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Abstract. On a cylindrical domain ET , we consider doubly nonlinear parabolic equations,
whose prototype is ∂t u − div(|u|m−1|Du|p−2Du) = μ, where μ is a non-negative Radon
measure having finite total mass μ(ET ). The central objective is to establish pointwise esti-
mates for weak solutions in terms of nonlinear parabolic potentials in the doubly degenerate
case (p ≥ 2,m > 1). Moreover, we will prove the sharpness of the estimates by giving an
optimal Lorentz space criterion regarding the local uniform boundedness of weak solutions
and by comparing them to the decay of the Barenblatt solution.

1. Introduction and main result

In this paper, we study potential estimates for doubly nonlinear parabolic equations
with measure data. Such equations arise in the field of plasma physics, ground
water surveys, or the motion of viscous fluids, but also in the modeling of an ideal
gas flowing isoentropically in a homogeneous porous medium. In this introductory
section, we describe the treated problem and specify some notations. Further, we
explain the notion of weak solutions, mention the main results, and comment on
the proof strategies as well as the history of potential estimates.

1.1. Setting

We consider a class of nonhomogeneous doubly nonlinear parabolic equations

∂t u − div
(
A(x, t, u, Du)

) = μ (1.1)

in a space-time cylinder ET := E × (0, T ), where E ⊂ R
n is an open bounded set,

n ≥ 2, T > 0, and μ ∈ M+(ET ) is a non-negative Radon measure on ET with
finite total mass μ(ET ) < ∞.

Our aim is to establish pointwise estimates in terms of nonlinear parabolic
potentials, where the main tasks are to identify the decent potential for the doubly
nonlinear parabolic context and to construct intrinsic cylinders that suitably reflect
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the geometry of the equations under consideration. The optimality of our estimates
will be explained by deducing a sharp Lorentz space criterion for μ providing the
local boundedness of u, and by comparing the behavior of the potential to the decay
of the Barenblatt fundamental solution.

Throughout this paper, the vector field A : ET × R × R
n → R

n is assumed to
be a Carathéodory function, i. e. it is measurable with respect to (x, t) ∈ ET for all
(u, ξ) ∈ R × R

n and continuous with respect to (u, ξ) ∈ R × R
n for almost every

(x, t) ∈ ET . Moreover, we want A to satisfy the ellipticity condition

A(x, t, u, ξ) · ξ ≥ C0|u|m−1|ξ |p, (1.2)

together with the growth condition

|A(x, t, u, ξ)| ≤ C1|u|m−1|ξ |p−1 (1.3)

for any u ∈ R, ξ ∈ R
n , and almost every (x, t) ∈ ET , where C0 > 0 and C1 > 0

are fixed constants, p ≥ 2 and m > 1.

1.2. Some remarks on doubly nonlinear parabolic equations

The model example for equations treated in the sequel is given by the doubly
nonlinear parabolic equation

∂t u − div
(|u|m−1|Du|p−2Du

) = μ in ET , (1.4)

whose modulus of ellipticity is |u|m−1|Du|p−2. For p > 2, m > 1, this quantity
vanishes if u or |Du| become 0, which is why we call the equation doubly degen-
erate, whereas in the singular-degenerate situation p < 2, m > 1, the coefficient
|Du|p−2 tends to ∞ and |u|m−1 → 0 as |u| → 0, |Du| → 0. According to that
approach, the cases p > 2,m < 1 and p < 2,m < 1 are named degenerate-singular
and doubly singular, respectively. Apart from that, one can categorize the solutions
with regard to their support after finite time and speed of propagation, where the
equation is referred to as of the type of slow, normal, or fast diffusion, depending
on whether p + m is larger than, equal to, or less than 3. Both classifications can
also be found in [17, p. 23].

Lately, several authors examined doubly nonlinear parabolic equations because
of their physical and mathematical interest, though, substantial parts of the recent
research were not on equations of the above universal form, but rather on specific
examples like (1.4) with either μ ≡ 0, p+m = 3, or other simplifications of (1.1).
For instance, Hölder regularity and Harnack’s inequality for bounded weak solu-
tions were established in [16,17,34,44] and [24,43]. What is more, [33,35,40] are
concerned with the asymptotic behavior of solutions to doubly nonlinear parabolic
equations for certain values of the quantity p+m, and the local boundedness of the
gradient of a solution to the homogeneous equation was shown in [36] under the
additional assumption that u is strictly positive. Existence and uniqueness results
for the Cauchy–Dirichlet problemwith an inhomogeneityμ ∈ L∞(ET ,R≥0)were
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developed in [18–20] and generalized in [38,39] to Lebesgue integrable functions
and Radon measures as right-hand sides.

However, since the proof strategies are quite sophisticated due to the inherent
difficulty of a double nonlinearity, the achievements, especially for the measure-
valued equation, are relatively sparse, and, to the author’s knowledge, there is
no theory for potential estimates regarding doubly nonlinear parabolic equations
in the literature up to now. Nevertheless, single special cases of (1.1) like the
porous medium equation (p = 2) or the p-Laplacian equation (m = 1) have been
intensively studied and we refer the interested reader to [9,21,41,42] and the lists
of references therein.

1.3. Notations

As to the notation, we always write z = (x, t) for a point z ∈ R
n+1 ∼= R

n × R.
As is customary, we call q ′ := q

q−1 ∈ [1,∞] the Hölder conjugate of q ∈ [1,∞].
By {u > �}, we express the superlevel set {(x, t) ∈ ET : u(x, t) > �} where
the function u exceeds the level � > 0, and we address the positive part of u
as u+ := max{u, 0}. We denote the weak spatial derivative of the function u by
Du = Dxu = (Dx1u, Dx2u, . . . , Dxnu), and ∂t = ∂

∂t is the operator for the
time derivative. Besides, byM+(ET ), we mean the set of all non-negative Radon
measures, and c ≡ c(·) stands for a constant, which may vary from line to line and
depend only on the parameters in brackets. Finally, for (x0, t0) ∈ ET , r, θ > 0,
and ν > 0, we define the parabolic cylinder

Qr,θ ≡ Qr,θ (x0, t0) := Br (x0) × (t0 − θ, t0) (1.5)

and write νQr,θ := Qνr,ν pθ for its rescaled associate.

1.4. Weak solutions

In this section, we specify the notion of weak solutions to the Cauchy–Dirichlet
problem associated to the doubly nonlinear parabolic equation (1.1), which is given
by

{
∂t u − div

(
A(x, t, u, Du)

) = μ in ET ,
u = 0 on �T ,

(1.6)

where �T := [E × {0}] ∪ [∂E × (0, T )] denotes the parabolic boundary of ET .

Definition 1.1. Let β := m−1
p−1 . A non-negative function u : ET → R satisfying

u ∈ C0([0, T ]; Lβ+2(E)
)
and uβ+1 ∈ L p((0, T );W 1,p

0 (E)
)

(1.7)

is termed a weak solution to the Cauchy–Dirichlet problem (1.6) if and only if the
identity

∫∫

ET

[− u∂tϕ + A(x, t, u, Du) · Dϕ
]
dz =

∫∫

ET

ϕ dμ (1.8)
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holds true for any testing function ϕ ∈ C1(ET ) vanishing on [E × {T }] ∪ [∂E ×
(0, T )]. In (1.8), the symbol Du has to be understood in the sense of

Du := 1
β+1

χ {u>0}u−βDuβ+1.

Remark 1.2. For the interested reader, we remark that, apart from our definition of
weak solutions, which is also employed in [15,19,33,35,39,42,44], for instance,
there is another concept of weak solutions in the context of doubly nonlinear
parabolic equations (see [4,10,18,38]), where our regularity assumptions (1.7) are
replaced by

u ∈ C0([0, T ]; L2(E)
)
and uα+1 ∈ L p((0, T );W 1,p

0 (E)
)

(1.9)

with α := m−1
p .

1.5. Main results

We now state the central results of this paper. The parabolic potential Pμ
p appearing

in the following theorem was originally introduced in [31], where potential esti-
mates of the form (1.10) were proven for the evolutionary p-Laplacian; see also
Sect. 1.7 for a discussion of the history of potential estimates. The proof of Theorem
1.3 will be performed in Sect. 4.

