space we can define a smoothing using constructions in logarithmic geometry.
The technical difficulties here are two-fold.

(i) Local rigidity is a strong condition, and is restrictive even in three dimensions.
(ii) Construction of a locally rigid toric log Calabi–Yau involves refining the trian-

gulation of P , and we lose a reasonable ambient space for the resulting formal
degeneration.

In [27] the authors explain how toric log Calabi–Yau spaces may be constructed
from certain integral affine manifolds, together with additional discrete data (such
as a polyhedral decomposition). Local rigidity is related to the notion of simplicity
of the singularities of an integral affine manifold B associated to a toric log Calabi–
Yau space. In three dimensions, an integral affinemanifoldwith simple singularities
is a topological manifold with an integral affine structure in the complement of a
trivalent graph�, together with conditions on the monodromy of the integral affine
structure around edges of �.

In our context B is the polytope P�, dual to P , and we note that an integral
affine manifold with simple singularities corresponding to each family of Fano
threefolds was constructed in the author’s earlier work [43]. Constructing a polyhe-
dral decomposition andpolarization compatiblewith these integral affinemanifolds
allows us to describe a locally rigid toric log Calabi–Yau space. Indeed, adapting
the constructions in [43], we expect that the Gross–Siebert algorithm can be used
to construct all families of Fano 3-folds in this way. We note that the deforma-
tions of log Calabi–Yau spaces are still the subject of active research, and we hope
that very recent work of Filip–Felton–Ruddat [21] will allow us to overcome some
of the technical difficulties presented by the requirement of local rigidity in the
Gross–Siebert algorithm.
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