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Abstract. In the present paper we focus on a weighted version of the Bounded Negativity
Conjecture, which predicts that for every smooth projective surface in characteristic zero the
self-intersection numbers of reduced and irreducible curves are bounded from below by a
function depending on the intesection of curve with an arbitrary big and nef line bundle that
is positive on the curve. We gather evidence for this conjecture by showing various bounds
on the self-intersection number of curves in an algebraic surface. We focus our attention on
blow-ups of algebraic surfaces, which have so far been neglected.

Introduction

In the last years, negative curves on surfaces have been researched extensively
because of their connection to many open problems. Among these, one cannot
refrain from mentioning Nagata’s conjecture [11] or the SHGH conjecture [5]. The
present paper is devoted to yet another open question in the geometry of complex
surfaces:

Conjecture 0.1. (Bounded Negativity Conjecture) For every smooth projective sur-
face X over the complex numbers, there exists a nonnegative integer b(X) ∈ Z

such that C2 ≥ −b(X) for all integral curves C ⊂ X .

The Bounded Negativity Conjecture (BNC in short) has a long oral tradition,
and it seems to date back to F. Enriques. In some cases, the conjecture is known to
hold true, for instance when the anti-canonical bundle is Q-effective or when the
surface is equipped with a surjective endomorphism of degree d > 1. However, if
one considers non-minimal surfaces, e.g. blow-ups of a surface for which BNC is
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known to hold, then very little is known and the problem acquires a very different
flavor.

As it turns out, the BNC is equivalent to the statement in Conjecture 0.1 where
one allows C to be any reduced curve in X [1, Proposition 3.8.2]. This has paved
the way to the study of the BNC from the point of view of configurations of curves
via the notion of H-constant [2]. The H-constant is an asymptotic invariant that
has the potential of studying the BNC on all blow-ups of a given algebraic sur-
face at all possible configurations of points on it simultaneously, see for instance
[2,6,7,13–15].

In the present paper, we go back to focusing our attention on integral curves
and bounding their negativity. In [1, Conjecture 3.7.1], the authors formulated the
following variant of the BNC.

Conjecture 0.2. (Weighted BNC) For every smooth projective surface X over the
complex numbers, there exists a nonnegative integer bw ∈ Z such that C2 ≥
−bw(X) · (C.H)2 for all integral curves C ⊂ X and all big and nef line bundles H
for which C.H > 0.

Notice that we are not asking for the self-intersection of a curveC to be bounded
from below, but rather that the weighted self-intersection C2/(C.H)2 of C be so,
hence the adjective "weighted". Put differently, Conjecture 0.2 is asking for a bound
on the self-intersection of all integral curves on X that depends on both X and the
degree of the curve C with respect of every big and nef line bundle over which
the curve is positive. The importance of the weighted BNC lies in the fact that it
implies positivity of the global Seshadri constant of ample line bundles at all points
of a given surface X [1, Proposition 3.6.2].

Our paper aims at gathering evidence for the validity of this conjecture. More
precisely, we provide bounds for the self-intersection numbers of irreducible and
reduced curves on blow-ups of algebraic surfaces at mutually distinct points. The
bounds depend on the degree of the curve with respect to an explicitly constructed
big and nef line bundle �, and in fact it holds for the cone Nef(X)+� (the translate
of the nef cone by �).

The technical heart is Theorem 2.1, where we construct a line bundle on a blow-
up Y of X at n distinct points that naturally arises from X . We prove this result by
first showing a generalization of a result due to Sakai [17] andOrevkov–Zaidenberg
[12], together with estimates on the Milnor numbers of isolated singularities. This
provides a function that depends linearly on the degree with respect to a given line
bundle, while the conjecture only predicts that such a function should be quadratic.

