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Abstract
Purpose Due to conflicting scientific evidence for an increased risk of dementia by intake of proton pump inhibitors (PPIs), this
study investigates associations between PPI use and brain volumes, estimated brain age, and cognitive function in the general
population.
Methods Two surveys of the population-based Study of Health in Pomerania (SHIP) conducted in Northeast Germany were
used. In total, 2653 participants underwent brain magnetic resonance imaging (MRI) and were included in the primary analysis.
They were divided into two groups according to their PPI intake and compared with regard to their brain volumes (gray matter,
white matter, total brain, and hippocampus) and estimated brain age. Multiple regression was used to adjust for confounding
factors. Cognitive function was evaluated by the Verbal Learning and Memory Test (VLMT) and the Nuremberg Age Inventory
(NAI) and put in relation to PPI use.
Results No association was found between PPI use and brain volumes or the estimated brain age. The VLMT score was 1.11
lower (95% confidence interval: − 2.06 to − 0.16) in immediate recall, and 0.72 lower (95%CI: − 1.22 to − 0.22) in delayed recall
in PPI users than in non-users. PPI use was unrelated to the NAI score.
Conclusions The present study does not support a relationship between PPI use and brain aging.
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Introduction

Much attention in the medical and scientific communities has
been paid to suspected associations of proton pump inhibitors
(PPIs) with adverse effects, since PPIs are widely used for
gastric acid–related disorders, often over-prescribed and sold
over the counter [1, 2]. In view of the fact that dementia is a
common and burdensome disease in aging societies, it is cru-
cial to identify avoidable risk factors such as specific pharma-
ceutical agents [3].

Although plausible pathophysiological pathways of brain
deterioration that PPIs might be involved in have been de-
scribed [4], previous researches have revealed conflicting ev-
idence for a link between PPI use and the risk of dementia and
cognitive decline [5–7].

The studies to date have mostly relied on clinical diagnoses
[8] or neuropsychological tests [9] to define dementia or cog-
nitive impairment, which are prone to misclassification errors
[10]. In the present study, we conducted an analysis of PPI use
in relation to brain volumes and estimated brain age derived
from magnetic resonance imaging (MRI) [11–13]. We also
evaluated the association between PPI use and cognitive
function.

Methods

Study population

Data were drawn from the Study of Health in Pomerania
(SHIP), that consists of two independent samples of adults
from a northeastern German region. Among the original sam-
ple of 7008 individuals (SHIP-0), 2333 individuals remained
at the third examination cycle (SHIP-2), and the follow-up
examination was conducted between 2008 and 2012.
Concurrent with SHIP-2, a new age- and sex-stratified random
sample, SHIP-Trend, of 8826 individuals was drawn and 4420
(2275 women) participated. Examinations for SHIP-Trend
were conducted from 2008 to 2012. More details about the
study designs, recruitment, and procedures have been pub-
lished elsewhere [14].

Individuals from SHIP-2 and SHIP-Trend were invited
to participate in whole-body MRI; 3746 individuals partic-
ipated in whole-body MRI [15]; 3310 participants aged
21–89 years were examined for brain MRI with
FreeSurfer segmentations. Among them, individuals with
MRI scans that did not pass quality control (e.g., inhomo-
geneity check of the magnetic field or severe movement
artifacts) (n = 291) or with missing information (n = 366)
were excluded. As a result, the analytic cohort for the anal-
ysis of PPI intake and MRI-derived outcome variables
comprised 2653 participants (SHIP-2 = 788, SHIP-
Trend = 1865) (Fig. 1). For the analysis on verbal memory

assessments, data from 5711 study participants (SHIP-2:
1569, SHIP-Trend: 4142) were included.

The Ethics Committee of the University Greifswald ap-
proved the study protocols of SHIP and SHIP-Trend. All par-
ticipants provided their written informed consent.

Assessment of PPI use

Medications taken during the last 7 days were assessed within
an interview using the name of the drug product or the un-
equivocal drug package code. This information was then used
to identify the active substances and translate this into the
Anatomical Therapeutic Chemical (ATC) code for further in-
vestigation. Additional questions focused on the drug use pat-
tern by discriminating between “regular use” and “use on
demand.” PPI use was defined as “regular use” (yes/no) in-
cluding omeprazole, pantoprazole, lansoprazole, rabeprazole,
and esomeprazole (ATC codes A02BC01-05).

