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Abstract
Purpose To develop and validate a population pharmacokinetic model of ciprofloxacin intravenously in critically ill patients, and
determine target attainment to provide guidance for more effective regimens.
Methods Non-linear mixed-effects modelling was used for the model development and covariate analysis. Target attainment of
an ƒAUC0–24/MIC ≥ 100 for different MICs was calculated for standard dosing regimens. Monte Carlo simulations were
performed to define the probability of target attainment (PTA) of several dosing regimens.
Results A total of 204 blood samples were collected from 42 ICU patients treated with ciprofloxacin 400–1200 mg/day, with
median values for age of 66 years, APACHE II score of 22, BMI of 26 kg/m2, and eGFR of 58.5 mL/min/1.73 m2. The median
ƒAUC0–24 and ƒCmax were 29.9 mg•h/L and 3.1 mg/L, respectively. Ciprofloxacin pharmacokinetics were best described by a
two-compartment model. We did not find any significant covariate to add to the structural model. The proportion of patients
achieving the target ƒAUC0–24/MIC ≥ 100 were 61.9% and 16.7% with MICs of 0.25 and 0.5 mg/L, respectively. Results of the
PTA simulations suggest that a dose of ≥ 1200 mg/day is needed to achieve sufficient ƒAUC0–24/MIC ratios.
Conclusions The model described the pharmacokinetics of ciprofloxacin in ICU patients adequately. No significant covariates
were found and high inter-individual variability of ciprofloxacin pharmacokinetics in ICU patients was observed. The poor target
attainment supports the use of higher doses such as 1200 mg/day in critically ill patients, while the variability of inter-individual
pharmacokinetics parameters emphasizes the need for therapeutic drug monitoring to ensure optimal exposure.
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Introduction

Patients admitted to the intensive care unit (ICU) often need
antibiotic therapy to treat infections. Timely and adequate an-
timicrobial treatment is essential for good clinical outcome,
preventing the spread of antibiotic resistance and containing

the economic impact of infections [1–4]. ICU patients repre-
sent a highly heterogeneous population with significant differ-
ences in the distribution of patients’ ages, severities of illness,
durations of admission, and outcomes [5]. Due to the large
variability in these patients, a “one-dose-fits-all” approach
seems undesirable. Furthermore, dosing of many antibiotics

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00228-020-02873-5) contains supplementary
material, which is available to authorized users.

* Alan Abdulla
a.abdulla@erasmusmc.nl

1 Department of Hospital Pharmacy, Erasmus University Medical
Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

2 Department of Intensive Care, Erasmus University Medical Center,
Rotterdam, The Netherlands

3 Department of Intensive Care, Maasstad Hospital,
Rotterdam, The Netherlands

4 Department of Clinical Pharmacy & Toxicology, Leiden University
Medical Center, Leiden, The Netherlands

5 Department of Medical Microbiology and Infectious Diseases,
Erasmus University Medical Center, Rotterdam, The Netherlands

6 Department of Medical Microbiology, Haaglanden Medical Center,
The Hague, The Netherlands

https://doi.org/10.1007/s00228-020-02873-5

/ Published online: 19 April 2020

European Journal of Clinical Pharmacology (2020) 76:957–967

http://crossmark.crossref.org/dialog/?doi=10.1007/s00228-020-02873-5&domain=pdf
https://doi.org/10.1007/s00228-020-02873-5
mailto:a.abdulla@erasmusmc.nl


was designed in an era with more susceptible micro-
organisms and in healthy volunteers or patients with mild to
moderate severities of illness, with reasonably predictable
pharmacokinetic (PK) parameters. The pathophysiological
changes in critically ill patients can cause substantial PK
changes, such as an increased volume of distribution, de-
creased protein binding, and changes in elimination rate
[6–8]. PK changes in critically ill patients often result in in-
sufficient exposure, which may contribute to inadequate bac-
terial eradication, an increased chance of antibiotic resistance,
and excess morbidity and mortality rates [8–11].

