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Abstract
Purpose Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in 
various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none 
has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, 
SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated 
with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to 
evaluate the adverse events associated with using SARMs by humans.
Methods PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included 
in the final review. Data from preclinical and clinical studies supported the review.
Results Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of 
SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and 
jaundice. Limited data are related to the dosages and purity of SARM supplements.
Conclusion Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to 
users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes 
it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more 
detailed analyses are needed to determine the safety of using SARMs.

Keywords Selective androgen receptor modulators · Unauthorized ingredients · Unapproved pharmaceuticals · Dietary 
supplements · Safety · Adverse events · Liver injury

Introduction

Selective androgen receptor modulators (SARMs) are a group 
of compounds with therapeutic potential. SARMs act as ligands 
by diffusing into the cell and binding to the androgen recep-
tor in the cytoplasm. This creates a receptor–ligand complex 
that translocate to the nucleus where it binds to DNA and acts 
as a transcriptional regulator of androgen genes response. 
Unlike natural ligands of this receptor, SARMs have a tissue-
selective effect, which gives them a significant advantage over 
other steroidal anabolic substances [1]. Currently, only SARMs 
antagonists, such as flutamide, nilutamide, bicalutamide, and 
enzalutamide, have been introduced to pharmacotherapy as non-
steroidal antiandrogen drugs for the treatment of prostate cancer. 
However, SARM agonists, which have shown the potential to 
stimulate muscle growth (anabolic effect) and improve bone 
reconstruction, are undergoing clinical trials and have not yet 
been approved by the Food and Drug Administration (FDA) or 
European Medicine Agency (EMA) for pharmacotherapy [2].
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For the first time, a method for detecting SARM ago-
nists (arylpropionamide derivatives) was proposed in spiked 
urine specimens using liquid chromatography/electrospray 
ionization tandem mass spectrometry with monitoring and 
simultaneous precursor ion scanning. The primary reason 
for developing this assay was to detect the potential mis-
use of SARMs as a doping agent by elite athletes. Since 
2008, SARMs have been included on the World Anti-Doping 
Agency (WADA) Prohibited List in the class of anabolic 
agents [3, 4]. Currently, SARMs are still recognized as dop-
ing agents and covered by the WADA Prohibited List in the 
group S1 Anabolic Agents (Other anabolic agents in subsec-
tion 2) [5]. In 2009, SARMs were first detected in products 
available on the market [6, 7]. Despite this, SARM ago-
nists are still available for sale. Some products are labeled 
as dietary supplements, while others do not have a specific 
classification or contain statements such as “Not for human 
consumption” or “Research use only.” SARMs available for 
sale online are offered in the form of tablets/capsules, liquid, 
or powder [8–10].

Only a few studies have reported on the prevalence of 
SARM use in recreational exercisers. In a study conducted 
in Greece, among 170 adolescent gym users surveyed using 
a questionnaire, 9% reported using products containing ana-
bolic–androgenic steroids, prohormones, SARMs (includ-
ing LGD-4033 and MK-2866), and aromatase inhibitors 
[11], [12].

A more precise estimate of the prevalence of SARMs use 
comes from a cross-sectional study conducted in the Neth-
erlands. In this study, a completed online questionnaire was 
used to collect data from a group of young male gym users 
(n = 2269; aged 24 ± 6 years). The study found that 2.7% of 
all participants reported using SARMs [13]. The most com-
monly used SARMs were ligandrol (LGD-4033), enobosarm 
(MK-2866), also known as ostarine, and testolone (RAD-
140). The majority of recreational SARMs users are males 
aged 18–29 years, who consume the substances individually 
or in stacks. Furthermore, these users have reported various 
adverse events (AEs) after 3 months of use, including but 
not limited to mood swings, decreased testicular size, and 
acne [14].

In 2012, data from WADA adverse analytical findings 
(AAF) reported only five AAF related to SARMs. However, 
the number of AAF increased in the following years, reach-
ing its peak in 2019 with ostarine—74, ligandrol—62, RAD-
140—4, and single cases of SARM S-23 and andarine. The 
latest available data from 2020 reported a decrease in these 
results. However, it should be emphasized that the total num-
ber of samples collected was 46.1% lower in 2020 compared 
to 2019 [5]. SARMs have led to annual increases in positive 
test results through detection methods in different biological 
samples, such as hair, nails, urine, and blood [15]. The pres-
ence of SARMs in biological samples may be unintentional 

and unconscious and result from contamination of dietary 
supplements with microdoses [16].

