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Abstract. The p-adic L-function for modular forms of integral weight is well-known. For
certainweights the p-adic L-function formodular forms of half-integralweight is also known
to exist, via a correspondence, established by Shimura, between them and forms of integral
weight. However, we construct it here without any recourse to the Shimura correspondence,
allowing us to establish its existence for allweights, including those exempt from the Shimura
correspondence. We do this by employing the Rankin–Selberg method, and proving explicit
p-adic congruences in the resultant Rankin–Selberg expression.

1. Introduction

The centrality of general p-adic L-functions to the Iwasawa main conjectures
almost goes without saying, as they form the backbone of the analytic side of
the conjecture. Given the diversity of L-functions and their, established or not,
p-adic analogues, natural attempts can be made to formulate different versions of
this. In its first form, one considers the GL1-case in which the Kubota-Leopoldt
L-function takes centre stage as the p-adic analogue of the Dirichlet L-function.
Moving up to GL2, we can consider modular forms and their p-adic L-functions.
Should the modular form have an integral weight then the conjectures in toto are
well formulated and in some cases even established (e.g. k = 2 see [21]). However,
due to insufficiently developed theory the conjectures for when the modular forms
are of half-integral weight are not possible to even state.

The main issue in the case where f is a modular form of half-integral weight
is the difficulty of developing a ‘Galois side’, which forms the second and last
backbone of the Iwasawa main conjectures. Such difficulty can be seen in Section
11 in the informal notes of Buzzard in [1]. Recent work of Weissman in [23] has
made some serious progress in this regard by developing L-groups for metaplectic
covers, the length and methods of which further underline the complications here.
Nevertheless, the analytic p-adic theory of half-integral weight modular forms
has been substantially developed in the thesis of [11]. So then it’s germane to ask
whether we can at least construct the p-adic L-function in this case.
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The p-adic L-function attached to a half-integral weight modular has been con-
structed before using an indirect method. The Shimura correspondence, established
by Shimura himself in [15], goes between modular forms of half-integral weight
k = κ

2 for odd κ ∈ Z and modular forms of integer weight κ − 1 which respects
the action of the Hecke operators. For large enough κ this is a bijection, in which
case the well-known interpolation of the L-function for modular forms of inte-
ger weight immediately yields that of the half-integral weight L-function. We go
ahead anyway and provide in this paper a direct interpolation of the L-function for
half-integer weights for reasons given in the rest of this introduction.

The method employed is the Rankin–Selberg method which has been a highly
successful method for p-adic interpolation e.g. see [3,10,13]. In spite of all this the
recording of the method in this setting is useful for a number of reasons. Primarily,
an analogy can be drawn here with the construction of the p-adic L-functions for
totally real fields, for which two constructions have proven to be equally useful.
On the one hand Deligne and Ribet in [5] constructed this function using constant
terms of Eisenstein series, and this particular construction is vital in the proof of
the Iwasawa main conjecture by Wiles in [24]. Cassou-Noguès in [2], however,
gave an entirely different construction of this p-adic L-function using the Shintani
decomposition, this being apposite to our analogy in that it allowedColmez to prove
the p-adic residue formula, see [4]. In our situation herewenote a potentially fruitful
observation, in the very final section, regarding the integrality of the p-adicmeasure
resulting from our particular construction when contrasted to the original one for
integer weight Siegel modular forms. In addition, this paper gives some impetus
to extend this to half-integral weight Siegel modular forms of higher degree n > 1
for which, crucially, there is no longer a Shimura correspondence. Such p-adic
L-functions are currently not known to exist. Finally, in Sect. 3 we encounter a
substantial deviation in this setting from the integer weight one, which involves the
construction of the p-stabilisation of our modular form. This construction has not
been done previously for half-integer weight forms.

Section 2 gives awell-known overviewof the basic theory of half-integerweight
modular forms. Some necessary results on the trace map and Hecke operators
are given in Sect. 4, which allow us to reduce the level of the inner product in
the integral expression of our L-function. After reducing the level of the inner
product, the existence of the p-adic measure is proven by looking at the Fourier
development inside the inner product. The paper is concluded in the final section by
a comparison of the integer and half-integer weight p-adic measures in accordance
with the Shimura correspondence, and a discussion on the integrality of this p-adic
measure.

2. Half-integral weight modular forms

Much of the theory we use here to exhibit half-integral weight modular forms
is taken from [15]. First, some preliminary notation. If α ∈ Mn is a matrix,
then |α| = det(α).We denote byGL+

2 (R) the space of all invertible 2×2matrices
with positive determinant. The upper half-plane is H = {z ∈ C | Im(z) > 0}. The
fractional linear transformation action of GL+

2 (R) on H is given by
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α · z = az + b

cz + d
α =

(
a b
c d

)
∈ GL+

2 (R), z ∈ H.

We let T denote the unit circle and let

G := {(α, ϕ) | α ∈ GL+
2 (R), ϕ holomorphic, ϕ(z)2 = t |α|− 1

2 (cz + d), t ∈ T}
be a group whose law of multiplication is given by

(α, ϕ(z))(β, ψ(z)) = (αβ, ϕ(β · z)ψ(z)). (2.1)

We also have a natural projection P : G → GL+
2 (R) and ker(P) ∼= T. Let

f : H → C be a function, then for some κ ∈ Z we can define a weight κ action of
G on f by

( f |[ξ ]κ)(z) = f (ξ · z) ϕ(z)−κ = f (α · z) ϕ(z)−κ

where ξ = (α, ϕ). By virtue of (2.1) we have f |[ξη]κ = ( f |[ξ ]κ)|[η]κ for any two
ξ, η ∈ G. Let G1 := {ξ = (α, ϕ) ∈ G | |α| = 1} ≤ G, then a Fuchsian subgroup
	 ≤ G1 is a subgroup such that P(	) is a discrete subgroup of SL2(R), P(	)\H

is of finite volume with respect to dμ = y−2dxdy, 	 contains no elements of
the form (1, t) for 1 �= t ∈ T, and contains no elements of the form (−1, t) for
1 �= t ∈ T should −1 ∈ P(	).

Definition 2.1. Let κ be an odd integer and 	 ≤ G1 a Fuchsian subgroup. We say
that a holomorphic function f : H → C is a modular form of weight k = κ

2 with
respect to 	 if

(i) f |[ξ ]κ = f for all ξ ∈ 	;
(ii) f is holomorphic at all cusps of P(	).

The space of all such forms is denoted Mk(	).

Condition (ii), that f be holomorphic at cusps, is made precise in [15, p. 444].
Much like integral weight modular forms any f ∈ Mk(	) has a Fourier expansion
of the form

f =
∞∑
n=0

anq
n

where q = e2π i z . Then the subspace of cusp forms, denotedSk(	), consists of all
forms f the Fourier developments of which take the form f |[ξ ]κ = ∑∞

n=1 anq
n

for all ξ ∈ G.
In this paper 	 will always be obtained by the following types of congruence

subgroup of SL2(Z),

�0(N ) : =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣c ≡ 0 (mod N )

}
,

�1(N ) : =
{(

a b
c d

)
∈ �0(N ) | a ≡ d ≡ 1 (mod N )

}
,

�(N ) : =
{(

a b
c d

)
∈ �1(N ) | b ≡ 0 (mod N )

}
.
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Let θ(z) = ∑∞
n=−∞ qn

2
be the theta series of weight 1

2 with respect to �0(4) and
fix the factor of automorphy

j (γ, z) = θ(γ · z)
θ(z)

for γ ∈ �0(4). From [15, p. 447] for any α = (
a b
c d

) ∈ �0(4) this factor satisfies

j (α, z) = ε−1
d

( c
d

)
(cz + d)

1
2 (2.2)

j (α, z)2 =
(−1

d

)
(cz + d) (2.3)

where εd = 1 if d ≡ 1 (mod 4) and εd = i if d ≡ 3 (mod 4). Then we have an
embedding

�0(4) ↪→ G1

γ 	→ γ ∗ := (γ, j (γ, z))

and if 4 | N then we denote by 	0(N ),	1(N ),	(N ) the respective images of
�0(N ), �1(N ), �(N ) under the above embedding. For ease of notation we write
[γ ]κ = [γ ∗]κ for γ ∈ �(N ). Let N be divisible by 4, κ an odd integer with k = κ

2 ,
and ψ a Dirichlet character modulo N such that ψ(−1) = 1, then put

Mk(N , ψ) := { f ∈ Mk(	1(N )) | f |[γ ]κ = ψ(d) f if γ = (
a b
c d

) ∈ �0(N )}
and letSk(N , ψ) denote the subspace of cusp forms. Note that by [15, p. 447] we
have Mk(N , ψ) = 0 if ψ(−1) = −1.

We finish this section with a brief discussion on Hecke operators in this set-
ting. Let 	i ≤ G1 be Fuchsian and let ξ ∈ G be such that 	1 and ξ	2ξ

−1 are
commensurable. Then we have a finite disjoint union

	1ξ	2 =
⊔
ν

	1ξν.