Ciprofloxacin, a fluoroquinolone antibiotic, has a wide
spectrum of antimicrobial activity and is frequently used for
various infections as monotherapy or in combination with
other antibiotics [12]. The bactericidal action of ciprofloxacin
is characterized by a rapid concentration-dependent activity
against many gram-negative aerobic bacteria and to a lesser
extent against gram-positive bacteria [13]. Ciprofloxacin is
eliminated by various mechanisms (renal, hepatic, and
transintestinal) [14].

The ratio of the area under the drug serum concentration–
time curve over 24 h at steady state and the minimal inhibitory
concentration (AUC0–24/MIC) is a good predictor for cipro-
floxacin efficacy. The pharmacodynamic target (PDT) for op-
timal outcome for ciprofloxacin is AUC0–24/MIC ≥ 125, or ≥
100 for the unbound (free) drug concentration (ƒAUC0–24/
MIC) [11, 15–17]. The probabilities of microbiological and
clinical cure for ciprofloxacin AUC0–24/MIC < 125 are poor
(26% and 42%, respectively), compared with AUC0–24/MIC
≥ 125 where the probabilities are 80% (p < 0.005) and 82%
(p < 0.001), respectively [15]. In addition, Cmax/MIC ratio 8–
10 is suggested to be particularly important to prevent the
emergence of resistance [18]. However, it is a challenging task
to formulate general dose adjustments for critically ill patients
and a validated approach for dose adjustment is not currently
available. Therapeutic drug monitoring (TDM) combined
with a population pharmacokinetic (popPK) model can be
used to interpret the complex PK in critically ill patients and
support in optimizing individual dosing to improve attainment
of the predefined targets. To date, different ciprofloxacin
popPK models have been developed for ICU patients [14,
19–23]. In most models, the study populations were exposed
to daily doses of ≤ 1200 mg/day, and in only three models
Monte Carlo simulations were performed to define dosing
regimens that increase the probability of target attainment
(PTA) [14, 23, 24]. The current study is one of the largest
multi-centre trials describing detailed ciprofloxacin popula-
tion pharmacokinetics in ICU patients. In contrast to the ma-
jority of the previous studies, pharmacokinetic data was ob-
tained based on data from a broad dosage range (400–
1200 mg).

The objective of this study was to develop a popPK model
to determine inter-individual PK variability, the influence of

patient characteristics, and the PTA of different high dosing
regimens using Monte Carlo simulations in ICU patients.
Furthermore, the model in the current study is described in
detail and comprehensively validated. Such knowledge is es-
sential for implementing model-based dosing to optimize cip-
rofloxacin exposure in critically ill patients.

Methods

Study design and population

The popPK model for ciprofloxacin was developed based on
data from a two-centre, prospective, observational PK/PD
study in the ICU departments of the Erasmus Medical
Centre and Maasstad Hospital, Rotterdam, the Netherlands
(EXPAT study). All patients admitted to the ICU between
January and December 2016 and treated with ciprofloxacin
were assessed for inclusion. Eligible for enrolment were pa-
tients aged ≥ 18 years, receiving intravenous ciprofloxacin,
and treatment aimed for at least 3 days. Exclusion criteria were
antibiotic cessation before sampling and burn wound patients
admitted to the ICU. The initiation of ciprofloxacin, dosage,
and duration of therapy were at the discretion of the attending
physician.

Blood sampling and assays

On day two after start of ciprofloxacin administration, blood
samples were collected before administration (trough concen-
tration), 15–30 min after the end of the infusion (peak concen-
tration), 1 and 3 h after infusion, and just before the start of the
next dose (second trough concentration). The exact sampling
time and the dosage administered were recorded. Blood sam-
ples were stored at 2–8 °C to maintain integrity, and centri-
fuged at 3000 rpm for 6 min within 24 h of collection. The
plasma was transferred to cryo-vials for frozen storage (−
80 °C) until analysis. Plasma concentrations were determined
by a multi-analyte UPLC-MS/MS. The calibration curves
were linear from 0.04 up to 5.0 mg/L, giving a correlation
coefficient r2 = 0.999. Samples with a concentration above
5.0 mg/L were diluted according to a standard dilution proto-
col. The method was comprehensively validated according to
the Food and Drug Administration (FDA) guidance on
bioanalytical method validation [25]. Observed concentra-
tions were corrected for protein binding (ƒAUC = AUC ∙
0.7), using an average plasma protein binding (PPB) value
of 30% in critically ill patients [26, 27].