Recent cases of doping in Olympic and professional 
sports have involved ostarine and S-23 in athletics and 
basketball, respectively, as well as LGD-4033 in canoeing. 
However, the actual prevalence of SARM use is likely to 
be higher among fitness enthusiasts [17]. Several cases of 
SARMs detection in athletes have been reported previously 
[18, 19]. The popularity of SARMs among elite and com-
petitive athletes is fueled by aggressive online marketing 
that includes many false and unauthorized health claims 
attributed to SARMs. One frequently used false argument 
in online advertising is that SARMs are a safe alternative to 
AAS and do not cause adverse effects. While SARMs do not 
cause the typical androgenic side effects specific to AAS, 
the short-term and long-term effects of AAS use and related 
adverse effects are recognized and expected. In the case of 
SARMs, the long-term exposure and possible adverse effects 
are not fully known, which confirms that no molecules from 
the SARM agonist group have been approved for pharmaco-
therapy [13, 20, 21].

The FDA has issued a warning letter about the health 
risks associated with the use of body-building products con-
taining SARMs, informing about the potential increase in 
the risk of heart attack or stroke and other life-threatening 
adverse reactions such as liver damage [22, 23]. A large 
number of notifications about SARM detection have been 
registered in the database CFSAN Adverse Event Report-
ing System (CAERS) as potential AEs (The CFSAN 2022).

Warnings about the presence of unauthorized ingredi-
ents from SARMs such as ligandrol, ostarine, and testolone 
in food supplements sold online have been reported on the 
RASFF panel, mainly from Poland [24].

Most of the AEs associated with the intake of SARMs are 
drug-induced liver injuries (DILI). DILI can be divided into 
two groups: intrinsic and idiosyncratic. The intrinsic type 
includes drugs that produce DILI in a dose-related manner 
with a predictable capacity, and the rate of occurrence is 
high when the drug is given in high doses, such as acetami-
nophen (paracetamol) or selected plant raw materials con-
taining pyrrolizidine alkaloids [25].

Most DILI cases are classified as idiosyncratic, where 
the drug reaction is unpredictable and not related to the 
known pharmacological action of the drug, and the rate of 
occurrence is low. This category includes drugs such as iso-
niazid, selected antibiotics, statins, and selected ingredients 
in dietary supplements. An immune response is important 
in the pathogenesis of idiosyncratic DILI. The threshold of 
serum alanine aminotransferase (ALT), alkaline phosphatase 
(ALP), aspartate aminotransferase (AST), and total bilirubin 
(TB) is used to assess severity of DILI. DILI can be classi-
fied as hepatocellular (predominantly an elevation of ALT), 
cholestatic (mostly elevated ALP), and mixed type of liver 
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damage when the elevation of ALT and ALP is between 
them. DILI severity is evaluated according to Hy’s Law. 
Hy’s law assessments are used by the FDA in drug devel-
opment, including serum activity of ALT of at least three 
times the upper limit of normal (ULN), and ALT > 3 ULN 
and TB > 2 ULN without a significant ALP (< 2 × ULN) 
increase. The “New Hy’s Law” proposed by the Spanish 
DILI Registry includes a specific factor signed as “nR” 
and calculated based on dependencies, where (ALT or AST 
whichever higher/ULN)/(ALP/ULN), and if the result is > 5 
and TB > 2 ULN, then nR is considered positive, regard-
less of the ALP value. To identify and classify DILI cases, 
the values of aminotransferases, ALP, and TB are used, and 
serum ALT has greater liver tissue specificity than serum 
AST [26]. Information resources about DILI and specific 
drugs that induce them are included in the LiverTox data-
base, but there is no information about SARM agonists [27].

Recently, there have been many reports of liver dam-
age caused by SARMs, as well as comprehensive reviews 
of the probable causative mechanisms [28, 29]. Our review 
also takes into account changes in carbohydrate and lipid 
metabolism, including studies on animal models. Moreover, 
we summarized the toxicophores in more common SARMs 
on the black market. Emerging work indicates a problem 
with the potential risk posed by the use of SARMs and a 

comprehensive analysis is necessary to better understand 
the causes of toxic effects.