If f ∈ Mk(	1) then we get a new function f |[	1ξ	2]κ by putting

f |[	1ξ	2]κ = |ξ | κ
4 −1

∑
ν

f |[ξν]κ

and f |[	1ξ	2]κ ∈ Mk(	2). The above action is also defined for Sk(	i ). The
space of all formal finite sums generated by such double cosets forms an algebra.
We focus on the case 	1 = 	2 = 	 ≤ G1 is a Fuchsian subgroup. If � = P(	),

α = P(ξ), and P : 	ξ	 → �α� is a bijection, then equivalently L(αγ α−1) =
ξL(γ )ξ−1 for any lift L : � → 	 and γ ∈ � ∩α−1�α. In this case, the projection
map respects the decomposition of the double coset, that is

�α� =
⊔
ν

�P(ξν)

if 	ξ	 = ⊔
ν 	ξν , and there’s a workable theory of Hecke operators.
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Therein lies the issue, the above condition of P being a bijection on double
cosets is not always satisfied and causes some differences in the theory of Hecke
operators, whichmeans that we only really have operators T (m)whenm is a square
number. Generally for γ ∈ � ∩ α−1�α we at least have

L(αγ α−1) = ξL(γ )ξ−1(1, t (γ ))

for a homomorphism t : � ∩ α−1�α → T. Then Proposition 1.0 in [15] says that
f |[	ξ	]κ = 0 if f ∈ Mk(	) and tκ �≡ 1. Also found in [15, pp. 447–448] is the
following proposition:

Proposition 2.2. Take L(γ ) = γ ∗ for γ ∈ �0(4), and let m, n ∈ Z. Let α = (
m 0
0 n

)
and ξ = (α, t (n/m)

1
4 ) for any t ∈ T. Then

ξγ ∗ξ−1 = (αγ α−1)∗ ·
(
1,
(mn

d

))

if γ ∈ �0(4) ∩ α−1�0(4)α.

So in particular if we take 	 = 	1(N ) for some N divisible by 4, and a prime

p � N then the pth Hecke operator is given by [	ξ	]κ where ξ =
(( 1 0

0 p

)
, p

1
4

)
,

but then if γ = (
a b
c d

)
is an appropriate element as per Proposition 2.2 with d not a

quadratic residue modulo p we have t (γ )κ = ( p
d

)κ =
(
d
p

)κ = −1. So we get that

tκ �≡ 1 and T (p) sendsMk(	1(N )) to 0. Then T (p) is of no interest here and we
must generally consider T (m) form a square number. In the case thatm, n ∈ Z are
square then T (m) and T (n) commute and one can also write the explicit actions
of T (p2) on the Fourier coefficients of f , see Proposition 1.6 and Theorem 1.7 in
[15].

So we have seen that T (p) is simply the zero operator should p � N , but the
question remains of whether it is of interest when p | N . In this case, actually T (p)
is much like it is in the integral weight setting, it shifts the coefficients of a form.
In [15, p. 448] we have the following:

Proposition 2.3. Let Z � m > 0 such that the conductor of Q(m
1
2 ) divides N

and all the primes dividing m also divide N. Then let ξ = (
(
1 0
0 m

)
,m

1
4 ) and put

	1 = 	1(N ) for 4 | N. If f = ∑∞
n=0 anq

n ∈ Mk(N , ψ) then

f |[	1ξ	1]κ =
∞∑
n=0

amnq
n ∈ Mk(N , ψ ′)

for ψ ′(d) := ψ(d)
(m
d

)
.

In particular, if p | N then the two conditions in the proposition are satisfied
and f |T (p) = ∑∞

n=0 apnq
n is a non-trivial action.
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3. Complex L-functions and their integral expressions

To start with, we define the complex L-function attached to half-integral weight
modular forms.With the given data of a normalised eigenform f ∈ Sk(	1), k = κ

2 ,
κ ∈ 2Z + 1, 	1 = 	1(N ), and 4 | N ∈ Z we can associate for any prime p, as
seen in [18, p. 46], a Satake p-parameter λp ∈ C

×. Subsequently, the local factors
are given as

L p(t) :=
{

(1 − pλpt) if p | N
(1 − pλpt)(1 − pλ−1

p t) if p � N

and, augmenting the given data with a character χ of some modulus, the actual
L-function is

L(s, f, χ) :=
∏
p

L p(χ(p)p−s)−1

with s ∈ C and which product is absolutely convergent should Re(s) > 3n
2 + 1.

The SL2(Z)-invariant differential dμ := y−2dxdy on H, along with the fun-
damental domain B(�) of �\H for some congruence subgroup � ≤ SL2(Z), are
used in defining the Petersson inner product of two modular forms. If ψ is an even
Dirichlet character modulo N , and if B(N ) := B(�0(N )), then the Petersson inner
product of f, g ∈ Mk(N , ψ) is defined by

〈 f, g〉N :=
∫
B(N )

f (z)g(z)ykdμ

which integral is convergent whenever one of f, g is a cusp form.
With the complex L-function now defined the aim is to give a Rankin–Selberg

expression of said L-function in terms of integrals of the form in the definition of
the above inner product. To this end, we first define what our integrands shall be.
One role is given by the eigenform f which we henceforth assume is a newform
belonging to Sk(N ) := Sk(N , 1) and has Fourier coefficients an for 1 ≤ n ∈ Z.
There exists some minimal square-free positive integer t at which we have at �= 0,
and normalise the form so that at = 1. Such an integer exists by (i), (ii) of Corollary
1.8 in [15]. Furthermore by the strong multiplicity one theorem we can take t such
that p � t , since otherwise aq = 0 for all q �= p.

Let P := {( a b
c d

) ∈ SL2(Z) | c = 0} be the parabolic subgroup of SL2(Z), for
any 1 ≤ M ∈ Z we put � = �0(M), and let η be a Dirichlet character modulo M .
Then the (non-holomorphic) Eisenstein series we need is of integral weight � ∈ Z,
level M , character η−1, and is expressed as the following sum in the two variables
z ∈ H, s ∈ C:

E(z, s; �, η, M) := y
s
2

∑
γ∈(P∩�)\�

η(d)(cz + d)−k |cz + d|−s .

Taking ν ∈ {0, 1} such that η(−1) = (−1)�k�+ν , which character has conductor
cη, then we define the theta series by

θ(ν)
η (t z) :=

∑
n∈Z

η(n)nνqtn
2
.



The p-adic L-function for half-integral weight modular forms 67

This is of weight ν+ 1
2 , character ηρt (where ρt is the quadratic character associated

to Q(i
1
2 (2t)

1
2 )), and level 4tc2η, see Proposition 2.1 of [19]. The other role of the

inner product is then played by a theta series multiplied by an Eisenstein series of
the above kinds.

Now let χ be a Dirichlet character of p-power conductor cχ = pmχ , and also
put Nχ := Ntc2χ . Since cχ | Nχ we can (and in the following Eisenstein series do)
view χ as a character of modulus Nχ in the natural way. Putting n = 1, F = Q,
and decoding the notation of [19, (4.1)] yields the following integral expression:

2(4tπ)−
s+k−2

2 �
( s+k−2

2

)
L(s, f, χ)

= gχ
t (s)

∫
B(Nχ )

f (z)θ(ν)
χ (t z)Eν(z, χρt , s, Nχ )dμ

(3.1)

where

gχ
t (s) : = Lt (s, χ)L(s, χ)−1 =

∏
q|t

(1 − χ(p)p−s)

Eν(z, χρt , s, Nχ ) : = LNχ (s̄ − 1
2 , χ)E(z, s − k + ν; k − ν − 1

2 , χρt , Nχ ).

Let Cp := Q̂p denote the completion of an algebraic closure of the p-adic
numbers, and extend the p-adic norm to this field. Let ιp : Qp ↪→ Cp be a fixed
embedding and we henceforth work under ιp without explicitly denoting it.

We shall always assume that p �= 2, that p � N , and furthermore that f is
p-ordinary—by which we mean that the eigenvalue of f at T (p2) is a unit at p.

The Hecke operators T (p2) in [18] lack the normalising factor of (p2)
k
2−1 that ours

possess. As a result, if f |[T (p2)]κ = ωp f then ωp = pk−2λ(p) where λ(p) are
the eigenvalues in the sense of [18]. By definition of the λp in (5.4a) of [18] we
have

ωp = pk−2λ(p) = pk−1λp + pk−1λ−1
p

and so as ωp is a unit at p we may assume that αp := pk−1λp is a unit at p. Put
βp := pk−1λ−1

p , then ωp, αp, and βp satisfy

1 − ωp X + p2k−2X2 = (1 − αp X)(1 − βp X).

Let N1 := Np2 and let [T (p; N1)]κ denote the (now non-zero) pth Hecke operator
of level N1, which just shifts the coefficients of a form along.When acting on forms
of level N1 the operator [T (p; N1)]κ = [T (p)]κ is just the usual pthHeckeoperator,
but the notation is used to emphasise the fact that this is the operator that shifts
coefficients even on forms of level N – for example f – and is not equal to [T (p)]κ
in that latter case. We have [T (p2; N1)]κ = [T (p; N1)]2κ , and upon viewing f as
a form of level N1 Proposition 2.3 gives that f |[T (p; N1)]κ = ∑

n≥1 anpq
n . If η

is any Dirichlet character of modulus M then we define the twist of f by η to be

fη(z) :=
∞∑
n=1

η(n)anq
n
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which, by easy generalisation of Proposition 17 (b) in [9, pp. 127–128] to half-

integral forms, is in Sk(NM2, η2). Set χp(n) =
(
n
p

)
which has modulus p and

satisfies χ2
p = 1.

Let f1(z) := f (z) −
(−1

p

)�k�
p−�k�βp fχp (z) − βp f (p2z) ∈ Sk(N1), and we

work mostly with f1 whose primary benefit over f is that p now divides the level.

Lemma 3.1. The form f1 is an eigenform for all the Hecke operators of level N1.
Should p � m then f1 and f share the same eigenvalues for T (m), whereas

f1|[T (p; N1)]κ = αp f.

Proof. To prove this we note that

(a) fχp |[T (p; N1)]κ = 0;
(b) f (p2z)|[T (p; N1)]2κ = f ;

(c) f |[T (p; N1)]2κ = ωp f −
(−1

p

)�k�
p�k�−1 fχp − p2k−2 f (p2z).

