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Abstract. We introduce the notion of a relatively homotopy associative and homotopy
commutative H -space, construct one for any path-connected space X , and describe several
useful properties, including exponent properties.

1. Introduction

If X is a pointed, path-connected spacehaving thehomotopy typeof aCW -complex,
Y is a homotopy associative H -space, and f : X −→ Y is a continuous map,
then the James construction shows that f extends to an H -map f : ��X −→
Y . In particular, ��X is constructed functorially from X and is itself homotopy
associative.

An H -space is homotopy abelian if it is homotopy associative and homotopy
commutative. If X is as above, Z is homotopy abelian, and f : X −→ Z is a
continuous map, it is natural to ask if there is an analogue of the James construction
that extends f to a homotopy abelian H -space constructed functorially from X .
However, past experience shows that this is unlikely: some non-functorial p-local
constructions have been given for specific cases of X in [6,10,19] while the analysis
in [8, Sect. 2] suggests such homotopy abelian spaces do not exist in abundance.
In other words, the wrong question is being asked. In this paper we change the
question, and show that there is a functorial construction that produces a space that
is “as close as possible” to a homotopy abelian H -space for X .

Fix X as above. Let R(X) be the category whose objects are pairs ( f, Z)

where Z is a homotopy associative H -space, f : X −→ Z is a map, and the
Samelson product 〈 f, f 〉 is null homotopic. A morphism between objects ( f, Z)

and ( f ′, Z ′) in this category is a homotopy commutative diagram
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X
f �� Z

g
��

X
f ′

�� Z ′

where g is an H -map. A pair ( f, Z) ∈ R(X) is said to be homotopy associative and
homotopy commutative relative to X ; when the map f is understood it will more
loosely said that Z is homotopy associative and homotopy commutative relative to
X . Note that Z itself need not be homotopy commutative, it is the relative feature

that is the key. Note also that if Z is homotopy commutative, then anymap X
f−→ Z

determines an object ( f, Z) ∈ R(X).
Let J2(�X) be the second stage of the James construction for �X . There is a

homotopy cofibration

�X ∧ X
[1,1]−→ �X

j−→ J2(�X)

where [1, 1] is the Whitehead product of the identity map on �X . Let ι be the
composite

ι : X E−→ ��X
� j−→ �J2(�X)

where E is the suspension map, and note that ι is the adjoint of j .

Theorem 1.1. Let X be a pointed, path-connected space having the homotopy type
of a CW-complex. The following hold:

(a) (ι,�J2(�X)) ∈ R(X);
(b) if ( f, Z) ∈ R(X) then there exists a homotopy commutative diagram

X
f ��

ι

��

Z

�J2(�X)

˜f

�����������

for some map ˜f ;

(c) the map ˜f in part (b) may be chosen so that the composite ��X
� j−→

�J2(�X)
˜f−→ Z is an H-map.

Theorem 1.1 says that �J2(�X) is homotopy associative and homotopy com-
mutative relative to X and it has a partial universal property with respect to other
spaces that are homotopy associative and homotopy commutative relative to X . The
partial in the universal property is due to the map ˜f perhaps not being an H -map
and perhaps not satisfy a uniqueness property. However, part (c) implies that the
restriction of ˜f to ��X is an H -map, and a property of the James construction
implies that this H -map is the unique one that extends f .
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We use Theorem 1.1 to examine properties in the case of homotopy fibration

sequences of the form ��X
δ−→ T

∗−→ R
ϕ−→ �X where the map ∗ is a null

homotopy. Note that the null homotopy implies that T is a retract of ��X and
the fibration sequence has a homotopy action ��X × T −→ T whose restric-
tions to ��X and T are δ and the identity map respectively. Gray [7, Appendix]
showed that the existence of such a fibration sequence is equivalent to there being
a map ��X −→ T having a right homotopy inverse and a homotopy action. The
statement of Theorem 1.2 is phrased in terms of the fibration sequence, but could
equally well be phrased in its alternative equivalent form.

Fibration sequences ��X
δ−→ T

∗−→ R
ϕ−→ �X have been studied in many

contexts: to construct finite H -spaces in [3], to produce functorial retracts of ��X
in [15], to establish a universal property for particular H -spaces in [6,10,19], and
to analyze the “bottom” indecomposable factor of ��X in [7] in the case when
�X is indecomposable.

Let ev : ��X −→ X be the canonical evaluation map. The universal White-

head product on X is the Whitehead product ��X ∧ �X
[ev,ev]−−→ X . It is universal

because the Whitehead product of any two maps �A −→ X and �B −→ X
factors through [ev, ev].
Theorem 1.2. Fix a pointed, path-connected space X having the homotopy type of

a CW-complex. Suppose that there is a homotopy fibration sequence ��X
δ−→

T
∗−→ R

ϕ−→ �X where ∗ is null homotopic. Let t be the composite t : X E−→
��X

δ−→ T . The following hold:

(a) if δ is an H-map and the Whitehead product �X ∧ X
[1,1]−→ �X lifts through

ϕ, then T is homotopy associative and homotopy commutative, and there is a
homotopy commutative diagram

��X
δ ��

� j
��

T

�J2(�X)

˜δ

�����������

where˜δ has a right homotopy inverse;
(b) if ϕ factors through the universal Whitehead product on �X, then for any

( f, Z) ∈ R(X) there is a homotopy commutative diagram

X
f ��

t
��

Z

T
˜f

����������

where ˜f is an H-map;
(c) if the hypotheses of parts (a) and (b) both hold then ˜f is the unique H-map, up

to homotopy, such that ˜f ◦ t 
 f .