The aim of this review is to evaluate liver injury cases 
associated with the use of SARM agonists by humans and 
to assess their safety according to the most current available 
knowledge.

Methodology

To collect data, we searched PubMed for articles published 
from September 16, 2022, to October 2, 2023, using the 
search strategy: “((selective androgenic receptor modulators) 
OR (SARM)) AND ((safety) OR (health risk) OR (adverse 
event) OR (adverse reaction) OR (side effect) OR (hepato-
toxicity) OR (liver injury) OR (drug‐induced liver injury)).”

The first queries provided 341 records, which were 
screened to exclude 191 records due to their review or sys-
tematic review status. Only full-text articles were assessed 
for eligibility, and in the next stage, all records were screened 
by title and abstract. We excluded 150 records that were not 
related to the aim of the review and basic queries, and we 
added 4 records from other sources.

In total, 20 records were included in the final review. The 
methodology and data workflow is demonstrated in Fig. 1.

Fig. 1  Flowchart outlining the methodology and data workflow
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Results

Liver injury has been reported in humans using SARMs, mainly 
through spontaneous reports. For example, a case of severe 
DILI with cholestatic hepatitis and perisinusoidal fibrosis was 
reported in a subject who declared an intake of ligandrol at a 
dose of 10 mg/day [30]. However, clinical trials have determined 
that the safe daily doses of ligandrol are 0.1, 0.3, and 1 mg for 
21 days. This suggests that the subject was using a much higher 
dose than what was reported in the clinical trial. Nonetheless, this 
AE report has some limitations, such as no performed analyti-
cal test to detect ligandrol in the suspected product, or no per-
formed toxicological test of blood (or hairs) sample to confirm 
(or exclude) a share of ligandrol. Details for all collected AEs 
associated with the use of SARMs agonists are shown in Table 1.

In most cases, increased liver enzymes were identi-
fied. Elevated alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST), and lactate dehydrogenase 
(not measured in the reported cases) are considered to be 
indicative of cell damage. Alkaline phosphatase (ALP) and 
total bilirubin (TB) were also measured in reported cases. 
Generally, hepatocellular damage is indicated by increased 
aminotransferase activity, while higher ALP and GTTP 
activity indicates cholestatic liver injury.

Among the reported cases of oral use of SARMs, most 
often cholestatic liver damage was diagnosed. SARMs are 
typically used orally and the mechanism of liver damage may 
be similar to 17α-alkylated AAS [28] and directly contribute 
to a highly characteristic form of acute cholestasis, ranging 
from very mild to severe. Patients diagnosed with cholestatic 
liver injury had characteristic symptoms including nausea, 
pruritus, fatigue, jaundice, and dark urine and those were the 
main reasons for being admitted to the hospital.

These disorders occurred regardless of the SARM used—
they accompanied the intake of ostarine, RAD-140, and 
LGD-4033 individually [31], [34] as well as in the combina-
tion of these three SARMs [46]. No additional supplementa-
tion was reported in any of these cases. Among the remain-
ing reported cases of cholestatic liver injury, patients used 
combinations of several SARMs [39] as well as in combina-
tion with other substances, such as finasteride and zopiclone 
[35], an unnamed pre-workout supplement [42], and a mix 
of acetaminophen, caffeine, and aspirin [44].

Other results related to liver damage concerned perisi-
nusoidal fibrosis, where the patient only declared taking 
LDG-4033 [30]. The remaining results concerned hepa-
tocellular liver injury due to the intake of LGD-4033 and 
S-23 [45] as well as liver cytolysis due to the combination 
of ostarine and the metabolism modulator GW-1516 [36].

Only in a few cases was the dose of the substances taken 
precisely determined, but it should be noted that no labo-
ratory analysis was performed to confirm the purity and 

content of the substances. Only one study found the con-
tent of LGD-4033 and RAD-140 [31], while the second 
one analyzed biological samples (blood, urine, and hair) 
obtained from the patient [36].

Occurrences unrelated to liver injury included acute 
myocarditis. This was the first reported case of a SARM 
that may have a causal relationship with acute myocardi-
tis. However, the patient had a medical history of type 1 
diabetes which was being controlled with insulin injections 
and was also undergoing opioid-assisted treatment with sub-
lingual buprenorphine due to a history of drug abuse. The 
case is ambiguous and it is unclear whether acute myocar-
ditis was caused by the SARM or by the additional medica-
tions administered to the patient. The report suggests that 
there may be a potential interaction between SARMs and 
insulin and/or opioid medications [40]. Arayangkool et al. 
described the case of a patient who also suffered from bile 
cast nephropathy because of SARM-associated drug-induced 
liver injury [46].