Theorem 1.3. Let u be a weak solution to the Cauchy–Dirichlet problem (1.6) for
the doubly nonlinear parabolic equation (1.1) in the sense of Definition 1.1 and sup-
pose that the ellipticity and growth properties (1.2) and (1.3) for the Carathéodory-
regular vector field A are in force. Then, for any λ ∈ (0, 1

n ], almost every z0 ∈ ET ,
and every parabolic cylinder Qr,θ (z0)�ET as introduced in (1.5), where r, θ > 0
additionally fulfill r2 ≤ θ in the case p = 2, the potential estimate

u(z0) ≤c

[(
1

rn+p

∫∫

Qr,θ (z0)
um−1+(1+λ)(p−1) dz

) 1
1+λ(p−1)

+ 1 +
[r p

θ

] 1
p+m−3 + Pμ

p(z0; r)
]

(1.10)

holds with a constant c ≡ c(n, m, p, C0, C1, λ). The parabolic potential Pμ
p will

be defined in Sect. 2.1.

A few remarks on the above theorem are necessary. First, the additional assump-
tion r2 ≤ θ in the case p = 2 guarantees that the condition Qr,ωr p (z0) ⊂ ET in
(2.2) is satisfied for ω = 1; see Sect. 2.1 for the details.

Next, the sharpness of the potential estimate (1.10) can be seen, for example, by
looking at the fundamental solution Bm,p, which is the explicit very weak solution
to the equation

∂t u − div(|u|m−1|Du|p−2Du) = δ in R
n × [0,∞)
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with δ being the Dirac measure charging the origin inRn+1. According to [14, Sect.
2] or [41, Sect. 12.2.1], the so-called Barenblatt solution is given by

Bm,p(x, t) = χ {t>0}(t) t−nς
[
C − k

∣∣
∣
x

tς

∣∣
∣

p
p−1

] p−1
m(p−1)−1

+ (1.11)

for any (x, t) ∈ R
n×R, whereς−1 := p+n[m(p−1)−1], k := m(p−1)−1

mp ς1/(p−1),
and C > 0. Our estimate shows the correct decay at the origin in the sense that it
reflects the same structure as Bm,p. More precisely, we can directly read off from
(1.11) that the Barenblatt solution satisfies

Bm,p(0, t0) � t
− n

p+n[m(p−1)−1]
0 (1.12)

for t0 > 0, and we will prove in Sect. 5 that the potential Pδ
p from Theorem 1.3

provides in (1.10) the same behavior at the origin as exhibited by Bm,p. Under this
point of view, it means that our pointwise estimate is the best possible.

Moreover, we can infer from (1.10) that u ∈ L∞
loc(ET ) for weak solutions

u to the Cauchy–Dirichlet problem (1.6), given that there exists a radius r > 0
such that z �→ Pμ

p(z; r) is locally bounded in ET . In particular, Theorem 1.3
allows us to formulate a sharp Lorentz space criterion, which ensures the local
boundedness of the potential Pμ

p(·; r) for small radii r under the assumption
μ ∈ Lq1,q2

loc

(
E; Lq1,∞

loc ((0, T ))
)
with q1 = n+p

p and q2 = n+p
n(p−1)+p ; see Sect. 2.4

for the definition and basic properties of Lorentz spaces and Sect. 6 for the rigorous
proof of the following statement.

Theorem 1.4. Suppose that the Carathéodory-regular vector field A fulfills the
conditions (1.2) and (1.3). If

μ ∈ Lq1,q2
loc

(
E; Lq1,∞

loc ((0, T ))
)

(1.13)

for q1 = n+p
p and q2 = n+p

n(p−1)+p , then, any weak solution u to the Cauchy–
Dirichlet problem (1.6) is locally uniformly bounded.

The condition (1.13) is satisfied for any Lebesgue function μ ∈ L
n+p
p +ε

loc (ET ),
where ε > 0 is arbitrary. For the p-Laplacian, optimal Lorentz space criteria
guaranteeing the local boundedness of solutions and their gradientswere established
in [8, Thm. 4.7, Thm. 4.9] in the elliptic setting, and [28, cond. (1.26)] treats the
local gradient boundedness in the parabolic context. Yet, up to now, no results
of that kind for solutions u to the evolutionary p-Laplacian are present in the
literature, at least to the author’s knowledge. The only computations related to that
subject can be found in [31, Rem. 1.3.2], however, the problem is that a Lorentz
space criterion with possibly negative exponents is deduced. It seems that major
modifications in their argumentation are necessary to ensure the well-definedness
of the condition appearing there. Our Theorem 1.4 gives the desired result, not
only for the evolutionary p-Laplacian, but even for doubly nonlinear parabolic
equations. The exponent q1 in (1.13) is optimal, which indicates the optimality of
the potential Pμ

p in (1.10). The minimality of q1 can be retrieved, for instance, from
[9, Rem. 3.1, p. 122].
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Coming back to Theorem 1.3, we note that the existence of a weak solution
cannot be guaranteed as long as a general Radon measure μ ∈ M+(ET ) without
any further qualities is considered. Using uα+1 in the regularity assumptions (see
Remark 1.2), the existence of less regular very weak solutions to the Cauchy–
Dirichlet problem (1.6) was established in [39] under the additional monotonicity
condition

[
A(x, t, u, ξ1) − A(x, t, u, ξ2)

] · (ξ1 − ξ2) ≥ C2|u|m−1|ξ1 − ξ2|p
for any u ∈ R, ξ1, ξ2 ∈ R

n , and almost every (x, t) ∈ ET with a fixed constant
C2 > 0. If actually μ ∈ Ls(ET ,R≥0) for

s = 1 + n

n(p + m − 2) + 2p
,

one can prove the existence of weak solutions in the sense of (1.9) (see [39, Rem.
4.3]), whereas [38] supplies the existence of weak solutions in the sense of Defini-
tion 1.1, provided that μ ∈ Ls̃(ET ,R≥0) for

s̃ = 1 + n

p
(
n + 2p+m−3

p+m−2

)− n
> s.

Hence, the pointwise bound (1.10) has to be interpreted as an a priori estimate. By
an approximation argument (see [4, Chap. 7]), the regularity result (1.10) can be
transferred to very weak solutions.

1.6. Proof strategies

Our proof techniques are an adaption of the methods launched in [23] for elliptic
p-Laplacian equations and [4–6,29–32] for the parabolic setting of equations of
p-Laplacian and porous medium type. Our result, Theorem 1.3, is in perfect accor-
dance with the ones from those papers and it is based on the notion of the parabolic
potential Pμ

p defined in Sect. 2.1 (see also [31]) and a sophisticated construction
of intrinsic cylinders (see (3.2)). The intrinsic scaling approach was introduced by
DiBenedetto (see [9]) and reflects the lack of homogeneity of the problem by rescal-
ing the dimensions of the cylinders to compensate the degeneracy of the considered
equation. In our context, i. e. in the case of a doubly nonlinear parabolic equation
like (1.4), the appropriate intrinsic correction is a1−md2−pr p, where a neutralizes
the degeneracy of u, and the factor d makes up for the absence of homogeneity
with regard to |Du|.

The proof of the pointwise estimate (1.10) consists of establishing a Cacciop-
poli type inequality on such intrinsic cylinders in Sect. 3 and choosing adequate
sequences of numbers a j and d j (see Sect. 4). Applying the energy estimate, we
will receive a uniform estimate from above for a j by iteration of recursive bounds.
One of the key ingredients when proving the latter is the growth bound (4.10),
which allows to replace d j by d j−1 and is, to the author’s knowledge, new in the
literature (a similar argument for a j was used in [5, Sect. 4.2]). In the end, we will
have shown that u(z0) can be bounded from above by the limit a∞, which will
prove Theorem 1.3.



Pointwise estimates via parabolic potentials 301

1.7. Potential estimates

The research on potential estimates was initiated by [22,23] with the investiga-
tion of solutions to stationary p-Laplacian equations. Since then, the outcome was
extended in various respects, which we will briefly comment on in the following.
In the case m = 1, p = 2, we almost arrive at the linear parabolic zero order
Riesz potential estimate from [13]. The only difference springs from the integral

c[ 1
rn+2

∫∫
Qr,θ

u1+λ dz] 1
1+λ , where the parameter λ > 0 can be chosen arbitrarily

small, but we are not permitted to let λ ↘ 0 because the constant c blows up in
the limit. However, this curiosity is not new and conforms with the prominent esti-
mates for p-Laplacian and porous medium type equations discussed below where
the classical bound cannot be completely recovered by letting λ ↘ 0 as well.
Next, for m = 1, our conclusion reduces to the known estimate from [31] for the
degenerate situation of the parabolic p-Laplacian equation. Earlier, an analogue for
time-independent Radon measures was derived in [32], and pointwise estimates in
the singular p-Laplacian context involving a Radon measure defined on E can be
found in [29]. Setting p = 2 in (1.10), the pointwise estimates for degenerate porous
medium type equations from [4,30] can be reattained. Note that our estimate and the
one from [4] do not comprise the sup-term from [30] on the right-hand side. Seen
from this perspective, they are more natural since the famous bound from [2] can be
retrieved in the case μ ≡ 0. In [37], the results for degenerate porous medium type
equations were generalized in the sense that vector fields A satisfying even more
universal structure conditions were treated, and, recently, also the singular range
for porous medium type equations could be coped with (see [5,6]). Nevertheless,
potential estimates for doubly nonlinear parabolic equations are not covered in the
literature up to now. Finally, we shall mention that all results presented here are
estimates for the solution u itself, and we refer the reader to [25–28] for gradient
estimates for the p-Laplacian, which we will not dwell on in this paper.