Our results give a uniform treatment of the case of surfaces of non-negative
Kodaira dimension (see Corollary 2.2):

Theorem A. Assume X is a surface of non-negative Kodaira dimension and let
f : Y → X be the blowing up of X along n mutually distinct points. Then there
exists a big and nef line bundle � that bounds negativity linearly, i.e.,

C2 ≥ −1

2
(δ(X) + C.�) − n,

for every integral curve C ⊂ Y , where δ(X) = 3e(X) − K 2
X .
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Turning to surfaces of Kodaira dimension κ = −∞, we are able to give a very
neat picture in the case of blow-ups of P2 (see Theorem 3.1):

Theorem B. Let σ : Y −→ P
2 be the blow-up of P2 at n mutually distinct points

in P2, and let C be an irreducible and reduced curve on Y . Then,

C2 ≥ −2n(C.L),

where L is the pull-back of a line in P2.

We also have partial results on blow-ups of Hirzebruch surfaces, and we refer
to Sect. 4 for the details. We are working exclusively over the complex numbers.

1. Generalization of a result of Sakai and Orevkov–Zaidenberg

In this section, we are going to provide a generalization of the following result,
proven independently by Sakai [17] and Orevkov–Zaidenberg [12].

Theorem 1.1. Let C be a reduced and irreducible curve in P
2 of degree d having

singular points p1, ..., ps .We denote bym pi andμpi the correspondingmultiplicity
and the Milnor number of pi . If the logarithmic Kodaira dimension of P2\C is non-
negative, then

s∑

i=1

(
1 + 1

2mpi

)
μpi ≤ d2 − 3

2
d.

For the definition of the Milnor number of a singularity we refer to [9, § 7]. Our
aim is to show that the above inequality holds true in a broader setting. Before we
present the result, let us recall that one has the following variation onMaxNoether’s
inequality [4, Satz 5, p. 835].

Theorem 1.2. Let X be a smooth complex projective surface and C ⊂ X an irre-
ducible and reduced curve with singular points p1, ..., ps and denote by μp the
Milnor number of the singularity of C at p. If KX denotes the canonical divisor of
X and e(C) denotes the topological Euler characteristic of C, then

e(C) =
∑

p∈Sing(C)

μp − (C.C + C.KX ).

Our approach is to follow an idea of Sakai [17, § 1], which we illustrate below.

Construction 1.3. For an irreducible and reduced curve C on a smooth surface X ,
we denote by f : S → X the minimal sequence of blow-ups such that the (reduced)
total transform ofC has normal crossings. Let {E1, ..., En} be the set of exceptional
curves for f (i.e. the exceptional divisors that arise when performing the blow-up
f ), and we set D = C̃ + ∑

i Ei , C̃ being the strict transform of C along f . For a
singularity (C, p):
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(1) mp is the multiplicity of (C, p);
(2) rp is the number of branches of (C, p);
(3) E is the reduced exceptional divisor of f , E = ∑

i Ei = ∑
p∈Sing(C) Ep,

where Ep is the reduced exceptional divisor over the point p ∈ X ;
(4) ωp = −E2

p.

Let us recall that f ∗C = C̃ + ∑
i mi Ēi , Ēi being the total transform of Ei

in S, while the reduced exceptional divisor satisfies E .C̃ = ∑
p rp. Indeed, let us

consider a singularity (C, p): along a resolution, the rp branches will get separated.
As blowing-up is an isomorphism outside of the center, for every branch there exists
unique exceptional divisor intersecting it transversally. The intersection point of the
exceptional divisor and the branch maps to p. By summing over all singular points,
we obtain the desired formula.

Definition 1.4. For a singularity (C, p) we denote by (m1 = mp,m2, ...,mn) the
sequence of multiplicities of all infinitely near points of p in f . We set

ηp =
n∑

j=1

(m j − 1),

and since
∑

j m j (m j − 1) = μp + rp − 1 by Milnor [9, p.85], then we have

∑

j

(m2
j − 1) = μp + rp − 1 + ηp.

We are now ready to show our version of the Orevkov–Sakai–Zaidenberg
inequality, which we will employ in the study of the negativity of a surface carried
out in Sect. 2.

Theorem 1.5. Let C be an irreducible and reduced curve in a smooth complex
projective surface X having singular points p1, ..., ps . We denote by m pi and μpi
the corresponding multiplicities and the Milnor numbers of pi ’s. Assume that the
logarithmic Kodaira dimension of X\C is non-negative, then one has

∑

p∈Sing(C)

(
2 + 1

mp

)
μp ≤ 3e(X) − K 2

X + 2C2 + KX .C.