Measurement of brain volumes

The neurocranium unit of the SHIP-MRI included a T1-
weighted and fluid-attenuated inversion recovery (FLAIR) se-
quence. MRI scans were obtained using a 1.5 Tesla MRI
machine (Magnetom Avanto, Siemens Medical Systems,
Erlangen, Germany). The T1-weighted images were acquired
with the following parameters: slice thickness = 1.0 mm (flip
angle 15 °), 3.4 ms echo-time, 1900 ms repetition time, and a
voxel size of 1.0 × 1.0 × 1.0 mm3 [16]. Images were analyzed
by the fully automated and validated segmentation software
FreeSurfer version 5.3 [17]. In this study, we examined the
volumes of the hippocampus (left, right, and sum of both
sides, respectively), gray matter, white matter, and the total
brain. The total brain volume was calculated as the sum of
gray matter volume and white matter volume.

Assessment of the estimated brain age

Cortical reconstruction and volumetric segmentation were
performed with the FreeSurfer image analysis suite version
5.3. In total, 169 brain regions of gray matter, white matter,
and the ventricular system were considered for the estimation
of the brain age. Brain ages were calculated using sex-
stratified ridge regression models of chronological age on
the volumes of all 169 brain regions. More specifically, the
brain age of an individual was defined as his predicted age
using a model based on all 169 regional brain volumes from
the remaining individuals of the same sex. A similar approach
has recently been used successfully to predict the presence of
Alzheimer’s disease based onMRI images [16]. The complete
list of brain regions used for estimating brain age can be found
in the supplementary information of the previous study [16].
The corresponding sex-specific coefficients of our brain age
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model can be provided by the corresponding author upon
request.

Verbal memory tests

To assess the verbal memory of the study participants, a
slightly abridged version of the Verbal Learning and
Memory Test (VLMT), the German version of the Rey
auditory-verbal learning test [18], was conducted in SHIP-2.
It consisted of consecutive learning of a list of 15 words over
three trials with immediate recall after each trial. After the
three trials were finished, a second word list was given to
the participants without previous notice to include the effects
of interference. After 20 min, the participants were asked to
recall the first word list. The sum of correctly recalled words
from the three immediate recall trials reflects short-term and
working memory (max. 45 points). The sum of correctly
recalled words after 20 min was used as a measure of delayed
recall (max. 15 points) [19].

The Nuremberg Age Inventory (NAI) was carried out in
SHIP-Trend. The NAI is a German collection of tests and
questionnaires devised to assess the cognitive abilities during
brain aging [20]. It includes subsets of verbal learning and

memory and consists of eight words. The participants were
asked to recall as many words as possible immediately after
hearing the eight words. After 20 min, the participants were
asked to retrieve them, mixed with eight additional distractor
words. The sum score is defined as a sum of the number of
correctly identified words minus the number of falsely chosen
distractor words (max. 8 points).

Confounders

We controlled for several confounders, assuming that direct
causes of the exposure or outcome, excluding possible instru-
mental variables, would identify a sufficient set of confound-
ing variables [21]. Because of the multi-origins of the different
types of dementia (e.g., dementia with Alzheimer’s diseases
and vascular dementia), it is complicated to consider all socio-
demographic and clinical characteristics, including genetic
factors, that could increase the risk of dementia in PPI users.
The associations of brain volumes with socio-demographic
factors, e.g., education level [22] and income [23] or behav-
ioral factors such as smoking [24] and alcohol consumption
[25] have been well-described in previous studies. Since obe-
sity plays a critical role as a confounder [26, 27], we

Fig. 1 Flow chart of the MRI
study population selection. MRI,
magnetic resonance imaging
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considered the body mass index (BMI) for model adjustment.
In addition, we explored several drug classes known as cog-
nitive function–altering medications [28, 29]. Also, we inves-
tigated the medicines that are frequently taken together with
PPIs [30, 31].