2. Preliminaries

In this section, we will provide various tools, which will be needed later in the
proof. We will display the parabolic potential initially introduced in [31], cite an
evolutionary version of theGagliardo–Nirenberg inequality, analyze some auxiliary
functions, define a time mollification procedure for functions in L1(ET ), and list
the basic knowledge as regards Lorentz function spaces.

2.1. Nonlinear parabolic potentials

For the construction of the parabolic potential Pμ
p , we first define the mapping

ip : (0,∞) → [0,∞] by

ip(ω) :=

⎧
⎪⎨

⎪⎩

(p − 2)ω− 1
p−2 for p > 2,

{∞ if ω ∈ (0, 1),
0 if ω ∈ [1,∞)

for p = 2
(2.1)
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and observe that p �→ ip(ω) is continuous for any fixedω > 0. Next, we remember
the definition of the parabolic cylinders from (1.5) and set

Dμ
p(z0; r) := inf

ω>0

{
ip(ω) + 1

(p−1)p−1 r
−nμ(Qr,ωr p (z0)) : Qr,ωr p (z0) ⊂ ET

}

(2.2)

for a point z0 ∈ ET and a radius r > 0. Obviously, for small radii r > 0 such that
Qr,r2(z0) ⊂ ET , we have Dμ

2 (z0; r) = r−nμ(Qr,r2(z0)). Moreover, for p > 2,
we note that the infimum in (2.2) is attained at some ω > 0 because the function
under the infimum is continuous in ω, and ω is bounded since ET is bounded. We
remark that our definition of Dμ

p differs in a factor 1
2 from the definition in [31] as

forward-backward cylinders of the form Br (x0) × (t0 − θ, t0 + θ) are considered
there, and the condition Qr,ωr p (z0) ⊂ ET in (2.2) is implicitly assumed also in
[31]. Furthermore, we note that the scaling factor r p in time is typical when dealing
with estimates for u as opposed to gradient estimates where the canonic scaling
is r2. Finally, we define the nonlinear parabolic potential Pμ

p with respect to the
Radon measure μ by

Pμ
p(z0; r) :=

∞∑

j=0

Dμ
p(z0; r j ), (2.3)

where the sequence of radii (r j ) j∈N0 is given by r j := r
2 j for any j ∈ N0. We

realize that

Pμ
2 (z0; r) =

∞∑

j=0

r−n
j μ(Qr j ,r2j

)

for any r > 0 small enough, which is why there exists some constant c > 1 such
that

c−1Pμ
2 (z0; r) ≤

∫ r

0

μ(Q�,�2)

�n

d�

�
≤ cPμ

2 (z0; r),

i. e. for p = 2, the parabolic potential Pμ
2 is equivalent to the truncated Riesz

potential from [4–6,13,28,30]. If μ is independent of time, the infimum in (2.2) is
attained at

ω = [ 1
(p−1)p−1 r

p−nμ(Br )
]− p−2

p−1

provided that r > 0 is such that Br (x0)× (t0 −ωr p, t0) ⊂ ET . Therefore, we have

Pμ
p(x0; r) =

∞∑

j=0

[
μ(Br j )

rn−p
j

] 1
p−1

,

which means that Pμ
p equals the elliptic Wolff potential as defined in [31], which is

in turn equivalent to the ellipticWolff potential in integral notation from [12,13,22,
23,27,29,32]. In the light of the foregoing comments, our definition of the parabolic
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potential Pμ
p is natural because it reduces to the parabolic Riesz potential as p ↘ 2

and, for any p ≥ 2, to the known elliptic Wolff potential when the Radon measure
μ is time-independent. Beyond that, the usage of the potentialPμ

p is justified in view
of the facts that it allows to retrieve fromTheorem 1.3 the behavior of the Barenblatt
solution (see Sect. 5) and grants sharp Lorentz space estimates (see Theorem 1.4).
Note that our potential does not depend on the value of m, which harmonizes with
the prior estimates for porous medium type equations (see [4–6,30]).

2.2. Auxiliary lemmata

In this section, we will study some auxiliary functions. Before that, we cite a
parabolic Sobolev embedding (cf. [9, Prop. 3.1, p. 7]), which we will employ in
Sect. 4.5.

Lemma 2.1. Let 1 < p < ∞, 0 < � < ∞, and Qr,θ (z0) ⊂ ET be a parabolic
cylinder as in (1.5) with z0 ∈ ET and r, θ > 0. Then, there exists a con-
stant c ≡ c(n, p, �) such that for every u ∈ L∞((t0 − θ, t0); L�(Br (x0))

) ∩
L p
(
(t0 − θ, t0);W 1,p(Br (x0))

)
there holds the Gagliardo–Nirenberg inequality

∫∫

Qr,θ

|u|q dz ≤ c

[
sup

t∈(t0−θ, t0)

∫

Br×{t}
|u|� dx

] p
n

·
∫∫

Qr,θ

[∣∣ 1
r u
∣∣p + |Du|p

]
dz, (2.4)

where q is given by q = p(n+�)
n .

Next, we define the auxiliary functionsGλ, Vλ andWλ, which will turn up later
in the proof.

Definition 2.2. For λ ∈ (0, 1) and s ≥ 0, we define the functions Gλ, Vλ and Wλ

by

Gλ(s) :=
∫ s

0

[
1 − (1 + σ)−λ

]
dσ = s − 1

1−λ

[
(1 + s)1−λ − 1

]
,

Vλ(s) :=
∫ s

0
σ

m−1
p (1 + σ)

− 1+λ
p dσ,

Wλ(s) :=
∫ s

0
(1 + σ)

− 1+λ
p dσ = p

p−1−λ

[
(1 + s)

p−1−λ
p − 1

]
.

We now mention one lemma for each of those auxiliary functions containing
some characteristics, which are required afterwards. The proofs can be adapted
from [4, Sect. 2.3].

Lemma 2.3. For any ε ∈ (0, 1] and s ≥ 0, there holds

s ≤ ε + cεGλ(s)

for a constant cε ≡ c(λ)
ε
.
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Lemma 2.4. For any ε ∈ (0, 1] and s ≥ 0, there hold

Vλ(s) ≤ p
p−2+m−λ

s
p−2+m−λ

p (2.5)

and

sm−1+(1+λ)(p−1) ≤ ε(1+λ)(p−1)sm−1 + cεVλ(s)
p[m−1+(1+λ)(p−1)]

p−2+m−λ , (2.6)

where the constant cε ≡ cε(m, p, λ, ε) blows up as ε
−(1+λ)

m−1+(1+λ)(p−1)
p−2+m−λ in the

limit ε ↘ 0.

Lemma 2.5. For any ε ∈ (0, 1] and s ≥ 0, there hold

Wλ(s) ≤ p
p−1−λ

s
p−1−λ

p (2.7)

and

s(1+λ)(p−1) ≤ ε(1+λ)(p−1) + cεWλ(s)
p(1+λ)(p−1)

p−1−λ , (2.8)

where the constant cε ≡ cε(p, λ, ε) blows up as ε
− (1+λ)2(p−1)

p−1−λ in the limit ε ↘ 0.

2.3. Mollification in time

We will now introduce an averaging process in time and on its basis develop the
regularized version (2.10) of the weak formulation (1.8).

Definition 2.6. For v ∈ L1(ET ), we define the mollification in time by

�v�h(·, t) := 1

h

∫ t

0
e
s−t
h v(·, s) ds

and its time reversed analogue by

�v�h(·, t) := 1

h

∫ T

t
e
t−s
h v(·, s) ds

for any h > 0 and t ∈ [0, T ]. Likewise, one can define the time regularization of a
vector-valued function v′ ∈ L1(ET ,Rn).