Proof. Since |m(KS +D)| 	= ∅ for a certain positive integerm, we can use the log-
arithmic Miyaoka-Sakai inequality [16] for the pair (S, D) as in Construction 1.3,
namely

(KS + D)2 ≤ 3(e(S) − e(D)).

First of all, we have

e(S) − e(D) = e(X) − e(C).

Nowwewould like to compute (KS +D)2. Following the idea of Sakai [17, p.263],
we can see that:
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D2 = (C̃ +
∑

i

Ei )
2 = C̃2 −

∑

p

(ωp − 2rp)

pa(D) = pa(C̃) +
∑

p

pa(Ep) − s + C̃ .E = pa(C̃) +
∑

p

(rp − 1)

e(C̃) = e(C) +
∑

p

(rp − 1)

(KS + D).D = 2pa(D) − 2 = 2pa(C̃) − 2 + 2
∑

p

(rp − 1)

= −e(C) +
∑

p

(rp − 1)

K 2
S − C̃2 = K 2

X − C2 +
∑

i

(m2
i − 1).

This leads to

(KS + D)2 = K 2
X − C2 − 2e(C) +

∑

p

(μp + ωp + rp − 3 + ηp),

which implies

K 2
X − C2 − 2e(C) +

∑

p

(μp + ωp + rp − 3 + ηp) ≤ 3e(X) − 3e(C),

by the logarithmic Miyaoka–Yau inequality. The above statement is equivalent to

e(C) +
∑

p

(μp + ωp + rp − 3 + ηp) ≤ 3e(X) − K 2
X + C2.

We have

(KX + C).C = 2pa(C) − 2 = 2pa(C̃) − 2 +
∑

i

mi (mi − 1)

= −e(C̃) +
∑

i

mi (mi − 1) = −e(C) −
∑

p

(rp − 1)

+
∑

i

mi (mi − 1)

= −e(C) −
∑

p

(
rp − 1 −

∑

mi over p

mi (mi − 1)

)

= −e(C) +
∑

p

μp,

where the last equality follows from Milnor’s formula [9, p.85] and
∑

mi over p
means that we are summing up the multiplicities of the infinitely near points of p.
From this, one has

∑

p

(2μp + ωp + rp − 3 + ηp) ≤ 3e(X) − K 2
X + 2C2 + KX .C.
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As it was pointed out explicitly in [12], we have the following inequality

ηp + ωp + rp − 3 ≥ μp/mp.

This implies

∑

p∈Sing(C)

(
2 + 1

mp

)
μp ≤ 3e(X) − K 2

X + 2C2 + KX .C,

which completes the proof. ��

2. Bounding negativity on surfaces with κ ≥ 0

In this section, we would like to bound the negativity of curves on an algebraic
surface, having in mind the Weighted BNC as a goal. Let X a smooth projective
surface over the complex numbers, and let σ : Y −→ X be the blow-up of X at
S = {p1, . . . , pn}, where the pi ’s are mutually distinct points of X . The following
result is the technical heart of the article.

Theorem 2.1. There exists an ample line bundle � ∈ Pic(X) such that

C2 ≥ −1

2

(
δ(X) + (�.C̄)

) − n,

for all integral curves C ⊂ Y such that κ̄(X\C̄) ≥ 0. Here, C̄ := σ(C), δ(X) :=
3e(X) − K 2

X is the Miyaoka–Yau number, and κ̄ denotes the logarithmic Kodaira
dimension.

Proof. Let us assume that our curve C is not one of the exceptional divisors. The
projection of C to X is C̄ := σ(C). By pulling-back to Y , we see that σ ∗C̄ =
C + E, where E = ∑n

i=1 mi Ei is the total exceptional divisor coming from the
multiplicities of C̄ at the pi ’s.