Socio-demographic variables, medical history, and clinical
data were collected through a standardized computer-assisted
face-to-face interview [14]. At baseline, income was adjusted
by dividing the household income by the square root of the
number of household members. The clinical data used in the
current study have been described in more detail elsewhere
[12]. Specifically, we included the following covariables for
adjustment: age; sex; intracranial volume (assessed by
FreeSurfer 5.3); education level (< 10, = 10, > 10 years in
school); smoking experience (never, former, or current smok-
er); income (Euros); alcohol consumption (g/day, derived
from beverage-specific quantity-frequency indices); BMI
(kg/m2); total cholesterol/high-density lipoprotein cholesterol
ratio (TC/HDL-C); glycated hemoglobin (HbA1c); use of an-
tidepressants (ATC codes: N06A*), antidiabetics (A10*), an-
tihypertensives (C02*, C03*, C07*, C08*, C09*), anti-
inflammatory medication including non-steroidal anti-inflam-
matory drugs (NSAIDs) (B01AC06, B01AC08, B01AC15,
B01AC34, B01AC36, B01AC56, C01EB03, C01EB16,
C10BX01, C10BX02, C10BX04, C10BX05, M01*,
N02BA*, N02BB*, N02BG*), statins (C10A*), and anticho-
linergics (ATC codes based on the active substances by Gray
SL et al. [28]); study (SHIP-2, SHIP-Trend); and the existence
of cerebrovascular pathologies or lesions in the brain that
might affect brain volumes found by brain MRI scanning
during this study (yes/no, for details see Supplementary
Table 1S).

Statistical analyses

Baseline characteristics were compared between PPI users
and PPI non-users by computation of medians (25th, 75th
percentile) for continuous variables and percentages for cate-
gorical variables. For the primary analysis, linear regression
models were used to assess the associations of PPI intake with
the global volume measures of the hippocampus, gray matter,
white matter, and the total brain, and the estimated brain age.
In secondary analyses, we used linear regression to assess the
association between PPI use and VMLT and NAI scores, re-
spectively. Models were adjusted for the confounders de-
scribed in the methods section and the interaction between
age and sex. Age was included in the analysis using restricted
cubic splines. The primary analysis was also adjusted for a
covariable indicating the presence of a cerebrovascular pathol-
ogy or a lesion in the brain. We further evaluated the modify-
ing effects of age on PPI use for brain volumes, estimated
brain age, and verbal memory tests.

Since not all SHIP participants went through the brainMRI
scan, we tested the plausibility of the missing-completely-at
random (MCAR) assumption underlying our primary models
by fitting a multivariable logistic regression model for com-
puting sample weights, i.e., weights for taking part in the brain
MRI scan. We used inverse probability weighting (IPW) to
minimize selection bias caused by non-random participation
in theMRI examination [32]. IPWswere stabilized to improve
precision [33]. To stabilize weights, we set the numerator of
each weight equal to the marginal probability of taking part in
the MRI examination.

In sensitivity analyses, we excluded study participants with
the presence of cerebrovascular pathologies or lesions in the
brain (n = 706) or did not adjust the models for the binary
“brain lesions” variable. In further sensitivity analyses, we
excluded participants with on-demand PPI intake (n = 36)
from the group of the non-PPI users or excluded both, indi-
viduals with possible brain conditions and on-demand PPI
users (n = 733).

In the secondary analysis, PPI intake was put in relation to
VLMT and NAI scores using linear regression models. For
model adjustment, the confounders that were used in the pri-
mary analysis were applied, except intracranial volume and
the brain lesions variable. For easier comparison of the asso-
ciations between PPI use and verbal memory tests, we com-
puted standardized outcomes as well, and Cohen’s dwas used
as a measure of effect size. We additionally estimated regres-
sion models accounting for the complex sampling strategy
(clustering, stratification, inverse probabilities of selection)
using the R survey package. The estimates form the analyses
were virtually identical (not reported). To check positivity, we
used inverse probability of treatment weighting (IPTW) as a
second modeling strategy, checking whether there are large
weights and comparing standardized differences between PPI-
exposed and unexposed individuals [34, 35]. For sensitivity
analyses, we repeated the regression analyses and adjusted for
all covariates but antihypertensives since a very high number
of participants took antihypertensives as a comedication. The
statistical software R (version 3.5.2, The R Foundation for
Statistical Computing, Vienna, Austria) was used.

Results

Of the 2653 participants in the primary analysis (21–89 years,
52.6% women), 170 (6.4%) were regular PPI users (Table 1).
Compared with non-users, PPI users were older and had more
cerebrovascular risk factors or brain lesions, higher BMI, and
higher total cholesterol/HDL-C ratio. PPI users were more
likely women.

PPI use was not associated with volumes of gray matter,
white matter, and hippocampus (see Table 2). Similarly, PPI
use was not related to brain age. The association between PPI
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use and right hippocampal volume was modified by age (P for
interaction = 0.038, Supplementary Fig. 1S).