304 S. Theriault, J. Wu

Part (a) of Theorem 1.2 gives a criterion for determining when T is homotopy
associative andhomotopy commutative. This is shown tobe equivalent to three other
criteria in Sect. 4, one of which first appeared in [18] and has been used to establish
homotopy associativity and homotopy commutativity in specific cases [6,10,19].
Part (b) of Theorem 1.2 ideally holds together with part (a), as it does in the cases
in [6,10,19], but it may hold independently. An example is when �X is the odd
primary Moore space P2n+1(pr ); the space T was constructed in [2] and shown
to be neither homotopy associative nor homotopy commutative, but as ϕ factors
through Whitehead products it will satisfy part (b).

Gray [8] proved statements analogous to those in Theorem 1.2 (b) and (c) in
the absolute case when Z is a homotopy associative and homotopy commutative
H -space. Theorem 1.2 is therefore a generalization to the relative case. By [11],
looped co-H -spaces have many of the same properties as looped suspensions. It
would be interesting to see if the results in Theorems 1.1 and 1.2 generalize in some
manner to co-H -spaces.

The authors would like to thank the referee for giving many constructive com-
ments.

2. Some properties of homotopy associative H-spaces

This section establishes some preliminary results regarding the James construction
and projective planes in the context of homotopy associative H -spaces. From this
point forward we make the global hypotheses that all spaces are pointed, path-
connected, and have the homotopy type of CW -complexes.

2.1. The James construction

For k ≥ 1, let X×k be the k-fold product of X with itself and let X∧k be the k-fold
smash product of X with itself. Define Jk(X) as the quotient space X×k/ ∼ where
the basepoint is allowed to move freely. That is, (x1, . . . , xi−1, ∗, xi+1, . . . , xk) ∼
(x1, . . . , ∗, xi−1, xi+1, . . . , xk). Note that J1(X) = X . Let

qk : X×k −→ Jk(X)

be the quotient map. There is a map Jk(X) −→ Jk+1(X) given by sending
(x1, . . . , xk) to (x1, . . . , xk, ∗). Let J (X) = colimJk(X) and observe that J (X)

has an associative multiplication defined by concatenation of sequences.

Theorem 2.1. (James [12]). There are homotopy equivalences J (X) 
 ��X and

� J (X) 

∞
∨

k=1

�X∧k .

��
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In Theorem 2.4 we will show that the James construction has a universal prop-
erty with respect to homotopy associative H -spaces. To prepare, note that James
used a particular choice of a homotopy equivalence � J (X) 
 ∨∞

k=1 �X∧k .
For our purposes, it will be more convenient to use a different choice. Let
jk : Jk(X) −→ J (X) be the inclusion and let ek be the composite

ek : X×k qk−→ Jk(X)
jk−→ J (X).

Since the quotient map X×k −→ X∧k has a right homotopy inverse after suspend-
ing, we obtain a composite

ψk : �X∧k −→ �X×k �ek−→ � J (X).

Taking the wedge sum of the maps ψk for k ≥ 1 gives a map

ψ :
∞
∨

k=1

�X∧k −→ � J (X).

Theorem 2.2. The map ψ is a homotopy equivalence.

Proof. Take homology with field coeffiicients. By the homotopy equivalence
J (X) 
 ��X of Theorem 2.1 and the Bott–Samelson Theorem, there is an algebra
isomorphism H∗(J (X)) ∼= T ( ˜H∗(X))where T ( ) is the free tensor algebra functor.
Observe that (ψk)∗ has image isomorphic to the suspension of the submodule of
length k tensors in T ( ˜H∗(X)). Thusψ∗ is an isomorphism in homology. This holds
for homology with coefficients in any field soψ induces an isomorphism in integral
homology, and hence is a homotopy equivalence by Whitehead’s Theorem. ��

We now prove a criterion for when two maps out of J (X) are homotopic.

Lemma 2.3. Let Y be an H-space and suppose that there aremaps f, g : J (X) −→
Y . If the composites X×k ek−→ J (X)

f−→ Y and X×k ek−→ J (X)
g−→ Y are

homotopic for each k ≥ 1, then f is homotopic to g.