We can write the elements of S as follows

S = {q1, . . . , qs, q ′
1, . . . , q

′
t , q

′′
1 , . . . , q ′′

v },
where q1, . . . , qs ∈ Sing(C̄), q ′

1, . . . , q
′
t ∈ C̄\Sing(C̄), and q ′′

1 , . . . , q ′′
v /∈ C̄ . Then,

C2 = C̄2 − E
2 = C̄2 −

∑

p∈S
m p(C̄)2

= C̄2 −
s∑

i=1

m2
qi (C̄) −

t∑

j=1

m2
q ′
j
(C̄) −

v∑

k=1

m2
q ′′
k
(C̄)

= C̄2 −
s∑

i=1

m2
qi (C̄) − t.
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Using Theorem 1.5, one gets

C2 ≥ −1

2

(
δ(X) + KX .C̄

) +
∑

p∈Sing(C̄)

(
1 + 1

2mp(C̄)

)
μp(C̄) −

s∑

i=1

m2
qi (C̄) − t

= −1

2

(
δ(X) + KX .C̄

)

+
s∑

i=1

(
1 + 1

2mqi (C̄)

)
μqi (C̄) +

∑

p∈Sing(C̄)\S

(
1 + 1

2mp(C̄)

)
μp(C̄)

−
s∑

i=1

m2
qi (C̄) − t.

Let us observe that
s∑

i=1

(
1 + 1

2mqi (C̄)

)
μqi (C̄) −

s∑

i=1

m2
qi (C̄)

=
s∑

i=1

[(
1 + 1

2mqi (C̄)

)
μqi (C̄) − m2

qi (C̄)

]

=
s∑

i=1

[(
1 + 1

2mqi (C̄)

)(
μqi (C̄) − mqi (C̄)2

)
+ mqi (C̄)

2

]

≥
s∑

i=1

[(
1 + 1

2mqi (C̄)

)
(
1 − 2mqi (C̄)

) + mqi (C̄)

2

]

=
s∑

i=1

1 − 3mqi (C̄)2

2mqi (C̄)
,

where in the inequality above we have used that μp(C̄) ≥ (
mp(C̄) − 1

)2 for every
isolated singularity p ∈ C̄ (see for instance [8, Theorem 1.8]).

From this, we deduce that

C2 ≥ −1

2

(
δ(X) + KX .C̄

)

+
s∑

i=1

1 − 3mqi (C̄)2

2mqi (C̄)
− t +

∑

p∈Sing(C̄)\S

(
1 + 1

2mp(C̄)

)
μp(C̄)

≥ −1

2

(
δ(X) + KX .C̄

) +
s∑

i=1

1 − 3mqi (C̄)2

2mqi (C̄)
− t

≥ −1

2

(
δ(X) + KX .C̄

) +
s∑

i=1

1 − 3mqi (C̄)2

2mqi (C̄)
− n (since n ≥ t)

≥ −1

2

(
δ(X) + KX .C̄

) −
s∑

i=1

3

2
mqi (C̄) − n.
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At this point, we need to get rid of the multiplicities, by replacing them with
suitable intersection numbers. Let us choose a very ample line bundle A ∈ Pic(X),
and let ϕA : X −→ P

h0(A)−1 be the corresponding embedding. Then, the
multiplicities mpi (C̄) are bounded by the degree of C̄ in the embedding ϕA,
i.e. mpi (C̄) ≤ (C̄ .A) = deg

Ph
0(A)−1(C̄). Therefore, it follows that

C2 ≥ −1

2

(
δ(X) + KX .C̄

) −
s∑

i=1

3

2
mqi (C̄) − n

≥ −1

2

(
δ(X) + KX .C̄

) −
s∑

i=1

3

2
(C̄ .A) − n (since n ≥ s)

≥ −1

2

(
δ(X) + (KX + 3nA).C̄

) − n.

The line bundle KX + 3nA might not be ample, but it becomes such upon
replacing A with a multiple. This means that for a suitable choice of A, the adjoint
line bundle � := KX + 3nA is ample, thus

C2 ≥ −1

2

(
δ(X) + �.C̄

) − n

This concludes the proof in caseC is not oneof the exceptional divisor.However,
if C were to be one of the exceptional divisors, the bound above would still hold
true, therefore we are done. ��

As a consequence, we immediately get a linear bound on the self-intersection
of integral curves on all surfaces Y as above having the additional requirement that
their Kodaira dimension is non-negative.