Discussion

To address the potential inconsistencies in spontaneous AE 
reports, the authors summarized the duration of exposure, 
dosage, safety assessment, and pharmacokinetic parameters 
of selected SARM agonists covered in clinical trials. This 
information is accessed in Supplementary section. It should 
be noted that preclinical studies on the andarine (S-4) com-
pound, which is also available for sale online, were sus-
pended and did not advance to phase I of clinical trials [2].

In the clinical trials conducted with SARM agonists, 
some participants experienced elevations in AST/ALT/TB 
levels. However, these trials used controlled and precise 
doses of the investigational product. In the case reports of 
DILI, the exact dose of SARMs used by the subjects was not 
specified in most cases. In some cases where the dose was 
mentioned, it was found to be several times higher than the 
dose used in clinical trials, but this information was based 
only on the label of the product and not confirmed through 
analytical testing.

It is important to note that the selected chemical struc-
tures of SARMs contain various toxicophores, which are 
well recognized in medicinal chemistry as potential causes 
of toxicity in drugs (Fig. 2). For example, ligandrol con-
tains a nitrile substituent (Ar–CN) and an aziridine moiety, 
while testolone contains two Ar–CN groups and an aromatic 
azo group (Ar–N = N–Ar). Andarine contains an aromatic 
nitro substituent (Ar–NO2) and a potentially unstable sub-
structure of (Ar–NHCO–C(OH)(CH3)–CH2–O–Ar), which 
is also found in ostarine, along with two Ar–CN groups. 
This substructure, which is similar to the main toxicophore 
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of paracetamol (acetaminophen), can be unstable and form 
reactive and hepatotoxic N-acetyl-p-benzo imine derivatives 
during oxidative metabolism in the liver. This is especially 
concerning in cases where the substance is administered at 
an unknown or uncontrolled dosage or when multiple sub-
stances are taken in a single dose. The presence of selected 
toxicophores, such as Ar–NO2 in andarine, may be associ-
ated with higher toxicity of this compound [50–53].

Previous studies have shown that out of 44 dietary supple-
ments sold as SARMs, 39% of them contained unapproved 
substances other than SARMs, such as ibutamoren (a growth 
hormone secretagogue), cardarine (GW501516, a peroxi-
some proliferator-activated receptor-δ agonist), and SR9009 
(Rev-Erba [a circadian clock protein] agonist). Mass spec-
trometry analysis of these dietary supplements revealed that 
only 52% of them contained SARMs, indicating that many 
of these products were mislabeled [8–10, 15].

The CAERS database provides interesting observations, 
including many reports of potential AEs for specific key-
words/queries related to SARMs (Table 2). We searched 
the CAERS database using the following keywords: 
“SARM,” “andarine,” “S-4,” “ostarin(e),” “MK-2866,” 

“ligandrol,” “LGD-4033,” “testolone,” “RAD-140,” and 
“YK-11.” In summary, the reports not only included cases 
of liver injury but also blindness or a visual impairment, 
cerebrovascular accidents, paresthesia, abnormal hormone 
levels, testicular disorders, gynecomastia, increased blood 
prolactin, sexual dysfunction, altered mood, and a single 
fatal case of cardiac death [54].

The widespread availability of SARMS can be dem-
onstrated by looking at the additional sources such as the 
RASFF (summary of findings are included in Supple-
mentary section), at the Polish market (Allegro.pl) as an 
example, and in the NIH Label Database. All data from 
the analysis of Polish market and NIH Label Database is 
presented in Table 3. However, all the information which 
we analyzed are based only on the description included on 
the label of the product provided by the producer.

The WADA provides more precise data on antidoping 
testing figures, which detect all prohibited substances 
through analytical tests (Table 4) [55].