Proof. Since Y is an H -space, by [17] it retracts off��Y , so to show that f 
 g it

suffices to show that� f 
 �g. Byhypothesis, the composites X×k ek−→ J (X)
f−→

Y and X×k ek−→ J (X)
g−→ Y are homotopic for all k ≥ 1. Therefore, by the

definition of ψk , the composites �X∧k ψk−→ � J (X)
� f−→ �Y and �X∧k ψk−→

� J (X)
�g−→ �Y are homotopic for all k ≥ 1. Taking the wedge sum of the

maps ψk then implies that the composites
∨∞

k=1 �X∧k ψ−→ � J (X)
� f−→ �Y

and
∨∞

k=1 �X∧k ψ−→ � J (X)
�g−→ �Y are homotopic. But ψ is a homotopy

equivalence by Theorem 2.2, implying that � f 
 �g. ��
Theorem 2.4 is something of a folk theorem: it is widely accepted as true but

as far as the authors are aware there is no proof in the literature.
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Theorem 2.4. Let Z be a homotopy associative H-space. Suppose that there is a
map f : X −→ Z. Then there is an extension

X
f ��

j1
��

Z

J (X)

˜f

����������

where ˜f is an H-map, and it is the unique H-map, up to homotopy, with the property
that ˜f ◦ j1 
 f .

Proof. The existence of an extension which is an H -map was asserted by Stash-
eff [16], and a proof can be found in [14, Lemma1.4]. It remains to showuniqueness.
Suppose that ˜f , g̃ : J (X) −→ Z are two H -maps satisfying ˜f ◦ j1 
 f 
 g̃ ◦ j1.
Fix k ≥ 1 and consider the diagram

X×k
j×k
1 ��

qk
��

J (X)×k
˜f ×k

��

μk

��

Z×k

mk

��
Jk(X)

jk �� J (X)
˜f �� Z

where μk is the k-fold multiplication of J (X) with itself and mk is the k-fold
iteratedmultiplication on Z . The left square strictly commutes by the concatenation
multiplication on J (X). The right square homotopy commutes since ˜f is an H -
map. Observe that the top row is homotopic to f ×k . The homotopy commutativity
of the diagram implies that ˜f ◦ jk ◦qk 
 mk ◦ f ×k . By definition, ek = jk ◦qk . Thus
˜f ◦ ek 
 mk ◦ f ×k . Similarly, we obtain g̃ ◦ ek 
 m ◦ f ×k . Thus ˜f ◦ ek 
 g̃ ◦ ek .
As this is true for all k ≥ 1, Lemma 2.3 implies that ˜f 
 g̃. ��

Finally, it is useful to reformulate Theorem 2.4 in terms of ��X instead of
J (X). Let E : X −→ ��X be the suspension map, which is adjoint to the identity
map on �X .

Theorem 2.5. Let Z be a homotopy associative H-space. Suppose that there is a
map f : X −→ Z. Then there is an extension

X
f ��

E
��

Z

��X
f

����������

where f is an H-map, and it is the unique H-map, up to homotopy, with the property
that f ◦ E 
 f .
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Proof. Applying Theorem 2.4 to the suspension X
E−→ ��X gives an H -map

E : J (X) −→ ��X such that E ◦ j1 
 E . James [12, Sects. 3 and 4] showed that
E is a homotopy equivalence. If g is the inverse homotopy equivalence for E , then

g is an H -map and j1 
 g◦E . Let f be the composite f : ��X
g−→ J (X)

˜f−→ Z
where ˜f is the map from Theorem 2.4. Then f is an H -map since it is a composite
of H -maps, we have f ◦ E = ˜f ◦ g ◦ E 
 ˜f ◦ j1 
 f , and the uniqueness property
for f follows from that of ˜f . ��

ApplyingTheorem2.5 to the identitymapon Z recovers a result of Stasheff [16].

Corollary 2.6. (Stasheff). If Z is a homotopy associative H-space then there is an
H-map ∂ : ��Z −→ Z with the property that ∂ ◦ E is homotopic to the identity
map on Z. ��

Note for comparison purposes that Sugawara’s result mentioned in the proof of
Lemma 2.3 shows that if Y is an H -space then there is a map r : ��Y −→ Y with
a right homotopy inverse. However, r need not be an H -map. Corollary 2.6 implies
that if Y is homotopy associative then there is a choice of r which is an H -map.

2.2. The projective plane

For spaces A and B, the join is defined as the quotient space A∗B = (A×I×B)/ ∼,
where I = [0, 1] is the unit interval, (a, 0, b) ∼ (a′, 0, b) for all a, a′ ∈ A, and
(a, 1, b) ∼ (a, 1, b′) for all b, b′ ∈ B. It is well known that there is a natural
homotopy equivalence A ∗ B 
 �A ∧ B.

If Z is an H -space then there are different “Hopf constructions” Z ∗Z −→ �Z .
If Z is also homotopy associative then a choice of Hopf construction can bemade so

that the H -map ��Z
∂−→ Z in Corollary 2.6 appears as the fibration connecting

map.

Lemma 2.7. Let Z be a homotopy associative H-space. Then there is a choice of

a map Z ∗ Z
m∗−→ �Z such that the H-map ��Z −→ Z in Corollary 2.6 fits in a

homotopy fibration sequence

��Z
∂−→ Z −→ Z ∗ Z

m∗−→ �Z .

Proof. Gray [7, Proposition A1] showed that there is a one-to-one correspondence
between homotopy classes of maps

θ : A × F −→ F

with θ(∗, x) = x and fibre homotopy classes of fibrations

F −→ E ′ −→ �A.