For the main properties of this mollification, we refer to [7, Appendix B] and
remark that �·�h has similar characteristics as �·�h . In particular, we remember that,
for u ∈ L p(ET ), we have ∂t�u�h ∈ L p(ET ), and the identity

∂t�u�h = 1
h (u − �u�h) (2.9)

holds. One can now derive the regularized variant (2.10) of the weak formulation
(1.8) (see [4, p. 3293] or [37, Thm. 2.10]). The time mollification procedure from
Definition 2.6 allows us to insert in (2.10) testing functions whose time deriva-
tive does not need to exist. In other words, Lemma 2.7 admits testing functions
containing the solution u itself, avoiding an appearance of the quantity ∂t u.
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Lemma 2.7. If u : ET → R is a weak solution to the Cauchy–Dirichlet problem
(1.6) in the sense of Definition 1.1, then, its time mollification �u�h fulfills the
averaged equation

∫∫

ET

[
∂t�u�hϕ + �A(x, t, u, Du)�h · Dϕ

]
dz =

∫∫

ET

�ϕ�h dμ (2.10)

for any testing function ϕ ∈ C∞(ET ) with compact support in ET .

2.4. Lorentz spaces

In this section, we assume that � ⊂ R
d is a measurable set, and Ld denotes the

Lebesgue measure on (Rd ,B(Rd)). For a measurable function u : � → R, we
define the nonincreasing rearrangement u∗ : [0,∞] → [0,∞] by

u∗(s) := inf
{
σ ≥ 0 : Ld({x ∈ � : |u(x)| > σ }) ≤ s

}

for any s ∈ [0,∞], and its average u∗∗ : [0,∞] → [0,∞] by

u∗∗(s) := 1

s

∫ s

0
u∗(s̃) ds̃

for any s ∈ [0,∞]. Obviously, u∗ is nonincreasing, which also implies

u∗∗(s) ≥ u∗(s) (2.11)

for any s ∈ [0,∞]. For 0 < p, q ≤ ∞, we say that u belongs to the Lorentz space
L p,q(�) if and only if the Lorentz quasi-norm

‖u‖L p,q (�) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[∫ ∞

0

[
s

1
p u∗∗(s)

]q ds
s

] 1
q

for 0 < q < ∞,

sup
s>0

s
1
p u∗∗(s) for q = ∞

is finite. As usual, L p,q
loc (�) indicates the space of functions with ‖u‖L p,q (�′) < ∞

for any �′ � �. In the case � = ET , we can take U ⊂ E and 0 ≤ t1 < t2 ≤ T ,
and define the Lorentz-Bochner space L p,q

(
U ; L p,q((t1, t2))

)
as the space of all

functions (u(x))(t) := u(x, t) such that
∥∥∥‖u‖L p,q ((t1,t2))

∥∥∥
L p,q (U )

< ∞.

As is customary, we identify u with u and do not distinguish between them in
the notation. Lorentz spaces refine the classical Lebesgue function spaces since
L p,p(�) = L p(�) for p > 1. For the interested reader, there is a wide-ranging
literature on the properties of Lorentz spaces; see for instance [1, Chap. 7]. In
particular, we will need the inclusions

L p,q(�) ⊂ L p,r (�) for 0 < p ≤ ∞, 0 < q ≤ r ≤ ∞,

Lr,s(�) ⊂ L p,q(�) for 0 < p < r ≤ ∞, 0 < q, s ≤ ∞,
(2.12)
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which can be found in [3, Sect. IV.4], and from [11, ineq. (33)], we cite the inequality
∫

A
|u(x)| dx ≤

∫ Ld (A)

0
u∗(s) ds (2.13)

for any measurable set A ⊂ �.

3. Energy estimates

In this chapter, we will establish a Caccioppoli type inequality. For that purpose,
let z0 = (x0, t0) ∈ ET be a fixed point, a, d > 0, and define

πp :=
{

(p − 2)p−2 if p > 2,
1 if p = 2.

(3.1)

This parameter will compensate the constant in (4.6) arising from the definition of
ip in (2.1). We will work on intrinsic parabolic cylinders with the structure

Q(a,d)
� (z0) := B�(x0) × �(a,d)

� (t0), (3.2)

where

�(a,d)
� (t0) := (t0 − t (a,d)

� , t0) := (t0 − πpa
1−md2−p�p, t0).

These cylinders are natural as they take into account the scaling behavior of
the considered doubly nonlinear parabolic equations. Henceforth, we will use
the abbreviations B� := B�(x0), �

(a,d)
� := �

(a,d)
� (t0), Q

(a,d)
� := Q(a,d)

� (z0),

Q(a,d)
�,+ := Q(a,d)

� ∩{u > a}, and B+
� (t) := B� ∩{u(·, t) > a}. Moreover, we define

the number

ν := 4− 1
p , (3.3)

where the necessity of choosing the value of ν thatwaywill become comprehensible
when proving (4.7). In the remainder of this chapter, we will show the following
inequality.

Lemma 3.1. Let πp as in (3.1), ν as in (3.3), and λ ∈ (0, 1). Suppose further that

z0 ∈ ET and �, a, d > 0 are such that Q(a,d)
� ⊂ ET . Then, for any weak solution

u to the Cauchy–Dirichlet problem (1.6), the energy estimate

sup
t∈�

(a,d)
ν�

∫

B+
ν�(t)

Gλ

(u − a

d

)
dx

+
∫∫

Q(a,d)
ν�,+

[
d p+m−3

∣∣∣DVλ

(u − a

d

)∣∣∣
p + am−1d p−2

∣∣∣DWλ

(u − a

d

)∣∣∣
p]

dz

≤ cd p−2

�p

∫∫

Q(a,d)
�,+

um−1
(
1 + u − a

d

)(1+λ)(p−1)
dz + cμ(Q(a,d)

� )

d
(3.4)

holds with a constant c ≡ c(p, C0, C1, λ), where Gλ, Vλ and Wλ are given in
Definition 2.2.
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Proof. In the regularized weak formulation (2.10), we choose the testing function
ϕ := ηpζεv, where

v := g(u) := 1 −
[
1 + (u − a)+

d

]−λ

and η ∈ C1
0(B�, [0, 1]) is such that η ≡ 1 on Bν� and |Dη| ≤ 2

(1−ν)�
on B�. The

cut-off function in time ζε ∈ W 1,∞
0 (R, [0, 1]) satisfies

ζε(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for t ∈ (−∞, t0 − t (a,d)
� ] ∪ [τ,∞),

4
3

(
t (a,d)
�

)−1[
t − (t0 − t (a,d)

� )
]

for t ∈ (t0 − t (a,d)
� , t0 − t (a,d)

ν� ),
1 for t ∈ [t0 − t (a,d)

ν� , τ − ε],
− 1

ε
(t − τ) for t ∈ (τ − ε, τ ),

where τ ∈ �
(a,d)
ν� (t0) and 0 < ε < τ − [t0 − t (a,d)

ν� ]. Furthermore, we denote by ζ

the pointwise limit of ζε as ε ↘ 0. In the sequel, wewill analyze all terms appearing
in Lemma 2.7. As g is increasing, the identity (2.9) implies

∂t�u�h
(
g(u) − g(�u�h)

) = 1
h

(
u − �u�h

)(
g(u) − g(�u�h)

) ≥ 0,

which yields
∫∫

Q(a,d)
�

∂t�u�hϕ dz ≥
∫∫

Q(a,d)
�

ηpζε∂t�u�hg(�u�h) dz

=
∫∫

Q(a,d)
�

ηpζε∂t

[ ∫ �u�h

a
g(σ ) dσ

]
dz

= −
∫∫

Q(a,d)
�

ηp∂tζε

∫ �u�h

a
g(σ ) dσ dz

= − 4am−1d p−2

3πp�p

∫ t0−t (a,d)
ν�

t0−t (a,d)
�

∫

B�

ηp
∫ �u�h

a
g(σ ) dσ dx dt

+ 1

ε

∫ τ

τ−ε

∫

B�

ηp
∫ �u�h

a
g(σ ) dσ dx dt

=:I(h) + II(h, ε).

First, we will turn towards the integral II(h, ε). Passing to the limits ε ↘ 0 and
h ↘ 0, we receive

lim
h↘0

lim
ε↘0

II(h, ε)

= lim
h↘0

lim
ε↘0

−
∫ τ

τ−ε

∫

B�

ηp
∫ �u�h

a
g(σ ) dσ dx dt

= lim
h↘0

∫

B�

ηp
∫ �u�h(·,τ )

a

[
1 −

(
1 + (σ − a)+

d

)−λ
]
dσ dx
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= lim
h↘0

d
∫

B�

ηp

[(
�u�h(·, τ ) − a

)
+

d
− 1

1−λ

((
1 +

(
�u�h(·, τ ) − a

)
+

d

)1−λ

− 1

)]

dx

= d
∫

B�

ηp

[(
u(·, τ ) − a

)
+

d
− 1

1−λ

((
1 +

(
u(·, τ ) − a

)
+

d

)1−λ

− 1

)]

dx

= d
∫

B+
� (τ )

ηpGλ

(u − a

d

)
dx

for a. e. τ ∈ �
(a,d)
ν� due to the Lebesgue differentiation theorem. Next, in order to

find a bound for the term I(h), we note that η ≤ 1 and
∣∣
∣∣

∫ �u�h

a
g(σ ) dσ

∣∣
∣∣ ≤ (

�u�h − a
)
+.