Exclusion of the on-demand PPI users from sensitivity
analysis did not change the results. Furthermore, the results
were similar when study participants with the presence of
cerebrovascular pathologies or lesions in the brain were
excluded.

In the secondary analysis, we investigated the association
of PPI intake with immediate and delayed verbal memory
tests. The clinical characteristics of those participants are
displayed in Table 3. We found that PPI users performed
worse than non-users, with a 1.11 lower score (95% CI: −
2.06 to − 0.16) in immediate recall (score range: 0 to 45) and a
0.72 lower score (95% CI: − 1.22 to − 0.22) in delayed recall

Table 1 Characteristics of the
MRI study population (n = 2653) PPI non-user PPI user

(n=2483) (n=170)

SHIP-2 725 63

SHIP-Trend 1758 107

GMV (ml) 610 (568, 655) 585 (549, 618)

WMV (ml) 537 (492, 589) 522 (483, 567)

TBV (ml) 1113 (1035, 1197) 1066 (1002, 1148)

HV (ml) 7.96 (7.36, 8.54) 7.62 (7.19, 8.17)

Left HV (ml) 3.94 (3.63, 4.23) 3.77 (3.52, 4.04)

Right HV (ml) 4.03 (3.72, 4.34) 3.86 (3.61, 4.16)

ICV (ml) 1576 (1473, 1696) 1530 (1437, 1644)

Brain age (years) 52.0 (43.2, 60.0) 58.4 (50.5, 66.7)

Age (years) 51.0 (41.0, 62.0) 60.0 (50.0, 68.0)

Women (n,%) 1291 (52.0) 104 (61.2)

Brain lesion or vascular risk factor (n,%) 652 (26.3) 54 (31.8)

School education (n,%)

<10 years 368 (14.8) 45 (26.5)

10 years 1388 (55.9) 89 (52.4)

>10 years 727 (29.3) 36 (21.2)

Income (€) 1255 (895, 1717) 1096 (778, 1450)

Body mass index (kg/m2) 27.0 (24.3, 30.2) 29.5 (26.8, 32.5)

Smoking (n,%)

Never 976 (39.3) 72 (42.4)

Ex-smoker 951 (38.3) 66 (38.8)

Current 556 (22.4) 32 (18.8)

Alcohol consumption (g/day) 4.0 (1.0, 11.0) 4.0 (0.9, 9.2)

Systolic blood pressure (mmHg) 127.0 (115.0, 138.5) 130.0 (119.0, 139.0)

Diastolic blood pressure (mmHg) 77.5 (71.0, 84.0) 78.0 (73.5, 83.9)

LDL cholesterol (mmol/l) 3.3 (2.7, 4.0) 3.6 (3.0, 4.3)

HDL cholesterol (mmol/l) 1.4 (1.2, 1.7) 1.4 (1.1, 1.7)

Total cholesterol/HDL cholesterol 3.4 (2.8, 4.1) 3.6 (3.1, 4.3)

Triglycerides (mmol/l) 1.3 (0.9, 1.9) 1.7 (1.2, 2.4)

Glycated hemoglobin (%) 5.2 (4.9, 5.6) 5.4 (5.1, 5.8)

Anticholinergics (n,%) 46 (1.9) 13 (7.7)

Antidepressants (n,%) 99 (4.0) 14 (8.2)

Antidiabetic drugs (n,%) 94 (3.8) 13 (7.7)

Antihypertensive drugs (n,%) 765 (30.8) 110 (64.7)

Anti-inflammatory drugs (n,%) 247 (10.0) 37 (21.8)

Statins (n,%) 230 (9.3) 36 (21.2)

Data are medians (25th, 75th percentile) or n (percentages); PPI use was defined as only “regular use”

GMV, brain gray matter volume; WMV, brain white matter volume; TBV, total brain volume; HV, hippocampal
volume; ICV, intracranial volume; LDL, low-density lipoprotein; HDL, high-density lipoprotein; SE, standard
error; CI, confidence interval
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(score range: 0 to 15) assessed by VLMT. In contrast, no
differences in both immediate recall (range: 0 to 8) and de-
layed recall (range: − 8 to 8) were observed between the two
groups, when NAI was used for the cognitive assessment (see
Table 4). For easier comparison of the results, standardized
outcomes are also shown in the table. Furthermore, the asso-
ciation between PPI intake and the delayed verbal recall
assessed by VLMT was modified by statin intake (P for inter-
action 0.001). Participants with combined PPI and statin in-
take had a 0.51 (95%CI: − 0.35 to 1.37) higher delayed verbal
recall score than those who took PPIs but no statins (data not
shown).