Given such a fibration there is a canonical homotopy action a : ��A × F −→ F
where the restriction of a to ��A is the connecting map for the fibration and the
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restriction of a to F is the identity map. The map θ is obtained as the composite

A × F
E×1−→ ��A × F

a−→ F . Further, Gray [7, Proposition A.2] showed that if
the restriction of θ to A is a homotopy equivalence, then E ′ 
 F ∗ F . Gray [7,
Proposition A.3] also showed that if ��A is replaced by the James construction
J (A), then J (A) × F

a−→ F is described by the formula a((a1, . . . , ak), x) =
θ(a1, θ(a2, . . . , θ(ak, x) . . .).

In particular, if Z is an H -space with multiplication m, take θ : Z × Z −→ Z
to be m. Then the restriction of m to either factor of Z is homotopic to the identity
map so we obtain a homotopy fibration

Z −→ Z ∗ Z
m∗−→ �Z (1)

which can be termed a “Hopf construction”. Moreover, if a : ��Z × Z −→ Z
is the canonical homotopy action associated to this fibration then the composite

Z × Z
E×1−→ ��Z × Z

a−→ Z is θ . Replacing ��Z by J (Z), the map a satisfies
the formula a((z1, . . . , zk), x) = θ(z1, θ(z2, . . . , θ(zk, x) . . .). That is, as θ = m,
a((z1, . . . , zk), x) = m(z1,m(z2, . . . ,m(zk, x) . . .).

Now suppose that the multiplication m on Z is homotopy associative. Then
the order of the multiplication in the formula for a is irrelevant so we may write
a((z1, . . . , zk), x) = z1z2 · · · zk x . The restriction of a to ��Z is the connecting
map ∂ ′ : ��Z −→ Z for the homotopy fibration (1). The formula for a therefore
implies that, regarding ��Z as J (Z), we have ∂ ′(z1, . . . , zk) = z1 · · · zk . But if
we regard the H -map ∂ as a map J (Z) −→ Z then we also obtain ∂(z1, . . . , zk) =
z1 · · · zk . Thus ∂ ′ 
 ∂ . That is, the connecting map for (1) is homotopic to ∂ . ��

Define the projective plane P2(Z) and the map i by the homotopy cofibration

Z ∗ Z
m∗−→ �Z

i−→ P2(Z).

We will show that �∂ factors through �i .

Lemma 2.8. Let Z be a homotopy associative H-space. Then there is a homotopy
commutative diagram

��Z
∂ ��

�i
��

Z

�P2(Z)
∂2 �� Z

where ∂ is the H-map in Theorem 2.6 and ∂2 is some map.

Proof. This uses the Dold–Lashof construction [4]. In general, let A
f−→ B −→ C

be a cofibration and suppose F −→ E
g−→ B is a quasifibration. Let Q be the



Relative homotopy abelian H -spaces 309

homotopy pullback of f and g. If there is a trivialization Q 
 A × F then there is
a quasifibration F −→ E ′ −→ C and a homotopy pullback

E ��

��

B

��
E ′ �� C

where E ′ is the homotopypushout of A×F −→ E and the projection A×F −→ F .
In our case, let Q be the homotopy pullback of m∗ and itself. Stasheff [16]

showed that the homotopy associativity of Z implies that there is a trivialization
Q 
 (Z ∗ Z)× Z . Thus the Dold–Lashof construction gives a homotopy pullback

Z ∗ Z
m∗

��

��

�Z

i
��

E ′′ �� P2(Z)

where E ′′ is the homotopy pushout of the map (Z ∗ Z) × Z −→ Z ∗ Z and the
projection (Z ∗Z)×Z −→ Z . This pullback induces a homotopy fibration diagram

��Z
∂ ��

�i
��

Z �� Z ∗ Z
m∗

��

��

�Z

i
��

�P2(Z)
∂2 �� Z �� E ′′ �� P2(Z)

for some map ∂2, where Lemma 2.7 has been used to identify the map ∂ in the top
row. The lefthand square is the one asserted by the lemma. ��

2.3. The projective plane and the second stage of the James construction

For a space X , let

[1, 1] : �X ∧ X −→ �X

be the Whitehead product of the identity map on �X with itself. Then there is a
homotopy cofibration

�X ∧ X
[1,1]−→ �X

j−→ J2(�X) (2)

where we write j for the inclusion of of �X = J1(�X) into J2(�X).
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Lemma 2.9. Let Z be a homotopy associative H-space. If f : X −→ Z is a map
with the property that the Samelson product 〈 f, f 〉 is null homotopic then there is
a homotopy commutative diagram

�X ∧ X
λ ��

[1,1]
��

Z ∗ Z

m∗
��

�X
� f �� �Z .

for some map λ.

Proof. Taking the adjoint of� f ◦[1, 1] and composing with the H -map��Z
∂−→

Z in Theorem 2.6 gives the composite

γ : X ∧ X
E−−→ �(�X ∧ X)

�[1,1]−−→ ��X
�� f−−→ ��Z

∂−→ Z .