At first, the heterogeneity of SARMs’ chemical struc-
tures posed a challenge to the development of precise 

Fig. 2  Various toxicophores in 
SARM molecules. A red high-
light represents toxicophores; 
blue highlight represents detoxi-
cophores; yellow highlight 
represents potential unstable 
substructure
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Table 2  CAERS number of reports in CAERS for a specified keyword and alternative queries

Selected keyword Number 
of reports

Product Year of report Subject MedDRA “Preferred 
Terms”

Outcome

“SARM” 15 DNA ANABOLICS 
SARM MK 677

12.4.2015 Age not reported, 
male

Decreased activity, 
mood altered

Other outcome

SARM-SELECTIVE 
ANDROGEN 
RECEPTOR 
MODULATORS

9.2.2016 19 years, male Epinephrine increased, 
psychotic disorder

Life threatening, visited 
emergency room

SARM 7.6.2017 40 years, male Drug-induced liver 
injury

Hospitalization, visited 
emergency room

SARMS 140 12.27.2018 28 years, male Drug-induced liver 
injury, jaundice

Life threatening, hospi-
talization

DNA PHARMA 
SARM IBUTA-
MOREN MK-677

10.28.2019 30 years, male Abdominal discomfort, 
diarrhea, headache, 
weight decreased

Other outcome

MAX HEALTH 
& NUTRITION 
SARMS

11.12.2019 Age and sex not 
reported

Blindness Hospitalization, other 
serious or important 
medical event

BEAST SARMS 2.24.2020 18 years, male Testicular disorder Disability
SARM SP 

RESEARCH 
PRODUCT MASS 
RESEARCH

8.17.2020 47 years, male Anxiety, blood pressure 
increased, cerebro-
vascular accident, 
insomnia, tachycardia

Hospitalization, other 
serious or important 
medical event, visited 
emergency room

SAVAGE SARM 
STACK

9.28.2020 31.8 years, male Delusion, paranoia Hospitalization

PRIME NUTRI-
TION LGXNDS 
SARMS 
DESTROYER

3.25.2022 31 years, male Hormone level abnor-
mal, mood altered

Other serious or impor-
tant medical event

“andarine”
“S-4”

3 S4 (ANDARINE) 6.12.2017 27 years, male Dizziness, presyncope Other serious or impor-
tant medical event

VIRILITECH 
ANDARINE

2.22.2018 26 years, male Acute hepatic failure Hospitalization, visited 
a health care provider

MMG LABS 
ANDARINE S-4

11.27.2019 Age and sex not 
reported

Cardiac death Death

“ostarine”
“ostarin”
“MK-2866”

6 OSTARINE 
MK-2866

7.17.2017 36 years, male Cerebrovascular 
accident

Hospitalization

VIRILITECH 
OSTARINE

2.22.2018 26 years male Acute hepatic failure Hospitalization, visited 
a health care provider

SARM OSTARIN 9.26.2018 Age not reported, 
male

Hormone level abnor-
mal

Other serious outcome

HARDCORE 
OSTARIN SARM 
SERIES

2.24.2020 Aged not reported, 
male

Gynecomastia Other serious or impor-
tant medical event

KN NUTRITION 
CARDARINE 
OSTARINE

4.5.2021 30 years, male Malaise Hospitalization, dis-
ability

CHEMYO MK-2866 
OSTARINE 
25MG/ML

11.10.2021 17 years, male Blood prolactin 
increased, sexual 
dysfunction

Disability, visited a 
health care provider, 
other serious outcome
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detection methods. However, in subsequent years, there has 
been intensive development of new testing assays [6, 7].

Sobolevsky et al. provided the first human excretion results 
on ligandrol and confirmed several hydroxylated metabolites, 
including monohydroxylated and bishydroxylated, as well as 
hydroxylated and ring-cleaved metabolites [56].

Some potential mechanisms underlying liver dam-
age from the use of SARMs as performance-enhancing 
substances have not been well studied [57]. In reported 

cases, increased liver enzymes indicating cell damage 
as well as cardiac muscle damage were reported. The 
recently published report on the profibrotic and car-
diotoxic effects of ostarine may indirectly indicate the 
direction of further research [58]. One possible explana-
tion is that SARMs significantly increase carbohydrate 
metabolism, particularly gluconeogenesis, resulting in 
hyperglycemia and insulin resistance [59]. The rate of 
gluconeogenesis in the liver is largely regulated by the 
activity of FOXO1 and PGC-1α [60], although their 
exact relationship in the context of SARM induction 
remains unclear.