It is easy to see (a)–(b) by virtue of Proposition 2.3. To prove (c) we make use of
Corollary 1.8 in [15] points (i) and (ii), which gives for p2 � t

(i) ωpat = atp2 +
(−1

p

)�k�
p�k�−1

(
t
p

)
at ;

(ii) atp2m+2 = ωpatp2m − p2k−2atp2m−2 .

If p2 | n thenwrite n = p2mt for p2 � t and (ii) then gives anp2 = ωpan−p2k−2a n
p2
.

We get

ωp f − p2k−2 f (p2z) =
∑
p2�n

anp2q
n +

(−1

p

)�k�
p�k�−1

∑
p2�n

(
n

p

)
anq

n

+
∑
p2|n

[
ωpan − p2k−2a n

p2

]
qn

= f |[T (p; N1)]2κ +
(−1

p

)�k�
p�k�−1 fχp

noting that
(
n
p

)
= 0 if p2 | n anyway. Now that we have proven (a)–(c) then the

lemma follows since

f1|[T (p; N1)]2κ = ωp f −
(−1

p

)�k�
p�k�−1 fχp − p2k−2 f (p2z) − βp f

= αp f1

using ωp = αp + βp and p2k−2 = αpβp.
Let q �= p, then to see that the eigenvalue ωq,1 of f1 is equal to ωq of f , we

need the fact that f (�z)|[T (q2)]κ = ( f |[T (q2)]κ)(�z) for any (�, q) = 1. This can
be seen easily by considering the coset decomposition, found in [15, p. 451], of
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	1(N1)
(
1 0
0 q2

)∗
	1(N1). So f (p2z) and f share the same eigenvalue for [T (q2)]κ .

To show that fχp also has the same eigenvalue as f we make use of Theorem 1.7
from [15] to show that fχp |[T (q2)]κ = ( f |[T (q2)]κ)χp . Let bn be the Fourier
coefficients of f |[T (q2)]κ , then these are given as

bn = anq2 +
(−1

q

)�k�
q�k�−1

(
n

q

)
an + q2k−2a n

q2

where we understand a n
q2

= 0 if q2 � n. Using this same construction for fχp we

get the nth coefficient of fχp |[T (q2)]κ to be

(
nq2

p

)
anq2 +

(−1

q

)�k�
q�k�−1

(
n

p

)(
n

q

)
an + q2k−2

(
n/q2

p

)
a n

q2

where we understand
(
n/q2

p

)
= 0 if q2 � n. Since

(
nq2

p

)
=
(
n/q2

p

)
=
(
n
p

)
we

see that the nth Fourier coefficient of fχp |[T (q2)]κ is
(
n
p

)
bn , which is the nth

Fourier coefficient of ( f |[T (q2)]κ)χp . Thus fχp and f share the same eigenvalue
for [T (q2)]κ . ��

Using the definitions of the L-function and f1 we get the following relations:

Lemma 3.2. L(s, f1) = (1 − pλ−1
p p−s)L(s, f ) and L(s, f1, χ) = L(s, f, χ).

Proof. To seewhy this is truewe really need to see how the numbersλp are obtained
in [18, p. 46]. For any prime q the number λq satisfies

∞∑
m=0

λ(qm)tm =
{

(1 − qλq t)−1 if q | N
1−qt2

(1−qλq t)(1−qλ−1
q t)

if q � N (3.2)

where we recall that ωq = qk−2λ(q), and let ωq,1, λ1(q), λq,1 denote the corre-
sponding numbers for f1. Then our job is to compare λq with λq,1. Suppose that
q �= p, then f |[T (q2m)]κ = f1|[T (q2m)]κ by Lemma 3.1 and so λq = λq,1 in this
case.

Assume now that q = p and for ease of notation label δp := pλp and γp :=
pλ−1

p . We claim that

λ(pm) = δmp + γpλ(pm−1) − pδm−2
p (3.3)

and we use induction to see why this is true. First multiply both sides of (3.2) by
the denominator and compare coefficients of tm for m ≥ 2 to get

λ(pm) = λ(p)λ(pm−1) − p2λ(pm−2).

Using λ(p) = δp + γp, p2 = δpγp, and the induction hypthesis, this gives

λ(pm) = δp

[
δm−1
p + γpλ(pm−2) − pδm−3

p

]
+ γpλ(pm−1) − p2λ(pm−2)

= δmp + γpλ(pm−1) − pδm−2
p
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as desired, and the base case m = 2 is easily read off from (3.2).
Theoperator [T (p2m)]κ acts as [T (p)]2mκ on f1, so thatωpm ,1 = (pk−2)mλ1(pm)

and unwrapping all the notation we have

ωpm ,1 = αm
p = (pk−1)mλmp = (pk−2)mδmp

and so λ1(pm) = δmp . So we wish to find the numbers λp,1 that satisfy∑
m≥0

δmp t
m = (1 − pλp,1t)

−1.

From the now established identity of (3.3) above, we have

∞∑
m=0

δmp t
m − p

∞∑
m=2

δm−2
p tm =

∞∑
m=0

λ(pm)tm − pλ−1
p

∞∑
m=1

λ(pm−1)tm

(1 − pt2)
∞∑

m=0

δmp t
m = (1 − pλ−1

p t)
∞∑

m=0

λ(pm)tm

= (1 − pt2)(1 − pλpt)
−1

using (3.2) in the last line. Hence λp,1 = λp. In the Euler factors this becomes

L p( f1, s) = (1 − pλp p
−s)−1 = (1 − pλ−1

p p−s)L p( f, s)

whence the lemma. ��
Notice that the t th coefficient of f1 is given by at−(−1

p )�k�( t
p )p−�k�βpat . Since

αp is a p-adic unit and αp = β−1
p p2k−2, we cannot have β−1

p = (−1
p )�k�( t

p )p−�k�.
So the t th coefficient of f1 is also non-zero, and we normalise f1 by this value.

Proposition 3.3. Assume χ has conductor cχ = pmχ for 1 ≤ mχ ∈ Z and let
ν ∈ {0, 1} satisfy χ(−1) = (−1)�k�+ν . Then

2
�
( s+k−2

2

)
(4tπ)

s+k−2
2 gχ

t (s)
L(s, f1, χ) =

∫
B(Nχ )

f1(z)θ
(ν)
χ (t z)Eν(z, χρt , s, Nχ )dμ. (3.4)

Proof. Just re-use [[19], (4.1)] as we did before, noting that the only thing changing
by replacing f with f1 is the level by a factor of p, and since p | cχ this has no real
bearing on (4.1) in [19] as for example, Nχ = lcm(N , 4c2χ ) = lcm(N1, 4c2χ ). ��

4. The trace map

Letting

βN : =
(
0 −1
N 0

)

W (N ) : = (βN , N
1
4 (−i z)

1
2 )

then we state the following from [15, p. 448]:
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Proposition 4.1. If 4 | N, then the operator [W (N )]2κ is the identity on
Mk(	1(N )). Moreover [W (N )]κ sends Mk(N , ψ) and Sk(N , ψ), respectively,
toMk(N , ψ∗) and Sk(N , ψ∗), where ψ∗(d) = ψ̄(d)

( N
d

)
.

For any two integers M1 | M2 the general trace map sends forms of level M2
to forms of level M1; denote the trace map Sχ :Mk(	1(Nχ )) → Mk(	1(N1)).

Our aim in this section is twofold. As p | Nχ , the pth Hecke operator [T (p)]κ
of level Nχ is non-zero on Mk(	1(Nχ )). We first wish to express Sχ in terms of
T (p), and secondly to find the adjoint of T (p) of level N1. This allows us to reduce
the inner product in (3.4) to be over N1 instead of Nχ .

Proposition 4.2. Let κ be an odd integer. The trace map and [T (p2)]κ are relatable
as follows:

[SχW (N1)]κ = (pmχ−1)2−k
[
W (Nχ )T (p2)mχ−1

]
κ
.

Proof. Let g ∈ Mk(Nχ ), then by definition we have

g|[Sχ ]κ =
∑

e∈Z/p2mχ −2
Z

g

∣∣∣∣
[(

1 0
N1e 1

)]
κ

.

Since g|[ξη]κ = (g|[ξ ]κ)|[η]κ , to prove the proposition we can now work with
multiplication in G. We claim that in G we have

(
1 0

N1e 1

)∗
W (N1) = W (Nχ )

((
p2−2mχ −ep2−2mχ

0 1

)
, p

mχ −1
2

)
. (4.1)

Multiplication of the matrices is easy, using N1 = Nχ p2−2mχ . So to prove (4.1)
we only need show multiplication on the part of the functions. Using the rule (2.1)
on the left-hand side of (4.1), as well as Eq. (2.2), nets us

j

((
1 0

N1e 1

)
,− 1

N1z

)
N

1
4
1 (−i z)

1
2 = N

1
4
1 (−i(z − e))

1
2 ,

and on the right-hand side of (4.1) the functions multiply to give precisely the same

N
1
4
χ

(
−i p2−2mχ (z − e)

) 1
2
p

mχ −1
2 = N

1
4
1 (−i(z − e))

1
2 .

So the claim is true and using it, and the fact that [(p2−2mχ I2, 1)]κ is the identity
operator, we have

g|[SχW (N1)]κ =
∑

e∈Z/p2mχ −2
Z

(g|[W (Nχ )]κ)

∣∣∣∣
[((

1 −e
0 p2mχ−2

)
, p

mχ −1
2

)]
κ

.

By routine calculation on the Fourier expansion it is easy to see that the operator

p
κ
4 −1∑

e∈Z/pZ
[(
(
1 −e
0 p

)
, p

1
4 )]κ shifts the Fourier coefficients along by p, and is

therefore, by Proposition 2.3, the pth Hecke operator. Extending this argument to
powers of p yields the result. ��
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This concludes the first of our aims, andwe now calculate the adjoint of [T (p)]κ
of level N1.