Model building

The popPK model was built by using non-linear mixed-effect
modelling (NONMEM®, version 7.2, ICON Development
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Solutions, Ellicott City, MD, USA). The graphical user inter-
face (GUI) Pirana [28] (version 2.7.0) was used for model
management, execution, output generation, and interpretation
of results. Pirana was also used as the GUI for PSN (version
4.7.0) and Xpose (version 4.5.3), and R-studio was used in
combination with Pirana for graphical visualization. The data
were analyzed using the first-order conditional estimation
method with interaction (FOCE-I).

Structural model

For the initial popPK model, one-, two-, and three-
compartment models were tested to fit the ciprofloxacin plas-
ma concentration data and calculate the clearance (CL), vol-
ume of distribution of the central and peripheral compartment
(respectively Vc and Vp), and the transfer of ciprofloxacin
between the central and peripheral compartment (Q). The
model quality and the selection were based on the precision
with which the model parameters were estimated, objective
function value (OFV), shrinkage values, and visual inspection
of the goodness-of-fit-plots. The inter-individual variability
(IIV) was estimated on each parameter by using an exponen-
tial model. For these parameters, the shrinkage was also cal-
culated to identifying and quantifying whether an overfit is
taking place. A shrinkage below 20% was considered accept-
able [29]. The residual variability was incorporated as a com-
bined proportional and additive model. The IIVof the param-
eters, for example clearance, can be described by the follow-
ing equation:

CL j ¼ CLpop � exp ηCLð Þ ð1Þ

CLj is the clearance of the jth individual and it is described
by the clearance of the mean population (CLpop) and variabil-
ity of mean clearance and the clearance of the jth individual
(ηCL). ηCL is normally distributed with an average of zero and
a variance ofω2, shortly noted as η =N(0,ω2). To further refine
the model, the omega block option was used for assessment of
covariance between random effects.

Covariate analysis

After the selection of the structural model, covariates were
added to the model. These covariates were selected based
on the possibility that they could explain the IIV in pa-
rameter estimates. This was based on relevant physiolog-
ical and clinical explanations or evidence from previous
research [14, 19–21, 30]. Covariates that were tested were
serum creatinine, estimated glomerular filtration rate
(eGFR), serum albumin, body mass index (BMI), weight,
sex, renal replacement therapy (RRT), and age. The con-
tinuous covariates were normalized to the population

median and the categorical covariates were transformed
to binary covariates, respectively Eqs. 2 and 3.

θi ¼ θpop � covi
covm

� �θcov

ð2Þ

θi ¼ θpop � θcov
covi ð3Þ

θi represents the individual predicted value of any parame-
ter calculated by the model with a covariate value covi. θpop
represents the population estimate for θi, covm is the median
covariate value, and θcov is the covariate effect. For Eq. 3, the
covariate value is either 1 or 0. The covariates were individu-
ally added to the model and then deleted one by one according
to the forward inclusion-backward elimination method [31].
For the initial covariate step, a decrease in OFVof at least 3.84
(p < 0.05 with 1 degree of freedom) from the structural model
was required for the covariate to be included. Subsequently,
all significant covariates were included simultaneously to the
structural model and were deleted one by one. A stricter sta-
tistical significance of p < 0.001 was applied in the backward
elimination step (OFV > 10.83).