Indeed, if z ∈ Q(a,d)
� is such that �u�h(z) < a, the function g vanishes on the whole

interval
(
�u�h(z), a

)
, and otherwise, we can estimate |g| ≤ 1. Now, we can treat

I(h) by using the above inequality and subsequently letting h ↘ 0. This results in

lim
h↘0

|I(h)| ≤ lim
h↘0

cam−1d p−2

�p

∫ t0

t0−t (a,d)
�

∫

B�

(
�u�h − a

)
+ dx dt

= cd p−1

�p

∫∫

Q(a,d)
�,+

am−1 u − a

d
dz

≤ cd p−1

�p

∫∫

Q(a,d)
�,+

um−1
(
1 + u − a

d

)(1+λ)(p−1)
dz

with a constant c ≡ c(p), where we observe that u > a on Q(a,d)
�,+ and (1+ λ)(p−

1) ≥ 1 for the last step. In the following, we will deal with the diffusion part from
(2.10). Again building the limits ε ↘ 0 and h ↘ 0, we get

lim
h↘0

lim
ε↘0

∫∫

Q(a,d)
�,+

�A(x, t, u, Du)�h · Dϕ dz

=
∫∫

Q(a,d)
�,+

ηpζA(x, t, u, Du) · Dv dz

+ p
∫∫

Q(a,d)
�,+

ηp−1ζvA(x, t, u, Du) · Dη dz

=: III + IV.

Before considering the term IV, we will treat the integral III. Having in mind the
ellipticity assumption (1.2), we compute for the latter

III = λ

d

∫∫

Q(a,d)
�,+

ηpζ
(
1 + u − a

d

)−(1+λ)

A(x, t, u, Du) · Du dz

≥ λC0

d

∫∫

Q(a,d)
�,+

ηpζ
um−1|Du|p

(1 + u−a
d )1+λ

dz.
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For the other summand, we exploit in turn the fact that |v| ≤ 1, the growth condition
(1.3), the bound |Dη| ≤ 2

(1−ν)�
, Young’s inequality, and |ζ | ≤ 1 to conclude that

|IV| ≤p
∫∫

Q(a,d)
�,+

ηp−1ζv|A(x, t, u, Du)||Dη| dz

≤ 2pC1

(1 − ν)�

∫∫

Q(a,d)
�,+

ηp−1ζum−1|Du|p−1 dz

≤ 1

p′
λC0

d

∫∫

Q(a,d)
�,+

ηpζ
um−1|Du|p

(1 + u−a
d )1+λ

dz

+ cd p−1

�p

∫∫

Q(a,d)
�,+

um−1
(
1 + u − a

d

)(1+λ)(p−1)
dz

with a constant c ≡ c(p, C0, C1, λ). It remains to estimate the integral involving
the Radon measure μ, where we use |ϕ| ≤ 1 to derive

lim
h↘0

lim
ε↘0

∫∫

Q(a,d)
�,+

�ϕ�h dμ ≤ μ
(
Q(a,d)

�,+
)
.

Combining the results obtained so far and modifying the domains of integration of
the left-hand side integrals in a way that we can discard the cut-off functions η and
ζ , we receive

∫

B+
ν�(τ )

Gλ

(u − a

d

)
dx + λC0

pd2

∫ τ

t0−t (a,d)
ν�

∫

B+
ν�(t)

um−1|Du|p
(1 + u−a

d )1+λ
dx dt

≤ cd p−2

�p

∫∫

Q(a,d)
�,+

um−1
(
1 + u − a

d

)(1+λ)(p−1)
dz + μ(Q(a,d)

� )

d
(3.5)

for a. e. τ ∈ �
(a,d)
ν� with a constant c ≡ c(p, C0, C1, λ). Building the supremum

over all τ in the first and letting τ ↗ t0 in the second term, we infer that

sup
t∈�

(a,d)
ν�

∫

B+
ν�(t)

Gλ

(u − a

d

)
dx + 1

d2

∫∫

Q(a,d)
ν�,+

um−1|Du|p
(1 + u−a

d )1+λ
dz

can be bounded from above up to a constant by the right-hand side of (3.5). Then,
taking into account that on the set Q(a,d)

ν�,+ there holds

d p+m−3
∣∣∣DVλ

(u − a

d

)∣∣∣
p + am−1d p−2

∣∣∣DWλ

(u − a

d

)∣∣∣
p

=
[
d p+m−3

(u − a

d

)m−1 + am−1d p−2
](

1 + u − a

d

)−(1+λ) |Du|p
d p

= [
(u − a)m−1 + am−1]

(
1 + u − a

d

)−(1+λ) |Du|p
d2

≤ 2um−1
(
1 + u − a

d

)−(1+λ) |Du|p
d2

,

we can rewrite the diffusion term, and (3.4) is proven. ��
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4. Potential estimates: the proof of Theorem 1.3

Proof of Theorem 1.3. In this section, we will perform the proof of Theorem 1.3.
We will proceed as described in Sect. 1.6.

4.1. Choice of parameters

Let z0 = (x0, t0) ∈ ET be an arbitrary point and r, θ > 0 such that Qr,θ ≡
Qr,θ (z0) � ET with the additional assumption r2 ≤ θ when p = 2. Moreover,
let λ ∈ (0, 1

n ], and κ ∈ (0, 1) be a fixed parameter, which will be specified later.
For j ∈ N0, we define radii r j := r

2 j and determine positive numbers a j and d j−1
inductively as follows. To get in a position where we can prove certain cylinder
inclusions (see Sect. 4.2), we set

d−1 := 2
[
πp

r p

θ

] 1
p+m−3

and a0 := max

{
1,
[
πp

r p

θ

] 1
p+m−3

}
(4.1)

for πp as in (3.1), and suppose for some j ∈ N0 that ak and dk−1 have already
been selected for any 0 ≤ k ≤ j . In order to choose a j+1 and d j , we recall the
definitions of ip and Dμ

p from (2.1) and (2.2), and let

ω j := sup
{
ω > 0 : ip(ω) + 1

(p−1)p−1 (
1
ν
r j )

−nμ
( 1

ν
Qr j ,ωr

p
j

) = Dμ
p(z0; 1

ν
r j ),

1
ν
Qr j ,ωr

p
j

⊂ ET
}

(4.2)

with ν as in (3.3). We remark that, for a fixed j ∈ N0, such a number ω j exists by
the very definition of Dμ

p , and ω j is uniformly bounded with respect to j by the
assumption 1

ν
Qr j ,ωr

p
j

⊂ ET and the fact that r j ≤ r for any j ∈ N0. Moreover, we
set

d̂ j := max
{ 1
2d j−1, ip(ω j )

}

and define

Q(d)
j := Bj × �

(d)
j := Br j (x0) × (t0 − πpa

1−m
j d2−pr pj , t0)

and

K j (d) := d p−2

rn+p
j

∫∫

Q(d)
j ∩{u>a j }

um−1
(u − a j

d

)(1+λ)(p−1)
dz (4.3)

for d ≥ d̂ j . Note that K j (d) → 0 as d → ∞. Now, if K j (d̂ j ) ≤ κ , we define
d j := d̂ j , whereas in the situation thatK j (d̂ j ) > κ holds true, we first observe that
d �→ K j (d) is a continuous anddecreasing function.Thus, there exists some d̂ > d̂ j

such that K j (d̂) = κ , and we choose d j := d̂ . In the latter case, we obviously
get d j > d̂ j and K j (d j ) = κ . Having fixed d j , we introduce the abbreviations

Q j := Q
(d j )

j , � j := �
(d j )

j , L j := Q j ∩ {u > a j }, 1
ν
L j := ( 1

ν
Q j ) ∩ {u > a j },



Pointwise estimates via parabolic potentials 311

and L j (t) := Bj ∩ {u(·, t) > a j } for t ∈ � j . Eventually, we set a j+1 := a j + d j

and become aware of the fact that

K j (d j ) = d p−2
j

rn+p
j

∫∫

L j

um−1
(u − a j

d j

)(1+λ)(p−1)
dz ≤ κ. (4.4)

4.2. Cylinder inclusions

To start with, we claim that

1
ν
Q j ⊂ 1

ν
Qr j ,ω j r

p
j

⊂ ET (4.5)

for any j ∈ N0, where ν is as in (3.3). The second inclusion is obvious from the
definition of ω j from (4.2), and, since a j ≥ a0 ≥ 1 and d j ≥ ip(ω j ), the first
inclusion is a consequence of