In the additional analyses using IPTW, we could check that
the positivity assumption is not violated from comparing stan-
dardized differences between PPI-exposed and unexposed in-
dividuals. The estimates are shown in the Supplementary
Table S2. The results also suggest there is a lack of association
between proton pump inhibitor use and brain aging. In the
sensitivity analysis, the change in estimates of models with
and without antihypertensives suggested that antihypertensive
medication does not have an effect on our outcomes, although
it fulfills the disjunctive cause criterion.

Discussion

This population-based study investigated the association be-
tween PPI intake and brain aging, using brain volumes and
estimated brain age as outcomes in 2653 individuals aged 21–
89 years. After adjustment for multiple confounders, we did

not find relations between PPI intake and brain volumes.
Estimated brain age did not show a difference between PPI
users and PPI non-users. Although the association between
PPI use and right hippocampal volume was slightly modified
by age, no significant association was found.

PPIs are valued as the most effective therapeutic agents for
various conditions related to gastric acid. The prescription
rates linearly increased and still ranked first among all gastro-
intestinal medications in 2017 in Germany [36]. Moreover, in
recent years, PPIs became available as over-the-counter drugs.
Since 2016, however, the prescription numbers have been
declining, possibly because evidence has accumulated sug-
gesting that long-term use of PPI may be associated with ad-
verse health effects including dementia [8, 9, 26, 37].

Currently, there is no consensus on the association between
the use of PPIs and the risk of dementia [5–7]. Inconsistencies
between observational studies, especially those based on
claims data, have contributed to the doubtfulness of their util-
ity in clinical decision-making [38, 39]. Specifically, summa-
ry effect estimates of several recent meta-analyses suggested
no effect of PPI use on dementia risk [5, 6, 40, 41]. On the
other hand, plausible pathophysiological pathways of brain
deterioration that PPIs might be involved in such as increased
amyloid-β plaques, increased tau protein formation, and vita-
min B12 deficiency have been described and need to be taken
into account when evaluating the available evidence [4].

While we found no evidence for an association between
PPI use and brain volumes or estimated brain age, different
results of the verbal training and memory tests were observed.
We found that PPI users had lower VMLT scores, but the
effect sizes were small (Cohen’s d = 0.13 for immediate mem-
ory, 0.17 for delayed recall). There was no difference in both
types of recall between PPI users and non-users when the NAI
was used for the examination. The difference in the results
between the two verbal memory tests might be caused by
the difference in the complexity of the tests, i.e., the different
numbers of words and the fact that participants only had to
distinguish the distractor words for the NAI test, instead of
actively recalling the test words. Besides, the participants of
the NAI were younger than the ones of the VLMT since the
cohort of the SHIP-2, which includes VLMT, was older (see
Table 3).

Given that the two verbal learning and memory tests
yielded different results, we additionally checked, whether
the size of the left hippocampus, which has been shown to
be positively associated with verbal memory in previous stud-
ies [42, 43], was different in PPI users and non-users. The
disagreement of the test results also supports the necessity
for further research. Furthermore, the Mini-Mental State
Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA) are more often used to account for the
general cognitive functions and the risk of dementia [44–46].
Thus, it could be advantageous to employ those exams that

Table 2 Linear regression coefficients, SEs, and 95% CIs for the
associations of PPI intake with brain volumes and brain age,
respectively (n = 2653)

Coefficient SE 95% CI p

GMV −1.59 2.62 (−6.72, 3.54) .54

WMV 2.52 3.18 (−3.71, 8.76) .43

TBV 0.96 3.77 (−6.42, 8.34) .80

HV −0.006 0.058 (−0.120, 0.109) .92

Left HV 0.009 0.030 (−0.050, 0.069) .76

Right HV −0.015 0.032 (−0.078, 0.049) .65

Brain age 0.67 0.60 (−0.51, 1.85) .26

Models are adjusted for age; sex; interaction between age and sex; intra-
cranial volume; existence of brain lesion or vascular risk factor; education
level; income; smoking; alcohol consumption; total cholesterol/HDL
cholesterol ratio; glycated hemoglobin (HbA1C); systolic blood pressure;
body mass index (BMI); study cohort effect; and use of anticholinergic
drugs, antidepressants, antidiabetic drugs, antihypertensive drugs, anti-
inflammatory drugs, and statins. Inverse probability weighting was used
to correct for non-random MRI examination