Model evaluation

The evaluation of the model was done using statistical and
graphical tools, including goodness-of-fit plots. Furthermore,
the robustness of parameter estimates from the final model
was tested using a bootstrap analysis. For the bootstrap, the
dataset was resampled 1000 times to asses if the model was
appropriate. Visual predictive checks (VPCs) were executed
to evaluate the model [32]. A normalized prediction distribu-
tion error (NPDE) analysis, which is a simulation-based diag-
nostic tool that can be used to evaluate models which have
different dosage regimens, was also used to evaluate the final
model [33].

Pharmacodynamic target

To calculate the ƒAUC0–24/MIC and ƒCmax/MIC ratios, the
clinical breakpoint of 0.5 mg/L from the EUCAST database
was used [34]. This is the highest MIC from which it can be
expected that ciprofloxacin under standard conditions is effec-
tive for Enterobacteriaceae, Pseudomonas spp., Acinetobacter
spp., Haemophilus influenzae, Moraxella catarrhalis, and
Neisseria spp. [34]. To assess the suitability of the empirical
fixed dosing regimens considering ƒAUC0–24/MIC ≥ 100 and
ƒCmax/MIC ≥ 8, a MIC distribution of 0.0312–8 mg/L was
tested. For the targeted treatment at different MICs, the wild-
type population distribution of Pseudomonas aeruginosa and
the epidemiological cut-off (ECOFF) value from the EUCAST
database were used [34].
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Dosing simulations

To generate data for target attainment analyses, Monte Carlo
simulations (n = 5000) were performed to define the PTA for
ciprofloxacin 400 mg twice daily (q12h), three times daily
(q8h), four times daily (q6h), 600 mg q12h, and q8h for the
non-protein bound fraction using MicLab236b (Medimatics,
Maastricht, the Netherlands). Monte Carlo simulations use a
simulation platform to expand the sample size of a study to
provide predictions of the likely result of different therapeutic
approaches, such as altered drug dose or frequency, on the
achievement of therapeutic targets [35].

Results

Study population

A total of 42 patients were included. Among these patients,
the prescribed daily dose was 400 mg q24h in 3 patients,
400 mg q12h in 25 patients, and 400 mg q8h in 14 patients,
administered as an infusion over 30–60 min. In total, 204
plasma concentrations were available, an average of 4.9 sam-
ples per patient. Other baseline characteristics of the study
population were median eGFR 58.5 mL/min/1.73 m2, albu-
min 25 g/L, C-reactive protein 139.5 mg/L, Acute Physiology
and Chronic Health Evaluation (APACHE) II score 22,
Sequential Organ Failure Assessment (SOFA) score 13, and
a mortality rate at day 30 of 23.8%. A summary of baseline
patient characteristics is presented in Table 1.

Pharmacokinetic parameters

Box and whiskers plots of plasma ƒCmin, ƒCmax, and ƒAUC0–

24 for the different dosing groups are shown in Fig. 1. Plots of
the total trough and peak plasma concentrations are presented
in the Supplemental material (Fig. S1). In the 400 mg q24h,
q12h, and q8h groups, the mean ƒCmax were 3.10, 3.02, and
3.05 mg/L, respectively, and the mean ƒAUC0–24 were 26.6,
34.2, and 46.8 mg•h/L, respectively.

Final model

The data was best described by a two-compartment model and
the residual error was described by a combined additive and
proportional error model. IIV was included on CL, Vc, and Q
and significantly improved the model (p < 0.05). The omega
block construction between CL and Vc was found to improve
the model and was maintained during the model building pro-
cess. The parameter estimations of the final model are present-
ed in Table 2. The mean serum elimination half-life was
6.96 h.