πpa
1−m
j d2−p

j r pj ≤ πpip(ω j )
2−pr pj ≤ ω j r

p
j . (4.6)

Next, we will show that

Q j+1 ⊂ νQ j (4.7)

for any j ∈ N0 and ν as in (3.3). Clearly, there holds Br j+1 ⊂ Bνr j , and, as

a j+1 ≥ a j , d j+1 ≥ d̂ j+1 ≥ 1
2d j , and r j+1 = 1

2r j , we also know that

a1−m
j+1 d

2−p
j+1 r

p
j+1 ≤ a1−m

j

( 1
2d j

)2−p( 1
2r j

)p = a1−m
j d2−p

j (νr j )
p

such that (4.7) is proven. Finally, we will argue that

Q j ⊂ Qr,θ (4.8)

for any j ∈ N0. By an inductive application of (4.7), we find that Q j ⊂ Q0. Hence,
(4.8) follows once we have asserted Q0 ⊂ Qr,θ . However, this relation results from
the inequality

πpa
1−m
0 d2−p

0 ≤ πpa
1−m
0

( 1
2d−1

)2−p ≤ πp

[
πp

r p

θ

] 1−m
p+m−3

[
πp

r p

θ

] 2−p
p+m−3 = θ

r p
,

where we have inserted (4.1).
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4.3. Growth bounds for dj

In this section, we will assume that

K j (d j ) = κ (4.9)

and establish the growth bound

d j ≤ c∗d j−1 (4.10)

for any j ∈ N, where c∗ := 2
n+p

(1+λ)(p−1)−(p−2) > 1 is a constant. For that purpose, we
use the definition of K j from (4.3) and the facts that r j = 1

2r j−1 and a j ≥ a j−1 to
compute

K j (c
∗d j−1) = (c∗d j−1)

p−2

rn+p
j

∫∫

Q
(c∗d j−1)
j ∩{u>a j }

um−1
( u − a j

c∗d j−1

)(1+λ)(p−1)
dz

≤ d p−2
j−1

rn+p
j−1

∫∫

Q
(c∗d j−1)
j ∩{u>a j }

um−1
(u − a j−1

d j−1

)(1+λ)(p−1)
dz.

Now, if we keep in mind that Bj ⊂ Bj−1, a
1−m
j (c∗d j−1)

2−pr pj ≤ a1−m
j−1 d

2−p
j−1 r

p
j−1,

and {u > a j } ⊂ {u > a j−1}, the last integral can be bounded from above by
K j−1(d j−1), which is in turn smaller than or equal to κ by virtue of (4.4). Thus,
in view of (4.9), we have proven thatK j (c∗d j−1) ≤ K j (d j ), which implies (4.10)
since K j is a decreasing function.

4.4. Preliminary estimates

For any j ∈ N, the estimates

u − a j−1

d j−1
= u − a j

d j−1
+ 1 ≥ 1 (4.11)

and

u − a j

d j
≤ u − a j−1

d j
≤ 2

u − a j−1

d j−1
(4.12)

hold true on the set {u > a j } by the definitions of a j and d j . Until the end of this
section, wewill again assume that (4.9) is valid for any j ∈ N. Hence, due to (4.11),
(4.10), the induction hypotheses r j = 1

2r j−1 and L j ⊂ L j−1, and the inequality
(4.4), we have

d p−2
j

rn+p
j

∫∫

L j

um−1 dz ≤ d p−2
j

rn+p
j

∫∫

L j

um−1
(u − a j−1

d j−1

)(1+λ)(p−1)
dz

≤ cd p−2
j−1

rn+p
j−1

∫∫

L j−1

um−1
(u − a j−1

d j−1

)(1+λ)(p−1)
dz

≤ cκ (4.13)
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with a constant c ≡ c(n, p, λ). Next, we note that, by (4.5), the cylinder 1
ν
Q j is

contained in ET and apply the energy estimate (3.4) on 1
ν
Q j with the parameters

(a, d) replaced by (a j , d j ), where j ∈ N. Then, (3.4) reads

sup
t∈� j

∫

L j (t)
Gλ

(u − a j

d j

)
dx

+
∫∫

L j

[
d p+m−3
j

∣∣∣DVλ

(u − a j

d j

)∣∣∣
p + am−1

j d p−2
j

∣∣∣DWλ

(u − a j

d j

)∣∣∣
p]

dz

≤ cd p−2
j

r pj

∫∫

1
ν
L j

um−1
(
1 + u − a j

d j

)(1+λ)(p−1)
dz + cμ( 1

ν
Q j )

d j

≤ cd p−2
j−1

r pj−1

∫∫

L j−1

um−1
(
3
u − a j−1

d j−1

)(1+λ)(p−1)
dz + cμ( 1

ν
Q j )

d j

≤ crnj κ + cμ( 1
ν
Q j )

d j
(4.14)

with a constant c ≡ c(n, p, C0, C1, λ), where, in the second last step, we have
used (4.10), (4.11) and (4.12), and enlarged the domain of integration. After that,
the final bound is an easy consequence of (4.4).

4.5. Recursive bounds for d j

In this section, we will show that

d j ≤ 1
2d j−1 + cDμ

p

(
z0; 1

ν
r j
)

(4.15)

for any j ∈ N and

d0 ≤ 1
2d−1 + c

[
1

rn+p

∫∫

Qr,θ

um−1+(1+λ)(p−1) dz

] 1
1+λ(p−1)

+ cDμ
p(z0; 1

ν
r) (4.16)

with a constant c ≡ c(n, m, p, C0, C1, λ), where ν is defined in (3.3). First, we
fix j ∈ N and prove (4.15). To that end, we can assume without loss of generality
that d j > d̂ j since otherwise we had d j = d̂ j such that either d j = 1

2d j−1 or
d j = ip(ω j ) holds, which both instantly yield (4.15). However, as a result of
starting from the premise that d j > d̂ j , we can expect d j > 1

2d j−1, d j > ip(ω j ),
and (4.9) to be valid. Therefore, we can proceed as follows:

κ = K j (d j ) = d p−2
j

rn+p
j

∫∫

L j

[
(u − a j ) + a j

]m−1
(u − a j

d j

)(1+λ)(p−1)
dz

≤ cd p+m−3
j

rn+p
j

∫∫

L j

(u − a j

d j

)m−1+(1+λ)(p−1)
dz
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+ cam−1
j d p−2

j

rn+p
j

∫∫

L j

(u − a j

d j

)(1+λ)(p−1)
dz

=: J + J̃ , (4.17)

where c ≡ c(m) is a constant. To begin with, we estimate the integral J and use
(2.6) for some fixed ε ∈ (0, 1) and (4.13) to get

J ≤cd p+m−3
j

rn+p
j

[
ε(1+λ)(p−1)

∫∫

L j

(u − a j

d j

)m−1
dz

+ cε

∫∫

L j

Vλ

(u − a j

d j

) p[m−1+(1+λ)(p−1)]
p−2+m−λ

dz

]

≤cε(1+λ)(p−1)κ + cεd
p+m−3
j

rn+p
j

∫∫

Q j

Vλ

(
(u−a j )+

d j

) p[m−1+(1+λ)(p−1)]
p−2+m−λ

dz

with constants c ≡ c(n, m, p, λ) and cε ≡ cε(m, p, λ, ε). Applying the
Gagliardo–Nirenberg inequality (2.4) with � = pnλ

p−2+m−λ
, we find

J ≤cε(1+λ)(p−1)κ + cε

[
sup
t∈� j

1
rnj

∫

Bj×{t}

∣∣∣Vλ

(
(u−a j )+

d j

)∣∣∣
pnλ

p−2+m−λ
dx

] p
n

· d
p+m−3
j

rnj

∫∫

Q j

[
1
r pj

∣
∣∣Vλ

(
(u−a j )+

d j

)∣∣∣
p +

∣
∣∣DVλ

(
(u−a j )+

d j

)∣∣∣
p
]
dz

=:cε(1+λ)(p−1)κ + cεJ1(J2 + J3) (4.18)

with constants c ≡ c(n, m, p, λ) and cε ≡ cε(n, m, p, λ, ε) with the obvious
labeling of J1, J2 and J3. In the sequel, we will separately estimate the appearing
terms, starting with J1. Employing (2.5), the Hölder inequality (note that λ ≤ 1

n ),
Lemma 2.3 for some ε1 ∈ (0, 1) to be chosen later, and (4.14), we arrive at

J1 ≤ c

[
sup
t∈� j

1

rnj

∫

L j (t)