If γ is null homotopic then from the homotopy fibration in Lemma 2.7 we otain a
lift

X ∧ X ����������� λ′

E
��

�(Z ∗ Z)

�m∗
��

�(�X ∧ X)
�[1,1] �� ��X

�� f �� ��Z

for some map λ′. Taking adjoints then gives the asserted homotopy commutative
diagram.

It remains to show that γ is null homotopic. Observe that �[1, 1] ◦ E is the
adjoint of the Whitehead product [1, 1], which is the Samelson product 〈E, E〉.
Consider the string of homotopies

∂ ◦ �� f ◦ 〈E, E〉 
 〈∂ ◦ �� f ◦ E, ∂ ◦ �� f ◦ E〉

 〈∂ ◦ E ◦ f, ∂ ◦ E ◦ f 〉 
 〈 f, f 〉.

From left to right, the first homotopy holds since the Samelson product is natural
with respect to composition with H -maps on the left, and both �� f and ∂ are
H -maps. The second holds by the naturality of E , and the third holds since, by
Theorem 2.6, ∂ ◦ E is homotopic to the identity map on Z . Thus γ 
 〈 f, f 〉, but
by hypothesis, 〈 f, f 〉 is null homotopic. ��
Corollary 2.10. Let Z be a homotopy associative H-space. If f : X −→ Z is a
map with the property that the Samelson product 〈 f, f 〉 is null homotopic then:
(a) there is an extension

�X
� f ��

j
��

�Z
i �� P2(Z)

J2(�X)

g

�����������������

for some map g;
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(b) there is a homotopy commutative square

��X
�� f ��

� j
��

��Z

∂

��
�J2(�X)

∂2◦�g �� Z .

Proof. Consider the diagram

�X ∧ X
λ ��

[1,1]
��

Z ∗ Z
∗

		�
��

��
��

��

m∗
��

�X
� f �� �Z

i �� P2(Z).

The left square homotopy commutes by Lemma 2.9 and the right triangle homotopy
commutes since i and m∗ are consecutive maps in a homotopy cofibration. The
diagram as a whole implies that the composite i ◦ � f ◦ [1, 1] is null homotopic.
The existence of the extension asserted in part (a) now follows immediately.

For part (b), loop the square in part (a) and compose with ∂2 to obtain ∂2 ◦�i ◦
�� f 
 ∂2 ◦ �g ◦ � j . By Lemma 2.8, ∂ 
 ∂2 ◦ �i , so we obtain ∂ ◦ �� f 

∂2 ◦ �g ◦ � j as asserted. ��

3. The proof of Theorem 1.1

Let X be a space and let ev : ��X −→ X be the evaluation map. Recall from
the Introduction that the universal Whitehead product is the Whitehead product

��X ∧ �X
[ev,ev]−→ X . It will be helpful to write this as a composite.

In general, let X and Y be spaces. Let ev1 and ev2 be the composites

ev1 : ��X
ev−→ X

i1−→ X ∨ Y

ev2 : ��Y
ev−→ Y

i2−→ X ∨ Y,

where i1 and i2 are the inclusions of the left and rightwedge summands respectively.
By [5], there is a homotopy fibration

��X ∧ �Y
[ev1,ev2]−−−−→ X ∨ Y −−−−→ X × Y

where the right map is the inclusion of the wedge into the product. When X = Y
there is a fold map ∇ : X ∨ X −→ X . Let � be the composite

� : ��X ∧ �X
[ev1,ev2]−−−−→ X ∨ X

∇−−−−→ X.

Notice that � is homotopic to the universal Whitehead product [ev, ev].
The key property of the universal Whitehead product that will be needed is the

following.
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Lemma 3.1. Let X be a simply-connected space. Then the composite ��X ∧
�X

�−→ X
j−→ J2(X) is null homotopic.

Proof. By its definition in the James construction, J2(X) is the quotient space
(X × X)/ ∼, where (x, ∗) ∼ (∗, x). In particular, this implies that the composite

X ∨ X −→ X × X −→ J2(X) is homotopic to the composite X ∨ X
∇−→ X

j−→
J2(X). We obtain a homotopy commutative diagram

��X ∧ �X
[ev1,ev2]�� X ∨ X ��

∇
��

X × X

��
X

j �� J2(X)

where the top row is a homotopy fibration. As � 
 ∇ ◦ [ev1, ec2], the lower
direction around the diagram is j ◦ �, and the upper direction around the diagram
is null homotopic since the top row is a homotopy fibration. Thus j ◦ � is null
homotopic. ��

Let

c : ��X ∧ ��X −→ ��X

be the Samelson product of the identity map on ��X with itself. Observe that the
adjoint of c is the universal Whitehead product on �X . That is, c is homotopic to

the composition ��X ∧ ��X
E−→ �(���X ∧ ��X)

��−→ Z . Taking adjoints
in Lemma 3.1 immediately implies the following.