Corollary 2.2. Assume X is a surface of non-negative Kodaira dimension. Then,
in the setting above, there exists a big and nef line bundle � that bounds negativity,
i.e.,

C2 ≥ −1

2

(
δ(X) + C.�

) − n,

for every integral curve C ⊂ Y . In other words, if we define deg� C := (C.�),
then

C2 ≥ −
(
1

2
δ(X) + n

)
− 1

2
deg� C,

i.e. the negativity of C is bounded by a function that depends on X, the number of
points we have blown-up, and the �-degree of C.

Proof. The line bundle � in the proof of Theorem 2.1 provides us with a degree
function on NS(X). As a consequence, we obtain a choice of a degree-like line
bundle of Y by setting � := σ ∗�. The line bundle � will never be ample (we are
pulling back along a blow-up), but it is nevertheless big and nef. Hence we can use
it to provide a weighted bound for the negativity on Y . ��
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It is interesting to observe the following facts:

• if X is a minimal surface, then the bound of the negativity of Y directly arises
naturally from its minimal model;

• the bound on the negativity is now linear in (C.�), while the weighted BNC
predicts the existence of a quadratic bound.

3. Bounding negativity on blow-ups of P2

In this section, we will study the problem of bounding negativity for blow-ups of
P
2. We present here two different approaches to find bounds for the intersection

numbers for curves on blow-ups of the complex projective plane. We start with the
first approach using Orevkov–Sakai–Zaidenberg’s inequality.

Theorem 3.1. Let σ : Y −→ P
2 be the blow-up of P2 at S = {p1, . . . , pn}, where

the pi ’s are distinct points of P2, and let C be an irreducible and reduced curve on
Y . Then,

C2 ≥ −2n(C.L),

where L is the pull-back of a line in P2.

Proof. In this case, there do exist curves for which the logarithmic Kodaira dimen-
sion of the complement is −∞. As it was shown by Wakabayashi [18], if D ⊂ P

2

is an irreducible and reduced curve of degree d ≥ 4 having s ≥ 1 singular points,
which is not a rational cuspidal curve with one cusp, then the logarithmic Kodaira
dimension ofP2\D is non-negative. Therefore, we can apply Theorem 1.5 to bound
the self-intersection of these curves. In fact, it was pointed by Sakai [17] that the
inequality in Theorem 1.1 holds for all irreducible and reduced curves D ⊂ P

2 of
degree d ≥ 3 – it is enough to verify the remaining cases by simple computations.

Let C ⊂ Y be an irreducible an reduced curve, and let us denote by C̄ its image
under σ . If C̄ .H ≥ 3, H being the class of a line in P2, then we can repeat the proof
of Theorem 2.1 to obtain

C2 ≥ −1

2

(
δ(P2) + KP2 .C̄

) − 3

2

s∑

i=1

mqi (C̄) − n

= 3

2
(H.C̄) − 3

2

s∑

i=1

mqi (C̄) − n

≥ 3

2
(H.C̄) − 3

2

s∑

i=1

(H.C̄) − n

≥ −3

2
n(H.C̄) − n ≥ −2n(H.C̄) = −2n(L .C),

where L = σ ∗H . We are left to deal with curves C ⊂ Y whose image C̄ is either
a line or a conic. For such curves, we have that

1 −
s∑

i=1

mpi (C̄) ≤ C2 ≤ 2 −
s∑

i=1

mpi (C̄).
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However, due to the restriction on the degree, C̄ is necessarily smooth andmpi (C̄) =
1 for all i = 1, . . . , s. Therefore, we find that C2 ≥ 1−n, and thus we have proven
the result. ��

Our second approach to the problem allows us to improve our previous bound
from Theorem 3.1, and this is a consequence of a classical result in the theory of
algebraic curves [19, Theorem 7.22].

Theorem 3.2. (Plücker–Teissier formula) Let C ⊂ P
2 be an irreducible and

reduced curve. Then

∑

p∈Sing(C)

(μp + mp − 1) ≤ d(d − 1).