(u − a j

d j

)λn
dx

] p
n

≤ c

[
sup
t∈� j

1

rnj

∫

L j (t)

u − a j

d j
dx

]pλ

≤ cε pλ
1 + cε−pλ

1

[
sup
t∈� j

1

rnj

∫

L j (t)
Gλ

(u − a j

d j

)
dx

]pλ

≤ cε pλ
1 + cε−pλ

1

[
κ + μ( 1

ν
Q j )

d jrnj

]pλ

(4.19)

with a constant c ≡ c(n, m, p, C0, C1, λ). The next step is to estimate J2 via
(2.5), (4.12), and (4.10). Additionally enlarging the domain of integration and the
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exponent from p−1−λ to (1+λ)(p−1) (recall that (4.11) holds) and exploiting
(4.4), we deduce

J2 ≤ cd p+m−3
j

rn+p
j

∫∫

L j

(u − a j

d j

)p−2+m−λ

dz

≤ cd p−2
j−1

rn+p
j−1

∫∫

L j

um−1
(u − a j−1

d j−1

)p−1−λ

dz

≤ cd p−2
j−1

rn+p
j−1

∫∫

L j−1

um−1
(u − a j−1

d j−1

)(1+λ)(p−1)
dz

≤ cκ (4.20)

with a constant c ≡ c(n, m, p, λ). Finally, we use (4.14) to obtain

J3 = d p+m−3
j

rnj

∫∫

L j

∣∣∣DVλ

(u − a j

d j

)∣∣∣
p
dz ≤ c

[
κ + μ( 1

ν
Q j )

d jrnj

]

with a constant c ≡ c(n, p, C0, C1, λ). Inserting the estimates for J1, J2 and J3
in (4.18), we conclude that

J ≤ cε(1+λ)(p−1)κ + cε

[
ε
pλ
1 + ε

−pλ
1

(
κ + μ( 1

ν
Q j )

d jrnj

)pλ][
κ + μ( 1

ν
Q j )

d jrnj

]

with constants c ≡ c(n, m, p, λ) and cε ≡ cε(n, m, p, C0, C1, λ, ε). Our next
aim is to analogously estimate the term J̃ from (4.17). An application of (2.8),
(4.13), and the Gagliardo–Nirenberg inequality (2.4) with the choice � = pnλ

p−1−λ
yields

J̃ ≤cε(1+λ)(p−1)κ + cεa
m−1
j d p−2

j

rn+p
j

∫∫

Q j

Wλ

(
(u−a j )+

d j

) p(1+λ)(p−1)
p−1−λ

dz

≤cε(1+λ)(p−1)κ + cε

[
sup
t∈� j

1
rnj

∫

Bj×{t}

∣
∣∣Wλ

(
(u−a j )+

d j

)∣∣∣
pnλ

p−1−λ
dx

] p
n

· a
m−1
j d p−2

j

rnj

∫∫

Q j

[
1
r pj

∣∣
∣Wλ

(
(u−a j )+

d j

)∣∣
∣
p +

∣∣
∣DWλ

(
(u−a j )+

d j

)∣∣
∣
p
]
dz

=:cε(1+λ)(p−1)κ + cεJ̃1(J̃2 + J̃3)

with constants c ≡ c(n, m, p, λ) and cε ≡ cε(n, m, p, λ, ε). Estimating J̃1 via
(2.7), we see that this integral can be bounded as in (4.19). Moreover, using (2.7)
and the fact that we can replace a j by u, we can copy the arguments from (4.20) to
find that the bound for J2 is valid also for J̃2, and J̃3 can be estimated in the same
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manner as J3. Therefore, if we plug the previous results in (4.17), we have shown
that

κ ≤cε(1+λ)(p−1)κ + cε

[
ε
pλ
1 + ε

−pλ
1

(
κ + μ( 1

ν
Q j )

d jrnj

)pλ][
κ + μ( 1

ν
Q j )

d jrnj

]

≤[cε(1+λ)(p−1) + cεε
pλ
1 + cεε

−pλ
1 κ pλ]κ

+ cεε
−pλ
1

[
μ( 1

ν
Q j )

d jrnj
+
(

μ( 1
ν
Q j )

d jrnj

)1+pλ]

with constants c ≡ c(n, m, p, λ) and cε ≡ cε(n, m, p, C0, C1, λ, ε). Choosing
ε such that cε(1+λ)(p−1) = 1

6 , then ε1 such that cεε
pλ
1 = 1

6 , and lastly κ such that

cεε
−pλ
1 κ pλ = 1

6 ensures that ε, ε1, κ ∈ (0, 1) only depend on n, m, p, C0, C1
and λ, and the preceding inequality simplifies to

κ ≤ c

[
μ( 1

ν
Q j )

d jrnj
+
(

μ( 1
ν
Q j )

d jrnj

)1+pλ]
(4.21)

with a constant c ≡ c(n, m, p, C0, C1, λ). Distinguishing the cases μ( 1
ν
Q j ) ≤

d jrnj and μ( 1
ν
Q j ) > d jrnj , we observe that (4.21) and (4.5) imply

d j ≤ cr−n
j μ

( 1
ν
Qr j ,ω j r

p
j

)

such that (4.15) follows. In the remainder of this section, we will explain the bound
(4.16) for d0. Exactly as in the argument for j ≥ 1, we can assume that d0 > d̂0. In
particular, this means that we can take for granted that we haveK0(d0) = κ , which
is equivalent to

d(1+λ)(p−1)−(p−2)
0 = 1

κrn+p

∫∫

L0

um−1(u − a0)
(1+λ)(p−1) dz.

We note that (1 + λ)(p − 1) − (p − 2) = 1 + λ(p − 1) is positive and use the
estimate u − a0 < u, valid on the domain of integration. Furthermore, we employ
(4.8) and recall that κ only depends on n, m, p, C0, C1 and λ. Hence, we receive

d0 ≤ c

[
1

rn+p

∫∫

Qr,θ

um−1+(1+λ)(p−1) dz

] 1
1+λ(p−1)

,

which proves (4.16).

4.6. Potential estimates

For any � ≥ 2, we derive

a� − a0 =
�−1∑

j=0

d j ≤ d0 + 1
2

�−2∑

j=0

d j + c
�−1∑

j=1

Dμ
p

(
z0; 1

ν
r j
)

≤ d0 + 1
2a�−1 + cPμ

p

(
z0; 1

ν
r
)
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with a constant c ≡ c(n, m, p, C0, C1, λ) by the definition of a j+1 = a j +d j and
(4.15). Besides, appealing to the fact that a�−1 ≤ a�, the recursive bound (4.16),
and the definition (4.1) of a0, we infer

a� ≤ 2 + 4
[
πp

r p

θ

] 1
p+m−3 + c

[
1

rn+p

∫∫

Qr,θ

um−1+(1+λ)(p−1) dz

] 1
1+λ(p−1)

+ cPμ
p

(
z0; 1

ν
r
)
.

Estimating r by 1
ν
r and subsequently substituting 1

ν
r by r , we have shown that

a∞ := lim
�→∞ a�

≤ c

[
1 +

[r p

θ

] 1
p+m−3 +

[
1

rn+p

∫∫

Qr,θ

um−1+(1+λ)(p−1) dz

] 1
1+λ(p−1) + Pμ

p(z0; r)
]

is finite such that d j = a j+1−a j → 0 as j → ∞. Now, pick an arbitrary Lebesgue
point z0 of u. Then, due to (4.4), we find

(u(z0)

a∞

)m−1(
u(z0) − a∞

)(1+λ)(p−1)
+

= lim
j→∞ −−

∫∫

Q j

( u

a j

)m−1(
u − a j

)(1+λ)(p−1)
+ dz

= c lim
j→∞ d(1+λ)(p−1)

j

d p−2
j

rn+p
j

∫∫

L j

um−1
(u − a j

d j

)(1+λ)(p−1)
dz

≤ cκ lim
j→∞ d(1+λ)(p−1)

j ,

where c ≡ c(n, p) is a constant. Since d j → 0 as j → ∞, we have u(z0) ≤ a∞,
and Theorem 1.3 is proven. ��

5. Comparison with the Barenblatt solution

In this section, we will consider the model equation

∂t u − div(|u|m−1|Du|p−2Du) = δ, (5.1)

where δ is the Dirac measure on R
n+1 charging the origin. We want to test our

potential estimate (1.10) against the explicit very weak solution to (5.1), the so-
called Barenblatt solution Bm,p given in (1.11), by analyzing the behavior at the
origin. Since, for p = 2, the potential Pμ

2 is equivalent to the truncated Riesz
potential, and the problem reduces to the porous medium situation, which was
already studied in [4, p. 3289], we will concentrate on the case p > 2 here. For
z0 = (0, t0) with some t0 > 0, we introduce the abbreviations

u := Bm,p(0, t0), σ := m(p − 1) − 1 and b(r) := δ(Qr,u−σ r p (z0))

u2−prn
,
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and choose ω := b(r)−
p−2
p−1 in (2.2), where r > 0 is such that Qr,ωr p (z0) ⊂ ET .