Lemma 3.2. For any path-connected space X, the composite ��X ∧ ��X
c−→

��X
� j−→ �J2(�X) is null homotopic. ��

Fix a space X . Recall from the Introduction that R(X) is the category whose
objects are pairs ( f, Z)where Z is a homotopy associative H -space, f : X −→ Z is
a map, and the Samelson product 〈 f, f 〉 is null homotopic. Also, an object inR(X)

is called a homotopy associative and homotopy commutative H -space relative to
X .

Proof of Theorem 1.1. For part (a) we need to show that (ι,�J2(�X)) ∈ R(X),

where ι is the composite ι : X
E−→ ��X

� j−→ �J2(�X). Clearly �J2(�X) is
homotopy associative. The naturality of the Samelson product implies that 〈ι, ι〉 

� j ◦〈E, E〉. As 〈E, E〉 factors through the Samelson product c, Lemma 3.2 implies
that 〈ι, ι〉 is null homotopic. Hence (ι,�J2(�X) ∈ R(X).
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Next, consider the diagram

X
f ��

E
��

Z

E
��

��X
�� f ��

� j
��

��Z

∂

��
�J2(�X)

∂2◦�g �� Z .

The upper square homotopy commutes by the naturality of E while the lower square
homotopy commutes by Corollary 2.10 (b). By Corollary 2.6, ∂ ◦ E is homotopic
to the identity on Z so the upper direction around the diagram is homotopic to
f . The left column is the definition of ι. So setting ˜f = ∂2 ◦ �g, the homotopy
commutativity of the diagram implies that f 
 ˜f ◦ ι, proving part (b).

Finally, the homotopy commutativity of the bottom square in the previous dia-
gram implies that ˜f ◦� j = ∂2 ◦�g ◦� j is homotopic to ∂ ◦�� f . The latter is an
H -map since �� f is and, by Corollary 2.6, so is ∂ . That is, ˜f ◦ � j is an H -map,
proving part (c). ��

As a closing remark, an interesting special case is when Z is a homotopy asso-
ciative, homotopycommutative H -space. Take X = Z and f to be the identity map.
Then 〈 f, f 〉 = 〈1, 1〉, which is null homotopic since Z is homotopy commutative.
Therefore Corollary 2.10 (a) and Theorem 1.1 (b) imply the following.

Corollary 3.3. Let Z be a homotopy associative, homotopy commutative H-space.
Then there are homotopy commutative diagrams

�Z
i ��

j
��

P2(Z) Z

j
��

Z

J2(�Z)



									
�J2(�Z).

������������

��
The left triangle in Corollary 3.3 recovers a result of Stasheff [16, Theorem

1.9], while the retraction of Z off of�J2(�Z) in the right triangle recovers a result
of Williams [21].

4. Criteria for homotopy associativity and homotopy commutativity

The purpose of this section is to prove Theorem 4.2, which gives four equivalent
criteria for certain spaces to be homotopy associative and homotopy commutative.
We begin with an initial result.
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Suppose that T retracts off �X , so there are maps s : T −→ �X and

δ : �X
δ−→ T such that δ ◦ s is homotopic to the identity map on T . Define a

multiplication m on T by the composite

m : T × T
s×s−→ �X × �X

μ−→ �X
δ−→ T

where μ is the standard loop multiplication.

Lemma 4.1. If δ is an H-map then the multiplication m on T is homotopy asso-
ciative.

Proof. Since δ is an H -map with s as a right homotopy inverse, there is a homotopy
commutative diagram

T × T × T
s×s×s ��









































 �X × �X × �X
μ×1 ��

δ×δ×δ

��

�X × �X
μ ��

δ×δ

��

�X

δ

��
T × T × T

m×1 �� T × T
m �� T .

Thus m ◦ (m × 1) 
 ∂ ◦ μ ◦ (μ × 1) ◦ (s × s × s). Similarly, m ◦ (1 × m) 

∂ ◦ μ ◦ (1 × μ) ◦ (s × s × s). But as μ ◦ (μ × 1) 
 μ ◦ (1 × μ) we obtain
m ◦ (m × 1) 
 m ◦ (1 × m). ��

Now we turn to equivalent criteria for homotopy associativity and homotopy
commutativity.

Theorem 4.2. Let ��X
δ−→ T

∗−→ R
ϕ−→ �X be a homotopy fibration

sequence where ∗ is null homotopic. Then the following are equivalent:

(a) there is a lift of the universal Whitehead product

���X ∧ ��X

�

����� � � � � �

R
ϕ �� �X;

(b) the space T is homotopy associative and homotopy commutative, and the map
δ is an H-map;

(c) the map ��X
δ−→ T is an H-map and there is a lift

�X ∧ X

[1,1]
�����

�
�
�
�

R
ϕ �� �X.
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(d) there is an extension

��X
δ ��

��

T

�J2(�X).