Interestingly, PGC-1α is also involved in fatty acid 
metabolism, specifically increasing beta-oxidation in the 
liver and playing a crucial role in metabolic adaptation 
during starvation in this tissue [61]. The overstimulation 
of both pathways due to SARM-induced anabolism can 
lead to oxidative stress and insulin resistance in hepato-
cytes [62], which may in turn increase proinflammatory 
mechanisms such as interleukin secretion [63] and per-
oxidated molecule production, further contributing to the 
inflammatory cascade [64]. Ultimately, these processes 
may activate apoptotic cascades [65].

The effect of SARMs on lipid metabolism is an area 
that requires further investigation, as the available 

Table 2  (continued)

Selected keyword Number 
of reports

Product Year of report Subject MedDRA “Preferred 
Terms”

Outcome

“ligandrol”
“LGD-4033”
“LGD4033”
“LGD 4033”
“LGD”

6 VIRILITECH 
LIGANDROL

2.22.2018 26 years male Acute hepatic failure Hospitalization, visited 
a health care provider

LIGANDROL LGD-
4033

5.16.2019 23 years, male Hepatic failure Life threatening, hospi-
talization, disability

LGD4033 11.21.2019 35 years, male Congenital anomaly Congenital anomaly

LGD 4033 12.17.2020 37 years, male Cerebrovascular acci-
dent, paresthesia

Hospitalization, visited 
emergency room

PRIMEVAL LAB 
SUPER LGD

3.31.2016 Age not reported, 
male

Mood altered Other outcome

CONTINUUM 
LABS LGD 
EXTREME

7.6.2016 Aged not reported, 
male

Bone pain, chest pain, 
renal disorder, visual 
impairment

Other outcome

“testolone”
“RAD-140”
“RAD140”
“RAD 140”

0
1
0
2

HARDCORE 
RAD-140 SARM 
SERIES

2.24.2020 Aged not reported, 
male

Gynecomastia Other serious or impor-
tant medical event

SARMS Rad 140 12.27.2018 28 years, male Drug-induced liver 
injury, jaundice

Life threatening, hospi-
talization

RAD 140 12.17.2020 37 years, male Cerebrovascular acci-
dent, paresthesia

Hospitalization, visited 
emergency room

“YK-11”
“YK11”
“YK 11”

2
0
0

YK-11 5.16.2019 23 years, male Hepatic failure Life threatening, hospi-
talization, disability

YK-11 12.17.2020 37 years, male Cerebrovascular acci-
dent, paresthesia

Hospitalization, visited 
emergency room

Table 3  SARM products available on the market—data from the 
Poland market (allegro.pl) and the NIH Label Database

Selected keyword Poland market (Allegro.pl) NIH 
Label 
Database

“SARM” 61 25
“andarine” 8 10
“ostarine”
“MK-2866”

55
20

20
6

“ligandrol”
“LGD-4033”

14
18

17
3

“testolone”
“RAD-140”

1
55

2
5

“YK-11” 19 6
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literature on the anabolic effect of SARMs poorly reports 
their effects on nontarget tissues and the liver. However, 
changes in lipid metabolism have been reported in ani-
mal models, including in the liver [66, 67], plasma [68, 
69], and adipose tissue [69, 70]. Table 5 summarizes the 
reported changes in lipid metabolism in animal models. 
Excess body fat can have adverse effects on metabolic 
changes due to the adipokines it produces. Ostarine has 
been shown to reduce the secretion of leptin and adi-
ponectin from white adipocytes [71], while low levels of 
leptin can intensify de novo lipogenesis in the liver and 
promote lipid accumulation in muscles, affecting insu-
lin production in the pancreas and contribute to insulin 
resistance [72–74]. Similarly, low levels of adiponectin 
can promote negative effects such as oxidative stress 
and mitochondrial dysfunction in the liver [75, 76]. The 
results of Min et al. using another SARM, S-42, reported 
no change in the level of adiponectin [67]. In addition, 
the results show the downregulation of SREBP-1c factors 
as well as FAS, which are crucial elements in lipogenesis 
de novo. This is the opposite of the results obtained using 
SAA [77].