By the definition of the nonlinear parabolic potential from (2.3), we have

Pμ
p(z0; r) ≤ c

∞∑

j=0

[
b(r j )

1
p−1 + r−n

j δ
(
Q

r j ,b(r j )
− p−2

p−1 r pj

(z0)
)]

with a constant c ≡ c(p), where r j = r
2 j for any j ∈ N0. Estimating the sum by

an integral, we obtain

Pμ
p(z0; r) ≤ c

∫ ∞

0

[
u

p−2
p−1 �

− n
p−1 δ

(
Q�,u−σ �p (z0)

)+ �−nδ
(
Q

�,b(�)
− p−2

p−1 �p
(z0)

)]d�

�
.

Now, the origin is contained in the cylinder Q�,u−σ �p (z0) if and only if � > p
√
uσ t0.

Therefore, the above integral simplifies to

∫ ∞
p√uσ t0

[
u

p−2
p−1 �

− n
p−1 + �−nδ

(
Q

�,b(�)
− p−2

p−1 �p
(z0)

)]d�

�

≤ u
p−2
p−1

∫ ∞
p√uσ t0

�
− n

p−1−1 d� +
∫ ∞

p√uσ t0
�−n−1 d�,

where we have trivially estimated the Dirac measure by 1 in the second step. Hence,
we deduce the bound

Pμ
p(z0; r) ≤ cmax

{
t
− n

p(p−1)
0 u

p(p−2)−n[m(p−1)−1]
p(p−1) , t

− n
p

0 u− n[m(p−1)−1]
p

}

with a constant c ≡ c(n, p). Considering in (1.10) only the bound from above
coming from the potential Pμ

p , we infer that

u ≤ ct
− n

p+n[m(p−1)−1]
0

such that our potential estimate yields the same decay as displayed in (1.12) by the
Barenblatt solution.

6. Lorentz space criteria: the proof of Theorem 1.4

Proof of Theorem 1.4. The local boundedness of u follows from Theorem 1.3 once
we have established the local uniform boundedness of Pμ

p . As, for p = 2, the
potential Pμ

p is equivalent to the well-understood Riesz potential, we will not dwell
on this case and only deal with p > 2 in this section. Here, we assume that the
measure μ has some density μ(x, t)dx dt , which we do not rename. For a fixed
0 < ε � 1 and a point (x0, t0) ∈ ET , we will consider r > 0 and ω > 0 both
small enough such that Br (x0) � E and (t0 − ωr p, t0) ⊂ (ε, T − ε) =: Jε.
More precisely, we will choose ω in dependence on r in the proof and write wr

to emphasize the dependence on r . In view of (2.2), we will have to ensure the
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existence of a number R > 0 such that Qr,ωr r p (z0) � ET holds for any r ∈ (0, R).
First, by (2.13), we deduce

∫ t0

t0−ωr r p
μ(x, t) dt ≤ ωr r

pμ∗∗(x, ωr r
p) ≤ (ωr r

p)
n

n+p ‖μ‖Lq1,∞(Jε)(x)

for any 0 < ωr < t0−ε
r p and x ∈ Br (x0), where q1 = n+p

p . From the above
inequality, we infer by another application of (2.13) that

r−nμ(Qr,ωr r p ) = r−n
∫

Br (x0)

∫ t0

t0−ωr r p
μ(x, t) dt dx

≤ αn(ωr r
p)

n
n+p ‖μ‖∗∗

Lq1,∞(Jε)
(αnr

n)

with αn = Ln(B1(0)) being the volume of the unit ball. Inserted in (2.2), this gives

Dμ
p(z0; r) ≤ c inf

ω>0

{
ω

− 1
p−2 + (ωr p)

n
n+p ‖μ‖∗∗

Lq1,∞(Jε)
(αnr

n) : Qr,ωr p (z0)⊂ ET

}

(6.1)

with a constant c ≡ c(n, p). Now, let −p < ψ1 < 0 and ψ2 < 0 be constants,
which will be specified later in dependence on n and p. Obviously, �p+ψ1 vanishes
in the limit � ↘ 0. Further, we may assume without loss of generality that there
exists some number �̄ > 0 such that ‖μ‖∗

Lq1,∞(Jε)
(αn�

n) is strictly positive for
any � ∈ [0, �̄] since otherwise, we had ‖μ‖∗

Lq1,∞(Jε)
≡ 0 by monotonicity. Then,

due to (2.11), we also know that ‖μ‖∗∗
Lq1,∞(Jε)

(αn�
n) > 0 for any � ∈ [0, �̄]. As a

consequence, we see that

�p+ψ1
[‖μ‖∗∗

Lq1,∞(Jε)
(αn�

n)
]ψ2 ↘ 0 as � ↘ 0.

Therefore, we can find a radius R > 0 such that the choice

ωr = rψ1
[‖μ‖∗∗

Lq1,∞(Jε)
(αnr

n)
]ψ2 (6.2)

is admissible in (6.1) for any r ∈ (0, R). To obtain an upper bound for the potential
Pμ
p , we insert ωr as in (6.2) in (6.1) and integrate the inequality with respect to r .

Then, the first term on the right-hand side of (6.1) reads
∫ r

0

[
s− ψ1

p−2
[‖μ‖∗∗

Lq1,∞(Jε)
(αns

n)
]− ψ2

p−2
]ds
s

≤ c
∫ ∞

0

[
s

ψ1
nψ2 ‖μ‖∗∗

Lq1,∞(Jε)
(s)
]− ψ2

p−2 ds

s

= c
∥∥∥‖μ‖Lq1,∞(Jε)

∥∥∥
− ψ2

p−2

L
nψ2
ψ1

,− ψ2
p−2 (Br (x0))

=: J1 (6.3)

with a constant c ≡ c(n, p, ψ1), where the inequality follows by an easy substi-
tution. Analogously, the other summand from (6.1) can be estimated from above
by
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c
∫ ∞

0

[
s

(p+ψ1)
/[

(n+p)(1+ n
n+p ψ2)

]

‖μ‖∗∗
Lq1,∞(Jε)

(s)
]1+ n

n+p ψ2 ds

s

= c
∥∥∥‖μ‖Lq1,∞(Jε)

∥∥∥
1+ n

n+p ψ2

L
(n+p)(1+ n

n+p ψ2)/(p+ψ1) , 1+ n
n+p ψ2 (Br (x0))

=: J2 (6.4)

with a constant c ≡ c(n, p, ψ1). From (6.3) and (6.4),we can conclude the estimate

Pμ
p(z0; r) =

∞∑

j=0

Dμ
p(z0; r j ) ≤ J1 + J2 (6.5)

for the potential Pμ
p . Note that the parametersψ1 andψ2 are free up to now. Our aim

is to establish conditions for those parameters which admit a uniform bound for Pμ
p

in terms of the Lorentz quasi-norm of μ with optimal exponents. More precisely,
we want to estimate J1 and J2 by some positive power of

∥
∥∥‖μ‖Lq1,∞(Jε)

∥
∥∥
Lq1,q2 (Br (x0))

(6.6)

with q1 = n+p
p and q2 = n+p

n(p−1)+p . The quantity in (6.6) is finite by our assumption
(1.13). For the following argumentation, we recall the inclusions (2.12). In order
to estimate J1 by (6.6), we require − ψ2

p−2 ≥ n+p
n(p−1)+p and 0 <

nψ2
ψ1

≤ n+p
p , or,

equivalently,

ψ2 ≤ − (n + p)(p − 2)

n(p − 1) + p
and ψ1 ≤ np

n + p
ψ2. (6.7)

Further, we establish restrictions which allow us to estimate J2 by (6.6). Here, we
need to assume

1 + n
n+pψ2 ≥ n + p

n(p − 1) + p
and 0 <

(n + p)(1 + n
n+pψ2)

p + ψ1
≤ n + p

p
. (6.8)

Joining (6.7)1 and (6.8)1, we obtain

ψ2 = − (n + p)(p − 2)

n(p − 1) + p
. (6.9)

What is more, since 1+ n
n+pψ2 = n+p

n(p−1)+p > 0 and p + ψ1 > 0, we can rewrite
(6.8)2 and combine it with (6.7)2 to get

ψ1 = − np(p − 2)

n(p − 1) + p
. (6.10)

Therefore, choosingψ1 andψ2 as in (6.9) and (6.10), we have shown that the right-
hand side of (6.5) is bounded by some power of (6.6), which ensures the uniform
boundedness of Pμ

p(z0; r) for small radii r > 0. In view of (1.10), this finishes the
proof. ��
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