���
�

�
�

�

Proof. We show that (a) implies (b), (b) implies (c), (c) implies (d) and (d) implies
(a).
Part (a) implies part (b). This was first proved in [18]; a slick proof can be found
in [9, Proposition 2.9].
Part (b) implies part (c). Part (b) assumes that δ is an H -map so it remains only to

show that the map �X ∧ X
[1,1]−→ �X lifts through R

ϕ−→ �X . Taking adjoints,

it is equivalent to show that the Samelson product 〈E, E〉 lifts through �R
�ϕ−→

��X , which in turn is equivalent to showing that the composite δ ◦ 〈E, E〉 is null
homotopic. By hypothesis, T is homotopy associative and δ is an H -map so by
the naturality of the Samelson product we obtain δ ◦ 〈E, E〉 
 〈δ ◦ E, δ ◦ E〉. By
hypothesis, T is also homotopy commutative, so the Samelson product 〈δ◦E, δ◦E〉
is null homotopic. That is, δ ◦ 〈E, E〉 is null homotopic, as required.
Part (c) implies part (d). Since δ is an H -map, by Lemma 4.1, T is homotopy

associative. Let f be the composite f : X
E−→ ��X

δ−→ T . The Samelson
product is natural with respect to composition with H -maps on the left, so 〈 f, f 〉
factors as the composite X∧X

〈E,E〉−→ ��X
δ−→ T . Since 〈E, E〉 is the adjoint of the

Whitehead product [1, 1], by hypothesis it lifts through�ϕ to�R. Therefore 〈 f, f 〉
is null homotopic. Applying Theorem 1.1 (b) with Z = T and f = δ, we obtain a
factorization of δ through �J2(�X), as asserted.

Part (d) implies part (a). By Lemma 3.1, the composite ���X ∧ ��X
�−→

�X
j−→ J2(�X) is null homotopic. Taking adjoints, this implies that the com-

posite ��X ∧ ��X
�−→ ��X

� j−→ �J2(�X) is null homotopic, where � is

the adjoint of �. By hypothesis, the map ��X
δ−→ T factors through � j , so the

composite ��X ∧ ��X
�−→ ��X

δ−→ T is null homotopic. Hence there is a
lift

�R

�ϕ

��
��X ∧ ��X

� ��

λ


��X

for some map λ. Suspending and using the naturality of the evaluation map, we
obtain a homotopy commutative diagram

��R
ev ��

��ϕ

��

R

ϕ

��
���X ∧ ��X

�� ��

�λ

��������������
���X

ev �� �X.
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Observe that the bottom row is the adjoint of �, which is �. Thus ev ◦ �λ is a lift
of � through ϕ, as required. ��

In [9,10,19] certain spaces were shown to be homotopy associative and homo-
topy commutative by using the (a) implies (b) part of Theorem 4.2. This involved
detailed work. It would be interesting to know if the equivalent statements in The-
orem 4.2 could be used to give simpler proofs.

Example 4.3. Suppose that T = �T ′ and there is a “classifying map”�X
ε−→ T ′,

so that δ 
 �ε. Thus δ is an H -map so the equivalent statements in Theorem 4.2
imply that the loop space T is also homotopy commutative provided that the map

�X ∧ X
[1,1]−→ �X lifts through R

ϕ−→ �X . That is, the obstruction to T being
homotopy commutative depends only on whether the Whitehead product �X ∧
X

[1,1]−→ �X lifts through ϕ, or equivalently, whether the Samelson product X ∧
X

〈E,E〉−→ ��X composes trivially with δ.
For instance, if X = �CPn−1 then there is a canonical map X −→ SU (n)

inducing the inclusion of the generators in homology. Taking adjoints we obtain a

map �X
ε−→ BSU (n) which induces a homotopy fibration sequence ��X

�ε−→
SU (n) −→ R

ϕ−→ �X
ε−→ BSU (n). Localized at an odd prime p, if n ≤

(p − 1)2 + 1 then �ε has a right homotopy inverse [20]. Therefore, for these
values of n, SU (n) is homotopy commutative at p if and only if the composite

X∧X
〈E,E〉−→ ��X

�ε−→ SU (n) is null homotopic. This could be used to simplify the
argument used byMcGibbon [13] to classify those n for which SU (n) is homotopy
commutative at p.

Theorem 4.2 can also be used to show that retracts of ��X fail to have certain
properties.

Example 4.4. The following statement is known but is usefully recast in light of
Theorem 4.2. For odd primes p, Cohen, Moore and Neisendorfer [2] constructed a
homotopy fibration sequence

�P2n+1(pr )
δ−→ T

∗−→ R
ϕ−→ P2n+1(pr ) (3)

where T is the indecomposable retract of �P2n+1(pr ) that contains the bottom
Moore space. The space R is a wedge of mod-pr Moore spaces and ϕ factors
through the universal Whitehead product on P2n+1(pr ). However, the universal
Whitehead product does not factor through ϕ. For if it did, then Theorem 4.2 would
imply that T is homotopy associative and homotopy commutative, but by [2] it
cannot have these properties since H∗(T ) is neither associative nor commutative.

5. Extension results

In this section we prove Theorem 1.2. Given a homotopy fibration sequence

��X
δ−→ T

∗−→ R
ϕ−→ �X , let t be the composite

t : X E−→ ��X
δ−→ T .
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Proposition 5.1. Let ��X
δ−→ T

∗−→ R
ϕ−→ �X be a homotopy fibration

sequence where ϕ factors through the universal Whitehead product on �X and let
Z be a homotopy associative H-space. If f : X −→ Z is a map with the property
that the Samelson product 〈 f, f 〉 is null homotopic then there is an extension

X
f ��

t
��

Z

T
˜f

����������

where ˜f is an H-map. Further, if δ is an H-map then ˜f is the unique H-map, up
to homotopy, such that ˜f ◦ t 
 f .