Lemma 4.3. The set up for this lemma is a whole bunch of data. Firstly we let � ≤
SL2(Z) is a congruence subgroup and 	 = �∗. The crucial data are two elements
ξ = (α, ϕ), and ξ0 = (α0, ϕ0) ∈ G whose functions satisfy the definition ofG with
respective unit circular elements t and t0, and whose matrices are α = (

a b
c d

)
and

α0 := det(α)α−1.

(a) If α−1�α ⊆ SL2(Z) then for all f ∈ Sk(	) and g ∈ Mk(α
−1�α) we have

〈 f |[ξ ]κ , g〉α−1�α = t t0
κ
2 〈 f, g|[ξ ]κ〉�.

(b) Suppose that 	ξ(0)	 = ⊔
� 	ξ(0)� where ξ(0)� = (α(0)�, ϕ(0)�) with ϕ(0)�

satisfying the definition of G with unit circular elements t(0)�, then t� = t and
t0� = t0 for all �. For any f ∈ Sk(	) and g ∈ Mk(	) we have

〈 f |[	ξ	]κ , g〉 = t t0
κ
2 〈 f, g|[	ξ0	]κ 〉.

Proof. (a) Expanding out the action in the product on the left-hand side gives∫
B(α−1�α)

ϕ(z)−κ f (αz)g(z)y
κ
2 dμ(z)

=
∫
B(�)

ϕ(α0z)
−κ f (z)g(α0z) Im(α0z)

κ
2 dμ(z)

making the change of variables z 	→ α0z, noting that f (αα0z) = f (z), and that
B(α−1�α) maps to B(�).

Notice that ϕ0(z)
2 = t−1

0 |α|− 1
2 (a − cz̄) = (t−1

0 ϕ0(z̄))
2 and we get

Im(α0z) = |α| 12 |α| 12
(a − cz)(a − cz̄)

y = ϕ0(z)
−2 t20

ϕ0(z̄)2
y = ϕ0(z)

−2ϕ0(z)
−2

y.

Plugging this back into the integral one has∫
B(�)

(ϕ(α0z) ϕ0(z))
−κ f (z)g|[ξ0]κ(z)y

κ
2 dμ(z)

and to finish we claim that ϕ(a0z) ϕ0(z) = (t t0)
1
2 . To do so denote the regular

factor of automorphy j�(α, z) = (cz + d), j�(α0, z) = (a − cz), then

(ϕ(α0z) ϕ0(z))
2 = t t0|α|−1 j�(α, α0z) j

�(α, z) = t t0|α|−1 j�(αα0, z)

by the well-known cocyle relation. Then as j�(αα0, z) = j�(|α|I2, z) = |α| we
are done.

(b) As we are just taking 	 = �∗ the projection P is a bijection between 	ξ	

and �α�, and so we have �α� = ⊔
� �α�. Let � be arbitrary, then for any γ3 ∈ �

there exist γ1, γ2 ∈ � such that

γ1αγ2 = γ3α� γ ∗
1 ξγ ∗

2 = γ ∗
3 ξ�
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and from the first we have |α�| = |α|. By the law of multiplication inG the second
gives j (γ1, ξγ2z) ϕ(γ2z) j (γ2, z) = j (γ3, ξ�z) ϕ(z). Squaring both sides and using
the known cocycle relation on j� gives

t |α|− 1
2 j�(γ1ξγ2, z) = t�|α�|− 1

2 j�(γ3ξ�, z)

and that t� = t follows because both |α| = |α�| and γ1ξγ2 = γ3ξ�.
Now that we know t = t� and t0 = t0� for all � the result follows using part (a)

on the decompositions of both 	ξ	 and 	ξ0	. ��

Proposition 4.4. The adjoint of [T (p; N1)]κ = [	1(N1)ξ	1(N1)]κ with

ξ = (
( 1 0
0 p

)
, p

1
4 ) is

[W (N1)T (p; N1)W (N1)]κ .

Proof. Firstwe claim thatW (N1) normalises	1(N1). On the part ofmatrices this is
thewell-known and easymatrixmultiplication β−1

N1
γβN1 ∈ �1(N1), if γ ∈ �1(N1).

It is shown in the proof of Proposition 1.4 in [15] that if γ = (
a b
c d

) ∈ �0(N1) then

W (N1)
−1γ ∗W (N1) = (β−1

N1
γβN1)

∗
(
1,

(
N1

d

))
.

But note that
(
N1
d

)
= 1 if γ ∈ �1(N1) so that 	1(N1) = �1(N1)

∗ gives the claim.

Of particular use will be

W (N1)	1(N1) = 	1(N1)W (N1) (4.2)

	1(N1)W (N1)
−1 = W (N1)

−1	1(N1). (4.3)

To finish we use Lemma 4.3. In the notation of that Lemma we have α0 = ( p 0
0 1

)
and ϕ0(z)

2 = p− 1
2 , where we chose t0 = 1. By (b) in Lemma 4.3 the adjoint is then

[	1(N1)ξ0	1(N1)]κ where ξ0 = (α0, ϕ0). We claim that ξ0 = W (N1)
−1ξW (N1),

and the matrix multiplication is easy. To show that the functions match up we

show W (N1)ξ0 = ξW (N0), and the law of G-multiplication gives p
1
4 N1(−i z)

1
2

immediately from the right-hand side, whereas the left-hand side gives

N
1
4
1 (−i(pz))

1
2 p− 1

4 = N
1
4
1 (−i z)

1
2 p

1
4

and so they do indeed match up.
So now the adjoint is [	1(N1)W (N1)

−1ξW (N1)	1(N1)]κ andwe just use (4.2)
and (4.3) to finish, noting that [W (N1)

−1]κ = [W (N1)]κ . ��
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5. Fourier expansion of Eisenstein series

This section involves material all of which has long been well-known, however
we include it here anyway for two reasons. The first is for further clarity in the
calculation of Fourier coefficients in the next section, but secondly that it gives
a nice motivation, outside of algebraicity, for the choice of special values to be
interpolated. We calculate the explicit Fourier expansion of the non-holomorphic
Fricke-involuted Eisenstein series of an integral weight � ∈ Z, level 1 ≤ M ∈ Z,
and character χ−1. For the variables z ∈ H and s ∈ C the Eisenstein series is
defined as in Sect. 2. We can choose a set of representatives for (P ∩ �)\� as
follows

E(z, s; �) = E(z, s; �, χ, M) = y
s
2

∑
(cM,d)=1
d∈N,c∈Z

χ(d)(cMz + d)−�|cMz + d|−s .

Then

E (z, s; �) := L(s + �, χ)E(z, s; �)

= y
s
2

∑
(cM,d)∈Z

2

d>0

χ(d)(cMz + d)−�|cMz + d|−s

and here we seek the Fourier expansion of

E ∗(z, s) := E (z, s; �)|[W (M)]2� = (−i z
√
M)−�E

(
− 1

Mz
, s; �

)

for certain values of s that we specify later. We replicate the calculation found
in [16], which there is done for half-integral weight Eisenstein series. Using that
Im(− 1

Mz ) = y
s
2 M− s

2 |z|−s we get

E

(
− 1

Mz
, s; �

)
= y

s
2 M− s

2
∑

(c,d)∈Z
2

d>0

χ(d)

(
−c

z
+ d

)−�

|−c + dz|−s .

Throwing the z−� from the action of W (M) into the sum we get

i−�M
s+�
2 y− s

2 E ∗(z, s) =
∑

(b,d)∈Z
2

d>0

χ(d)(b + dz)−�|b + dz|−s =: E ′(z, s)

so it just remains to figure out the Fourier expansion ofE ′(z, s).Writing b = d j+m
where j ∈ Z and 1 ≤ m ≤ d, this then takes the form

E ′(z, s) =
∞∑
d=1

χ(d)d−�−s
d∑

m=1

∞∑
j=−∞

(
z + m

d
+ j

)−�− s
2
(
z̄ + m

d
+ j

)− s
2

which is amenable to the following lemma:
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Lemma 5.1. [16, p. 84] If α, β ∈ C with Re(α),Re(β) > 0 and Re(α + β) > 1
then for w = x + iy ∈ H we have

∞∑
j=−∞

(w + j)−α(z̄ + j)−β =
∞∑

n=−∞
τn(y, α, β)e2π inx

where

iα−β(2π)−α−β�(α)�(β)τn(y, α, β)

=
⎧⎨
⎩
nα+β−1e−2πnyσ(4πny, α, β) if n > 0;
|n|α+β−1e−2π |n|yσ(4π |n|y, β, α) if n < 0;
�(α + β − 1)(4πy)1−α−β if n = 0;

and if Re(β) > 0 we have

σ(y, α, β) := y−β

∫ ∞

0
(1 + y−1t)α−1tβ−1e−t dt

which we can continue analytically to the whole β-plane as in [16].

Define a divisor sum function by σ ′
�,χ (n) = ∑

d|n χ(n/d)d�. Applying the
above lemma with α = � + s

2 , β = s
2 , w = z + m

d = x + m
d + iy, we obtain

E ′(z, s) =
∞∑

n=−∞
α(n, s)τn(y, � + s

2 ,
s
2 )e

2π inx

where, if n �= 0 we have

α(n, s) :=
∞∑
d=1

χ(d)d−�−s
d∑

m=1

e2π in
m
d =

∑
0<d|n

χ(d)d1−�−s

= |n|1−s−�σ ′
s+�−1,χ (|n|)

and if n = 0 this is just α(0, s) = L(� + s − 1, χ). So now the Fourier expansion
of E ′(z, s) is

L(� + s − 1, χ)τ0(y, � + s
2 ,

s
2 )

+
∞∑

n=−∞
n �=0

|n|1−s−�σ ′
s+�−1,χ (|n|)τn(y, � + s

2 ,
s
2 )e

2π inx .