GMV, brain gray matter volume (ml); WMV, brain white matter volume
(ml); TBV, total brain volume (ml); HV, hippocampal volume (ml); SE,
standard error; CI, confidence interval
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consider overall cognitive functions, including visuo-spatial
processing and executive functions, attention, recall, orienta-
tion, abstraction, and language, to assess general cognition
impairment or risk of dementia, rather than focusing only on
verbal memory. From our study population, only a limited
number of individuals at 60 years or older went through the
MMSE.

Our study has several strengths. To the best of our knowl-
edge, this is the first study on the relation between PPI use and
brain volumes/brain age assessed by MRI. It is important

because previous studies showed conflicting results on the
association between PPI intake and dementia/cognitive de-
cline since Gomm et al. [8] reported an increased risk of de-
mentia associated with long-term PPI use. Given that a con-
sensus of the results is needed in order to implement evidence-
based recommendations into clinical settings, and decreased
brain volume can be used as a proxy of dementia [11, 12, 47,
48], our quantitative approach investigating brain volumes
and their correlations with PPI intake added further findings
to the body of literature. Additionally, IPW was used to

Table 3 Characteristics of the study population who went through verbal memory assessments (n = 5711)

SHIP-2 SHIP-Trend

PPI non-user PPI user PPI non-user PPI user
(n=1438) (n=131) (n=3855) (n=287)

VLMT

Immediate recall (score range: 0 to 45) 26 (21, 30) 22 (20, 26) n/a n/a

Delayed recall (0 to 15) 8 (6, 10) 7 (5, 8) n/a n/a

NAI

Immediate recall (0 to 8) n/a n/a 5 (4, 6) 5 (4, 6)

Delayed recall (−8 to 8) n/a n/a 6 (5, 7) 6 (4, 7)

Age (years) 56.0 (45.0, 66.0) 64.0 (54.5, 71.5) 51.0 (39.0, 63.0) 63.0 (52.0, 71.5)

Women (n, %) 747 (51.9) 72 (55.0) 1992 (51.7) 146 (50.9)

School education (n, %)

<10 years 311 (21.6) 46 (35.1) 846 (21.9) 111 (38.7)

10 years 799 (55.6) 63 (48.1) 2021 (52.5) 123 (42.8)

>10 years 328 (22.8) 22 (16.8) 988 (25.6) 53 (18.5)

Income (€) 1007 (701, 1356) 1086 (826, 1356) 1184 (895, 1761) 1096 (778, 1450)

Body mass index (kg/m2) 27.7 (24.8, 31.1) 27.8 (24.4, 31.7) 28.0 (25.0, 31.0) 28.2 (25.6, 31.6)

Smoking (n, %)

Never 544 (37.8) 55 (42.0) 1391 (36.1) 107 (37.3)

Ex-smoker 609 (42.4) 59 (45.0) 1416 (36.7) 123 (42.8)

Current 285 (19.8) 17 (13.0) 1048 (27.2) 57 (19.9)

Alcohol consumption (g/day) 5.0 (2.0, 14.0) 4.1 (1.4, 13.1) 3.5 (0.7, 10..9) 2.1 (0.0, 7.5)

Systolic blood pressure (mmHg) 131.5 (119.5, 144.6) 131.0 (118.5, 142.5) 132.0 (119.0, 144.0) 134.0 (120.5, 147.5)

Diastolic blood pressure (mmHg) 80.0 (73.0, 86.5) 77.5 (71.0, 83.0) 79.0 (72.0, 86.0) 79.0 (71.5, 85.5)

LDL cholesterol (mmol/l) 3.3 (2.7, 3.9) 3.5 (2.8, 4.2) 3.3 (2.7, 4.0) 3.4 (2.7, 4.0)

HDL cholesterol (mmol/l) 1.4 (1.2, 1.7) 1.4 (1.1, 1.6) 1.4 (1.2, 1.7) 1.3 (1.1, 1.6)