Table 1 Summary of baseline patient demographic and clinical
characteristics

Characteristics n = 42

Demographic data

Sex (male/female) 25/17

Age (years) 65.5 (56–71)

Body weight (kg) 80 (64–90)

Height (cm) 173 (165–181)

BMI (kg/m2) 26 (17.8–46.3)

Primary diagnosis

Respiratory 20 (47.6)

Cardiovascular 5 (11.9)

Gastrointestinal 5 (11.9)

Sepsis 8 (19.0)

Neurological 2 (4.8)

Other 2 (4.8)

Clinical data

APACHE II 22 (20–26)

SOFA score 13 (9–16)

Length of ICU stay (days) 8.5 (4.0–28.3)

30-day survival 32 (76.2)

Biological data

Serum creatinine (μmol/L) 90 (70–153)

Serum creatinine (mg/dL) 1.0 (0.8–1.7)

eGFR (mL/min/1.73m2) 58.5 (32–101)

Albumin (g/L) 25 (22–29)

C-reactive protein (mg/L) 139.5 (71–194)

Leukocytes (×109/L) 13.4 (9.7–20.8)

Extra-corporal circuits

CVVH 10 (23.8)

Pharmacological data

ƒAUC0–24 (mg·h/L) 29.9 (19.6–42.1)

ƒCmax (mg/L) 3.1 (2.4–4.0)

Concomitant antibiotics

Cefotaxime 27 (64.3)

Metronidazole 13 (31.0)

Gentamicin 6 (14.3)

Amoxicillin 3 (7.1)

Doxycycline 1 (2.4)

Cefuroxime 1 (2.4)

Ceftazidime 1 (2.4)

Co-trimoxazole 1 (2.4)

Data are expressed as n (%) or median (IQR)

M, Male; F, Female; BMI, Body Mass Index; SOFA score, Sequential
Organ Failure Assessment score; APACHE II, Acute Physiology and
Chronic Health Evaluation II; ICU, Intensive Care Unit; eGFR, estimated
Glomerular Filtration Rate, calculated using the Modification of Diet in
Renal Disease (MDRD) formula; CVVH, Continuous Venovenous
Hemofiltration
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Covariate analysis

The base two-compartment model with IIVon CL, Vc, and Q
was used as a reference model for the covariate analysis. After
graphically selecting covariates for analysis, a forward selec-
tion of covariates followed by a backward elimination was
carried out. None of the covariates were found to correlate
significantly.

Model evaluation

The population predictions and individual predictions of the
final model were evenly distributed around the line of unity
when plotted against the observations, as shown in Fig. 2.
The conditional weighted residuals were normally distributed
over the x-axis when plotted against the time after dose and
concentration (Fig. 2). To assess the uncertainty of parameters,
a bootstrap analysis with 1000 runs was performed to calculate
the 95% percentile range of the final PK parameters. The me-
dian values and 95% CIs of the performed bootstrap analysis
are shown in Table 2. The VPC of the final model showed good
model predictability. The median observations, represented by
the red line in the middle, were lying within the 95% CI of the
model predictions, represented by the red shaded areas, thereby
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�Fig. 1 Box (median, 25th and 75th percentiles) and whisker (10th and
90th percentiles) plots of free (a) trough (ƒCmin), (b) peak (ƒCmax) plasma
concentrations, and (c) area under the plasma concentration versus time
curves (ƒAUC0–24) of ciprofloxacin observed in severely ill patients
treated with 400 mg one (q24h), two (q12h), and three (q8h) times daily.
Filled circles are outliers

Table 2 Parameter estimates of the final model and bootstrap analysis

Parameter Final model Bootstrap of the final model

Median 95% CI

CL (L/h) 25.4 (11) 25.8 20.6–30.6

Vc (L) 91.1 (13) 88.8 61.8–110.7

Vp (L) 164 (15) 159.8 120.1–216.2

Q (L/h) 91.9 (10) 94.3 77.2–128.3

IIV (%)

CL 67.8 (12) [1] 66.0 50.7–81.4

Vc 51.0 (22) [13] 37.7 11.1–55.3

Residual variability (%)

Proportional 15.3 (48) [18] 15.4 0.1–24.7

Additional 14.3 (55) [18] 14.0 0.1–27.7

The relative standard error (expressed as percentages) is given in round
brackets, and the shrinkage (expressed as percentages) is given in square
brackets

CL, Clearance of ciprofloxacin; Vc, Volume of distribution in the central
compartment; Vp, Volume of distribution in the peripheral compartment;
Q, inter-compartmental clearance; IIV, Inter-Individual Variability