Explicit expressions of the τn for certain values of s are now deduced. Suppose
that s = m where m is a negative even integer, and s > −� + 1. We claim that in
this situation we have τn(y, � + s

2 ,
s
2 ) = 0 if n ≤ 0 and is non-zero for n > 0.

The easiest of these is if n = 0 in which case

τ0(y, � + s
2 ,

s
2 ) = i−�(2π)s+�

�(� + s
2 )�( s2 )

�(� + s − 1)(4πy)1−s−�
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and since s
2 is a negative integer, there is a pole at �( s2 ) which won’t be cancelled

in the numerator as s > −� + 1. So τ0(y, � + s
2 ,

s
2 ) = 0.

Suppose that n < 0, then

τn(y, � + s
2 ,

s
2 ) = i−�(2π)�+s |n|�+s−1

�(� + s
2 )�( s2 )

e−2π |n|yσ(4π |n|y, s
2 , � + s

2 ).

Now � + s
2 > 0 is a positive integer, so that σ is here defined by the integral

in Lemma 5.1 and is finite. The pole in the denominator at �( s2 ) is then still not
cancelled out and we again obtain τn(y, � + s

2 ,
s
2 ) = 0.

The difficulty is in showing that τn is non-zero for n > 0, and then actually
finding its explicit expression. We have

τn(y, � + s
2 ,

s
2 ) = i−�(2π)�+sn�+s−1

�(� + s
2 )

e−2πny�( s2 )
−1σ(4πny, � + s

2 ,
s
2 )

and since s
2 < 0 we need to make use of the analytic continuation of σ to proceed,

which essentially cancels out the pole in this case. This analytic continuation is
given in [16, p. 83] as

�(β)−1σ(y, α, β) = e−π iβ

2π i
�(1 − β)y−β

∫ (0+)

∞
(1 + y−1t)α−1tβ−1e−t dt

where we are integrating over the key-hole contour going to +∞ on the real axis
and positively oriented about the origin. More specifically, recalling that s

2 is a
negative integer and using the binomial theorem we have

�( s2 )
−1σ(4πny, � + s

2 ,
s
2 )

= (−1)
s
2

2π i
�(1 − s

2 )(4πny)
− s

2

�+ s
2−1∑

j=1

(
� + s

2 − 1

j

)

× (4πny)− j
∫ (0+)

∞
t
s
2+ j−1e−t dt.

The Gamma function has a well-known meromorphic continuation, which is given
by (e2π is − 1)�(s) = ∫ (0+)

∞ t s−1e−t dt , and which gives

�( s2 )
−1σ(4πny, � + s

2 ,
s
2 )

= (−1)
s
2 �(1 − s

2 )

2π i

�+ s
2−1∑

j=1

(
� + s

2 − 1

j

)
(4πny)− j− s

2 (e2π i(
s
2+ j) − 1)�( s2 + j).

If s
2 + j > 0 we have (e2π i(

s
2+ j) − 1)�( s2 + j) = 0, whereas if s

2 + j ≤ 0 we get

(e2π i(
s
2+ j) − 1)�( s2 + j) = (−1)− s

2− j (2π i)

(− s
2 − j)! .
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By the choice of s we have − s
2 < � + s

2 − 1, which gives

�( s2 )
−1σ(4πny, � + s

2 ,
s
2 )

= �(1 − s
2 )

− s
2∑

j=0

(
� + s

2 − 1

j

)
(4πny)− j− s

2
(−1) j

�(1 − s
2 − j)

.

Now we obtain the the following Fourier expansion for E ′(z, s):

(2π)�+s�(1 − s
2 )

i��(� + s
2 )

∞∑
n=1

⎡
⎣

− s
2∑

j=0

(
� + s

2 − 1

j

)
(−1) j

�(1 − s
2 − j)

(4πny)− j− s
2

⎤
⎦

σ ′
s+�−1,χ (n)qn .

Recalling that E ∗(z, s) = i�M− s+�
2 y

s
2 E ′(z, s) then we obtain our final Fourier

development of this, whenever 0 ≥ s > −� + 1 is an even integer, to be

(2π)�+ s
2 �(1 − s

2 )

2
s
2 M

s+�
2 �(� + s

2 )

∞∑
n=1

⎡
⎣

− s
2∑

j=0

(
� + s

2 − 1

j

)
(−1) j n− j− s

2

�(1 − s
2 − j)

(4πy)− j

⎤
⎦

σ ′
s+�−1,χ (n)qn .

A function f : H → C is said to be nearly holomorphic of weight k = κ
2 for

even or odd κ , and of level �, if it satisfies f |[ξ ]κ = f for all ξ ∈ � and if it has a
Fourier expansion of the form

f =
r∑
j=0

(πy)− j
∞∑
n=0

anq
n

where r ∈ Z. Denote this space byNk(�) andwe can analogously define the spaces
Nk(N , ψ) if 4 | N ∈ Z and ψ is a character modulo N .

By our calculation above we have E ∗(z, s) ∈ N�(M, χ−1) for any even 0 ≥
s > −� + 1.

We define the Shimura–Maass differential operators for any λ ∈ R and for any
0 ≤ a ∈ Z as in [17, p. 812] to be

δ(λ) : = 1

2π i

(
λ

2iy
+ ∂

∂z

)

δak : =
a∏
j=1

δ(k + 2 j − 2)

where the product is with respect to composition, andwe then have δakNk ⊆ Nk+2a .
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Lemma 5.2. [17, p. 813] Any g ∈ Nk can be written uniquely as

g = g0 +
r∑

ν=1

δ
μ
k−2μgμ

where gμ ∈ Mk−2μ for some r ≤ k
2 , and g0 is known as the holomorphic projection

of g. Moreover, if g ∈ Nk(M, ψ) for an integer 4 | M, then 〈 f, g〉 = 〈 f, g0〉 for
any f ∈ Sk(M, ψ).

6. Interpolation

We are now in a position to construct our p-adic L-function, and this is achieved
by constructing a p-adic measure. Here we are actually constructing two families
of measures, one for each ν ∈ {0, 1}.
Theorem 6.1. Let 1 ≤ N ∈ Z be divisible by 4, ν ∈ {0, 1}, and for any Dirichlet
character χ set

δ
(ν)
k (χ) =

{
1 ifχ(−1)(−1)�k� = (−1)ν

0 otherwise.

Let m ∈ 1
2Z\Z be any half-integer satisfying 0 ≥ m − k > −k + 3

2 and that
m − k + ν ∈ 2Z. If p � N and f ∈ Mk(N ) is a p-ordinary normalised eigenform,
there exist unique measures μ

(ν)
f,m on Z

×
p such that if χ is a Dirichlet character

whose conductor is cχ = pmχ for 1 ≤ mχ ∈ Z, then

∫
Z

×
p

χdμ
(ν)
f,m =δν

k (χ)D(ν) p2k−2m−1 pmχ (k+m−3)α
−mχ
p

G(χ̄)L(m − ν, f, χ)

gχ
t (m)π

m+k−ν−2
2 〈 f, f 〉N

;

for the trivial character it gives
∫

Z
×
p

dμ
(ν)
f,m = δ

(ν)
k (1)D(ν) p3−2m(1 − βp p

m+ν−k−1)(1 − βp p
2−k−m+ν)

L(m − ν, f )

g0t (m)π
m+k−ν−2

2 〈 f, f 〉N
where g0t = gidt , and the constant D(ν) = D(ν)(k,m, N ) will be given later.

To prove the above we first take our integral expression from Sect. 3 and manip-
ulate the inner product using the results of Sect. 4, reducing it from level Nχ to N1.
Removing the dependence of the inner product on χ allows us to bring sums over
Dirichlet characters inside the inner product, in particular to the second argument.
The main theorem is then proved by giving the precise Fourier development of
this sum given in Sect. 5, noting it is p-integral and rational, and then using finite
dimensionality of such forms to deduce boundedness of the measure.
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Proposition 6.2. Let χ have conductor cχ = pmχ where 1 ≤ mχ ∈ Z. If mχ ≤
r ∈ Z, then we have

L(s, f1, χ) = 1

2
(4tπ)

s+k−2
2 �

( s+k−2
2

)−1
gχ
t (s)α

mχ−r
p

〈 f1|[W (N1)]κ , H (ν)
χ |[T (p)]2r−2

κ 〉N1

where

H (ν)
χ (z, s) = H (ν)

χ (z) := (pmχ−1)2−k(θ(ν)
χ (t z)Eν(z, χρt , s, Nχ ))|[W (Nχ )]κ .

Proof. By the integral expression (3.4) it is enough to show that

〈 f1, θ(ν)
χ Eν(z, χ, s, Nχ )〉Nχ = α

mχ−r
p 〈 f1|[W (N1)]κ , H (ν)

χ |[T (p)]2r−2
κ 〉N1 .

Using Proposition 4.2 we obtain

〈 f1, θ(ν)
χ Eν(z, χ, s, Nχ )〉Nχ = 〈 f1, θ(ν)

χ Eν(z, χ, s, Nχ )|[Sχ ]κ 〉N1

= 〈 f1|[W (N1)]κ , H (ν)
χ |[T (p)]2mχ−2

κ 〉N1 .