In the setting of Theorem 3.1, by using the inequality μp ≥ (mp(C̄) − 1)2 for
p ∈ Sing(C̄), the Plücker–Teissier formula implies that (again, we use the notation
as in the proof of Theorem 2.1):

d2 − d ≥
∑

p∈Sing(C̄)

(μp(C̄) + mp(C̄) − 1) ≥
s∑

i=1

(μqi (C̄) + mqi (C̄) − 1)

≥
s∑

i=1

mqi (C̄)
(
mqi (C̄) − 1

)
,

which in turn shows that

C2 = d2 −
∑

p∈S
m p(C̄)2 = d2 −

s∑

i=1

mqi (C̄)2 − t

≥ d −
s∑

i=1

mqi (C̄) − t ≥ d(1 − s) − t ≥ −d(s + t) ≥ −nd,

and we got a better constant than in the statement of Theorem 3.1.
We would like to conclude by making the following remark, which considers

the case of a blow-up ofP2 at a setP of points in very general position. Assume that
P = {p1, ..., pn} are points in very general position and we consider the blowing-
up π : X → P

2 along P . Let C ⊂ X be an irreducible and reduced curve, and
denote by C̄ ⊂ P

2 its image. Then by Xu [20, Lemma 1], one has:

C2 ≥ −min{mq1, . . . ,mqs ,mq ′
1
, . . . ,mq ′

t
} ≥ −d,

which means that in generic case the better bound C2 ≥ −d holds for every
irreducible and reduced curve C ⊂ X . Notice that this bound does not depend on
the number of points that we have blown up the surface.
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4. Bounding negativity on blow-ups of Hirzebruch surfaces

We denote by Fm the mth Hirzebruch surface, and let us consider the case m 	= 1
only, so that Fm is a minimal surface (F1 is P2 blown-up at one point). If F is the
class of a fiber, and H is the tautological section of Fm , then

Pic(Fm) = ZF ⊕ ZH, H2 = m, H.F = 1, KFm = −2H + (m − 2)F.

Wewould like to mimic the argument for blow-ups of P2. Let σ : Y −→ Fm be the
blow-up of Fm at a set S = {p1, . . . , pn} of distinct points. Suppose that C ⊂ Y is
a curve with the property that κ̄(Y\C) ≥ 0, and let C̄ be its image under σ . By the
proof of Theorem 2.1, we get

C2 ≥ −1

2

( − 4 + KX .C̄
) − 3

2

s∑

i=1

mpi (C̄) − n.

Now, the line bundle A := H + F is very ample by Beauville [3, Exer-
cise IV.18(2)], and it embeds Fm into Pm+3 as a surface of degreem+2. Therefore,

C2 ≥ 2 − n + 1

2

(
− KX .C̄ − 3

s∑

i=1

mpi (C̄)
)

≥ 2 − n − 1

2

(
KX .C̄ + 3

s∑

i=1

A.C̄
)

≥ 2 − n − 1

2

(
KX .C̄ + 3n(A.C̄)

)

≥ 2 − n − 1

2

(
(KX + 3nA).C̄

)
.

The line bundle � := KX + 3nA is always very ample on Fm , thus yielding a
big and nef line bundle � := σ ∗� on Y that bounds the negativity on Y :

C2 ≥ 2 − n − 1

2
deg� C.

It is natural to ask forwhich classes of curveswe can apply our lower-bound, and
the answer is provided by the followingWakabayashi-type result [10, Theorem1.4].

Theorem 4.1. On a Hirzebruch surface Fm, let C be an irreducible curve of genus
g and type (a, b) with b > 2, a > 2 − 1

2bm, and a ≥ 0. Then

• If g > 0, then the logarithmic Kodaira dimension of Fm\C is equal to 2.
• If g = 0 and C has at least three cusps, then the logarithmic Kodaira dimension
of Fm\C is equal to 2.

• If g = 0 and C at least two cusps, then the logarithmic Kodaira dimension of
Fm\C is at least equal to 0.
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