961Eur J Clin Pharmacol (2020) 76:957–967



demonstrating adequate fit of the model (Fig. 3). The NPDE
analysis are illustrated in the Supplement material, both graphs
in Fig. S2 did not deviate significantly from a normal

distribution and with the majority of the NPDEs lying between
the values − 2 and 2, the model was considered appropriate.
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Fig. 2 Goodness-of-fit plots of
the final model. (a) Observed
concentration (OBS) plotted
against predicted concentration
(PRED). (b) OBS plotted against
the individual predicted concen-
tration (IPRED). (c) Conditional
weighted residuals plotted against
time after dose. (d) CWRES
plotted against PRED. The line in
A and B represents the line of
identity

Fig. 3 Observed ciprofloxacin
concentration–time data and the
visual predictive check (VPC) of
the final model. The blue brackets
are the observed concentrations.
The red line is the observed me-
dian and the two blue lines are the
5th and 95th percentiles of the
observed data. The red shaded
area is the 95% CI of the model-
predicted median and the blue
shaded areas are the 95% CIs of
the model-predicted 5th and 95th
percentiles
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Pharmacodynamic target attainment

The percentage of patients achieving the PDT ƒAUC0–24/MIC
≥ 100 and ƒCmax/MIC ≥ 8 in the three different ciprofloxacin
intravenous dosing regimens groups were calculated for dif-
ferent MIC values (Supplemental Fig. S3). Of all patients, for
the breakpoints 0.25 and 0.5 mg/L, the ƒAUC0–24/MIC ≥ 100
target was achieved in 61.9% and 16.7% of the patients, re-
spectively. Although there was a difference in achieving the
PDT between 400 mg q12h (12.0%) and q8h (28.6%) groups
for the breakpoint 0.5 mg/L, this numerical difference did not
reach statistical significance (p = 0.19). This can be explained
by the large variation and overlap of the ƒAUC0–24 in both
dosing groups (Fig. 1C). In addition, there was significant
difference in baseline eGFR between the three dose groups.
The median eGFR was 28.0, 52.0, and 82.5 mL/min/1.73 m2

for the 400 mg q24h, q12h, and q8h groups, respectively.
Furthermore, the ƒCmax/MIC concentration ratios of ≥ 8 for
the breakpoint of 0.25 and 0.5 mg/L were realized in 34
(81.0%) and 11 (26.2%) of patients, respectively.

Dosing simulations

The popPK parameters from the final model were used to
conduct Monte Carlo simulations to assess the target attain-
ment. Figure 4 shows the ƒAUC0–24/MIC ≥ 100 as a function
of the MIC for several dosing regimens. In order to achieve
optimal exposure (ƒAUC0–24/MIC ≥ 100) at an MIC of
0.5 mg/L, a dose of 1200 mg/day was required on average
(Fig. 4C–E). Since the 95% and 99% CIs are wide, even in the
highest dosage regimes, a substantial proportion of the popu-
lation does not achieve the PDT.

Discussion

In this study, we present the results of intravenous ciproflox-
acin PK modelling in 42 critically ill patients. Our popPK
model of ciprofloxacin was best described by a two-
compartment model, similar to previous studies [14, 19, 21,
23]. The final model was comprehensively evaluated by using
NPDE analysis and VPCs. Our ICU population is very het-
erogeneous, with a great variety of primary diagnosis, and
clinical and biological characteristics (Table 1). This variabil-
ity is represented in the model by the relatively high IIV. The
high IIV in Vc cannot be explained by fluid shifts, since cip-
rofloxacin volume of distribution in critically ill patients does
not change over time [36]. Van Zanten et al. [21] also found up
to fivefold differences in volumes of distribution. However,
they concluded that patient biometry or excessive volume
loading could not explain the differences in volumes of
distribution.