Then writing f1|[T (p)]2(r−mχ )
κ = α

r−mχ
p f1 and using that [W (N0)]2κ = 1 in the

above one has

α
mχ−r
p 〈 f1|[W (N1)T (p)W (N1)]2(r−mχ )

κ [W (N1)]κ , H (ν)
χ |[T (p)]2mχ−2

κ 〉N1

and then Proposition 4.4 gives the result. ��
The next task is to repeat the above for the trivial character, but recall the integral

expression in (3.4) was confined to the non-trivial characters. It’s pretty much the
same in the case of the trivial character χ0, but particular emphasis will be placed
here in noting that the character in the Eisenstein series is the (naturally) lifted
character modulo N1, so call it χ�

0 . This is 1 everywhere except when (n, N1) �= 1
where it’s zero. Then from [19] the integral expression we get is

2
�
( s+k−2

2

)
(4tπ)

s+k−2
2 g0t (s)

L(s, f1, χ0) =
∫

B(N1)

f1(z)θ
(ν)
χ0 (t z)Eν(z, χ�

0ρt , s, N1)dμ (6.1)

where, as usual, ν ∈ {0, 1} is such that 1 = χ0(−1) = (−1)�k�+ν , and where

g0t (s) = ζt (s)ζ(s)−1 =
∏
q|t

(1 − p−s).

Proposition 6.3. For any 1 ≤ r ∈ Z we have

p3−2s(1 − βp p
s+ν−k−1)L(s, f1, χ0)

= 1

2
(4tπ)

s+k−2
2 �

( s+k−2
2

)−1
g0t (s)α

−r
p

× 〈 f1|[W (N1)]κ , h(ν)|[p3−2sT (p)2r − pk−s+νT (p)2r−2]κ 〉N1

where

h(ν)(z) := θ(ν)
χ0

(t z)Eν(z, χ
�
0ρt , s, N1)|[W (N1)]κ .
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Proof. Note that p3−2s(1 − βp ps+ν−k−1) = p3−2s − pk−s+ν

αp
via αpβp = p2k−2.

Using the expression (6.1) then it is proven in precisely the same manner as Propo-
sition 6.2, the minor differences occuring since there is no need to reduce the level
of the product down, it has level N1 in the first place. ��

Now let m be any value as specified in Theorem 6.1. Note that m + k ≡ ν

(mod 2) so that �(m+k−2
2 ) ∈ π

ν
2 Z, and so for some ζ ∈ Q the expression in

Propositions 6.2 and 6.3 respectively become

L(m, f1, χ) = t
ν
2 π

m+k−ν−2
2 ζgχ

t (m)α
mχ−r
p

× 〈 f1|[W (N1)]κ , H (ν)
χ |[T (p)]2r−2

κ 〉N1

(6.2)

L(m, f1, χ0) = p2m−3(1 − βp p
m+ν−k−1)−1t

ν
2 π

m+k−ν−2
2 ζg0t (m)α−r

p

× 〈 f1|[W (N1)]κ , h(ν)|[p3−2mT (p)2r − pk−m+νT (p)2r−2]κ 〉N1 .

(6.3)

For any 1 ≤ r ∈ Z let 	r denote the set of non-trivial Dirichlet characters
whose conductors divide pr , 	

(ν)
r := {χ ∈ 	r | χ(−1) = (−1)�k�+ν}, and

Cr := 	r ∪ {χ0}. By definition of dμ
(ν)
f note that for any integer e prime to p we

have
∑
χ∈Cr

χ(e−1)

∫
Z

×
p

χdμ
(ν)
f,m =

∫
Z

×
p

∑
χ∈Cr

χ(e−1x)dμ
(ν)
f,m(x)

and then by orthogonality relations on characters the integrand is 0 unless we have
x ∈ e + prZp at which point it is ϕ(pr ). So we ultimately get

∑
χ∈Cr

χ(e−1)

∫
Z

×
p

χdμ
(ν)
f,m = ϕ(pr )μ(ν)

f,m(e + prZp)

and, by using (6.2) and (6.3) above, the expression

μ
(ν)
f,m(e + prZp) = t

ν
2 ζα−r

p
〈 f1|[W (N1)]κ ,R

(ν)
r 〉N1

〈 f, f 〉N ,

where we define

R(ν)
r = R(ν)

r (z,m) = R(ν)
r |[T (p)]2r−2

κ + D(ν)h
(ν)
0 |[p3−2mT (p)2r − T (p)2r−2]κ

if (−1)�k�+ν = 1, else we define it to be R(ν)
r |[T (p)]2r−2

κ , and where

R(ν)
r : = D(ν) p2k−2m−1

ϕ(pr )

∑
χ∈	

(ν)
r

χ̄(e)G(χ̄)pmχ (k+m−3)(H (ν)
χ )0. (6.4)

We have denoted by (H (ν)
χ )0 and h

(ν)
0 the respective holomorphic projections.

To finish the proof of Theorem 6.1 we must show that the above has bounded
p-adic norm as e ranges over (Z/prZ)× and as r → ∞. This becomes possible
through the particular Fourier development of R(ν)

r .
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For some character η we modify the divisor sum function σ ′ at p to give the
p-modified power divisor sum

pσ ′
�,η(n) =

∑
p�d|n

η(nd−1)d�.

In Chapter 7 of [7] this is p-adically interpolated, a fact that will essentially yield
our interpolation.

Lemma 6.4. For any integer �, any Dirichlet character η, and positive integer n
we have

σ ′
�,η(p

2n) − p2�σ ′
�,η(n) = η(p)(η(p) + p�)

[
pσ ′

�,η(n)
]
.

In particular, if the modulus of η is divisible by p then σ ′
�,η(p

2n) = p2�σ ′
�,η(n).

Proof. By definition σ ′
�,η(pn)− p�σ ′

�,η(n) = pσ ′
�,η(pn) = η(p) pσ ′

�,η(n). We get

σ ′
�,η(p

2n) − p2�σ ′
�,η(n) =

∑
d|p2n

η(p2n/d)d� −
∑
d|n

η(n/d)(p2d)�

=
∑
d|p2n

η(p2n/d)d� −
∑
p2|d|n

η(p2n/d)d�

= pσ ′
�,η(p

2n) +
∑
d|p2n

ordp(d)=1

η(p2n/d)d�

= pσ ′
�,η(p

2n) + p�σ ′
�,η(pn) − p2�σ ′

�,η(n)

= η(p)(η(p) + p�) pσ ′
�,η(n)

using that pσ ′
�,η(p

2n) = η(p)2 pσ ′
�,η(n) in the end. ��

Remark 6.5. In fact, the identity σ ′
�,η(p

2n) = p2�σ ′
�,η(n) for η of modulus divisible

by p is pretty immediate via the definitions, and the above lemma is not strictly
necessary for this conclusion.

Theorem 6.6. If a(ν)
n (r) are the Fourier coefficients of R(ν)

r then for all n ≥ 1 we
have that a(ν)

n (r) ∈ Zp ∩ Q.

Before going on to prove this theorem with a series of lemmas, first note that
by the previous section we have H (ν)

χ is nearly holomorphic and so can be written
in the form

H (ν)
χ =

r∑
j=0

(4πy)− j
∞∑
n=0

c(ν)
n, j (χ)qn

for some r .
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Lemma 6.7. There exists a constant 0 < � ∈ Z and linear forms Fn(X0, . . . , Xr ),
which belong to Z[X0, . . . , Xr ] and are dependent only on � and n, such that

�(H (ν)
χ )0 =

∞∑
n=0

Fn(c
(ν)
n,0(χ), . . . , c(ν)

n,r (χ))qn

and, crucially, Fn(X0, . . . , Xr ) ≡ �X0 (mod n).

Proof. We make use of Lemma 5.2 and the following identity

δak =
a∑
j=0

(
a

j

)
(−4πy)− jγ a

k, j

(
1

2π i

∂

∂z

)a− j

where

γ a
k, j :=

{
(k + a − 1)(k + a − 2) · · · (k + a − j) if j ≥ 1
1 if j = 1.

This identity is easily checked using induction and the binomial theorem, as in the
integralweight case, themajor differenceswith the identity appearing in [13, p. 211]
here occuring since factorials are not even defined for half-integers. Nevertheless
with this identity the rest of the proof in [13] still follows through nicely. ��

We now give the values of c(ν)
n, j (χ) whenever χ is a character of conductor pmχ

and then when it is the trivial character χ0.
In the final Fourier expansion of the previous section, we plug in � = k− ν − 1

2
and s = m − k + ν for our particular values of m.

E ∗
ν (z,m, χρt , Nχ )

= LNχ (m − 1
2 , χ)E(z,m − k + ν; k − ν − 1

2 , χρt , Nχ )|[WNχ ]κ−2ν−1

= (2π)
k−ν+m−1

2 �(1 + k−m+ν
2 )

2
m−k+ν

2 N
2m−1

4
χ �( k−ν+m−1

2 )

×
k−ν−m

2∑
j=0

(4πy)− j
∞∑
n=1

[( k−ν+m−3
2
j

)
(−1) j n

k−ν−m
2 − j

�(1 + k−m+ν
2 − j)

σ ′
m− 3

2 ,χρt
(n)

]
qn .

Note that k−ν+m−i
2 = k − i

2 + m−k+ν
2 ∈ Z for i = 1, 3 since m − k + ν is even,

so that everything is well-defined, and the � values are integers.
As for the theta series, it is known from [15, p. 457] that

θ(ν)
χ

(
− 1

Nχ t z

)
= (−i)ν p−mχ

2 G(χ)

(
−pmχ

i N tz

2

)ν+ 1
2

θ
(ν)
χ̄ (t N ′z)

where N ′ = N
4 . From this we get

θ(ν)
χ (t z)|[W (Nχ )]2ν+1 = (−i)νN

2ν+1
4

χ tν+ 1
2

2ν
√
2

p−mχ (ν+1)G(χ)

∞∑
n=0

2χ̄ (n)nνqtn
2N ′z
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where N ′ = N
4 .

Let Wn := {(n1, n2) ∈ N
2 | tn21N ′ + n2 = n, p � n1}. Then by multiplying the

above expressions together along with the factor of (pmχ−1)2−k occuring in H (ν)
χ

we easily see that we have the following lemma.