Proof. The proof proceeds in stages.
Step 1: Setting up. Since Z is homotopy associative and the Samelson product 〈 f, f 〉
is null homotopic, Theorem 1.1 implies that f extends across X

ι−→ �J2(�X) to
a map

f ′ : �J2(�X) −→ Z

with the property that the composite

f : ��X
� j−→ �J2(�X)

f ′
−→ Z

is an H -map. Observe that f ◦�ϕ is null homotopic since, by hypothesis, ϕ factors
through the universal Whitehead product� and by Lemma 3.1 the composite j ◦�

is null homotopic.

Step 2: f factors through δ. By hypothesis, the map ��X
δ−→ T has a right

homotopy inverse s : T −→ ��X . Let ˜f be the composite

˜f : T s−→ ��X
f−→ Z .

Consider the diagram

T × �R
s×�ϕ ��

π1

��

��X × ��X
μ ��

f× f
��

��X

f
��

T
i1◦ ˜f �� Z × Z

m �� Z

where μ is the loop space multiplication, m is the given homotopy associative
multiplication on Z , π1 is the projection onto the first factor, and i1 : Z −→ Z × Z
is the inclusion of the first factor. The left square homotopy commutes since f ◦�ϕ

is null homotopic and the right square homotopy commutes since f is an H -map.
Let e : T × �R −→ ��X be the composite along the top row. Observe that e
is a homotopy equivalence and the composite m ◦ i1 ◦ ˜f along the bottom row is
homotopic to ˜f . The diagram as a whole therefore shows that f ◦ e 
 ˜f ◦ π1.
Precomposing with e−1, we obtain f 
 ˜f ◦ π1 ◦ e−1. Therefore, if π1 ◦ e−1 
 δ

then f 
 ˜f ◦ δ, completing Step 2.
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It remains to show that π1 ◦ e−1 
 δ. Since the map δ is a connecting map in
a homotopy fibration, there is a homotopy action θ : ��X × T −→ T such that
the restriction of θ to ��X is δ and the restriction to T is the identity map. Now
consider the diagram

T × �R
s×�ϕ ��

π1

��

��X × ��X
μ ��

1×δ

��

��X

δ

��
T

i1◦s �� ��X × T
θ �� T .

The left square homotopy commutes since δ and �ϕ are consecutive maps in a
homotopy fibration and so their composite is null homotopic. The right square
homotopy commutes since any homotopy action induced by a homotopy fibration
connecting map has this property. Observe that the upper row in the diagram is the
definition of e and the lower row is the identity map on T . The diagram as a whole
therefore implies that δ ◦ e 
 π1. Thus δ 
 π1 ◦ e−1, as required.

Step 3: ˜f extends f . By the construction of ˜f in Step 1 we have f ◦ E 
 f . By
Step 2, f 
 ˜f ◦ δ. By definition, t = δ ◦ E . Thus ˜f ◦ t = ˜f ◦ δ ◦ E 
 f ◦ E 
 f .

Step 4: ˜f is an H-map. Consider the diagram

T × T
s×s ��

˜f × ˜f ����
���

���
���

��X × ��X
μ ��

f × f
��

��X
δ ��

f
��

T

˜f
��

Z × Z
m �� Z Z .

The left triangle homotopy commutes by definition of ˜f , the middle square homo-
topy commutes since f is an H -map, and the right square homotopy commutes by
Step 2. Since the upper row in the diagram is the multiplication on T , the homotopy
commutativity of the diagram implies that ˜f is an H -map.

Step 5: Uniqueness. Now we assume the extra hypothesis that δ is an H -map.
Suppose that g, h : T −→ Z are H -maps such that g ◦ t 
 h ◦ t 
 f . Consider the

composition ��X
δ−→ T

g−→ Z . It is an H -map since it is the composition of
two H -maps. Further, by definition, t = δ ◦ E so g ◦ δ ◦ E = g ◦ t 
 f . Similarly,
h ◦ δ is an H -map and h ◦ δ ◦ E 
 f . The uniqueness property in Theorem 2.5
then implies that h ◦ δ 
 g ◦ δ. Since s is a right homotopy inverse for δ, we obtain
h 
 h ◦ δ ◦ s 
 g ◦ δ ◦ s 
 g. ��
Proof of Theorem 1.2. For part (a), since δ is an H -map and theWhitehead product

�X ∧ X
[1,1]−→ �X factors through ϕ, Theorem 4.2 implies that T is homotopy

associative and homotopy commutative. The same theorem implies that δ extends
through �J2(�X) and the retraction of T off �J2(�X) follows from the fact that
δ has a right homotopy inverse.

Part (b) is simply a rephrasing of the first assertion of Proposition 5.1 and part (c)
is the second assertion of Proposition 5.1. ��
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