Various covariates that could provide information on PK
of ciprofloxacin in critically ill patients were tested.
However, at the end of the model-building process, no sig-
nificant covariates were found on Vc, CL, and Q. The lack
of significant covariates can partly be explained by the high
variability in the PK of ciprofloxacin in ICU patients as
recurrently described in the literature [15, 19–21]. The esti-
mated renal function in our population has a wide distribu-
tion, due to the presence of patients with and without acute
or chronic kidney injury, and RRT (Table 1). Nevertheless,
both impaired renal function and the presence of CVVH did
not have a significant influence on the model and were not
incorporated in the final model as a covariates. This implies
that plasma ciprofloxacin exposure cannot be predicted by
using serum creatinine in our ICU population. Using the
creatinine to estimate renal function is known to poorly pre-
dict actual renal function, as it is affected by factors other
than renal function [37]. However, in other popPK studies,
the creatinine clearance was found to be a significant rele-
vant covariate [19, 20]. Variability in ICU population char-
acteristics (e.g. admission diagnosis and disease state) can be
a likely explanation for this difference in influence of serum
creatinine. While in our study, we included septic and non-
septic patients (Table 1). Conil et al. [19] included only
septic patients and found a significant influence of CLCr

on kel. Forrest et al. [20] found a significant relationship
between total ciprofloxacin clearance and CLCr estimated
by the Jelliffe formula, mostly in patients with lower respi-
ratory tract infection. Additionally, when ciprofloxacin renal
clearance is compromised, the transintestinal elimination
route is frequently described in the literature in humans
and animals as the main compensatory elimination route
[38–40]. In septic patients, Jones et al. [39] showed that only
those patients who had liver or bowel pathology in addition
to renal failure had a significantly higher serum concentra-
tion than all other patients. Nevertheless, dose reduction or
interval extension have been proposed in the literature for
patients with only impaired renal function [41–43].
Concurrently, the results of various studies show the impor-
tance of adequate dosing in ICU patients, suggesting not
reducing the dose of ciprofloxacin in patients with impaired
renal function [21, 39, 44]. In addition, no significant renal
accumulation of ciprofloxacin in patients with an impaired
renal function was observed [44, 45]. This supports cipro-
floxacin TDM when dose reduction is considered in patients
with impaired renal function to avoid underdosing.

Our study shows that the PDTs are seldomly reached using
ciprofloxacin standard (800 mg/day) and high exposure
(1200 mg/day) dosing in ICU patients. The PDT was only
achieved in 16.7% of all patients at the clinical breakpoint of
0.5 mg/L. These findings are consistent with results from pre-
vious studies on exposure of ciprofloxacin in critically ill pa-
tients [15, 21, 22]. However, a breakpoint of 0.5 mg/L is only
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applicable when high exposure dosing is used (≥ 1200 mg/
day), covering P. aeruginosa infection [34]. For microorgan-
isms categorized as susceptible for standard dosing regimen,

MICs ≤ 0.25 mg/L are appropriate to assess the probability of
therapeutic success.

In this study, the PTAwas simulated to identify ciproflox-
acin intravenous dosing regimens that might better enable
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optimal target attainment. The simulations indicate that for
this population of ICU patients, the variation is significant,
and a PTA of at least 95% is only obtained for MIC values
≤ 0.25 mg/L. To reach a target of anƒAUC0–24/MIC ≥ 100 for
theseMICs, at least 1200mg/day is required to ensure optimal
exposure (> 95% PTA) in ICU patients (Fig. 4). For directed
therapy against P. aeruginosa (an MIC of 0.5 mg/L) in pa-
tients with septic shock, even a higher dose of 600 mg q8h has
been recommended to achieve adequate target attainment
[23]. Furthermore, Roberts et al. [23] simulated an 800 mg
loading dose, followed by 400 mg q8h doses, and demonstrat-
ed an increase in PTA on day 1 of therapy by 35–45%, com-
pared with standard 400 mg q8h.