Lemma 6.8. Thereare constantsC (ν)
j = C (ν)

j (k,m, N ) ∈ (2tp
√
N )

1
2 π

k−ν+m−1
2 Q

×

for all j ∈ {0, . . . , k−m
2 } such that

c(ν)
n, j (χ) = C (ν)

j pmχ (2−k−m)G(χ)
∑

(n1,n2)∈Wn

2χ̄ (n1)n
ν
1n

k−ν−m
2 − j

2 σ ′
m− 3

2 ,χρt
(n2)q

n .

Explicitly, we have

C (ν)
j =

( k−ν+m−3
2
j

)
(−1) j+ν iν�(1 + k−m+ν

2 )p2−k2k−2ν−1tν+ 1
2 π

k−ν+m−1
2

N
m−ν−1

2 �( k−ν+m−1
2 )�(1 + k−m+ν

2 − j)
.

Now let Vn := {(n1, n2) ∈ (Z≥0)
2 | tn21N ′ p2 + n2 = n, n2 �= 0}, then repeat

the above procedure for the trivial character χ0. For our values of m the relevant
Eisenstein series has expansion

E ∗(z,m, χ�
0ρt , N1)

= (2π)
k−ν+m−1

2 �(1 + k−m+ν
2 )

2
m−k+ν

2 N
2m−1

4 pm− 1
2 �( k−ν+m−1

2 )

×
k−ν−m

2∑
j=0

(4πy)− j
∞∑
n=1

[( k−ν+m−3
2
j

)
(−1) j n

k−ν−m
2 − j

�(1 + k−m+ν
2 − j)

σ ′
m− 3

2 ,χ�
0ρt

(n)

]
qn

and the theta series has expansion

θ(ν)
χ0

(t z)|[W (N1)]2ν+1 = (−i)νN
2ν+1
4

1 tν+ 1
2

2ν
√
2

[
1 +

∞∑
n=1

2nνqt (np)
2N ′

]

so that if

h(ν)(z) =
r∑
j=0

(4πy)− j
∞∑
n=0

c(ν)
n, j (χ0)q

n

then we obtain:

Lemma 6.9. For j ∈ {0, . . . , k−m
2 } then the constants C (ν)

j in Lemma 6.8 also
satisfy

c(ν)
n, j (χ0) = C (ν)

j pk−m−1
∑

(n1,n2)∈Vn
δn1n

ν
1n

k−ν−m
2 − j

2 σm− 3
2 ,χ�

0ρt
(n2)

where δn1 = 1 if n1 = 0 but δn1 = 2 otherwise.
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Lemma 6.10. There’s a global constant C (ν) ∈ (2pt
√
N )

1
2 π

k−ν+m−1
2 Q

× so that
if n, r ∈ N, e ∈ Z with (e, p) = 1 are all arbitrary, and ν ∈ {0, 1} satisfies
(−1)�k�+ν = 1, then we have the congruence

C1 := C (ν)

[
p2k−2m−1

∑
χ∈	

(ν)
r

χ̄ (e)G(χ̄)pmχ (k+m−3)c(ν)

np2r−2,0
(χ)

+ p3−2mc(ν)

np2r ,0
(χ0) − pk−m−νc(ν)

np2r−2,0
(χ0)

]
≡ 0 (mod pr )

and actually we can put C (ν) = (C (ν)
0 )−1.

Furthermore, if (H (ν)
χ )0 = ∑∞

n=0 c
(ν)
n (χ)qn is the Fourier expansion of the

holomorphic projection, r ≥ 2, then putting D(ν) = �C (ν) where � is as in
Lemma 6.7 we have

C2 := D(ν)

[
p2k−2m−1

∑
χ∈	

(ν)
r

χ̄(e)G(χ̄)pmχ (k+m−2)c(ν)

np2r−2(χ)

+ p3−2mc(ν)

np2r
(χ0) − pk−m+νc(ν)

np2r−2(χ0)

]
≡ 0 (mod pr ).

Proof. Using G(χ)G(χ̄) = χ(−1)pmχ and that C (ν) cancels C (ν)
0 then we can

write C1 as

p2k−2m−1
[ ∑

(n1,n2)∈Wnp2r−2

∑
χ∈	r

2χ̄(−en1)n
ν
1n

k−ν−m
2

2 σ ′
m− 3

2 ,χρt
(n2)

+
∑

(n3,n4)∈Vnp2r
δn3n

ν
3(p

−2n4)
k−ν−m

2 p3−2mσ ′
m− 3

2 ,χ�
0ρt

(n4)

−
∑

(n5,n6)∈Vnp2r−2

δn5(pn5)
νn

k−ν−m
2

6 σ ′
m− 3

2 ,χ�
0ρt

(n6)

]
.

We have the following bijections

Wnp2r−2 → {(n3, n4) ∈ Vnp2r | p � n4, n3 �= 0}
(n1, n2) 	→ (n1, p

2n2)
(6.5)

Vnp2r−2 → {(n3, n4) ∈ Vnp2r | p | n4, n3 ≥ 0}
(n5, n6) 	→ (pn5, p

2n6).
(6.6)

In accordance with these two bijections we can split up the Vnp2r appearing in
cnp2r ,0(χ0) and redistribute them. By Lemma 6.4 we have got that p3−2mσm− 3

2 ,χ�
0ρt

′(p2n2) = σ ′
m− 3

2 ,χ�
0ρt

(n2), giving
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p2k−2m−1
[ ∑

(n1,n2)∈Wnp2r−2

∑
χ∈Cr

2χ̄ (−en1)n
k−ν−m

2
2 σ ′

m− 3
2 ,χρt

(n2)

+
∑

(n5,n6)∈Vnp2r−2

δn5(pn5)
νn

k−ν−m
2

6 (p3−2mσ ′
m− 3

2 ,χ�
0ρt

(p2n6) − σ ′
m− 3

2 ,χ�
0ρt

(n6))

]

using also that δpn5 = δn5 . Since p � n2 we can replace the σ ′
m− 3

2 ,χ̄ρt
(n2) in the

first sum by pσ ′
m− 3

2 ,χ̄ρt
(n2). Now the second sum vanishes, again by Lemma 6.4.

So we are left with

2p2k−2m−1
∑

(n1,n2)∈Wnp2r−2

n
k−ν−m

2
2 Mr,m(−en1)

where

Mr,m(x) :=
∑
χ∈Cr

χ̄(x)
[
pσ ′

m− 3
2 ,χρt

(n2)
]

which is ≡ 0 (mod pr ) whenever (x, p) = 1 by the properties of the known
measure interpolating pσ ′

m− 3
2 ,χ̄ρt

(n2), see Chapter 7 of [6]. This proves the first
congruence.

The second congruence follows precisely as in [13] by using Lemma 6.7. More
specifically, we have got �c(ν)

n (χ) = Fn(c
(ν)
n,0(χ), . . . , c(ν)

n, k−m
2

(χ)) and

Fn(c
(ν)
n,0(χ), . . . , c(ν)

n, k−m
2

(χ)) ≡ �c(ν)
n,0(χ) (mod nZ[c(ν)

n,0(χ), . . . , c(ν)

n, k−m
2

(χ)]).

Also note that

(C (ν)
0 )−1C (ν)

j =
( k−ν+m−3

2
j

)
(−1) j�(1 − k−m+ν

2 )

�(1 − k−m+ν
2 − j)

∈ Z

so that replacing c(ν)
n,0(χ) with the c(ν)

n, j (χ) preserves integrality of the first congru-

ence. We then have �C1 ≡ C2 (mod p2r−2), so that for r ≥ 2 we get the second
congruence from the first. ��
Proof of Theorem 6.6. Note that

D(ν) p2k−2m−1

ϕ(pr )

∑
χ∈	

(ν)
r

χ̄(e)G(χ̄)pmχ (k+m−3)c(ν)

np2r−2, j
(χ)

= �C (ν)
j p2k−2m−1

C (ν)
0 ϕ(pr )

∑
(n1,n2)∈Wnp2r−2

nν
1n

k−ν−m
2 − j

2

∑
χ∈	

(ν)
r

χ̄ (−en1)σ
′
m− 3

2 ,χρt
(n2)

and this is in Q. Indeed, �, (C (ν)
0 )−1C (ν)

j ∈ Z, k − ν − m ∈ 2Z and finally 	
(ν)
r

consists solely of all even characters, or else it’s all odd characters, and so separating
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the χ in the definition of σ ′
m− 3

2 ,χ
(n2) and shunting the rest to the preceding sum,

then we can use orthogonality relations to see that it is in fact rational. If we
replace c(ν)

np2r−2, j
(χ) in the above by the coefficients of the holomorphic projection

c(ν)

np2r−2(χ) then we obtain a
(ν)
n (r), in the case (−1)�k�+ν �= 1, and by Lemma 6.7

this is still in Q. The other case is very similar.
That they are in Zp is immediate from Lemma 6.10 when (−1)�k�+ν = 1 since

we just have the congruence C2. If (−1)�k�+ν = −1 then we have that C (ν)
r = 	

(ν)
r

does not contain the trivial character, and that the c(ν)
n, j (χ) satisfies the congruence

C3 := D(ν) p2k−2m−1
∑

χ∈	
(ν)
r

χ̄ (e)G(χ̄)pmχ (k+m−3)c(ν)

np2r−2(χ) ≡ 0 (mod pr )

is immediate via the logic of the proof of Lemma 6.10. This cancels out the power
of pr appearing in the denominator of Rr , and this ends the proof. ��

The proof of Theorem 6.1 now follows. Let F = Q( f1) and letMk(N0, F) be
the F-space of modular forms of weight k with Fourier coefficients in F . There’s
an F-linear form

� f : Mk(N1, F) → F

h 	→ 〈 f1|[W (N1)]κ , h〉N1

〈 f1|[W (N1)]κ , f ρ
1 〉N1

.