Some studies have found changes in lipoproteins, tri-
glycerides, and cholesterol in clinical trials and animal 
models. Although inconsistent results were noted for tri-
glycerides and low-density lipoprotein in human subjects 
studies, the lowering of high-density lipoprotein (HDL) 
confirmed in clinical trials deserves attention [80–82]. 
Other studies have also reported a reduction in apolipo-
protein AI, a main protein in HDL [83–85]. Although these 
changes may be significant for the cardiovascular system, 
long-term reduced production of HDL may be related to 
liver dysfunction and limited regenerative processes of 
this organ [86, 87]. It is important to note that the results 
returned to baseline levels after the end of treatment but 
only concerned a relatively short period of administra-
tion (from 14 to 86 days). The longest administration time 
(113 days and 6 months) did not assess these parameters. 
The effect of long-term use of SARMs at high doses 
remains unclear. Summary of selected clinical trials dem-
onstrated in supplementary data [88–91].

The use of SARMs can disrupt metabolic pathways 
and potentially impact liver metabolism. However, the 
varying effects observed in studies can be attributed to 
factors such as the type of SARM, dose, and physiological 
state of the subjects. Although animal studies may not be 
entirely reliable due to differences in metabolism, they 
can provide partial insights into the mechanisms under-
lying DILI. Given the limited use of SARMs in human 
studies, animal models with humanized livers, chimeric 
mice with humanized cytochrome P450 enzymes, or 
cell models are crucial in identifying the mechanisms 
involved in DILI.Ta
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Conclusions

Our review provides a comprehensive overview of the harmful 
effects of SARMs on the liver. However, current knowledge 
of the toxicity mechanisms of SARMs is insufficient. Uncon-
trolled dosing and/or combining several SARM compounds 
in one product may lead to AEs related to liver damage and 
affect lipid metabolism disorders. Withdrawal of the substance 
often results in liver recovery, but the actual number of SARM 
users remains unclear. Analytical tests have confirmed many 
discrepancies in both quantity and quality analysis, indicating 
a very low quality of SARM products available on the market. 
Labels often do not provide accurate information for consum-
ers, and cases of counterfeit and fake manipulation among 
ingredients and declared doses have been confirmed.

Assessing liver damage, severity, and potential hepato-
toxicity of SARM compounds, as well as their causality, 
can be helpful in the diagnosis and implementation of effec-
tive treatment in clinical practice. Promoting SARMs as a 
safe alternative to other anabolic compounds is significantly 
dangerous and poses a risk to public health. Increasing con-
sumer awareness of the risks of SARM supplementation is 
crucial in preventing harmful effects.
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Table 5  Summary of selected changes in lipid metabolism after SARM treatment in an animal model

ORX/OVX orchidectomy/ovariectomy rat osteoporosis model, LDL low-density lipoprotein, HDL high-density lipoprotein, TG triglyceride

Metabolic changes Model SARM molecule Reference

Liver
Weight↑ ORX rats Ostarine Komrakova et al. [66]
SREBP-1c mRNA expression↓ ORX rats S-42 Min et al. [67]
FAS mRNA expression↓ ORX rats S-42 Min et al. [67]
Blood serum
TG↓ Monkeys

Female rats OVX
SARM-2f
MK-0773

Morimoto et al. [68]
Schmidt et al. [69]

Total cholesterol↑ Male rats Ostarine Komrakova et al. [78]
Total cholesterol↓ Monkeys SARM-2f Morimoto et al. [68]
LDL↑ Male rats LGD-4033 (+ physical activity) Komrakova et al. [78]
LDL↓ Monkeys

Female rats OVX
SARM-2f
MK-0773

Morimoto et al. [68]
Schmidt et al. [69]

HDL↑ Male rats Ostarine (+ physical activity) Komrakova et al. [78]
HDL↓ Monkeys SARM-2f Morimoto et al. [68]
Adipose tissue
Fat mass↓ OVX rats

OVX rats
S-4
S-4

Kearbey et al. [79]
Kearbey et al. [70]

Lipolysis↑ ORX rats
Adipocytes from rats

S-42
Ostarine

Min et al. [67]
Leciejewska et al. [71]

Lipogenesis↓ ORX rats
Adipocytes from rats

S-42
Ostarine

Min et al. [67]
Leciejewska et al. [71]

Adiponectin↓
Adiponectin –

Adipocytes from rats
ORX rats

Ostarine
S-42

Leciejewska et al. [71]
Min et al. [67]

Leptin↓ Adipocytes from rats Ostarine Leciejewska et al. [71]
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