However, in clinical practice, the regular ciprofloxacin dos-
ing falls within a relatively narrow range of 800–1200mg/day,
is not adjusted for body weight, and only moderately in-
creased for severe infections in the ICU. Higher doses may
also increase the risk of potential adverse events. Given that
there is high degree of variety in PK of ciprofloxacin in crit-
ically ill patients, as demonstrated here, it follows that TDM in
ICU patient is strongly recommended to increase the likeli-
hood of therapeutic target achievement and avoid unnecessary
high concentrations.

In this study, five samples per interval were used to estimate
theAUC0–24, but in clinical practice this is not convenient. Thus,
for TDM in clinical practice, we recommend a peak sample, or
every second sample next to a trough sample to estimate the
Cmax and AUC0–24 with sufficient accuracy. Considering that
patients with ƒAUC0–24/MIC ≥ 100 have the highest cure rates
[15], patients with infections caused by micro-organisms at
higher MICs may benefit most of TDM, as traditional dosing
is likely to result in inadequate exposure in the majority of ICU
patients. Inadequate antibiotic exposure in ICU patients also
appears to be an important independent determinant of hospital
mortality [46]. Considering the increasing resistance to cipro-
floxacin worldwide, at least 1200 mg/day dosing and preferably
combined with TDM is warranted in critically ill patients [21,
23, 47]. However, current dosing recommendations of >
1200 mg/day are only based on simulations and have not pro-
spectively and externally been validated. It should also be noted
that the risk of adverse events for the > 1200 mg/day dosage
simulated in this study has not been investigated. Furthermore, it
is not clear whether toxicity is predominantly peak or AUC
driven so that potential adverse effects could be reduced by
altering the number of administrations per day.

The present study shows some pitfalls that should be
discussed. First, the ƒAUC was calculated assuming a PPB
30%. Measuring unbound ciprofloxacin concentrations is de-
sirable when treating ICU patients, since the ratio of bound
and unbound drugs can be subject to change because of dis-
ease characteristics in critically ill patients. However, protein
binding of ciprofloxacin is too low to be clinically affected by
the decrease of serum albumin for instance, making the

calculation of unbound concentrations from published protein
binding values acceptable. We analyzed plasma protein un-
bound fractions in another cohort of ICU patients [48] to clar-
ify the clinical feasibility of calculating unbound fractions
using an average PPB value. The mean fraction of ciproflox-
acin unbound plasma concentrations (n = 36) in the range of
0.1–12.5 mg/L was 70.5% ± 4.7% SD (data not published
yet). This is comparable with the calculated free fraction used
in this study and previously published data [26, 27].

Second, we used ECOFF values to calculate the PTA, since
the ECOFF in many situations is similar to the clinical
breakpoint [49]. Due to this approach, there is a chance that
PTA is underestimated in our study. However, the use of a mea-
suredMIC obtained by a single MIC determination is debatable,
since routine clinical laboratories cannot determine MICs with
sufficient accuracy due to the inherent assay variation in theMIC
test and the variation in any MIC determination [49].

Third, we used serum creatinine concentration as a testing
covariate on clearance. The creatinine clearance is the method
of reference for the estimation of the GFR. However, it is not
directly measured but an estimation by equation (i.e.
Cockcroft-Gault or MDRD), which is not validated for criti-
cally ill patients. Changes in serum creatinine are delayed after
changes in GFR, and fluid changes in critically ill patients can
seriously complicate the capability of serum creatinine to de-
tect small changes in kidney function [50, 51].

Conclusion

Our model describes the complex PK of intravenous cipro-
floxacin in critically ill patients. We found a high inter-
individual variability of ciprofloxacin PK. The obtained vari-
ability of our final model parameters in combination with the
presented low target attainment suggests higher initial doses
of at least 1200 mg/day are needed in critically ill patients.
More clinical outcome studies are necessary to support this
proposal, and to support the need for therapeutic drug moni-
toring to ensure optimal exposure. To confirm the correlation
of current PK/PD targets with optimal patient outcomes, fu-
ture clinical studies should validate and evaluate outcome
benefits from improved ciprofloxacin exposure using a ran-
domized controlled trial design.
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