Proposition 6.11. Let ε( f ) = ±1 satisfy f |[W (N )]κ = ε( f ) f , then there exists
X ∈ Cp(x) whose coefficients have p-adic norm independent of m and that
satisfies

〈 f1|[W (N1)]κ , f ρ
1 〉N1 = ε( f )X (p−k)〈 f, f 〉N .

Proof. Since p and N are corprimewehave that fχp is once again a newformof level
N1, so let ε( fχp ) satisfy fχp |[W (N1)]κ = ε( fχp ) fχp putting εχ := ε( fχp )ε( f ).

Since W (N1) = W (N )
(

p2 0
0 1

)∗
we obtain

f1|[W (N1)]κ = ε( f )[p2k−2 f (p2z) − εχ

(−1
p

)�k�
p�k�−1α−1

p fχp − α−1
p f ]

and so writing out the definition of f1 and expanding the inner product we have
a linear combination of inner products which we now deal with separately. The
easiest are 〈 f, f ρ〉N1 = p2〈 f, f 〉N and 〈 f (p2z), f ρ(p2z)〉N1 = p−2〈 f, f 〉N , the
latter being just a change of variables followed by a reduction of the level.

We exploit the identity

〈 f − f (p2z)|[W (N1)]κ , f − f (p2z)〉
= 〈 f − f (p2z), f ρ − f ρ(p2z)|[W (N1)]κ 〉
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to get 〈 f (p2z), f ρ〉 = 〈 f, f ρ(p2z)〉. Then make use of (c) in the proof of
Lemma 3.1 to get

(p2k + p2k−2)〈 f (p2z), f ρ〉N1 = p2ωp〈 f, f 〉N −
(−1

p

)�k�
p�k�−1〈 fχp , f ρ〉N1

using the fact that the adjoint of [T (p)]2κ is
[(

p2 0
0 1

)]
κ
via Lemma 4.3 on the coset

decompositions.
It remains just to calculate inner products involving fχp . The easiest is the

product 〈 fχp , f ρ(p2z)〉N1 = p−2k〈 fχp |[T (p)]2κ , f ρ〉N1 = 0 since we know that
fχp |[T (p)]κ = 0. Note that D(s, fχp , fχp ) = D(s, f, f ) since χ2

p = 1, so by
Proposition 22.2 (3) in [20, p. 178] we have 〈 fχp , fχp 〉N1 = 〈 f, f 〉N1 .

The hardest and final product to calculate is 〈 fχp , f ρ〉N1 ; by [20] we have the
relation

〈 fχp , f ρ〉N1 =
[
Ress=k D(s, fχp , f ρ)

Ress=k D(s, f, f )

]
〈 f, f 〉N1 .

Note that

D(s, fχp , f ) =
∞∑
n=1

(
tn2
p

)
a(tn2)a(tn2)n−s =

(
t

p

)∑
p�n

a(tn2)a(tn2)n−s

whose Euler product will be the same as D(s, f, f ) but with the Euler factors
at p removed. So by taking t = 1 this inner product becomes 〈 fχp , f 〉N1 =
X◦

p(p
−k)−1Yp(p−k)〈 f, f 〉N1 where

Yp(x) = (1 − αpβpx)
2(1 − α2

px)(1 − β2
px)

X◦
p(x) = 1 +

[
2(αp + βp)

(−1

p

)�k� ( t

p

)
p�k�−1

]
x

+ [(αp + βp)(α
2
p + β2

p + αpβp) + (αp + βp)
2 p2�k�−2 − α2

pβ
2
p]x2.

Collecting this all together gives the proposition. ��
By the above lemma we are left with

μ
(ν)
f,m(e + prZp) = t

ν
2 ζα−r

p ε( f )X (p−k)� f (R
(ν)
r ).

Let Jk(N1) = Mk(N1, Zp ∩ Q) denote the Z-module of forms in Mk(N1) with

rational and p-integral coefficients. By Theorem 6.6 we have R(ν)
r ∈ Jk(N1). It

is known thatJ�k�(N1) ⊗Z Zp is a finitely generated Zp-module, and thus so too
is Jk(N1) ⊗Z Zp via the embedding f 	→ θ f . In extending � f by Fp-linearity
to Mk(N1, F) ⊗F Fp where, recall, F = Q( f1) and Fp is the completion of F at

some prime p above p, we are done, as then � f (R
(ν)
m ) will always be bounded by

the generator of Jk(N1) ⊗Z Zp with the largest p-adic norm.
To now actually define the p-adic L-function we let ω denote the Teichmüller

character and χ be any Dirichlet character of p-power conductor. Normalise each
measure dμ

(ν)
f,m by (D(ν))−1.
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Proposition 6.12. We have the following relation between the measures

dμ
(ν)
f,m(x) = xm−k+νdμ

(ν)
f,k−ν

Proof. As seen in the proofs of Lemma 6.10 and Theorem 6.6 we have see that our
measures come down to an expression in Mr,m(x) and so if we show that

Mr,m(x) ≡ xm−k+νMr,k−ν(x) (mod p2r−1)

then in the limit we obtain our desired relation on measures.
As already noted, there exists a p-adic measure interpolating pσ ′

m− 3
2 ,χρt

(n), in

particular at the end of Section 7.1 in [7] one sees that there exists a power series

Bχ (n; T ) ∈ Zp[[T ]] such that Bχρt (n;χρtω
k(u)um− 3

2 − 1) = pσ ′
m− 3

2 ,χρt
(n)

where u is a topological generator of Z
×
p . Thus we obtain an identity similar to

(3.20) in [14], which, in the proof of the analogous Lemma 3.9 in [14, pp. 617–618],
is the one remaining dependence on the weights of the modular forms separating
our settings. So our result follows now exactly as in [14]. ��

Define our p-adic L-function by

Lp(s, f, χ) :=
∫

Z
×
p

(χ̄ωs−1)(z)zs−k+νdμ
(ν)
f

where dμ
(ν)
f = dμ

(ν)
f,k−ν .

Corollary 6.13. Let χ be a Dirichlet character whose conductor is pmχ and satis-
fies χ(−1) = (−1)�k�+ν . Let m be one of the values specified in Theorem 6.1.

(i) If mχ ≥ 1 then

Lp(m − ν, f, χ) = δν
k (χ)p2k−2m−1α

−mχ
p pmχ (k+m−3)

× G(χω̄m−ν−1)L(m − ν, f, χ̄ωm−ν−1)

gχ
t (m)π

m+k−ν−2
2 〈 f, f 〉N

;

(ii) If χ = χ0 then

Lp(m − ν, f, χ0) = δν
χ (1)p3−2m(1 − βp p

m+ν−k−1)(1 − βp p
2−k−m+ν)

× L(m − ν, f, χ0ω
m−ν−1)

g0t (m)π
m+k−ν−2

2 〈 f, f 〉N
.

7. A comparison with the integer weight measure

Given the Shimura correspondence, we expect our interpolation above to yield the
interpolation of L-values of integer weight modular forms as well. So in this section
we assume ν = 0, state the interpolation in the integer weight case and see how
the two match up at the special value m = k. If f ∈ S�(Npr , L) is an ordinary
p-stabilised newform, where now � ∈ Z and L ⊆ Qp is a finite extension of Qp,
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and if χ is a Dirichlet character of p-power conductor pmχ then, according to [22,
p. 34], the p-adic L-function of f is given by

Lp(m, f, χ) = α
−mχ
p

(
1 − pmα−1

p

)
(−1)� pmmχ

G(χω̄−m)m!Lsk( f, χ̄ω−m,m + 1)

(−2π i)m�
(−1)m
f

for integers 0 ≤ m ≤ k − 2. This measure works on the assumption that f has
already been p-stabilised, so let’s also assume this for our half-integral form too.
For emphasis on the different normalisation of the L-function in [22, p. 34] we put
Lsk. Then Lsk( f, 2k − 2) = L( f, k). Note that under the Shimura correspondence
our half-integral weight form f ofweight k = κ

2 with κ > 5 an odd integer becomes
an integer weight form f̃ of weight � = κ − 1. Taking m = � − 2 as the special
value, thenm+1 = �−1 = 2k−2 corresponds to our value L(κ −1, f̃ )which by
the Shimura correspondence is equal to L(k, f ). We can always find a character ψ

such that if we twist the L-functions by ψ then the L-functions are non-vanishing
at k, see the main theorem of [12, p. 382]. For such a twist we can then compare
the two different periods. Theψ determines which ν we shall need to take, but then
we see that

i2k−3π�
(−1)2k−3

f̃
∈ 〈 f, f 〉NQ( f1, ψ).

7.1. Integrality

A final point of interest from this construction is in the determination of the inte-
grality of the measure produced. The measure is integral when it takes values in
Zp, or equivalently when it corresponds to an element of Zp[[T ]].

As a result of the Shimura correspondence any differences in determining inte-
grality of the measure in our setting then offers up some alternative insights into
determining the integrality of the original p-adic measure for the L-function of
integer weight modular forms. The periods appearing in the denominator of the
measure are naturally pivotal to the integrality of the measures and, as we have
seen above, our construction here differs significantly with that found in [7], which
uses the Eichler-Shimura isomorphism and modular symbols. In that construction,
integrality is determined via congruences between cusp forms andEisenstein series.

Our construction is much closer in line with the p-adic measure for the adjoint
square L-function of modular forms of integer weight, as seen in [3,8], in which
〈 f, f 〉 plays the role of the period. In the construction of the p-adic adjoint square,
questions of integrality are settled through the congruence module, as seen in [8,
p. 296]. The potential upshot of this is that integrality for the p-adic measure
constructed in this paper is likely to be through the congruence module which
would involve congruences between cusp forms of half-integer weight.
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