Total cholesterol/HDL cholesterol 3.4 (2.8, 4.0) 3.5 (3.0, 4.3) 3.4 (2.8, 4.1) 3.5 (3.0, 4.2)

Triglycerides (mmol/l) 1.6 (1.0, 2.3) 1.8 (1.3, 2.6) 1.4 (0.9, 2.0) 1.7 (1.3, 2.6)

Glycated hemoglobin (%) 5.3 (5.0, 5.7) 5.6 (5.1, 5.9) 5.2 (4.9, 5.6) 5.5 (5.2, 6.0)

Anticholinergics (n, %) 36 (2.5) 14 (10.7) 81 (2.1) 13 (4.5)

Antidepressants (n, %) 62 (4.3) 14 (10.7) 171 (4.4) 32 (11.1)

Antidiabetic medication (n, %) 110 (7.7) 16 (12.2) 266 (6.9) 44 (15.3)

Anti-HTN medication (n, %) 600 (41.7) 89 (67.9) 1361 (35.3) 210 (73.2)

Anti-inflammatory medication (n, %) 213 (14.8) 46 (35.1) 472 (12.2) 101 (35.2)

Statins (n, %) 202 (14.0) 48 (36.6) 445 (11.5) 81 (28.2)

Data are medians (25th, 75th percentile) or n (percentages); PPI use was defined as only “regular use”; participants who took the verbal learning and
memory assessment were included regardless of conduct of MRI examinations

VLMT, Verbal Learning and Memory Test; NAI, Nuremberg Age Inventory; LDL, low-density lipoprotein; HDL, high-density lipoprotein
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decrease the selection bias caused by non-participation at the
brain MRI examination.

We also acknowledge the following limitations of the pres-
ent study. The study had a cross-sectional design, and we
cannot be sure that PPI use preceded changes in brain vol-
umes, estimated brain age, and verbal memory tests. In par-
ticular, we cannot rule out reverse causation (i.e., cognitive
decline or dementia may predispose to gastric problems and
PPI intake). PPI intake was defined as reported regular daily
intake over the past 7 days. Unfortunately, detailed informa-
tion on the duration of intake was unavailable. Lumping short-
term and long-term intake into one exposure groupmight have
introduced misclassification and might have biased the effect
estimate towards the null (i.e., based the true effect of long-
term PPI intake on cognition and brain age/volumes).We can-
not also rule out prevalent user bias that could have attenuated
true effect sizes. Also, there is a chance that those who irreg-
ularly took PPIs or participants with prodromal dementia
underreported PPI intake.

Regarding the outcome evaluated, we could not conduct
further examinations to diagnose dementia, such as positron
emission tomography scans or more specific cognitive tests.
Furthermore, white matter hyperintensities, which indicate ce-
rebral small vessel disease [49] and might be associated with
PPI intake, could not be precisely quantified by this method.
Another limitation is that we were not able to make a direct
comparison of the results between VLMT and NAI.

In conclusion, our findings did not support previous evi-
dence on a possible association between PPI intake and brain
aging. Further longitudinal investigations of the association
between incident PPI use and change in brain volumes and
brain aging are needed to confirm this finding.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00228-020-03068-8.
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Table 4 Linear regression coefficients, SEs, and 95% CIs for the association of PPI intake with verbal memory assessments (n = 5711)

Unstandardized outcomes Standardized outcomes

Coefficient SE 95% CI Coefficient SE 95% CI p

VLMT Immediate recall −1.11 0.48 (−2.06, −0.16) −0.18 0.08 (−0.34, −0.03) .02

Delayed recall −0.72 0.26 (−1.22, −0.22) −0.24 0.08 (−0.40, −0.07) .01

NAI Immediate recall 0.01 0.07 (−0.14, 0.15) 0.004 0.05 (−0.10, 0.11) .94

Delayed recall −0.17 0.10 (−0.36, 0.03) −0.10 0.06 (−0.21, 0.02) .10

Models are adjusted for age; sex; interaction between age and sex; education level; income; smoking; alcohol consumption; total cholesterol/HDL
cholesterol; glycated hemoglobin (HbA1C); systolic blood pressure; body mass index (BMI); and use of anticholinergic drugs, antidepressants,
antidiabetic drugs, antihypertensive drugs, anti-inflammatory drugs, and statins

VLMT, Verbal Learning and Memory Test (n = 1569); NAI, Nuremberg Age Inventory (n = 4142); SE, standard error; CI, confidence interval
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